area = max(dataPanel[,2])
period = max(dataPanel[,3])
vardir = dataPanel[,4]
result=Panel(ydi~xdi1+xdi2,area=area, period=period, vardir=vardir ,iter.mcmc = 10000,thin=5,burn.in = 1000,data=dataPanel)
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 100
#> Unobserved stochastic nodes: 125
#> Total graph size: 1045
#>
#> Initializing model
#>
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 100
#> Unobserved stochastic nodes: 125
#> Total graph size: 1045
#>
#> Initializing model
#>
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 100
#> Unobserved stochastic nodes: 125
#> Total graph size: 1045
#>
#> Initializing model
result$Est
#> MEAN SD 2.5% 25% 50% 75% 97.5%
#> 1 9.729058 0.6114056 8.531036 9.314558 9.719142 10.143217 10.911875
#> 2 7.637551 0.7033637 6.247115 7.172881 7.640769 8.107864 8.995988
#> 3 10.455365 0.4859571 9.537461 10.139173 10.446199 10.772226 11.447931
#> 4 6.298834 0.5386124 5.220279 5.937463 6.299821 6.649706 7.327139
#> 5 8.049336 0.6726068 6.759776 7.598334 8.056419 8.497693 9.412931
#> 6 5.795887 0.7149365 4.364910 5.321263 5.806706 6.286885 7.132234
#> 7 5.208649 0.6317565 3.991177 4.778986 5.228044 5.629600 6.428860
#> 8 8.293780 0.5778582 7.134798 7.909767 8.292052 8.704999 9.436595
#> 9 5.062252 0.6360209 3.821837 4.645109 5.050584 5.485616 6.336953
#> 10 8.029235 0.6314544 6.759409 7.611988 8.037450 8.456014 9.264910
#> 11 6.827151 0.5652709 5.709357 6.437832 6.815239 7.216166 7.944674
#> 12 6.357800 0.6313178 5.156265 5.921555 6.336196 6.784238 7.663001
#> 13 7.301850 0.5181577 6.287584 6.959778 7.304506 7.648555 8.315500
#> 14 7.872749 0.6433311 6.595653 7.418806 7.890671 8.306747 9.104275
#> 15 3.897739 0.6070125 2.683276 3.479366 3.902336 4.299767 5.106832
#> 16 10.595999 0.6596795 9.300842 10.147639 10.594284 11.031304 11.884400
#> 17 5.581122 0.5952727 4.400332 5.189615 5.579411 5.996792 6.749726
#> 18 5.692645 0.6568606 4.408223 5.257774 5.701258 6.138027 6.931305
#> 19 7.526094 0.5697831 6.438766 7.129929 7.532462 7.912824 8.629818
#> 20 7.477874 0.6101073 6.256601 7.058771 7.495665 7.889267 8.625569
#> 21 8.795382 0.6000389 7.618898 8.384407 8.793946 9.178540 10.009862
#> 22 11.356946 0.5008530 10.368913 11.025127 11.355120 11.698130 12.315543
#> 23 8.739673 0.6507154 7.412030 8.303584 8.730259 9.181637 10.021252
#> 24 8.350138 0.6728528 7.080686 7.884471 8.344805 8.809109 9.626758
#> 25 8.339546 0.5634227 7.249877 7.946801 8.329871 8.713305 9.477615
#> 26 7.292522 0.5779697 6.199997 6.909968 7.297060 7.666404 8.464075
#> 27 6.855590 0.6886265 5.479066 6.390471 6.876574 7.326716 8.224422
#> 28 8.317534 0.5814971 7.212940 7.930915 8.310614 8.713182 9.423665
#> 29 7.355399 0.6703312 6.036212 6.889120 7.348869 7.817940 8.666096
#> 30 10.959436 0.6208676 9.784598 10.539424 10.944442 11.389173 12.215221
#> 31 7.012414 0.7390908 5.633629 6.499159 7.014477 7.515976 8.443950
