
Package: s3fs (via r-universe)
August 30, 2024

Type Package

Title 'Amazon Web Service S3' File System

Version 0.1.7

Description Access 'Amazon Web Service Simple Storage Service' ('S3')
<https://aws.amazon.com/s3/> as if it were a file system.
Interface based on the R package 'fs'.

License MIT + file LICENSE

URL https://github.com/DyfanJones/s3fs

BugReports https://github.com/DyfanJones/s3fs/issues

Encoding UTF-8

RoxygenNote 7.3.2

Collate 'zzz.R' 'utils.R' 's3filesystem_class.R' 'file_system.R'
'file_system_async.R' 'reexport_fs.R'

Depends R (>= 3.6.0)

Imports curl, R6, data.table, fs, future, future.apply, lgr,
paws.storage (>= 0.2.0), utils

Suggests covr, testthat (>= 3.1.4)

Config/testthat/edition 3

NeedsCompilation no

Author Dyfan Jones [aut, cre]

Maintainer Dyfan Jones <dyfan.r.jones@gmail.com>

Repository CRAN

Date/Publication 2024-08-29 12:40:03 UTC

Contents
s3fs-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
copy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
copy_async . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1

https://aws.amazon.com/s3/
https://github.com/DyfanJones/s3fs
https://github.com/DyfanJones/s3fs/issues


2 s3fs-package

create . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
delete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
delete_async . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
download . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
download_async . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
exists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
file_type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
path_manipulate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
permission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
S3FileSystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
s3_bucket_delete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
s3_dir_ls_url . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
s3_dir_tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
s3_file_move . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
s3_file_move_async . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
s3_file_system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
s3_file_temp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
s3_file_url . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
s3_file_version_info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
s3_path_join . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
s3_path_split . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
stream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
stream_async . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
tag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
touch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
upload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
upload_async . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Index 43

s3fs-package s3fs: ’Amazon Web Service S3’ File System

Description

Access ’Amazon Web Service Simple Storage Service’ (’S3’) https://aws.amazon.com/s3/ as
if it were a file system. Interface based on the R package ’fs’.

Author(s)

Maintainer: Dyfan Jones <dyfan.r.jones@gmail.com>

https://aws.amazon.com/s3/


copy 3

See Also

Useful links:

• https://github.com/DyfanJones/s3fs

• Report bugs at https://github.com/DyfanJones/s3fs/issues

copy Copy files and directories

Description

s3_file_copy copies files

s3_dir_copy copies the directory recursively to the new location

Usage

s3_file_copy(
path,
new_path,
max_batch = fs_bytes("100MB"),
overwrite = FALSE,
...

)

s3_dir_copy(
path,
new_path,
max_batch = fs_bytes("100MB"),
overwrite = FALSE,
...

)

Arguments

path (character): path to a local directory of file or a uri.

new_path (character): path to a local directory of file or a uri.

max_batch (fs_bytes): Maximum batch size being uploaded with each multipart.

overwrite (logical): Overwrite files if the exist. If this is FALSE and the file exists an error
will be thrown.

... parameters to be passed to s3_put_object

Value

character vector of s3 uri paths

https://github.com/DyfanJones/s3fs
https://github.com/DyfanJones/s3fs/issues


4 copy_async

Examples

## Not run:
# Require AWS S3 credentials

temp_file = "temp.txt"
file.create(temp_file)

s3_file_copy(
temp_file,
"s3://MyBucket/temp_file.txt"

)

## End(Not run)

copy_async Copy files and directories

Description

s3_file_copy copies files

s3_dir_copy copies the directory recursively to the new location

Usage

s3_file_copy_async(
path,
new_path,
max_batch = fs_bytes("100MB"),
overwrite = FALSE,
...

)

s3_dir_copy_async(
path,
new_path,
max_batch = fs_bytes("100MB"),
overwrite = FALSE,
...

)

Arguments

path (character): path to a local directory of file or a uri.
new_path (character): path to a local directory of file or a uri.
max_batch (fs_bytes): Maximum batch size being uploaded with each multipart.
overwrite (logical): Overwrite files if the exist. If this is FALSE and the file exists an error

will be thrown.
... parameters to be passed to s3_put_object



create 5

Value

return future object of s3_file_copy(), s3_dir_copy()

See Also

future s3_file_copy() s3_dir_copy()

create Create files and directories

Description

s3_file_create create file on AWS S3, if file already exists it will be left unchanged.

s3_dir_create create empty directory of AWS S3.

Usage

s3_file_create(path, overwrite = FALSE, ...)

s3_bucket_create(
path,
region_name = NULL,
mode = c("private", "public-read", "public-read-write", "authenticated-read"),
versioning = FALSE,
...

)

s3_dir_create(path, overwrite = FALSE, ...)

Arguments

path (character): A character vector of path or s3 uri.

overwrite (logical): Overwrite files if the exist. If this is FALSE and the file exists an error
will be thrown.

... parameters to be passed to s3_put_object, s3_create_bucket

region_name (character): region for AWS S3 bucket, defaults to s3_file_system() class re-
gion.

mode (character): A character of the mode

versioning (logical)

Value

character vector of s3 uri paths



6 delete

Examples

## Not run:
# Require AWS S3 credentials

temp_file = s3_file_temp(tmp_dir= "MyBucket")
s3_file_create(temp_file)

## End(Not run)

delete Delete files and directories

Description

s3_file_delete delete files in AWS S3

s3_dir_delete delete directories in AWS S3 recursively.

Usage

s3_file_delete(path, ...)

s3_dir_delete(path)

Arguments

path (character): A character vector of paths or s3 uris.

... parameters to be passed to s3_delete_objects

Value

character vector of s3 uri paths

Examples

## Not run:
# Require AWS S3 credentials

temp_file = s3_file_temp(tmp_dir= "MyBucket")
s3_file_create(temp_file)

s3_file_delete(temp_file)

## End(Not run)



delete_async 7

delete_async Delete files and directories

Description

s3_file_delete delete files in AWS S3

s3_dir_delete delete directories in AWS S3 recursively.

Usage

s3_file_delete_async(path, ...)

s3_dir_delete_async(path)

Arguments

path (character): A character vector of paths or s3 uris.

... parameters to be passed to s3_delete_objects

Value

return future object of s3_file_delete() s3_dir_delete()

See Also

future s3_file_delete() s3_dir_delete()

download Download files and directories

Description

s3_file_download downloads AWS S3 files to local

s3_file_download downloads AWS s3 directory to local

Usage

s3_file_download(path, new_path, overwrite = FALSE, ...)

s3_dir_download(path, new_path, overwrite = FALSE, ...)



