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1 Overview

This vignette describes how to use R/rxSeq to perform an analysis on RNA-seq data from
F1 reciprocal crosses.

> library(rxSeq)

2 Introduction

RNA sequencing (RNA-seq) not only measures total gene expression but may also mea-
sure allele-speci�c gene expression in diploid individuals. RNA-seq data collected from F1
reciprocal crosses (and respective inbred) in mouse can powerfully dissect strain and parent-
of-origin e�ects on allelic imbalance of gene expression. This R package, rxSeq, implements
a novel statistical approach for RNA-seq data from F1 and inbred strains. Zou et al. (2014)
[[5]]
The package allows to �t the joint model of the total read counts for each mouse (assuming
Negatvie-Binomial model to allow for an overdispersion) and allele speci�c counts (Beta-
Binomial model). In the provided data example these counts are aggregated on gene level,
though as long as counts are not too small, any level of generalization can be used: transcript
level, exon level, etc.

3 Citing R/rxSeq

When using the results from the R/rxSeq package, please cite:

Zou, Fei, Wei Sun, James J. Crowley, Vasyl Zhabotynsky, Patrick F. Sullivan,
and Fernando Pardo-Manuel de Villena (2014), A novel statistical approach for
jointly analyzing RNA-Seq data from F1 reciprocal crosses and inbred lines.
Genetics 197(1):389-399

The article describes the methodological framework behind the R/rxSeq package.

*vasyl@unc.edu
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4 rxSeq implementation and output

4.1 Fitting the data

4.1.1 Joint model (TReCASE model) for total read counts (TReC) and allele

speci�c expression (ASE) counts

The package R/rxSeq was developed for analyzing RNA-seq data from F1 reciprocal mouse
crosses (2013)[[3]] based on development of Collaborative Cross mouse model [[2]]. The
model aimes to combine the total read counts (TReC) and allele speci�c expression (ASE)
counts, estimate simultaneously additive strain e�ect, parent of origin e�ect, as well as taking
in account dominance e�ect, sex e�ect and adjust for individual total level of expression of a
mouse. At the same time, model allows to reduce type II error by estimating overdispersion
of the count data. One of the packages allowing to produce TReC as well as ASE data is
the R package R/asSeq[[1]] developed by our group or using Genomic Alignment [[4]]. A
detailed pipeline of producing gene-level (or transcript-level) allele speci�c counts can be
found in the asSeq document, the general idea is to �nd the reads which have SNP and indel
information using which reads can be classi�ed as allele speci�c (ASE), as well as count
number of reads that overlapped a particular part of a genome - gene level TReC counts.

First lets create an input data object for autosomal and X-chromosome genes

> rcA = readCounts(index=data.A$index, y=data.A$y[1:2,], n=data.A$n[1:2,],

+ n0B=data.A$n0B[1:2,], kappas=data.A$kappas, geneids=data.A$geneids[1:2])

> rcX = readCounts(index=data.X$index, y=data.X$y[1:2,], n=data.X$n[1:2,],

+ n0B=data.X$n0B[1:2,], kappas=data.X$kappas, geneids=data.X$geneids[1:2],

+ tausB=data.X$tausB, chrom="X")

For autosomal genes, the full TReCASE model can be �tted as:

> #fit trecase autosome genes:

> trecase.A.out = process(rcA)

Note, that it requires both TReC and ASE counts, and assumes that mice and genes match
in the data matrices.

Since the X chromosome is di�erent, in that it has Xce e�ect - proportion of one of the
allele expression is not 0.5, but is scewed for the whole chromosome, we need to adjust
for it in order to estimate e�ects correctly. The following command runs the TReCASE
model for chromsome X genes, which requires two additional parameters for dealing with
X-chromosome inactivations: Xce e�ect - proportion of the reads coming from the allele B
for the whole X chromosome and which genes have this proportion switched (the well known
example is Xist gene (it's Ensembl id is provided by default - ENSMUSG00000086503)

> #fit trecase X chromosome genes:

> trecase.X.out = process(rcX)

These functions return the following outputs: parameter estimates from the full models
and associated p-values, and all reduced short models, followed by the list of errors:
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> names(trecase.A.out)

[1] "pvals" "coef.full" "coef.add" "coef.poo" "coef.dom"

