Package 'rrepast'

Title: Invoke 'Repast Simphony' Simulation Models
Description: An R and Repast integration tool for running individual-based (IbM) simulation models developed using 'Repast Simphony' Agent-Based framework directly from R code supporting multicore execution. This package integrates 'Repast Simphony' models within R environment, making easier the tasks of running and analyzing model output data for automated parameter calibration and for carrying out uncertainty and sensitivity analysis using the power of R environment.
Authors: Antonio Prestes Garcia [aut, cre], Alfonso Rodriguez-Paton [aut, ths]
Maintainer: Antonio Prestes Garcia <[email protected]>
License: MIT + file LICENSE
Version: 0.8.0
Built: 2024-12-16 07:05:12 UTC
Source: CRAN

Help Index


Adds a paramter to factor collection

Description

Builds up the factor collection.

Usage

AddFactor(factors = c(), lambda = "qunif", name, min, max,
  int = FALSE)

Arguments

factors

The current factor collection

lambda

The function to apply FUN(p,min,max)

name

The name of factor

min

The minimun of parameter p

max

The maximun of parameter p

int

Boolean for truncating the factor value

Value

The collection of created factors

Examples

## Not run: 
   f<- AddFactor(name="Age",min=20,max=60)
   f<- AddFactor(factors=f, name="Weight",min=50,max=120)
## End(Not run)

AddFactor0

Description

Creates or appends the factor collection

Usage

AddFactor0(factors = c(), ...)

Arguments

factors

The current factor collection

...

The variadic parameter list

Value

The factor collection

Examples

## Not run: 
   f<- AddFactor0(name="Age",min=20,max=60)
   f<- AddFactor0(factors=f, name="Weight",min=50,max=120)
## End(Not run)

Concatenate results of multiple runs

Description

This function stores the output of the last model execution and it is intended to be used internally.

Usage

AddResults(d)

Arguments

d

A data frame containing one replication data


AoE.Base

Description

The Design Of Experiments Base function

Usage

AoE.Base(m, factors = c(), fun = NULL)

Arguments

m

The base design matrix

factors

A subset of model parameters

fun

The function which will be applied to m

Value

The design matrix


AoE.ColumnCoV

Description

This function Calculates the relative squared deviation (RSD or CoV) for an used provided column name key in the parameter dataset.

Usage

AoE.ColumnCoV(dataset, key)

Arguments

dataset

A model output dataset

key

Column name from output dataset

Value

A data frame with Coefficient of variations


AoE.CoV

Description

A simple funcion for calculate the Coefficient of Variation

Usage

AoE.CoV(d)

Arguments

d

The data collection

Value

The coefficient of variation for data


AoE.FullFactorial design generator

Description

Generate a Full Factorial sampling for evaluating the parameters of a model.

Usage

AoE.FullFactorial(n = 10, factors = c())

Arguments

n

The number of samples

factors

The model's parameters which will be evaluated

Value

The Full Factorial design matrix for provided parameters

Examples

## Not run: 
 f<- AddFactor(name="cyclePoint",min=40,max=90)
 f<- AddFactor(factors=f, name="conjugationCost",min=1,max=80)
 d<- AoE.FullFactorial(2,f)
## End(Not run)

AoE.GetMorrisOutput

Description

Returns a dataframe holding the Morris result set

Usage

AoE.GetMorrisOutput(obj)

Arguments

obj

A reference to a morris object instance

Value

The results of Morris method


AoE.LatinHypercube

Description

Generate a LHS sample for model parameters

Usage

AoE.LatinHypercube(n = 10, factors = c(), convert = TRUE)

Arguments

n

The number of samples

factors

The model's parameters which will be evaluated

convert

Adjust experiment matrix to parameter scale

Details

Generate the LHS sampling for evaluating the parameters of a model.

Value

The LHS design matrix for provided parameters

Examples

## Not run: 
 f<- AddFactor(name="cyclePoint",min=40,max=90)
 f<- AddFactor(factors=f, name="conjugationCost",min=1,max=80)
 d<- AoE.LatinHypercube(2,f)
## End(Not run)

AoE.MAE

Description

Calculates the average-error magnitude (MAE)

Usage

AoE.MAE(xs, xe)

Arguments

xs

The simulated data set

xe

The experimental data set

Value

The MAE value for provided datasets


AoE.Morris

Description

This is a wrapper for performing Morris's screening method on repast models. We rely on morris method from sensitivity package.