8 download_async

Arguments

path (character): A character vector of paths or uris

new_path (character): A character vector of paths to the new locations.

overwrite (logical): Overwrite files if the exist. If this is FALSE and the file exists an error
will be thrown.

... parameters to be passed to s3_get_object

Value

character vector of s3 uri paths

Examples

## Not run:
# Require AWS S3 credentials

temp_file = s3_file_temp(tmp_dir= "MyBucket")
s3_file_create(temp_file)

s3_file_download(temp_file, "temp_file.txt")

## End(Not run)

download_async Download files and directories

Description

s3_file_download downloads AWS S3 files to local

s3_file_download downloads AWS s3 directory to local

Usage

s3_file_download_async(path, new_path, overwrite = FALSE, ...)

s3_dir_download_async(path, new_path, overwrite = FALSE, ...)

Arguments

path (character): A character vector of paths or uris

new_path (character): A character vector of paths to the new locations.

overwrite (logical): Overwrite files if the exist. If this is FALSE and the file exists an error
will be thrown.

... parameters to be passed to s3_get_object



exists 9

Value

return future object of s3_file_download() s3_dir_download()

See Also

future s3_file_download() s3_dir_download()

exists Download files and directories

Description

s3_file_exists check if file exists in AWS S3

s3_dir_exists check if path is a directory in AWS S3

Usage

s3_file_exists(path)

s3_dir_exists(path = ".")

Arguments

path (character) s3 path to check

Value

logical vector if file exists

Examples

## Not run:
# Require AWS S3 credentials

temp_file = s3_file_temp(tmp_dir= "MyBucket")
s3_file_create(temp_file)

s3_file_exists(temp_file)

## End(Not run)



10 info

file_type Functions to test for file types

Description

Test for file types

Usage

s3_is_file(path)

s3_is_dir(path)

s3_is_bucket(path, ...)

s3_is_file_empty(path)

Arguments

path (character): A character vector of paths or uris

... parameters to be passed to s3_list_objects_v2

info Get files and directories information

Description

s3_file_info returns file information within AWS S3 directory

s3_file_size returns file size in bytes

s3_dir_info returns file name information within AWS S3 directory

s3_dir_ls returns file name within AWS S3 directory

Usage

s3_file_info(path)

s3_file_size(path)

s3_dir_info(
path = ".",
type = c("any", "bucket", "directory", "file"),
glob = NULL,
regexp = NULL,
invert = FALSE,



info 11

recurse = FALSE,
refresh = FALSE,
...

)

s3_dir_ls(
path = ".",
type = c("any", "bucket", "directory", "file"),
glob = NULL,
regexp = NULL,
invert = FALSE,
recurse = FALSE,
refresh = FALSE,
...

)

Arguments

path (character):A character vector of one or more paths. Can be path or s3 uri.

type (character): File type(s) to return. Default ("any") returns all AWS S3 object
types.

glob (character): A wildcard pattern (e.g. *.csv), passed onto grep() to filter paths.

regexp (character): A regular expression (e.g. [.]csv$), passed onto grep() to filter
paths.

invert (logical): If code return files which do not match.

recurse (logical): Returns all AWS S3 objects in lower sub directories

refresh (logical): Refresh cached in s3_cache.

... parameters to be passed to s3_list_objects_v2

Value

s3_file_info A data.table with metadata for each file. Columns returned are as follows.

• bucket_name (character): AWS S3 bucket of file

• key (character): AWS S3 path key of file

• uri (character): S3 uri of file

• size (numeric): file size in bytes

• type (character): file type (file or directory)

• etag (character): An entity tag is an opague identifier

• last_modified (POSIXct): Created date of file.

• delete_marker (logical): Specifies retrieved a logical marker

• accept_ranges (character): Indicates that a range of bytes was specified.

• expiration (character): File expiration

• restore (character): If file is archived



12 info

• archive_status (character): Archive status

• missing_meta (integer): Number of metadata entries not returned in "x-amz-meta" headers

• version_id (character): version id of file

• cache_control (character): caching behaviour for the request/reply chain

• content_disposition (character): presentational information of file

• content_encoding (character): file content encodings

• content_language (character): what language the content is in

• content_type (character): file MIME type

• expires (POSIXct): date and time the file is no longer cacheable

• website_redirect_location (character): redirects request for file to another

• server_side_encryption (character): File server side encryption

• metadata (list): metadata of file

• sse_customer_algorithm (character): server-side encryption with a customer-provided encryp-
tion key

• sse_customer_key_md5 (character): server-side encryption with a customer-provided encryp-
tion key

• ssekms_key_id (character): ID of the Amazon Web Services Key Management Service

• bucket_key_enabled (logical): s3 bucket key for server-side encryption with

• storage_class (character): file storage class information

• request_charged (character): indicates successfully charged for request

• replication_status (character): return specific header if request involves a bucket that is either a
source or a destination in a replication rule https://boto3.amazonaws.com/v1/documentation/
api/latest/reference/services/s3.html#S3.Client.head_object

• parts_count (integer): number of count parts the file has

• object_lock_mode (character): the file lock mode

• object_lock_retain_until_date (POSIXct): date and time of when object_lock_mode expires

• object_lock_legal_hold_status (character): file legal holding

s3_dir_info data.table with directory metadata

• bucket_name (character): AWS S3 bucket of file

• key (character): AWS S3 path key of file

• uri (character): S3 uri of file

• size (numeric): file size in bytes

• version_id (character): version id of file

• etag (character): An entity tag is an opague identifier

• last_modified (POSIXct): Created date of file

s3_dir_ls character vector of s3 uri paths

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/s3.html#S3.Client.head_object
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/s3.html#S3.Client.head_object


path 13

Examples

## Not run:
# Require AWS S3 credentials

temp_file = s3_file_temp(tmp_dir= "MyBucket")
s3_file_create(temp_file)

s3_file_info(temp_file)

## End(Not run)

path Construct path for file or directory

Description

Constructs a s3 uri path

Usage

s3_path(..., ext = "")

Arguments

... (character): Character vectors

ext (character): An optional extension to append to the generated path

Value

character vector of s3 uri paths

Examples

## Not run:
# Require AWS S3 credentials

s3_path("my_bucket1", "my_bucket2")

## End(Not run)



14 path_manipulate

path_manipulate Manipulate s3 uri paths

Description

s3_path_dir returns the directory portion of s3 uri

s3_path_file returns the file name portion of the s3 uri path

s3_path_ext returns the last extension for a path.

s3_path_ext_remove removes the last extension and return the rest of the s3 uri.

s3_path_ext_set replace the extension with a new extension.

