Title: | Robust Small Area Estimation |
---|---|
Description: | Methods to fit robust alternatives to commonly used models used in Small Area Estimation. The methods here used are based on best linear unbiased predictions and linear mixed models. At this time available models include area level models incorporating spatial and temporal correlation in the random effects. |
Authors: | Sebastian Warnholz [aut, cre] |
Maintainer: | Sebastian Warnholz <[email protected]> |
License: | MIT + file LICENSE |
Version: | 0.5.0 |
Built: | 2024-12-11 07:08:10 UTC |
Source: | CRAN |
These functions help to repeatedly fit a rfh model on bootstrap
samples. Use bootstrap
as a user interface. boot
can be used to
extend the framework but is not meant to be used interactively. If you are
interested in the parameteric bootstrap for a 'rfh' model you can use the
implementation in mse.
bootstrap(object, matV = variance(object), B = NULL, ...) boot(object, matV, B, ...) ## S4 method for signature 'ANY,ANY,integerORnumeric' boot(object, matV, B, filter = NULL, postProcessing = identity, ...) ## S4 method for signature 'rfh,rfhVariance,'NULL'' boot(object, matV, B, ...)
bootstrap(object, matV = variance(object), B = NULL, ...) boot(object, matV, B, ...) ## S4 method for signature 'ANY,ANY,integerORnumeric' boot(object, matV, B, filter = NULL, postProcessing = identity, ...) ## S4 method for signature 'rfh,rfhVariance,'NULL'' boot(object, matV, B, ...)
object |
a fitted object |
matV |
the variance of a fitted object used to draw samples. In most
cases this is |
B |
the number of repetitions |
... |
arguments passed down to methods |
filter |
a vector indicating which elements in the fittedd object to keep in each repetition. |
postProcessing |
a function to process the results. Is applied before the filter. |
data(milk, package = "sae") milk$samplingVar <- milk$SD^2 modelFit <- rfh(yi ~ as.factor(MajorArea), milk, "samplingVar") bootstrapCoefs <- bootstrap(modelFit, B = 2, filter = "coefficients") do.call(rbind, unlist(bootstrapCoefs, FALSE))
data(milk, package = "sae") milk$samplingVar <- milk$SD^2 modelFit <- rfh(yi ~ as.factor(MajorArea), milk, "samplingVar") bootstrapCoefs <- bootstrap(modelFit, B = 2, filter = "coefficients") do.call(rbind, unlist(bootstrapCoefs, FALSE))
Various correlation structures. They can be used inside the rfh function to supply an alterantive variance structure to be fitted. For examples see the documentation of rfh.
corSAR1(W) corAR1(nTime) corSAR1AR1(nTime, W)
corSAR1(W) corAR1(nTime) corSAR1AR1(nTime, W)
W |
the row-standardised proximity matrix |
nTime |
(numeric) number of time periods |
corSAR1
can be used to model a simultanous autoregressive
process of order one: spatial correlation.
corAR1
can be used to model a autoregressive
process of order one: temporal correlation.
corSAR1AR1
can be used to model to model spatial and temporal
correlation
W
the row-standardised proximity matrix
nTime
(numeric) number of time periods
Several fitting procedures. The arguments can be passed to these functions using the interface in rfh. The functions here listed are the low level implementations and are not intended for interactive use.
fitrfh(y, x, samplingVar, ...) fitrsfh(y, x, samplingVar, W, x0Var = c(0.01, 1), ...) fitrtfh(y, x, samplingVar, nTime, x0Var = c(0.01, 1, 1), ...) fitrstfh(y, x, samplingVar, W, nTime, x0Var = c(0.01, 0.01, 1, 1), ...) fitGenericModel( y, x, matVFun, fixedPointParam, k = 1.345, K = getK(k), x0Coef = NULL, x0Var = 1, x0Re = NULL, tol = 1e-06, maxIter = 100, maxIterParam = 10, maxIterRe = 100, convCrit = convCritRelative(tol), ... ) ## S4 method for signature 'numeric,matrixORMatrix,numeric,'NULL'' rfh(formula, data, samplingVar, correlation = NULL, ...) ## S4 method for signature 'numeric,matrixORMatrix,numeric,corSAR1' rfh(formula, data, samplingVar, correlation = NULL, ...) ## S4 method for signature 'numeric,matrixORMatrix,numeric,corAR1' rfh(formula, data, samplingVar, correlation = NULL, ...) ## S4 method for signature 'numeric,matrixORMatrix,numeric,corSAR1AR1' rfh(formula, data, samplingVar, correlation = NULL, ...)
