dataPanelbeta <- dataPanelbeta[1:25,] #for the example only use part of the dataset
area <- max(dataPanelbeta[,2])
period <- max(dataPanelbeta[,3])
result<-Panel.beta(ydi~xdi1+xdi2,area=area, period=period ,iter.mcmc = 10000,thin=5,burn.in = 1000,data=dataPanelbeta)
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 25
#> Unobserved stochastic nodes: 42
#> Total graph size: 339
#>
#> Initializing model
#>
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 25
#> Unobserved stochastic nodes: 42
#> Total graph size: 339
#>
#> Initializing model
#>
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 25
#> Unobserved stochastic nodes: 42
#> Total graph size: 339
#>
#> Initializing model
result$Est
#> MEAN SD 2.5% 25% 50% 75% 97.5%
#> mu[1,1] 0.9713957 0.02433871 0.9143929 0.9633304 0.9777242 0.9866414 0.9962473
#> mu[2,1] 0.9580010 0.03212776 0.8712837 0.9470552 0.9664510 0.9785057 0.9921969
#> mu[3,1] 0.9383701 0.05280326 0.7956264 0.9240364 0.9525547 0.9706921 0.9895314
#> mu[4,1] 0.9648086 0.03007377 0.8823714 0.9552219 0.9730418 0.9840946 0.9945929
#> mu[5,1] 0.9360625 0.05572265 0.7838854 0.9202336 0.9523564 0.9709396 0.9888169
#> mu[1,2] 0.9696177 0.02468299 0.9061383 0.9612052 0.9766512 0.9859674 0.9955490
#> mu[2,2] 0.9659763 0.02775714 0.8928422 0.9565177 0.9727674 0.9837246 0.9941634
#> mu[3,2] 0.9198703 0.06268703 0.7492873 0.9012890 0.9381876 0.9600665 0.9856970
#> mu[4,2] 0.9754150 0.02431120 0.9120835 0.9693692 0.9822373 0.9899630 0.9970006
#> mu[5,2] 0.9440012 0.04066542 0.8473476 0.9297397 0.9537064 0.9699746 0.9893101
#> mu[1,3] 0.9687984 0.02788204 0.8948663 0.9614923 0.9762707 0.9863422 0.9958964
#> mu[2,3] 0.8738200 0.08064478 0.6624012 0.8414712 0.8919430 0.9297159 0.9701729
#> mu[3,3] 0.9605108 0.02895871 0.8790897 0.9497376 0.9679034 0.9802633 0.9934799
#> mu[4,3] 0.9560835 0.03470147 0.8598127 0.9447551 0.9650232 0.9784957 0.9935205
#> mu[5,3] 0.9300201 0.04782236 0.8184490 0.9113753 0.9409107 0.9612108 0.9862697
#> mu[1,4] 0.9516297 0.04131640 0.8332512 0.9394271 0.9634047 0.9779832 0.9926483
#> mu[2,4] 0.9391893 0.04508967 0.8192724 0.9229162 0.9515609 0.9687701 0.9883871
#> mu[3,4] 0.9365444 0.04613908 0.8122724 0.9182601 0.9487098 0.9676487 0.9883243
#> mu[4,4] 0.9726462 0.02487536 0.9059785 0.9653861 0.9797950 0.9882836 0.9963833
#> mu[5,4] 0.8556849 0.10405428 0.5899622 0.8142326 0.8889341 0.9274962 0.9695810
#> mu[1,5] 0.9655930 0.02797952 0.8894854 0.9570538 0.9732329 0.9841548 0.9949500
#> mu[2,5] 0.8900625 0.07624848 0.6977548 0.8618737 0.9082344 0.9403927 0.9756348
#> mu[3,5] 0.9590975 0.03319855 0.8694306 0.9489825 0.9673564 0.9802910 0.9937005
#> mu[4,5] 0.9330082 0.05068706 0.8029932 0.9143721 0.9468291 0.9660900 0.9885444
#> mu[5,5] 0.8695013 0.09196205 0.6162615 0.8395680 0.8932854 0.9286103 0.9711836
y_dir<-dataPanelbeta[,1]
y_HB<-result$Est$MEAN
y<-as.data.frame(cbind(y_dir,y_HB))
summary(y)
#> y_dir y_HB
#> Min. :0.3836 Min. :0.8557
#> 1st Qu.:0.9702 1st Qu.:0.9330
#> Median :1.0000 Median :0.9516
#> Mean :0.9423 Mean :0.9402
#> 3rd Qu.:1.0000 3rd Qu.:0.9656
#> Max. :1.0000 Max. :0.9754
MSE_dir<-dataPanelbeta[,4]
MSE<-as.data.frame(cbind(MSE_dir, MSE_HB))
summary(MSE)
#> MSE_dir MSE_HB
#> Min. :0.0004401 Min. :0.0005910
#> 1st Qu.:0.0036464 1st Qu.:0.0007829
#> Median :0.0228563 Median :0.0016537
#> Mean :0.0256965 Mean :0.0025451
#> 3rd Qu.:0.0428368 3rd Qu.:0.0027882
#> Max. :0.0887137 Max. :0.0108273
RSE_dir<-sqrt(MSE_dir)/y_dir*100
RSE<-as.data.frame(cbind(RSE_dir, RSE_HB))
summary(RSE)
#> RSE_dir RSE_HB
#> Min. : 2.098 Min. : 2.492
#> 1st Qu.: 6.039 1st Qu.: 2.898
#> Median :15.118 Median : 4.308
#> Mean :16.266 Mean : 4.928
#> 3rd Qu.:21.629 3rd Qu.: 5.627
#> Max. :59.741 Max. :12.160