[6] "coef.same" "coef.ase.add" "coef.sex" "coef.sex.add" "coef.sex.poo"

[11] "coef.sex.dom" "errorlist"

> trecase.A.out$pval[,1:2]

pval_add pval_poo

ENSMUSG00000055725 7.224770e-02 0.5868794

ENSMUSG00000015568 1.515202e-25 0.5460404

> names(trecase.X.out)

[1] "pvals" "coef.full" "coef.add" "coef.poo" "coef.dom"

[6] "coef.same" "coef.ase.add" "coef.sex" "coef.sex.add" "coef.dev.dom"

[11] "errorlist"

> trecase.X.out$pval[,1:2]

pval_add pval_poo

ENSMUSG00000086503 1.009569e-02 0.5095113

ENSMUSG00000049775 6.992049e-05 0.9503648

We can recalculate negative log likelihood with optional estimation of hessian:

> nLogLik(res=trecase.A.out, rc=rcA, genei=1)$nll

[1] 261.349

> nLogLik(res=trecase.X.out, rc=rcX, genei=1)$nll

[1] 247.1559

4.1.2 TReC model for TReC only

The package also allows to �t the data with only TReC when for a given gene, if there is no
enough SNP or indel information for estimating ASE.

The following function �ts the TReC model for autosomal genes:

> #fit trec autosome genes

> rcA$model = "short"

> trec.A.out = process(rcA)

> names(trec.A.out)

[1] "pvals" "coef.full" "coef.add" "coef.poo" "coef.dom"

[6] "coef.sex" "coef.sex.add" "coef.sex.poo" "coef.sex.dom" "errorlist"

> trec.A.out$pval[,1:2]
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pval_add pval_poo

ENSMUSG00000055725 2.332545e-02 0.5853869

ENSMUSG00000015568 5.106522e-09 0.8125544

Again, the separate treatment of X chromosome is implemented. The following function �ts
the TReC model for chromosome X genes:

> #fit trec X chromosome genes

> rcX$model = "short"

> trec.X.out = process(rcX)

> names(trec.X.out)

[1] "pvals" "coef.full" "coef.add" "coef.poo" "coef.dom"

[6] "coef.sex" "coef.sex.add" "coef.dev.dom" "errorlist"

> trec.X.out$pval[,1:2]

pval_add pval_poo

ENSMUSG00000086503 0.29390171 0.3133116

ENSMUSG00000049775 0.06834156 0.3018140

Similarly for short model we also can recalculate negative log likelihood with optional
estimation of hessian:

> nLogLik(res=trec.A.out, rc=rcA, genei=1)$nll

[1] 183.4093

> nLogLik(res=trec.X.out, rc=rcX, genei=1)$nll

[1] 204.7115

4.2 Estimating Xce e�ect for X chromosome

Both proc.trecase.X and proc.trec.X require an estimate of the Xce e�ect. In the above
examples, we used an estimated value from the data in Crowley at al. (2013) [[3]].

The following function estimates the Xce e�ect for any given data:

> get.tausB(n=data.X$n, n0B=data.X$n0B, geneids=data.X$geneids,

+ Xist.ID="ENSMUSG00000086503")

FG_0125_F_hapG FG_0162_F_hapG FG_0163_F_hapG FG_0164_F_hapG

med.tauB 0.2266945 0.2512354 0.2888816 0.2984825

ave.tauB 0.2338611 0.2511211 0.2864014 0.2961086

all.genes 8.0000000 8.0000000 8.0000000 8.0000000

used.genes 8.0000000 8.0000000 8.0000000 8.0000000

FG_0167_F_hapG FG_0168_F_hapG GF_0164_F_hapG GF_0165_F_hapG

med.tauB 0.2381954 0.2433292 0.3331889 0.2372911

ave.tauB 0.2354252 0.2525122 0.3477522 0.2317843
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all.genes 8.0000000 8.0000000 8.0000000 8.0000000