fitrfh(y, x, samplingVar, ...) fitrsfh(y, x, samplingVar, W, x0Var = c(0.01, 1), ...) fitrtfh(y, x, samplingVar, nTime, x0Var = c(0.01, 1, 1), ...) fitrstfh(y, x, samplingVar, W, nTime, x0Var = c(0.01, 0.01, 1, 1), ...) fitGenericModel( y, x, matVFun, fixedPointParam, k = 1.345, K = getK(k), x0Coef = NULL, x0Var = 1, x0Re = NULL, tol = 1e-06, maxIter = 100, maxIterParam = 10, maxIterRe = 100, convCrit = convCritRelative(tol), ... ) ## S4 method for signature 'numeric,matrixORMatrix,numeric,'NULL'' rfh(formula, data, samplingVar, correlation = NULL, ...) ## S4 method for signature 'numeric,matrixORMatrix,numeric,corSAR1' rfh(formula, data, samplingVar, correlation = NULL, ...) ## S4 method for signature 'numeric,matrixORMatrix,numeric,corAR1' rfh(formula, data, samplingVar, correlation = NULL, ...) ## S4 method for signature 'numeric,matrixORMatrix,numeric,corSAR1AR1' rfh(formula, data, samplingVar, correlation = NULL, ...)
y |
(numeric) response vector |
x |
([m|M]atrix) the design matrix |
samplingVar |
(numeric) vector with sampling variances |
... |
arguments passed to |
W |
(matrix) proximity matrix |
x0Var |
(numeric) starting values for variance parameters |
nTime |
(integer) number of time periods |
matVFun |
(function) a function with one argument - the variance parameters - constructing something like variance |
fixedPointParam |
(function) a function with one argument. The vector of model parameters. Returns a list of results of the next iteration in the overall algorithm. |
k |
(numeric) tuning constant |
K |
(numeric) scaling constant |
x0Coef |
(numeric) starting values for regression coefficients |
x0Re |
(numeric) starting values for random effects |
tol |
(numeric) numerical toloerance to be used during optimisation |
maxIter |
(integer) the maximum number of iterations for model parameters. |
maxIterParam |
(integer) the maximum number of iterations for each parameter in each overall iteration |
maxIterRe |
(integer) the maximum number of iterations for fitting the random effects |
convCrit |
(function) a function defining the stopping rule |
formula |
(formula) a formula specifying the fixed effects part of the model. |
data |
(data.frame) a data set. |
correlation |
an optional correlation structure, e.g. corSAR1, for the random effects part of the model. Default is no correlation, i.e. a random intercept. |
fitrfh
implements the robust Fay-Herriot model; fitrsfh
the
spatial, fitrtfh
the temporal, and fitrstfh
the spatio-temporal
extension to this model type. See rfh how to fit such models.
fitGenericModel
is used by all these implementations and can be used
for possible extensions of the framework.
data(milk, package = "sae") x <- matrix(1, nrow = NROW(milk)) y <- milk$yi samplingVar <- milk$SD^2 fitrfh(y, x, samplingVar)
data(milk, package = "sae") x <- matrix(1, nrow = NROW(milk)) y <- milk$yi samplingVar <- milk$SD^2 fitrfh(y, x, samplingVar)
A fixed-point function supplied by the user is iteratively
evaluated. addAverageDamp
can be used to add average damping to the
function - this may have a positive effect on the speed of convergence.