Usage

s3_path_dir(path)

s3_path_file(path)

s3_path_ext(path)

s3_path_ext_remove(path)

s3_path_ext_set(path, ext)

Arguments

path (character): A character vector of paths

ext (character): New file extension

Examples

## Not run:
# Require AWS S3 credentials

s3_path_dir("s3://my_bucket1/hi.txt")

s3_path_file("s3://my_bucket1/hi.txt")

## End(Not run)



permission 15

permission Change file permissions

Description

Change file permissions

Usage

s3_file_chmod(
path,
mode = c("private", "public-read", "public-read-write", "authenticated-read",
"aws-exec-read", "bucket-owner-read", "bucket-owner-full-control")

)

s3_bucket_chmod(
path,
mode = c("private", "public-read", "public-read-write", "authenticated-read")

)

Arguments

path (character): A character vector of path or s3 uri.

mode (character): A character of the mode

Value

character vector of s3 uri paths

Examples

## Not run:
# Require AWS S3 credentials

temp_file = s3_file_temp(tmp_dir = "MyBucket")
s3_file_create(temp_file)

# Reset connection to connect to a different region
s3_file_chmod(

profile_name = "s3fs_example",
region_name = "us-east-1",
refresh = TRUE

)

## End(Not run)



16 S3FileSystem

S3FileSystem Access AWS S3 as if it were a file system.

Description

This creates a file system "like" API based off fs (e.g. dir_ls, file_copy, etc.) for AWS S3 storage.

Public fields

s3_cache Cache AWS S3

s3_cache_bucket Cached s3 bucket

s3_client paws s3 client

region_name AWS region when creating new connections

profile_name The name of a profile to use

multipart_threshold Threshold to use multipart

request_payer Threshold to use multipart

pid Get the process ID of the R Session

Active bindings

retries number of retries

Methods

Public methods:
• S3FileSystem$new()

• S3FileSystem$file_chmod()

• S3FileSystem$file_copy()

• S3FileSystem$file_create()

• S3FileSystem$file_delete()

• S3FileSystem$file_download()

• S3FileSystem$file_exists()

• S3FileSystem$file_info()

• S3FileSystem$file_move()

• S3FileSystem$file_size()

• S3FileSystem$file_stream_in()

• S3FileSystem$file_stream_out()

• S3FileSystem$file_temp()

• S3FileSystem$file_tag_delete()

• S3FileSystem$file_tag_info()

• S3FileSystem$file_tag_update()

• S3FileSystem$file_touch()



S3FileSystem 17

• S3FileSystem$file_upload()

• S3FileSystem$file_url()

• S3FileSystem$file_version_info()

• S3FileSystem$is_file()

• S3FileSystem$is_dir()

• S3FileSystem$is_bucket()

• S3FileSystem$is_file_empty()

• S3FileSystem$bucket_chmod()

• S3FileSystem$bucket_create()

• S3FileSystem$bucket_delete()

• S3FileSystem$dir_copy()

• S3FileSystem$dir_create()

• S3FileSystem$dir_delete()

• S3FileSystem$dir_exists()

• S3FileSystem$dir_download()

• S3FileSystem$dir_info()

• S3FileSystem$dir_ls()

• S3FileSystem$dir_ls_url()

• S3FileSystem$dir_tree()

• S3FileSystem$dir_upload()

• S3FileSystem$path()

• S3FileSystem$path_dir()

• S3FileSystem$path_ext()

• S3FileSystem$path_ext_remove()

• S3FileSystem$path_ext_set()

• S3FileSystem$path_file()

• S3FileSystem$path_join()

• S3FileSystem$path_split()

• S3FileSystem$clear_cache()

• S3FileSystem$clone()

Method new(): Initialize S3FileSystem class
Usage:
S3FileSystem$new(
aws_access_key_id = NULL,
aws_secret_access_key = NULL,
aws_session_token = NULL,
region_name = NULL,
profile_name = NULL,
endpoint = NULL,
disable_ssl = FALSE,
multipart_threshold = fs_bytes("2GB"),
request_payer = FALSE,
anonymous = FALSE,
...

)



18 S3FileSystem

Arguments:
aws_access_key_id (character): AWS access key ID
aws_secret_access_key (character): AWS secret access key
aws_session_token (character): AWS temporary session token
region_name (character): Default region when creating new connections
profile_name (character): The name of a profile to use. If not given, then the default profile is

used.
endpoint (character): The complete URL to use for the constructed client.
disable_ssl (logical): Whether or not to use SSL. By default, SSL is used.
multipart_threshold (fs_bytes): Threshold to use multipart instead of standard copy and

upload methods.
request_payer (logical): Confirms that the requester knows that they will be charged for the

request.
anonymous (logical): Set up anonymous credentials when connecting to AWS S3.
... Other parameters within paws client.

Method file_chmod(): Change file permissions

Usage:
S3FileSystem$file_chmod(
path,
mode = c("private", "public-read", "public-read-write", "authenticated-read",

"aws-exec-read", "bucket-owner-read", "bucket-owner-full-control")
)

Arguments:
path (character): A character vector of path or s3 uri.
mode (character): A character of the mode

Returns: character vector of s3 uri paths

Method file_copy(): copy files

Usage:
S3FileSystem$file_copy(
path,
new_path,
max_batch = fs_bytes("100MB"),
overwrite = FALSE,
...

)

Arguments:
path (character): path to a local directory of file or a uri.
new_path (character): path to a local directory of file or a uri.
max_batch (fs_bytes): Maximum batch size being uploaded with each multipart.
overwrite (logical): Overwrite files if the exist. If this is FALSE and the file exists an error will

be thrown.
... parameters to be passed to s3_put_object



S3FileSystem 19

Returns: character vector of s3 uri paths

Method file_create(): Create file on AWS S3, if file already exists it will be left unchanged.

Usage:
S3FileSystem$file_create(path, overwrite = FALSE, ...)

Arguments:
path (character): A character vector of path or s3 uri.
overwrite (logical): Overwrite files if the exist. If this is FALSE and the file exists an error will

be thrown.
... parameters to be passed to s3_put_object

Returns: character vector of s3 uri paths

Method file_delete(): Delete files in AWS S3

Usage:
S3FileSystem$file_delete(path, ...)