Usage

AoE.Morris(k = c(), p = 5, r = 4)

Arguments

k

The factors for morris screening.

p

The number of levels for the model's factors.

r

Repetitions. The number of random sampling points of Morris Method.

References

Gilles Pujol, Bertrand Iooss, Alexandre Janon with contributions from Sebastien Da Veiga, Jana Fruth, Laurent Gilquin, Joseph Guillaume, Loic Le Gratiet, Paul Lemaitre, Bernardo Ramos and Taieb Touati (2015). sensitivity: Sensitivity Analysis. R package version 1.11.1. https://CRAN.R-project.org/package=sensitivity


AoE.NRMSD

Description

A simple Normalized Root-Mean-Square Deviation calculation using max and min values. NRMSD = RMSD(x) / (max(x) - min(x))

Usage

AoE.NRMSD(xs, xe)

Arguments

xs

The simulated data set

xe

The experimental data set

Value

The NRRMSD value for provided datasets


AoE.RandomSampling experiment desing generator

Description

Generate a Simple Random Sampling experiment design matrix.

Usage

AoE.RandomSampling(n = 10, factors = c())

Arguments

n

The number of samples

factors

The model's parameters which will be evaluated

Value

The random sampling design matrix

Examples

## Not run: 
 f<- AddFactor(name="cyclePoint",min=40,max=90)
 f<- AddFactor(factors=f, name="conjugationCost",min=1,max=80)
 d<- AoE.RandomSampling(2,f)
## End(Not run)

AoE.RMSD

Description

A simple Root-Mean-Square Deviation calculation.

Usage

AoE.RMSD(xs, xe)

Arguments

xs

The simulated data set

xe

The experimental data set

Value

The RMSD value for provided datasets


AoE.Sobol

Description

This is a wrapper for performing Global Sensitivity Analysis using the Sobol Method provided by sensitivity package.

Usage

AoE.Sobol(n = 100, factors = c(), o = 2, nb = 100,
  fun.doe = AoE.LatinHypercube, fun.sobol = sobolmartinez)

Arguments

n

The number of samples

factors

The model's parameters which will be evaluated

o

Maximum order in the ANOVA decomposition

nb

Number of bootstrap replicates

fun.doe

The sampling function to be used for sobol method

fun.sobol

The sobol implementation

Details

This function is not intended to be used directly from user programs.

References

Gilles Pujol, Bertrand Iooss, Alexandre Janon with contributions from Sebastien Da Veiga, Jana Fruth, Laurent Gilquin, Joseph Guillaume, Loic Le Gratiet, Paul Lemaitre, Bernardo Ramos and Taieb Touati (2015). sensitivity: Sensitivity Analysis. R package version 1.11.1. https://CRAN.R-project.org/package=sensitivity


AoE.Stability

Description

This function verifies the stability of CoV for all columns given by parameter keys or all dataset columns if keys is empty.

Usage

AoE.Stability(dataset, keys = c())

Arguments

dataset

A model output dataset

keys

A list of column names

Value

A data frame with Coefficient of variations


Corrects the LHS design matrix

Description

Correct the LHS sampling matrix for a specific range applying the lambda function. The default value of 'lambda' is 'qunif'.

Usage

ApplyFactorRange(design, factors)

Arguments

design

The LHS design matrix

factors

THe collection of factors

Value

The corrected design matrix


Builds the simulation parameter set

Description

Merges the design matrix with parameters which will be keep fixed along simulation runs.

Usage

BuildParameterSet(design, parameters)

Arguments

design

The experimental desing matrix for at least one factor

parameters

All parameters of the repast model.

Value

A data frame holding all parameters required for running the model

Examples

## Not run: 
   modeldir<- "c:/usr/models/BactoSim(HaldaneEngine-1.0)"
   e<- Model(modeldir=modeldir,dataset="ds::Output")
   Load(e)

   f<- AddFactor(name="cyclePoint",min=40,max=90)

   p<- GetSimulationParameters(e)

   d<- AoE.LatinHypercube(factors=f)

   p1<- BuildParameterSet(d,p)
## End(Not run)

Calibration.GetMemberKeys

Description

Gets the list of keys (the factor names)

Usage

Calibration.GetMemberKeys(obj)

Arguments

obj

An instance of the object returned by Easy methods

Value

The collection of keys


Calibration.GetMemberList

Description

Gets the member list value

Usage

Calibration.GetMemberList(obj, key, name)

Arguments

obj

An instance of the object returned by Easy methods

key

The key value

name

The column name

Value

The member list


check.integration

Description

Check if the integration jar library is correctelly installed in the model lib directory

Usage

check.integration(modelpath)

Arguments

modelpath

The path where model is installed

Value

TRUE if the integration code is correctelly deployed


check.scenario

Description

Check if the scenario.xml is configured with the rrepast itegration code

Usage

check.scenario(modelpath)

Arguments

modelpath

The path where model is installed

Value

TRUE if scenario is properly configured


Clear the results data.frame

Description

This function is called automatically every time Run method is called.