fixedPoint(fun, x0, convCrit) addAverageDamp(fun) addConstraintMin(fun, value) addConstraintMax(fun, value) convCritAbsolute(tolerance = 1e-06) convCritRelative(tolerance = 1e-06) addMaxIter(fun, maxIter) addCounter(fun) addHistory(fun) addStorage(fun) newtonRaphson(funList, ...) newtonRaphsonFunction(funList)
fixedPoint(fun, x0, convCrit) addAverageDamp(fun) addConstraintMin(fun, value) addConstraintMax(fun, value) convCritAbsolute(tolerance = 1e-06) convCritRelative(tolerance = 1e-06) addMaxIter(fun, maxIter) addCounter(fun) addHistory(fun) addStorage(fun) newtonRaphson(funList, ...) newtonRaphsonFunction(funList)
fun |
the function to be evaluated in the algorithm |
x0 |
starting value |
convCrit |
a function returning a logical scalar. Is called with two arguments; the first is the value from iteration n; the second is the value from iteration n-1 |
value |
(numeric) |
tolerance |
a numeric value > 0 |
maxIter |
maximum number of iterations |
funList |
(list) the functions to be evaluated in the algorithm. First element is typically the score function, second is the derivative of the score. |
... |
arguments passed to |
addAverageDamp
adds average damping to an arbitrary fixed point
function.
addConstraintMin
takes care that values are not below a
minimum value.
addConstraintMax
takes care that values are not larger than
maximum value.
convCritAbsolute
absolute difference as convergence criterion.
convCritRelative
relative (to previous iteration) absolute
difference as convergence criterion. If value is smaller than 1, absolute
difference is used.
addMaxIter
can be used to modify convergence criterion functions.
addCounter
can be used to count the number of calls of a function.
addHistory
can be used to save a history of results of a
function. The history is stored as a matrix, so this works best if the
return value of fun
is numeric.
addStorage
will add a storage to a function. The storage is a
list in which each result is stored. The function will coerce the return
value into a numeric.
newtonRaphson
finds zeroes of a function. The user can supply
the function and its first derivative. Note that the Newton Raphson
Algorithm is a special case of a fixed point algorithm thus it is
implemented using fixedPoint
and is only a convenience.
## Not run: vignette("fixedPoint", "saeRobust") ## End(Not run)
## Not run: vignette("fixedPoint", "saeRobust") ## End(Not run)
Extract respone vector and design matrix from data with given formula.
makeXY(.formula, .data)
makeXY(.formula, .data)
.formula |
(formula) |
.data |
(data.frame) data from which design matrix and response to extract from |
set.seed(1) makeXY(y ~ I(x^2), data.frame(x = rnorm(10), y = rnorm(10)))
set.seed(1) makeXY(y ~ I(x^2), data.frame(x = rnorm(10), y = rnorm(10)))
These functions construct different parts of matrix components. They are used internally. If you are interested in the weights of a model fitted using rfh please try to use weights.fitrfh on that object.
matU(.V) matTrace(x) matB(y, X, beta, re, matV, psi) matBConst(y, X, beta, matV, psi) matA(y, X, beta, matV, psi) matAConst(y, X, matV, psi) matW(y, X, beta, re, matV, psi) matWbc(y, reblup, W, samplingVar, c = 1) matTZ(.nDomains, .nTime) matTZ1(.nDomains = 10, .nTime = 10)
matU(.V) matTrace(x) matB(y, X, beta, re, matV, psi) matBConst(y, X, beta, matV, psi) matA(y, X, beta, matV, psi) matAConst(y, X, matV, psi) matW(y, X, beta, re, matV, psi) matWbc(y, reblup, W, samplingVar, c = 1) matTZ(.nDomains, .nTime) matTZ1(.nDomains = 10, .nTime = 10)
.V |
(Matrix) variance matrix |
x |
([m|M]atrix) a matrix |
y |
(numeric) response |
X |
(Matrix) design matrix |
beta |
(numeric) vector of regression coefficients |
re |
(numeric) vector of random effects |
matV |
(list of functions) see |
psi |
(function) the influence function |
reblup |
(numeric) vector with robust best linear unbiased predictions |
W |
(Matrix) the weighting matrix |
samplingVar |
(numeric) the vector of sampling variances |
c |
(numeric) scalar |
.nDomains |
(integer) number of domains |
.nTime |
(integer) number of time periods |
matU
computes U. U is the matrix containing only the diagonal
elements of V. This function returns a list of functions which can be
called to compute specific transformations of U.