Arguments:
path (character): A character vector of paths or s3 uris.
... parameters to be passed to s3_delete_objects

Returns: character vector of s3 uri paths

Method file_download(): Downloads AWS S3 files to local

Usage:
S3FileSystem$file_download(path, new_path, overwrite = FALSE, ...)

Arguments:
path (character): A character vector of paths or uris
new_path (character): A character vector of paths to the new locations.
overwrite (logical): Overwrite files if the exist. If this is FALSE and the file exists an error will

be thrown.
... parameters to be passed to s3_get_object

Returns: character vector of s3 uri paths

Method file_exists(): Check if file exists in AWS S3

Usage:
S3FileSystem$file_exists(path)

Arguments:
path (character) s3 path to check

Returns: logical vector if file exists

Method file_info(): Returns file information within AWS S3 directory

Usage:
S3FileSystem$file_info(path)

Arguments:



20 S3FileSystem

path (character): A character vector of paths or uris.

Returns: A data.table with metadata for each file. Columns returned are as follows.
• bucket_name (character): AWS S3 bucket of file
• key (character): AWS S3 path key of file
• uri (character): S3 uri of file
• size (numeric): file size in bytes
• type (character): file type (file or directory)
• etag (character): An entity tag is an opague identifier
• last_modified (POSIXct): Created date of file.
• delete_marker (logical): Specifies retrieved a logical marker
• accept_ranges (character): Indicates that a range of bytes was specified.
• expiration (character): File expiration
• restore (character): If file is archived
• archive_status (character): Archive status
• missing_meta (integer): Number of metadata entries not returned in "x-amz-meta" headers
• version_id (character): version id of file
• cache_control (character): caching behaviour for the request/reply chain
• content_disposition (character): presentational information of file
• content_encoding (character): file content encodings
• content_language (character): what language the content is in
• content_type (character): file MIME type
• expires (POSIXct): date and time the file is no longer cacheable
• website_redirect_location (character): redirects request for file to another
• server_side_encryption (character): File server side encryption
• metadata (list): metadata of file
• sse_customer_algorithm (character): server-side encryption with a customer-provided en-

cryption key
• sse_customer_key_md5 (character): server-side encryption with a customer-provided en-

cryption key
• ssekms_key_id (character): ID of the Amazon Web Services Key Management Service
• bucket_key_enabled (logical): s3 bucket key for server-side encryption with
• storage_class (character): file storage class information
• request_charged (character): indicates successfully charged for request
• replication_status (character): return specific header if request involves a bucket that is

either a source or a destination in a replication rule https://boto3.amazonaws.com/v1/
documentation/api/latest/reference/services/s3.html#S3.Client.head_object

• parts_count (integer): number of count parts the file has
• object_lock_mode (character): the file lock mode
• object_lock_retain_until_date (POSIXct): date and time of when object_lock_mode expires
• object_lock_legal_hold_status (character): file legal holding

Method file_move(): Move files to another location on AWS S3

Usage:

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/s3.html#S3.Client.head_object
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/s3.html#S3.Client.head_object


S3FileSystem 21

S3FileSystem$file_move(
path,
new_path,
max_batch = fs_bytes("100MB"),
overwrite = FALSE,
...

)

Arguments:

path (character): A character vector of s3 uri
new_path (character): A character vector of s3 uri.
max_batch (fs_bytes): Maximum batch size being uploaded with each multipart.
overwrite (logical): Overwrite files if the exist. If this is FALSE and the file exists an error will

be thrown.
... parameters to be passed to s3_copy_object

Returns: character vector of s3 uri paths

Method file_size(): Return file size in bytes

Usage:
S3FileSystem$file_size(path)

Arguments:

path (character): A character vector of s3 uri

Method file_stream_in(): Streams in AWS S3 file as a raw vector

Usage:
S3FileSystem$file_stream_in(path, ...)

Arguments:

path (character): A character vector of paths or s3 uri
... parameters to be passed to s3_get_object

Returns: list of raw vectors containing the contents of the file

Method file_stream_out(): Streams out raw vector to AWS S3 file

Usage:
S3FileSystem$file_stream_out(
obj,
path,
max_batch = fs_bytes("100MB"),
overwrite = FALSE,
...

)

Arguments:

obj (raw|character): A raw vector, rawConnection, url to be streamed up to AWS S3.
path (character): A character vector of paths or s3 uri
max_batch (fs_bytes): Maximum batch size being uploaded with each multipart.



22 S3FileSystem

overwrite (logical): Overwrite files if the exist. If this is FALSE and the file exists an error will
be thrown.

... parameters to be passed to s3_put_object

Returns: character vector of s3 uri paths

Method file_temp(): return the name which can be used as a temporary file

Usage:
S3FileSystem$file_temp(pattern = "file", tmp_dir = "", ext = "")

Arguments:
pattern (character): A character vector with the non-random portion of the name.
tmp_dir (character): The directory the file will be created in.
ext (character): A character vector of one or more paths.

Returns: character vector of s3 uri paths

Method file_tag_delete(): Delete file tags

Usage:
S3FileSystem$file_tag_delete(path)

Arguments:
path (character): A character vector of paths or s3 uri
... parameters to be passed to s3_put_object

Returns: character vector of s3 uri paths

Method file_tag_info(): Get file tags

Usage:
S3FileSystem$file_tag_info(path)

Arguments:
path (character): A character vector of paths or s3 uri

Returns: data.table of file version metadata
• bucket_name (character): AWS S3 bucket of file
• key (character): AWS S3 path key of file
• uri (character): S3 uri of file
• size (numeric): file size in bytes
• version_id (character): version id of file
• tag_key (character): name of tag
• tag_value (character): tag value

Method file_tag_update(): Update file tags

Usage:
S3FileSystem$file_tag_update(path, tags, overwrite = FALSE)

Arguments:
path (character): A character vector of paths or s3 uri
tags (list): Tags to be applied



S3FileSystem 23

overwrite (logical): To overwrite tagging or to modify inplace. Default will modify inplace.

Returns: character vector of s3 uri paths

Method file_touch(): Similar to fs::file_touch this does not create the file if it does not
exist. Use s3fs$file_create() to do this if needed.

Usage:
S3FileSystem$file_touch(path, ...)

Arguments:
path (character): A character vector of paths or s3 uri
... parameters to be passed to s3_copy_object

Returns: character vector of s3 uri paths

Method file_upload(): Uploads files to AWS S3

Usage:
S3FileSystem$file_upload(
path,
new_path,
max_batch = fs_bytes("100MB"),
overwrite = FALSE,
...