#> 32 4.917994 0.6779069 3.578273 4.470206 4.920222 5.386182 6.205153
#> 33 4.878854 0.6525649 3.568818 4.450088 4.886387 5.317124 6.139775
#> 34 8.660341 0.5880820 7.444910 8.279526 8.665161 9.044696 9.802020
#> 35 8.177056 0.7687322 6.665638 7.649037 8.189327 8.672626 9.701453
#> 36 9.783920 0.6371042 8.531829 9.364661 9.785403 10.195268 11.043819
#> 37 6.706512 0.7361648 5.221441 6.216630 6.726541 7.184550 8.135359
#> 38 10.261324 0.5976904 9.113953 9.875179 10.248372 10.659542 11.428450
#> 39 6.636538 0.6302316 5.417598 6.216839 6.637857 7.052802 7.884501
#> 40 8.178334 0.7029107 6.873611 7.719081 8.166865 8.633516 9.555902
#> 41 5.328177 0.6297775 4.097888 4.892005 5.339787 5.769157 6.507432
#> 42 7.162783 0.6348449 5.909428 6.754814 7.154516 7.563057 8.476045
#> 43 9.692305 0.6236799 8.484397 9.287436 9.692504 10.098156 10.917039
#> 44 4.462161 0.6536702 3.156662 4.031141 4.456334 4.898029 5.705477
#> 45 4.872848 0.4962434 3.889717 4.545607 4.874763 5.205069 5.781760
#> 46 6.170550 0.6650329 4.844828 5.722766 6.182653 6.612150 7.495553
#> 47 9.003000 0.7489212 7.493416 8.528217 9.024268 9.500493 10.426859
#> 48 8.963493 0.6671652 7.689382 8.539795 8.972655 9.403165 10.261875
#> 49 7.600890 0.6182953 6.426152 7.167090 7.594704 8.029175 8.811629
#> 50 7.339513 0.5733271 6.248401 6.955187 7.327022 7.735296 8.457414
#> 51 4.791703 0.5637845 3.653899 4.416346 4.783060 5.182539 5.891464
#> 52 8.348277 0.5936749 7.182684 7.941745 8.351231 8.739877 9.564472
#> 53 8.025939 0.6225233 6.786728 7.598371 8.024482 8.443672 9.197164
#> 54 6.121134 0.5815239 5.016911 5.717171 6.116189 6.504720 7.260188
#> 55 5.415497 0.5605139 4.377519 5.023878 5.409028 5.788081 6.531741
#> 56 7.229469 0.5722560 6.115649 6.856283 7.240658 7.612548 8.315721
#> 57 6.242775 0.6119410 5.034868 5.848955 6.247141 6.639015 7.412419
#> 58 8.179725 0.6880032 6.780096 7.733167 8.182655 8.662847 9.494218
#> 59 7.462287 0.6218526 6.223048 7.053707 7.461144 7.858558 8.733763
#> 60 9.456768 0.6366866 8.249593 9.019027 9.438886 9.891728 10.723278
#> 61 8.369522 0.6577164 7.058995 7.926987 8.380375 8.821099 9.621627
#> 62 8.655330 0.6135143 7.457067 8.247540 8.652927 9.079965 9.839451
#> 63 8.764540 0.7232598 7.257920 8.303850 8.780158 9.258085 10.239928
#> 64 9.561401 0.5511946 8.525302 9.182239 9.550362 9.911422 10.699253
#> 65 11.185453 0.7573143 9.714391 10.676112 11.190929 11.662906 12.701068
#> 66 7.670242 0.5069790 6.663457 7.320558 7.684585 8.003881 8.688948
#> 67 7.652621 0.6041439 6.471197 7.251296 7.652132 8.054697 8.832907
#> 68 8.749848 0.6820246 7.388996 8.285806 8.758262 9.202166 10.061227
#> 69 8.288418 0.4931374 7.320611 7.954427 8.292042 8.627991 9.250329
#> 70 10.083759 0.5611463 8.988781 9.683454 10.091830 10.460729 11.206131
#> 71 7.871688 0.5637120 6.741349 7.497396 7.867217 8.258911 8.958029
#> 72 10.010292 0.6069960 8.854391 9.603905 10.002886 10.404902 11.199252