Usage

ClearResults()

col.sum

Description

Sum all columns but one (pset) of a data frame

Usage

col.sum(d, skip = c())

Arguments

d

The data frame

skip

The columns which should not be included in the sum

Value

The original data frame with a new column (sum) holding the sum


config.check

Description

Verify if the installed model is correctelly configurated.

Usage

config.check(modelpath)

Arguments

modelpath

The path where model is installed

Value

TRUE when all requisites are met


config.copylib

Description

Install or uninstall the integration jar file. This function manages the installation process of required jars to the model lib dir.

Usage

config.copylib(modelpath, uninstall = FALSE)

Arguments

modelpath

The path where model is installed

uninstall

If TRUE uninstall integration jar

Value

TRUE if install operation succed


config.scenario

Description

Add the integration library to the model's configuration

Usage

config.scenario(modelpath, uninstall = FALSE)

Arguments

modelpath

The path where model is installed

uninstall

If TRUE restore original scenario.xml file

Value

A logical TRUE if the model's scenario file has been modified


Create output directory

Description

A simple function to make a directory to save the model's data.

Usage

createOutputDir()

Details

Create the, if required, the directory to save the output data generate by the model. It is intended for internal use.


df2matrix

Description

This function converts data frames to matrix data type.

Usage

df2matrix(d, n = c())

Arguments

d

The data frame

n

The column names to be converted. Null for all data frame columns

Value

The data frame converted to a matrix


dffilterby

Description

Selects a subset of a data frame, filtering by column values.

Usage

dffilterby(d, key, values = c())

Arguments

d

The data frame holding data to be filtered

key

The column name for selection valuas

values

The collection of values used to filter the data set

Value

The filtered data set


dfround

Description

Round all numeric columns of a data frame

Usage

dfround(d, p)

Arguments

d

The data frame

p

The number of decimal digits to be keept

Value

A data frame with rounded columns


dfsumcol

Description

Sum data frame columns but tho

Usage

dfsumcol(d, lst = c(), invert = FALSE)

Arguments

d

The data frame

lst

Skip columns included. Sum columns NOT included

invert

Sum only the columns included in lst

Value

The original data frame with a new column (sum) holding the sum


Easy.Calibration

Description

Search for the best set of parameters trying to minimize the calibration function provided by the user. The function has to operational models, the first based on the experimental setup where all parameters are defined a priori and the second using optimization techniques. Currently the only supported optimization technique is the particle swarm optimization.

Usage

Easy.Calibration(m.dir, m.ds, m.time = 300, parameters, exp.n = 100,
  exp.r = 1, smax = 4, design = "lhs", FUN, default = NULL)

Arguments

m.dir

The installation directory of some repast model

m.ds

The name of any model aggregate dataset

m.time

The total simulated time

parameters

The input factors

exp.n

The experiment sample size

exp.r

The number of experiment replications

smax

The number of solutions to be generated

design

The sampling scheme ["lhs"|"mcs"|"ffs"]

FUN

The objective or cost function. A function defined over the model output.

default

The alternative values for parameters which should be kept fixed

Value

A list with holding experiment, object and charts

Examples

## Not run: 
 my.cost<- function(params, results) {
   criteria<- c()
   Rate<- AoE.RMSD(results$X.Simulated,results$X.Experimental)
   G<- AoE.RMSD(results$G.T.,52)
   total<- Rate + G
   criteria<- cbind(total,Rate,G)
   return(criteria)
 }
 
 Easy.Setup("/models/BactoSim")
 v<- Easy.Calibration("/models/BactoSim","ds::Output",360,
                       f,exp.n = 1000, exp.r=1, smax=4, 
                       design="mcs", my.cost)
 

## End(Not run)

Easy.getChart

Description

Returns the chart instance

Usage

Easy.getChart(obj, key)

Arguments

obj

A reference to the output of Easy.Stability

key

The param name

Value

The plot instance


Easy.getPlot

Description

Returns the chart instance

Usage

Easy.getPlot(obj, c, key)

Arguments

obj

A reference to the output of an "Easy" API method

c

The output name

key

The param name

Value

The plot instance


Easy API for Morris's screening method

Description

This function wraps all calls to perform Morris method.