)

Arguments:
path (character): A character vector of local file paths to upload to AWS S3
new_path (character): A character vector of AWS S3 paths or uri’s of the new locations.
max_batch (fs_bytes): Maximum batch size being uploaded with each multipart.
overwrite (logical): Overwrite files if the exist. If this is FALSE and the file exists an error will

be thrown.
... parameters to be passed to s3_put_object and s3_create_multipart_upload

Returns: character vector of s3 uri paths

Method file_url(): Generate presigned url for S3 object

Usage:
S3FileSystem$file_url(path, expiration = 3600L, ...)

Arguments:
path (character): A character vector of paths or uris
expiration (numeric): The number of seconds the presigned url is valid for. By default it

expires in an hour (3600 seconds)
... parameters passed to s3_get_object

Returns: return character of urls

Method file_version_info(): Get file versions

Usage:
S3FileSystem$file_version_info(path, ...)



24 S3FileSystem

Arguments:

path (character): A character vector of paths or uris
... parameters to be passed to s3_list_object_versions

Returns: return data.table with file version info, columns below:
• bucket_name (character): AWS S3 bucket of file
• key (character): AWS S3 path key of file
• uri (character): S3 uri of file
• size (numeric): file size in bytes
• version_id (character): version id of file
• owner (character): file owner
• etag (character): An entity tag is an opague identifier
• last_modified (POSIXct): Created date of file.

Method is_file(): Test for file types

Usage:
S3FileSystem$is_file(path)

Arguments:

path (character): A character vector of paths or uris

Returns: logical vector if object is a file

Method is_dir(): Test for file types

Usage:
S3FileSystem$is_dir(path)

Arguments:

path (character): A character vector of paths or uris

Returns: logical vector if object is a directory

Method is_bucket(): Test for file types

Usage:
S3FileSystem$is_bucket(path, ...)

Arguments:

path (character): A character vector of paths or uris
... parameters to be passed to s3_list_objects_v2

Returns: logical vector if object is a AWS S3 bucket

Method is_file_empty(): Test for file types

Usage:
S3FileSystem$is_file_empty(path)

Arguments:

path (character): A character vector of paths or uris

Returns: logical vector if file is empty



S3FileSystem 25

Method bucket_chmod(): Change bucket permissions

Usage:
S3FileSystem$bucket_chmod(
path,
mode = c("private", "public-read", "public-read-write", "authenticated-read")

)

Arguments:

path (character): A character vector of path or s3 uri.
mode (character): A character of the mode

Returns: character vector of s3 uri paths

Method bucket_create(): Create bucket

Usage:
S3FileSystem$bucket_create(
path,
region_name = NULL,
mode = c("private", "public-read", "public-read-write", "authenticated-read"),
versioning = FALSE,
...

)

Arguments:

path (character): A character vector of path or s3 uri.
region_name (character): aws region
mode (character): A character of the mode
versioning (logical): Whether to set the bucket to versioning or not.
... parameters to be passed to s3_create_bucket

Returns: character vector of s3 uri paths

Method bucket_delete(): Delete bucket

Usage:
S3FileSystem$bucket_delete(path)

Arguments:

path (character): A character vector of path or s3 uri.

Method dir_copy(): Copies the directory recursively to the new location.

Usage:
S3FileSystem$dir_copy(
path,
new_path,
max_batch = fs_bytes("100MB"),
overwrite = FALSE,
...

)



26 S3FileSystem

Arguments:
path (character): path to a local directory of file or a uri.
new_path (character): path to a local directory of file or a uri.
max_batch (fs_bytes): Maximum batch size being uploaded with each multipart.
overwrite (logical): Overwrite files if the exist. If this is FALSE and the file exists an error will

be thrown.
... parameters to be passed to s3_put_object and s3_create_multipart_upload

Returns: character vector of s3 uri paths

Method dir_create(): Create empty directory

Usage:
S3FileSystem$dir_create(path, overwrite = FALSE, ...)

Arguments:
path (character): A vector of directory or uri to be created in AWS S3
overwrite (logical): Overwrite files if the exist. If this is FALSE and the file exists an error will

be thrown.
... parameters to be passed to s3_put_object

Returns: character vector of s3 uri paths

Method dir_delete(): Delete contents and directory in AWS S3

Usage:
S3FileSystem$dir_delete(path)

Arguments:
path (character): A vector of paths or uris to directories to be deleted.

Returns: character vector of s3 uri paths

Method dir_exists(): Check if path exists in AWS S3

Usage:
S3FileSystem$dir_exists(path = ".")

Arguments:
path (character) aws s3 path to be checked

Returns: character vector of s3 uri paths

Method dir_download(): Downloads AWS S3 files to local

Usage:
S3FileSystem$dir_download(path, new_path, overwrite = FALSE, ...)

Arguments:
path (character): A character vector of paths or uris
new_path (character): A character vector of paths to the new locations. Please ensure directo-

ries end with a /.
overwrite (logical): Overwrite files if the exist. If this is FALSE and the file exists an error will

be thrown.



S3FileSystem 27

... parameters to be passed to s3_get_object

Returns: character vector of s3 uri paths

Method dir_info(): Returns file information within AWS S3 directory

Usage:
S3FileSystem$dir_info(
path = ".",
type = c("any", "bucket", "directory", "file"),
glob = NULL,
regexp = NULL,
invert = FALSE,
recurse = FALSE,
refresh = FALSE,
...

)

Arguments:
path (character):A character vector of one or more paths. Can be path or s3 uri.
type (character): File type(s) to return. Default ("any") returns all AWS S3 object types.
glob (character): A wildcard pattern (e.g. *.csv), passed onto grep() to filter paths.
regexp (character): A regular expression (e.g. [.]csv$), passed onto grep() to filter paths.
invert (logical): If code return files which do not match.
recurse (logical): Returns all AWS S3 objects in lower sub directories
refresh (logical): Refresh cached in s3_cache.
... parameters to be passed to s3_list_objects_v2

Returns: data.table with directory metadata
• bucket_name (character): AWS S3 bucket of file
• key (character): AWS S3 path key of file
• uri (character): S3 uri of file
• size (numeric): file size in bytes
• version_id (character): version id of file
• etag (character): An entity tag is an opague identifier
• last_modified (POSIXct): Created date of file

Method dir_ls(): Returns file name within AWS S3 directory

Usage:
S3FileSystem$dir_ls(
path = ".",
type = c("any", "bucket", "directory", "file"),
glob = NULL,
regexp = NULL,
invert = FALSE,
recurse = FALSE,
refresh = FALSE,
...