matTrace
computes the trace of a matrix.
matB
computes the matrix B which is used to compute the
weights in the pseudo linearised representation of the REBLUP.
matBConst
returns a function with one argument, u, to compute
the matrix B. This function is used internally to compute B in the fixed
point algorithm.
matA
computes the matrix A which is used to compute the
weights in the pseudo linearized representation of the REBLUP.
matAConst
returns a function with one argument, beta, to
compute the matrix A. This function is used internally to compute A in the
fixed point algorithm for beta.
matW
returns a matrix containing the weights as they are
defined for the pseudo linear form, such that matW %*% y
is the
REBLUP.
matWbc
returns a matrix containing the weights as they are
defined for the pseudo linear form, such that matWbc %*% y
is the
bias-corrected REBLUP. c
is a multiplyer for the standard deviation.
matTZ
constructs the Z matrix in a linear mixed model with
autocorrelated random effects.
matTZ1
constructs the Z1 matrix in a linear mixed model with
autocorrelated random effects.
Warnholz, S. (2016): "Small Area Estimaiton Using Robust Extension to Area Level Models". Not published (yet).
data("grapes", package = "sae") data("grapesprox", package = "sae") fitRFH <- rfh( grapehect ~ area + workdays - 1, data = grapes, samplingVar = "var" ) matV <- variance(fitRFH) # matU: matU(matV$V())$U() matU(matV$V())$sqrt() matU(matV$V())$sqrtInv() # matB (and matA + matW accordingly): matB( fitRFH$y, fitRFH$x, fitRFH$coefficients, fitRFH$re, matV, function(x) psiOne(x, k = fitRFH$k) ) matBConst( fitRFH$y, fitRFH$x, fitRFH$coefficients, matV, function(x) psiOne(x, k = fitRFH$k) )(fitRFH$re) # construcors for 'Z' in linear mixed models matTZ(2, 3) matTZ1(2, 3)
data("grapes", package = "sae") data("grapesprox", package = "sae") fitRFH <- rfh( grapehect ~ area + workdays - 1, data = grapes, samplingVar = "var" ) matV <- variance(fitRFH) # matU: matU(matV$V())$U() matU(matV$V())$sqrt() matU(matV$V())$sqrtInv() # matB (and matA + matW accordingly): matB( fitRFH$y, fitRFH$x, fitRFH$coefficients, fitRFH$re, matV, function(x) psiOne(x, k = fitRFH$k) ) matBConst( fitRFH$y, fitRFH$x, fitRFH$coefficients, matV, function(x) psiOne(x, k = fitRFH$k) )(fitRFH$re) # construcors for 'Z' in linear mixed models matTZ(2, 3) matTZ1(2, 3)
A generic function to compute the mean squared error of the predicted values under the estimated model. See also rfh for examples.
mse(object, ...) ## S3 method for class 'fitrfh' mse(object, type = "pseudo", predType = "reblupbc", B = 100, ...)
mse(object, ...) ## S3 method for class 'fitrfh' mse(object, type = "pseudo", predType = "reblupbc", B = 100, ...)
object |
(see methods) an object containing the estimation result, e.g. rfh |
... |
arguments passed to methods |
type |
(character) the type of the MSE. Available are 'pseudo' and 'boot' |
predType |
(character) the type of prediction: |
B |
(numeric) number of bootstrap repetitions |
Type pseudo is an approximation of the MSE based on a pseudo linearisation approach by Chambers, et. al. (2011). The specifics can be found in Warnholz (2016). Type boot implements a parameteric bootstrap for these methods.
Chambers, R., H. Chandra and N. Tzavidis (2011). "On bias-robust mean squared error estimation for pseudo-linear small area estimators". In: Survey Methodology 37 (2), pp. 153–170.
Warnholz, S. (2016): "Small Area Estimaiton Using Robust Extension to Area Level Models". Not published (yet).
data("grapes", package = "sae") data("grapesprox", package = "sae") fitRFH <- rfh( grapehect ~ area + workdays - 1, data = grapes, samplingVar = "var" ) mseRFH <- mse(fitRFH) plot(mseRFH)
data("grapes", package = "sae") data("grapesprox", package = "sae") fitRFH <- rfh( grapehect ~ area + workdays - 1, data = grapes, samplingVar = "var" ) mseRFH <- mse(fitRFH) plot(mseRFH)
Various implementations of diagnostic plots. They are linked together using the plot generic function.