Usage

Easy.Morris(m.dir, m.ds, m.time = 300, parameters, mo.p, mo.r, exp.r,
  FUN, default = NULL)

Arguments

m.dir

The installation directory of some repast model

m.ds

The name of any model aggregate dataset

m.time

The total simulated time

parameters

The factors for morris screening.

mo.p

The number of levels for the model's factors.

mo.r

Repetitions. The number of random sampling points of Morris Method.

exp.r

The number of experiment replications

FUN

The objective or cost function. A function defined over the model output.

default

The alternative values for parameters which should be kept fixed

Value

A list with holding experimnt, object and charts


Easy API for running a model

Description

This function provides a simple wrapper for performing a single or replicated model execution with a single set of parameters.

Usage

Easy.Run(m.dir, m.ds, m.time = 300, r = 1, default = NULL)

Arguments

m.dir

The installation directory of some repast model

m.ds

The name of any model aggregate dataset

m.time

The total simulated time

r

The number of replications

default

The alternative values for the default model parameters


Easy API for Runnning Experiments

Description

This function provides a simple wrapper for performing experimental setups using a design matrix

Usage

Easy.RunExperiment(m.dir, m.ds, m.time = 300, r = 1, design, FUN,
  default = NULL)

Arguments

m.dir

The installation directory of some repast model

m.ds

The name of any model aggregate dataset

m.time

The total simulated time

r

The number of replications

design

The design matrix holding parameter sampling

FUN

The objective or cost function. A function defined over the model output.

default

The alternative values for parameters which should be kept fixed

Value

The experiment results


Easy.Setup

Description

This function configures the deployment directory where logs and output dataset will be generated. By default the deployment directory will be created under the model installation directory. The output generated by the Repast model will be redirected to the SystemOut.log file.

Usage

Easy.Setup(model, multicore = FALSE, deployment = c())

Arguments

model

The base directory where Repast model is installed.

multicore

Bolean flag indicating to use multiplecore.

deployment

The directory to save the output and logs.

Details

If the deployment directory is empty the installation directory given by the parameter model is used instead as the base directory. The deployment directory is /rrepast-deployment/.


Easy.ShowModelParameters

Description

Returns the list current model parameters

Usage

Easy.ShowModelParameters(v)

Arguments

v

The installation directory of some repast model

Value

The model parameters


Easy API for Sobol's SA method

Description

This functions wraps all required calls to perform Sobol method for global sensitivity analysis.

Usage

Easy.Sobol(m.dir, m.ds, m.time = 300, parameters, exp.n = 500,
  bs.size = 200, exp.r = 1, FUN, default = NULL,
  fsobol = sobol2002, fsampl = AoE.LatinHypercube)

Arguments

m.dir

The installation directory of some repast model

m.ds

The name of any model aggregate dataset

m.time

The total simulated time

parameters

The input factors

exp.n

The experiment sample size

bs.size

The bootstrap sample size for sobol method

exp.r

The number of experiment replications

FUN

The objective or cost function. A function defined over the model output.

default

The alternative values for parameters which should be kept fixed

fsobol

The alternative function for calculating sobol indices

fsampl

The function for sampling data

Value

A list with holding experimnt, object and charts


Easy API for output stability

Description

This functions run model several times in order to determine how many experiment replications are required for model's output being stable (i.e. the convergence of standard deviation)

Usage

Easy.Stability(m.dir, m.ds, m.time = 300, parameters, samples = 1,
  tries = 100, vars = c(), FUN, default = NULL)

Arguments

m.dir

The installation directory of some repast model

m.ds

The name of any model aggregate dataset

m.time

The total simulated time

parameters

The factors or model's parameter list

samples

The number of factor samples.

tries

The number of experiment replications

vars

The model's output variables for compute CoV

FUN

The objective or cost function. A function defined over the model output.

default

The alternative values for parameters which should be kept fixed

Value

A list with holding experiment, object and charts


Engine

Description

Creates an instance of Engine

Usage

Engine()

Details

This function creates an instance of Repast model wrapper class. Before invoking the function Engine, make sure that environment was correctly initialized.