)



28 S3FileSystem

Arguments:

path (character):A character vector of one or more paths. Can be path or s3 uri.
type (character): File type(s) to return. Default ("any") returns all AWS S3 object types.
glob (character): A wildcard pattern (e.g. *.csv), passed onto grep() to filter paths.
regexp (character): A regular expression (e.g. [.]csv$), passed onto grep() to filter paths.
invert (logical): If code return files which do not match.
recurse (logical): Returns all AWS S3 objects in lower sub directories
refresh (logical): Refresh cached in s3_cache.
... parameters to be passed to s3_list_objects_v2

Returns: character vector of s3 uri paths

Method dir_ls_url(): Generate presigned url to list S3 directories

Usage:
S3FileSystem$dir_ls_url(path, expiration = 3600L, recurse = FALSE, ...)

Arguments:

path (character): A character vector of paths or uris
expiration (numeric): The number of seconds the presigned url is valid for. By default it

expires in an hour (3600 seconds)
recurse (logical): Returns all AWS S3 objects in lower sub directories
... parameters passed to s3_list_objects_v2

Returns: return character of urls

Method dir_tree(): Print contents of directories in a tree-like format

Usage:
S3FileSystem$dir_tree(path, recurse = TRUE, ...)

Arguments:

path (character): path A path to print the tree from
recurse (logical): Returns all AWS S3 objects in lower sub directories
... Additional arguments passed to s3_dir_ls.

Returns: character vector of s3 uri paths

Method dir_upload(): Uploads local directory to AWS S3

Usage:
S3FileSystem$dir_upload(
path,
new_path,
max_batch = fs_bytes("100MB"),
overwrite = FALSE,
...

)

Arguments:

path (character): A character vector of local file paths to upload to AWS S3



S3FileSystem 29

new_path (character): A character vector of AWS S3 paths or uri’s of the new locations.
max_batch (fs_bytes): Maximum batch size being uploaded with each multipart.
overwrite (logical): Overwrite files if the exist. If this is FALSE and the file exists an error will

be thrown.
... parameters to be passed to s3_put_object and s3_create_multipart_upload

Returns: character vector of s3 uri paths

Method path(): Constructs a s3 uri path

Usage:
S3FileSystem$path(..., ext = "")

Arguments:
... (character): Character vectors
ext (character): An optional extension to append to the generated path

Returns: character vector of s3 uri paths

Method path_dir(): Returns the directory portion of s3 uri

Usage:
S3FileSystem$path_dir(path)

Arguments:
path (character): A character vector of paths

Returns: character vector of s3 uri paths

Method path_ext(): Returns the last extension for a path.

Usage:
S3FileSystem$path_ext(path)

Arguments:
path (character): A character vector of paths

Returns: character s3 uri file extension

Method path_ext_remove(): Removes the last extension and return the rest of the s3 uri.

Usage:
S3FileSystem$path_ext_remove(path)

Arguments:
path (character): A character vector of paths

Returns: character vector of s3 uri paths

Method path_ext_set(): Replace the extension with a new extension.

Usage:
S3FileSystem$path_ext_set(path, ext)

Arguments:
path (character): A character vector of paths
ext (character): New file extension



30 S3FileSystem

Returns: character vector of s3 uri paths

Method path_file(): Returns the file name portion of the s3 uri path

Usage:
S3FileSystem$path_file(path)

Arguments:

path (character): A character vector of paths

Returns: character vector of file names

Method path_join(): Construct an s3 uri path from path vector

Usage:
S3FileSystem$path_join(parts)

Arguments:

parts (character): A character vector of one or more paths

Returns: character vector of s3 uri paths

Method path_split(): Split s3 uri path to core components bucket, key and version id

Usage:
S3FileSystem$path_split(path)

Arguments:

path (character): A character vector of one or more paths or s3 uri

Returns: list character vectors splitting the s3 uri path in "Bucket", "Key" and "VersionId"

Method clear_cache(): Clear S3 Cache

Usage:
S3FileSystem$clear_cache(path = NULL)

Arguments:

path (character): s3 path to be cl

Method clone(): The objects of this class are cloneable with this method.

Usage:
S3FileSystem$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Note

This method will only update the modification time of the AWS S3 object.



s3_bucket_delete 31

s3_bucket_delete Delete bucket

Description

Delete AWS S3 bucket including all objects in the bucket itself.

Usage

s3_bucket_delete(path)

Arguments

path (character): A character vector of path or s3 uri.

s3_dir_ls_url Generate presigned url to list S3 directories

Description

Generate presigned url to list S3 directories

Usage

s3_dir_ls_url(path, expiration = 3600L, recurse = FALSE, ...)

Arguments

path (character): A character vector of paths or uris

expiration (numeric): The number of seconds the presigned url is valid for. By default it
expires in an hour (3600 seconds)

recurse (logical): Returns all AWS S3 objects in lower sub directories

... parameters passed to s3_list_objects_v2

Value

return character of urls



32 s3_file_move

s3_dir_tree Print contents of directories in a tree-like format

Description

Print contents of directories in a tree-like format

Usage

s3_dir_tree(path, recurse = TRUE, ...)

Arguments

path (character): path A path to print the tree from

recurse (logical): Returns all AWS S3 objects in lower sub directories

... Additional arguments passed to s3_dir_ls.

Value

character vector of s3 uri paths

s3_file_move Move or rename S3 files

Description

Move files to another location on AWS S3

Usage

s3_file_move(path, new_path, max_batch = 100 * MB, overwrite = FALSE, ...)

Arguments

path (character): A character vector of s3 uri

new_path (character): A character vector of s3 uri.

max_batch (numeric): Maximum batch size being uploaded with each multipart.

overwrite (logical): Overwrite files if the exist. If this is FALSE and the file exists an error
will be thrown.

... parameters to be passed to s3_copy_object

Value

character vector of s3 uri paths



s3_file_move_async 33

Examples

## Not run:
# Require AWS S3 credentials

temp_file = s3_file_temp(tmp_dir= "MyBucket")
s3_file_create(temp_file)

s3_file_move(temp_file, "s3://MyBucket/new_file.txt")

## End(Not run)

s3_file_move_async Move or rename S3 files

Description

Move files to another location on AWS S3

Usage

s3_file_move_async(
path,
new_path,
max_batch = 100 * MB,
overwrite = FALSE,
...

)

Arguments

path (character): A character vector of s3 uri

new_path (character): A character vector of s3 uri.

max_batch (numeric): Maximum batch size being uploaded with each multipart.

overwrite (logical): Overwrite files if the exist. If this is FALSE and the file exists an error
will be thrown.