used.genes 8.0000000 8.0000000 8.0000000 8.0000000

GF_0166_F_hapG GF_0168_F_hapG GF_0238_F_hapG

med.tauB 0.2395825 0.3396480 0.3413311

ave.tauB 0.2529066 0.3592291 0.3367434

all.genes 8.0000000 8.0000000 8.0000000

used.genes 8.0000000 8.0000000 8.0000000

For genes that are known to escape X inactivation or have di�erent Xce control e�ects,
adjusted analysis can be done provided their ids are given. A default gene - Xist which is
known to have an opposite inactivation pattern with the other X chromosome genes, we set
its estimate to 1 − Xce. We may also exclude genes with too low ASE (which is set to 50
by default) and/or with too low proportion of one of the alleles. The default value for the
latter is set to 0.05 to avoid fully imprinted genes.
In order to reliently estimate Xce e�ect we need to have allele speci�c data, so if you don't
have such information, you may use literature average, and if those are not available, you still
can �t the model assuming proportion is 0.5, understanding that it may bias the inference.

> data.X$tausB

FG_0125_F_hapG FG_0162_F_hapG FG_0163_F_hapG FG_0164_F_hapG FG_0167_F_hapG

0.2346327 0.2520325 0.3043478 0.3000000 0.2555848

FG_0168_F_hapG GF_0164_F_hapG GF_0165_F_hapG GF_0166_F_hapG GF_0168_F_hapG

0.2645804 0.3488372 0.2486188 0.2712934 0.3781178

GF_0238_F_hapG

0.3611111

The �rst row of the get.tausB output provides a medain estimate of the Xce e�ect and
the second row provides an average estimate of Xce e�ect. The two estimates are expected
to be close, though median would be more stable.

> get.tausB(n=data.X$n,n0B=data.X$n0B,geneids=data.X$geneids,Xist.ID = "")

FG_0125_F_hapG FG_0162_F_hapG FG_0163_F_hapG FG_0164_F_hapG

med.tauB 0.2303523 0.2534435 0.2897196 0.2986111

ave.tauB 0.3733453 0.3372797 0.3296875 0.3400289

all.genes 9.0000000 9.0000000 9.0000000 9.0000000

used.genes 9.0000000 9.0000000 9.0000000 9.0000000

FG_0167_F_hapG FG_0168_F_hapG GF_0164_F_hapG GF_0165_F_hapG

med.tauB 0.2466844 0.2501718 0.3350168 0.2475884

ave.tauB 0.3291692 0.3398780 0.4076566 0.3148905

all.genes 9.0000000 9.0000000 9.0000000 9.0000000

used.genes 9.0000000 9.0000000 9.0000000 9.0000000

GF_0166_F_hapG GF_0168_F_hapG GF_0238_F_hapG

med.tauB 0.2437753 0.3507246 0.3437500

ave.tauB 0.3357056 0.4229374 0.3998674

all.genes 9.0000000 9.0000000 9.0000000

used.genes 9.0000000 9.0000000 9.0000000
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5 Simulations

The TReC and ASE counts can be simulated using function simRX which requires the
following input variables:

> dat.A = simRX(b0f=.5, b0m=.6, b1f=.3, b1m=.4, beta_sex=.1, beta_dom=.1, n.simu=1E1)

> names(dat.A)

[1] "index" "y" "n" "n0B" "kappas" "geneids"

> dat.X = simRX(b0f=.5, b0m=.6, b1f=.3, b1m=.4, beta_sex=.1, beta_dom=.1, n.simu=1E1,

+ is.X=TRUE, tauB=.3)

> names(dat.X)

[1] "index" "y" "n" "n0B" "kappas" "tausB" "geneids"

It produces three data matrices: TReC - y, all ASE counts - n and ASE counts for allele
B - n0B, as well as specifying which mouse belongs to which cross, and what is the overall
expression level for each mouse. These simulations provide all the required input for the
�tting functions.

6 Function name speci�cation

The essential functions for the package have names reiterating their purpuse:
The �rst part of the name is:

1. (proc) - process the data, �t the likehood and test the hypotheses of interest and
(optionally calculate Hessian matrix at the MLE)

2. (nLogLik) - calculate negative log-likelihood at a given point (and, optionally, calculate
Hessian matrix)

the second part is speci�es if it is a full or a short model:

1. (trecase) - a full model (using TReC and ASE counts)

2. (trec) - a short model (using TReC only counts)

and the last part is specifying gene from which chromosome the model will �t:

1. (A) - an autosome

2. (X) - X chromosome
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