## S3 method for class 'rfh' plot(x, y, ...) ## S3 method for class 'prediction.fitrfh' plot(x, y, alpha = 0.05, ...) ## S3 method for class 'mse.fitrfh' plot(x, y = "pseudo", xlim = NULL, ylim = NULL, ...) qqPlot(sample) blandAltmanPlot(x, y, alpha = 0.05)
## S3 method for class 'rfh' plot(x, y, ...) ## S3 method for class 'prediction.fitrfh' plot(x, y, alpha = 0.05, ...) ## S3 method for class 'mse.fitrfh' plot(x, y = "pseudo", xlim = NULL, ylim = NULL, ...) qqPlot(sample) blandAltmanPlot(x, y, alpha = 0.05)
x |
an object |
y |
for mse estimates a filter for the predictors; otherwise ignored |
... |
ignored |
alpha |
(numeric) between 0 and 1 - used in computation of confidence interval |
xlim , ylim
|
arguments are passed to coord_cartesian and coord_flip. |
sample |
(numeric) a vector |
qqPlot
a QQ-Plot using ggplot2
blandAltmanPlot
a Bland-Altman plot. Solid line is the mean. Dashed
lines are the upper and lower bound of the limits-of-aggreements: z-quantile
* sd(x - y) – not the standard error. The alpha level can be set using
alpha
. This plot is otherwise known as Tukey's mean-difference plot.
qqPlot(rnorm(10)) blandAltmanPlot(rnorm(10), rnorm(10))
qqPlot(rnorm(10)) blandAltmanPlot(rnorm(10), rnorm(10))
psiOne
is a Huber influence function. getK
function to compute capital K – used internally.
psiOne(u, k = 1.345, deriv = FALSE) getK(k)
psiOne(u, k = 1.345, deriv = FALSE) getK(k)
u |
standardized residuals |
k |
tuning constant |
deriv |
if |
set.seed(1) u <- rnorm(10) psiOne(u, k = 1.345, deriv = FALSE)
set.seed(1) u <- rnorm(10) psiOne(u, k = 1.345, deriv = FALSE)
User interface to fit robust Fay-Herriot type models. These models are here framed as linear mixed models. The parameter estimation is robust against outliers. Available models are the standard FH model, a spatial extension, a temporal extension and a spatio-temporal extension.
rfh(formula, data, samplingVar, correlation = NULL, ...) ## S4 method for signature 'formula,data.frame,character,ANY' rfh(formula, data, samplingVar, correlation, ...) ## S3 method for class 'fitrfh' predict(object, type = "reblup", c = 1, ...)
rfh(formula, data, samplingVar, correlation = NULL, ...) ## S4 method for signature 'formula,data.frame,character,ANY' rfh(formula, data, samplingVar, correlation, ...) ## S3 method for class 'fitrfh' predict(object, type = "reblup", c = 1, ...)
formula |
(formula) a formula specifying the fixed effects part of the model. |
data |
(data.frame) a data set. |
samplingVar |
(character) the name of the variable in |
correlation |
an optional correlation structure, e.g. corSAR1, for the random effects part of the model. Default is no correlation, i.e. a random intercept. |
... |
arguments passed fitGenericModel |
object |
(rfh) an object of class rfh |
type |
(character) one or more in |
c |
(numeric) scalar; a multiplyer constant used in the bias correction.
Default is to make no correction for realisations of direct estimator
within |
To trigger the spatial and temporal extensions you can supply an argument
correlation
. When corSAR1
is used the model of Petrucci and
Salvati (2006); for corAR1
the model of Rao and Yu (1994) is used; and
for corSAR1AR1
the model of Marhuenda et al. (2013).
The methods introducing the robust framework underpinning this implementation can be found in Warnholz (2016). They are based on the results by Sinha and Rao (2009) and Richardson and Welsh (1995).