... parameters to be passed to s3_copy_object

Value

return future object of s3_file_move()

See Also

future s3_file_move()



34 s3_file_system

s3_file_system Access AWS S3 as if it were a file system.

Description

This creates a file system "like" API based off fs (e.g. dir_ls, file_copy, etc.) for AWS S3
storage. To set up AWS credentials please look at https://docs.aws.amazon.com/cli/latest/
userguide/cli-configure-files.html

Usage

s3_file_system(
aws_access_key_id = NULL,
aws_secret_access_key = NULL,
aws_session_token = NULL,
region_name = NULL,
profile_name = NULL,
endpoint = NULL,
disable_ssl = FALSE,
multipart_threshold = fs_bytes("2GB"),
request_payer = FALSE,
anonymous = FALSE,
retries = 5,
refresh = FALSE,
...

)

Arguments

aws_access_key_id

(character): AWS access key ID
aws_secret_access_key

(character): AWS secret access key
aws_session_token

(character): AWS temporary session token

region_name (character): Default region when creating new connections

profile_name (character): The name of a profile to use. If not given, then the default profile is
used.

endpoint (character): The complete URL to use for the constructed client.

disable_ssl (logical): Whether or not to use SSL. By default, SSL is used.
multipart_threshold

(fs_bytes): Threshold to use multipart instead of standard copy and upload meth-
ods.

request_payer (logical): Confirms that the requester knows that they will be charged for the
request.

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html


s3_file_temp 35

anonymous (logical): Set up anonymous credentials when connecting to AWS S3.

retries (numeric): max number of retry attempts

refresh (logical): Refresh cached S3FileSystem class

... Other parameters within paws client.

Value

S3FileSystem class invisible

Examples

## Not run:
# Require AWS S3 credentials

# Set up connection using profile
s3_file_system(profile_name = "s3fs_example")

# Reset connection to connect to a different region
s3_file_system(

profile_name = "s3fs_example",
region_name = "us-east-1",
refresh = TRUE

)

## End(Not run)

s3_file_temp Create name for temporary files

Description

return the name which can be used as a temporary file

Usage

s3_file_temp(pattern = "file", tmp_dir = "", ext = "")

Arguments

pattern (character): A character vector with the non-random portion of the name.

tmp_dir (character): The directory the file will be created in. By default the cached s3
bucket will be applied otherwise "" will be used.

ext (character): A character vector of one or more paths.

Value

character vector of s3 uri paths



36 s3_file_version_info

Examples

## Not run:
# Require AWS S3 credentials

s3_file_temp(tmp_dir = "MyBucket")

## End(Not run)

s3_file_url Generate presigned url for S3 object

Description

Generate presigned url for S3 object

Usage

s3_file_url(path, expiration = 3600L, ...)

Arguments

path (character): A character vector of paths or uris

expiration (numeric): The number of seconds the presigned url is valid for. By default it
expires in an hour (3600 seconds)

... parameters to be passed to params parameter of s3_generate_presigned_url

Value

return character of urls

s3_file_version_info Query file version metadata

Description

Get file versions

Usage

s3_file_version_info(path, ...)

Arguments

path (character): A character vector of paths or uris

... parameters to be passed to s3_list_object_versions



s3_path_join 37

s3_path_join Construct AWS S3 path

Description

Construct an s3 uri path from path vector

Usage

s3_path_join(path)

Arguments

path (character): A character vector of one or more paths

Value

character vector of s3 uri paths

Examples

## Not run:
# Require AWS S3 credentials

s3_path_dir(c("s3://my_bucket1/hi.txt", "s3://my_bucket/bye.txt"))

## End(Not run)

s3_path_split Split s3 path and uri

Description

Split s3 uri path to core components bucket, key and version id

Usage

s3_path_split(path)

Arguments

path (character): A character vector of one or more paths or s3 uri

Value

list character vectors splitting the s3 uri path in "Bucket", "Key" and "VersionId"



38 stream

Examples

## Not run:
# Require AWS S3 credentials

s3_path_dir("s3://my_bucket1/hi.txt")

## End(Not run)

stream Streams data from R to AWS S3.

Description

s3_file_stream_in streams in AWS S3 file as a raw vector

s3_file_stream_out streams raw vector out to AWS S3 file

Usage

s3_file_stream_in(path, ...)

s3_file_stream_out(
obj,
path,
max_batch = fs_bytes("100MB"),
overwrite = FALSE,
...

)

Arguments

path (character): A character vector of paths or s3 uri

... parameters to be passed to s3_get_object and s3_put_object

obj (raw|character): A raw vector, rawConnection, url to be streamed up to AWS
S3.

max_batch (fs_bytes): Maximum batch size being uploaded with each multipart.

overwrite (logical): Overwrite files if the exist. If this is FALSE and the file exists an error
will be thrown.

Value

list of raw vectors containing the contents of the file



stream_async 39

Examples

## Not run:
# Require AWS S3 credentials

obj = list(charToRaw("contents1"), charToRaw("contents2"))

dir = s3_file_temp(tmp_dir = "MyBucket")
path = s3_path(dir, letters[1:2], ext = "txt")

s3_file_stream_out(obj, path)
s3_file_stream_in(path)

## End(Not run)

stream_async Streams data from R to AWS S3.

Description

s3_file_stream_in streams in AWS S3 file as a raw vector

s3_file_stream_out streams raw vector out to AWS S3 file

Usage

s3_file_stream_in_async(path, ...)

s3_file_stream_out_async(
obj,
path,
max_batch = fs_bytes("100MB"),
overwrite = FALSE,
...

)

Arguments

path (character): A character vector of paths or s3 uri

... parameters to be passed to s3_get_object and s3_put_object

obj (raw|character): A raw vector, rawConnection, url to be streamed up to AWS
S3.

max_batch (fs_bytes): Maximum batch size being uploaded with each multipart.

overwrite (logical): Overwrite files if the exist. If this is FALSE and the file exists an error
will be thrown.

Value

return future object of s3_file_stream_in() s3_file_stream_out()



40 touch

See Also

future s3_file_move() s3_file_stream_in() s3_file_stream_out()

tag Modifying file tags

Description

s3_file_tag_delete delete file tags

s3_file_tag_info get file tags

s3_file_tag_info

Usage

s3_file_tag_delete(path)

s3_file_tag_info(path)

s3_file_tag_update(path, tags, overwrite = FALSE)

Arguments

path (character): A character vector of paths or s3 uri

tags (list): Tags to be applied

overwrite (logical): To overwrite tagging or to modify inplace. Default will modify in-
place.

touch Change file modification time

Description

Similar to fs::file_touch this does not create the file if it does not exist. Use s3_file_create
to do this if needed.