#> 73 8.420923 0.6599032 7.111640 7.996054 8.418035 8.858036 9.717069
#> 74 9.950874 0.7350394 8.521350 9.434656 9.945622 10.451344 11.361822
#> 75 7.612475 0.5456563 6.558377 7.234412 7.600326 7.977831 8.699425
#> 76 4.099582 0.5695901 2.973675 3.739162 4.085651 4.478941 5.220073
#> 77 8.040602 0.5387310 6.984334 7.689305 8.041206 8.395337 9.081808
#> 78 3.830277 0.6238402 2.585890 3.411503 3.821982 4.259375 5.023936
#> 79 2.966816 0.5653595 1.835597 2.570284 2.980698 3.347886 4.071980
#> 80 6.365176 0.6763843 5.084032 5.890021 6.364436 6.817452 7.719133
#> 81 4.781555 0.6685439 3.527342 4.321664 4.773691 5.240043 6.089580
#> 82 10.025552 0.5778531 8.929844 9.636997 10.023724 10.410815 11.175993
#> 83 9.616768 0.5768817 8.514537 9.212375 9.600783 10.020911 10.782384
#> 84 6.253615 0.6455358 4.978226 5.814518 6.244513 6.704621 7.489071
#> 85 7.691198 0.7224487 6.226618 7.194109 7.709509 8.184169 9.059585
#> 86 4.951297 0.6049959 3.785663 4.539715 4.934166 5.356770 6.184493
#> 87 7.747534 0.5942290 6.567101 7.355552 7.746374 8.146761 8.883089
#> 88 5.887722 0.6818483 4.570396 5.443491 5.882646 6.325509 7.238036
#> 89 3.721897 0.5543037 2.658270 3.343615 3.722316 4.106644 4.768516
#> 90 7.445083 0.6541544 6.211653 7.005363 7.449274 7.856331 8.735205
#> 91 8.077651 0.5706843 6.983249 7.673948 8.101157 8.474288 9.164283
#> 92 8.932607 0.6471708 7.630396 8.495263 8.946868 9.378330 10.175612
#> 93 8.101259 0.4781179 7.217501 7.779717 8.095706 8.428612 9.006581
#> 94 8.019577 0.5712076 6.912692 7.636875 8.013507 8.403460 9.168116
#> 95 9.631780 0.5914277 8.471072 9.228292 9.625974 10.017343 10.832219
#> 96 10.192834 0.6392293 8.971333 9.755532 10.184048 10.616498 11.488037
#> 97 8.512694 0.6015387 7.321881 8.118084 8.514902 8.904251 9.697202
#> 98 5.548493 0.6715408 4.243506 5.106066 5.544492 6.000781 6.848901
#> 99 6.790219 0.6049122 5.608440 6.363732 6.781424 7.216462 7.982673
#> 100 8.966361 0.6531061 7.678059 8.509832 8.969978 9.391899 10.281115
y_dir=dataPanel[,1]
y_HB=result$Est$MEAN
y=as.data.frame(cbind(y_dir,y_HB))
summary(y)
#> y_dir y_HB
#> Min. : 2.555 Min. : 2.967
#> 1st Qu.: 6.144 1st Qu.: 6.288
#> Median : 7.684 Median : 7.719
#> Mean : 7.562 Mean : 7.562
#> 3rd Qu.: 8.822 3rd Qu.: 8.742
#> Max. :12.835 Max. :11.357
MSE_dir=dataPanel[,4]
MSE=as.data.frame(cbind(MSE_dir, MSE_HB))
summary(MSE)
#> MSE_dir MSE_HB
#> Min. :0.3133 Min. :0.2286
#> 1st Qu.:0.4971 1st Qu.:0.3318
#> Median :0.6294 Median :0.3861
#> Mean :0.6800 Mean :0.3886
#> 3rd Qu.:0.7749 3rd Qu.:0.4353
#> Max. :1.6929 Max. :0.5909
RSE_dir=sqrt(MSE_dir)/y_dir*100
RSE=as.data.frame(cbind(MSE_dir, MSE_HB))
summary(RSE)
#> MSE_dir MSE_HB
#> Min. :0.3133 Min. :0.2286
#> 1st Qu.:0.4971 1st Qu.:0.3318
#> Median :0.6294 Median :0.3861
#> Mean :0.6800 Mean :0.3886
#> 3rd Qu.:0.7749 3rd Qu.:0.4353
#> Max. :1.6929 Max. :0.5909