A list with the following elements:
call
(language) the call generating the value
formula
(formula) the formula passed as argument
samplingVar
(numeric) the vector of sampling variances
coefficients
(numeric) the vector of regression coefficients
variance
(numeric) the vector of fitted variance parameter(s)
iterations
(list) reporting each step in the optimisation
tol
(numeric) the tolerance level used
maxIter
(numeric) maximum overall allowed iterations
maxIterParam
(numeric) maximum allowed iterations for model
parameters in each overall iteration
maxIterRe
(numeric) maximum allowed iterations for fitting the
random effects
k
(numeric) tuning constant in influence function
K
(numeric) additional tuning constant; often derived from
k
to scale down the residual variance
y
(numeric) the response vector
x
(Matrix) the design matrix
re
(numeric) the fitted random effects. Can be c(re1, re2)
reblup
(numeric) the robust best linear unbiased prediction
under the fitted model
residuals
(numeric) the realised sampling errors
fitted
(numeric) the fitted values using only the fixed effects
part
Marhuenda, Y., I. Molina and D. Morales (2013). "Small area estimation with spatio-temporal Fay-Herriot models". In: Computational Statistics and Data Analysis 58, pp. 308–325.
Pratesi, M. and N. Salvati (2008). "Small area estimation: the EBLUP estimator based on spatially correlated random area effects". In: Statistical Methods & Applications 17, pp. 113–141.
Rao, J. N. K. and M. Yu (1994). "Small-Area Estimation by Combining Time-Series and Cross-Sectional Data". In: Canadian Journal of Statistics 22.4, pp. 511–528.
Richardson, A. M. and A. H. Welsh (1995). "Robust Restricted Maximum Likelihood in Mixed Linear Models". In: Biometrics 51 (4), pp. 1429–1439.
Sinha, S. K. and J. N. K. Rao (2009). "Robust Small Area Estimation". In: The Canadian Journal of Statistics 37 (3), pp. 381–399.
Warnholz, S. (2016): "Small Area Estimaiton Using Robust Extension to Area Level Models". Dissertation. https://refubium.fu-berlin.de/handle/fub188/9706.
# Non-temporal models: data("grapes", package = "sae") data("grapesprox", package = "sae") fitRFH <- rfh( grapehect ~ area + workdays - 1, data = grapes, samplingVar = "var" ) fitRFH summary(fitRFH) plot(fitRFH) plot(predict(fitRFH)) plot(mse(fitRFH)) ## Not run: # And the same including a spatial structure: fitRSFH <- rfh( grapehect ~ area + workdays - 1, data = grapes, samplingVar = "var", corSAR1(as.matrix(grapesprox)) ) # Use the same methods, e.g. plot, for all these implementations: data("spacetime", package = "sae") data("spacetimeprox", package = "sae") nTime <- length(unique(spacetime$Time)) fitRTFH <- rfh( Y ~ X1 + X2, spacetime, "Var", corAR1(nTime = nTime) ) fitRSTFH <- rfh( Y ~ X1 + X2, spacetime, "Var", corSAR1AR1(W = as.matrix(spacetimeprox), nTime = nTime) ) ## End(Not run)
# Non-temporal models: data("grapes", package = "sae") data("grapesprox", package = "sae") fitRFH <- rfh( grapehect ~ area + workdays - 1, data = grapes, samplingVar = "var" ) fitRFH summary(fitRFH) plot(fitRFH) plot(predict(fitRFH)) plot(mse(fitRFH)) ## Not run: # And the same including a spatial structure: fitRSFH <- rfh( grapehect ~ area + workdays - 1, data = grapes, samplingVar = "var", corSAR1(as.matrix(grapesprox)) ) # Use the same methods, e.g. plot, for all these implementations: data("spacetime", package = "sae") data("spacetimeprox", package = "sae") nTime <- length(unique(spacetime$Time)) fitRTFH <- rfh( Y ~ X1 + X2, spacetime, "Var", corAR1(nTime = nTime) ) fitRSTFH <- rfh( Y ~ X1 + X2, spacetime, "Var", corSAR1AR1(W = as.matrix(spacetimeprox), nTime = nTime) ) ## End(Not run)
Can be used to compute the values of the robust estimation equations at their 'solution'.