Usage

s3_file_touch(path, ...)

Arguments

path (character): A character vector of paths or s3 uri

... parameters to be passed to s3_copy_object



upload 41

Value

character vector of s3 uri paths

Note

This method will only update the modification time of the AWS S3 object.

Examples

## Not run:
# Require AWS S3 credentials

dir = s3_file_temp(tmp_dir = "MyBucket")
path = s3_path(dir, letters[1:2], ext = "txt")

s3_file_touch(path)

## End(Not run)

upload Upload file and directory

Description

s3_file_upload upload files to AWS S3

s3_dir_upload upload directory to AWS S3

Usage

s3_file_upload(
path,
new_path,
max_batch = fs_bytes("100MB"),
overwrite = FALSE,
...

)

s3_dir_upload(path, new_path, max_batch, overwrite = FALSE, ...)

Arguments

path (character): A character vector of local file paths to upload to AWS S3

new_path (character): A character vector of AWS S3 paths or uri’s of the new locations.

max_batch (fs_bytes): Maximum batch size being uploaded with each multipart.

overwrite (logical): Overwrite files if the exist. If this is FALSE and the file exists an error
will be thrown.

... parameters to be passed to s3_put_object and s3_create_multipart_upload



42 upload_async

Value

character vector of s3 uri paths

upload_async Upload file and directory

Description

s3_file_upload upload files to AWS S3

s3_dir_upload upload directory to AWS S3

Usage

s3_file_upload_async(
path,
new_path,
max_batch = fs_bytes("100MB"),
overwrite = FALSE,
...

)

s3_dir_upload_async(path, new_path, max_batch, overwrite = FALSE, ...)

Arguments

path (character): A character vector of local file paths to upload to AWS S3

new_path (character): A character vector of AWS S3 paths or uri’s of the new locations.

max_batch (fs_bytes): Maximum batch size being uploaded with each multipart.

overwrite (logical): Overwrite files if the exist. If this is FALSE and the file exists an error
will be thrown.

... parameters to be passed to s3_put_object and s3_create_multipart_upload

Value

return future object of s3_file_upload() s3_dir_upload()

See Also

future s3_file_move() s3_file_upload() s3_dir_upload()



Index

copy, 3
copy_async, 4
create, 5

delete, 6
delete_async, 7
download, 7
download_async, 8

exists, 9

file_type, 10
fs_bytes, 3, 4, 18, 21, 23, 26, 29, 34, 38, 39,

41, 42
future, 5, 7, 9, 33, 39, 40, 42

info, 10

path, 13
path_manipulate, 14
permission, 15

s3_bucket_chmod (permission), 15
s3_bucket_create (create), 5
s3_bucket_delete, 31
s3_copy_object, 21, 23, 32, 33, 40
s3_create_bucket, 5, 25
s3_create_multipart_upload, 23, 26, 29,

41, 42
s3_delete_objects, 6, 7, 19
s3_dir_copy (copy), 3
s3_dir_copy(), 5
s3_dir_copy_async (copy_async), 4
s3_dir_create (create), 5
s3_dir_delete (delete), 6
s3_dir_delete(), 7
s3_dir_delete_async (delete_async), 7
s3_dir_download (download), 7
s3_dir_download(), 9
s3_dir_download_async (download_async),

8

s3_dir_exists (exists), 9
s3_dir_info (info), 10
s3_dir_ls, 28, 32
s3_dir_ls (info), 10
s3_dir_ls_url, 31
s3_dir_tree, 32
s3_dir_upload (upload), 41
s3_dir_upload(), 42
s3_dir_upload_async (upload_async), 42
s3_file_chmod (permission), 15
s3_file_copy (copy), 3
s3_file_copy(), 5
s3_file_copy_async (copy_async), 4
s3_file_create, 40
s3_file_create (create), 5
s3_file_delete (delete), 6
s3_file_delete(), 7
s3_file_delete_async (delete_async), 7
s3_file_download (download), 7
s3_file_download(), 9
s3_file_download_async

(download_async), 8
s3_file_exists (exists), 9
s3_file_info (info), 10
s3_file_move, 32
s3_file_move(), 33, 40, 42
s3_file_move_async, 33
s3_file_size (info), 10
s3_file_stream_in (stream), 38
s3_file_stream_in(), 39, 40
s3_file_stream_in_async (stream_async),

39
s3_file_stream_out (stream), 38
s3_file_stream_out(), 39, 40
s3_file_stream_out_async

(stream_async), 39
s3_file_system, 34
s3_file_system(), 5
s3_file_tag_delete (tag), 40

43



44 INDEX

s3_file_tag_info (tag), 40
s3_file_tag_update (tag), 40
s3_file_temp, 35
s3_file_touch (touch), 40
s3_file_upload (upload), 41
s3_file_upload(), 42
s3_file_upload_async (upload_async), 42
s3_file_url, 36
s3_file_version_info, 36
s3_generate_presigned_url, 36
s3_get_object, 8, 19, 21, 23, 27, 38, 39
s3_is_bucket (file_type), 10
s3_is_dir (file_type), 10
s3_is_file (file_type), 10
s3_is_file_empty (file_type), 10
s3_list_object_versions, 24, 36
s3_list_objects_v2, 10, 11, 24, 27, 28, 31
s3_path (path), 13
s3_path_dir (path_manipulate), 14
s3_path_ext (path_manipulate), 14
s3_path_ext_remove (path_manipulate), 14
s3_path_ext_set (path_manipulate), 14
s3_path_file (path_manipulate), 14
s3_path_join, 37
s3_path_split, 37
s3_put_object, 3–5, 18, 19, 22, 23, 26, 29,

38, 39, 41, 42
S3FileSystem, 16
s3fs (s3fs-package), 2
s3fs-package, 2
stream, 38
stream_async, 39

tag, 40
touch, 40

upload, 41
upload_async, 42


	s3fs-package
	copy
	copy_async
	create
	delete
	delete_async
	download
	download_async
	exists
	file_type
	info
	path
	path_manipulate
	permission
	S3FileSystem
	s3_bucket_delete
	s3_dir_ls_url
	s3_dir_tree
	s3_file_move
	s3_file_move_async
	s3_file_system
	s3_file_temp
	s3_file_url
	s3_file_version_info
	s3_path_join
	s3_path_split
	stream
	stream_async
	tag
	touch
	upload
	upload_async
	Index