score(object, filter, ...)
score(object, filter, ...)
object |
a fitted object |
filter |
(character) a selection of values to be computed |
... |
arguments passed to methods |
data("grapes", package = "sae") fitRFH <- rfh( grapehect ~ area + workdays - 1, data = grapes, samplingVar = "var" ) score(fitRFH)
data("grapes", package = "sae") fitRFH <- rfh( grapehect ~ area + workdays - 1, data = grapes, samplingVar = "var" ) score(fitRFH)
Construction of test data
testMatX(...) testResponse0(x, beta = rep(1, ncol(x))) testResponse(y0, k = 1:4, .sd = sd(y0)) testRook(n)
testMatX(...) testResponse0(x, beta = rep(1, ncol(x))) testResponse(y0, k = 1:4, .sd = sd(y0)) testRook(n)
... |
matrices |
x |
a matrix |
beta |
a vector with parameters |
y0 |
a response vector (numeric) |
k |
values in 1 to 4 (integer) |
.sd |
the standard deviation used for random numbers |
n |
dimension |
Weihs / Mersmann / Ligges (2014): Foundations of Statistical Algorithms: With References to R Packages
## Examples from Weihs et. al. (2014) p. 108 library("Matrix") testMatX(Matrix(998), Matrix(998)) Z <- Matrix(c(998, 0, 0, 0), 2, 2) testMatX(Z, Z) testResponse0(testMatX(Matrix(1))) library("magrittr") Matrix(1) %>% testMatX %>% testResponse0 %>% testResponse
## Examples from Weihs et. al. (2014) p. 108 library("Matrix") testMatX(Matrix(998), Matrix(998)) Z <- Matrix(c(998, 0, 0, 0), 2, 2) testMatX(Z, Z) testResponse0(testMatX(Matrix(1))) library("magrittr") Matrix(1) %>% testMatX %>% testResponse0 %>% testResponse
This is a method which can be used to update a rfh result object and refit it. The fitted parameter values from the current object are used as starting values, then update.default is called.
## S4 method for signature 'rfh' update(object, formula, ..., where = parent.frame(2)) ## S4 method for signature 'fitrfh' update(object, ...)
## S4 method for signature 'rfh' update(object, formula, ..., where = parent.frame(2)) ## S4 method for signature 'fitrfh' update(object, ...)
object |
(rfh) an object fitted by rfh |
formula |
see update.formula |
... |
arguments passed to update.default |
where |
(environment) should not be specified by the user |
A generic function to construct the different variance components of an object. You may want to use this in conjunction with bootstrap.
variance(.object, ...) ## S3 method for class 'fitrfh' variance(.object, ...) ## S3 method for class 'fitrsfh' variance(.object, ...) ## S3 method for class 'fitrtfh' variance(.object, ...) ## S3 method for class 'fitrstfh' variance(.object, ...) ## S3 method for class 'fitrfh' weights(object, c = 1, ...)
variance(.object, ...) ## S3 method for class 'fitrfh' variance(.object, ...) ## S3 method for class 'fitrsfh' variance(.object, ...) ## S3 method for class 'fitrtfh' variance(.object, ...) ## S3 method for class 'fitrstfh' variance(.object, ...) ## S3 method for class 'fitrfh' weights(object, c = 1, ...)
.object , object
|
an object |
... |
arguments passed to method |
c |
(numeric) scalar |
data("grapes", package = "sae") data("grapesprox", package = "sae") fitRFH <- rfh( grapehect ~ area + workdays - 1, data = grapes, samplingVar = "var" ) # The variance component of a mixed linear model: matV <- variance(fitRFH) # The full variance matrix: matV$V() # The sampling error component matV$Ve() # the random effects component matV$Vu()
data("grapes", package = "sae") data("grapesprox", package = "sae") fitRFH <- rfh( grapehect ~ area + workdays - 1, data = grapes, samplingVar = "var" ) # The variance component of a mixed linear model: matV <- variance(fitRFH) # The full variance matrix: matV$V() # The sampling error component matV$Ve() # the random effects component matV$Vu()