Value

An onject instance of Engine class


Engine.endAt

Description

Configure the maximun simulated time for the current model run

Usage

Engine.endAt(e, v)

Arguments

e

An engine object instance

v

The number of Repast time ticks


Engine.Finish

Description

Performs a cleanup on a engine instance.Finalize and destroy repast controller data.

Usage

Engine.Finish(e)

Arguments

e

An engine object instance


Returns the model id

Description

This function provides a wrapper to the method getId() from repast context. The id is basically a String with the currently instantiated model name.

Usage

Engine.getId(e)

Arguments

e

An engine object instance


Engine.GetModelOutput

Description

Gets the model output data as a CSV String array. Calls the engine method GetModelOutput to drain model output data.

Usage

Engine.GetModelOutput(e)

Arguments

e

An engine object instance

Value

An array of strings containing the model's output

Examples

## Not run: 
   d<- "c:/usr/models/your-model-directory"
   m<- Model(d)
   csv<- Engine.GetModelOutput(m)
## End(Not run)

Engine.getParameter

Description

The function gets the value of model parameter k as java.lang.Object

Usage

Engine.getParameter(e, k)

Arguments

e

An engine object instance

k

The parameter name

Value

The parameter value


Engine.getParameterAsDouble

Description

Get the value of model parameter k as java.lang.Double

Usage

Engine.getParameterAsDouble(e, k)

Arguments

e

An engine object instance

k

The parameter name

Value

The parmeter value as double


Engine.getParameterAsNumber

Description

Get the value of model parameter k as java.lang.Number

Usage

Engine.getParameterAsNumber(e, k)

Arguments

e

An engine object instance

k

The parameter name

Value

The parmeter value as number


Engine.getParameterAsString

Description

Get the value of model parameter k as java.lang.String

Usage

Engine.getParameterAsString(e, k)

Arguments

e

An engine object instance

k

The parameter name

Value

The parameter value as string


Engine.getParameterNames

Description

Get the parameter names

Usage

Engine.getParameterNames(e)

Arguments

e

An engine object instance

Details

Returns the names of all declared model's parameters in the parameter.xml file in the scenario directory.

Value

A collection of parameter names


Engine.getParameterType

Description

Returns the declared type of a Repast model parameter

Usage

Engine.getParameterType(e, k)

Arguments

e

An engine object instance

k

The parameter name

Value

The parameter type string


Engine.LoadModel

Description

Loads the model's scenario files

Usage

Engine.LoadModel(e, f)

Arguments

e

An engine object instance

f

The full path of scenario directory

Details

This function loads the scenario of a Repast Model and initialize de model.


Engine.resetModelOutput

Description

Resets the the model output holder

Usage

Engine.resetModelOutput(e)

Arguments

e

An engine object instance


Engine.RunModel

Description

Performs the execution of Repast model

Usage

Engine.RunModel(e)

Arguments

e

An engine object instance


Engine.SetAggregateDataSet

Description

Sets the model's dataset

Usage

Engine.SetAggregateDataSet(e, k)

Arguments

e

An engine object instance

k

The repast model's data set name

Details

Configure a dataset with the desired output values to be "drained" by the function Engine.GetModelOutput.

Examples

## Not run: 
   d<- "C:/usr/models/your-model-directory"
   m<- Model(d)
   setAggregateDataSet(m,"dataset-name")
## End(Not run)

Engine.setParameter

Description

Set the value of model parameter

Usage

Engine.setParameter(e, k, v)

Arguments

e

An engine object instance

k

The parameter name

v

The parameter value


enginestats.calls

Description

Return the current calls to the 'Engine.RunModel' function

Usage

enginestats.calls(increment = FALSE)

Arguments

increment

A flag telling to increment and update the counter

Value

The number of calls to 'Engine.RunModel'


enginestats.reset

Description

Reset internal statistics

Usage

enginestats.reset()

Helper function to get experiment dataset

Description

The RunExperiment function returns a list holding the paramset, output and dataset collection. The paramset collection contains the parameters used for running the experimental setup. The output has the results from user provided calibration function. The dataset collection has the raw output of 'Repast' aggregated dataset.

Usage

getExperimentDataset(e)

Arguments

e

The experiement object returned by RunExperiment

Value

The reference to dataset container.


Helper function to get experiment output

Description

The RunExperiment function returns a list holding the paramset, output and dataset collection. The paramset collection contains the parameters used for running the experimental setup. The output has the results from user provided calibration function. The dataset collection has the raw output of 'Repast' aggregated dataset.

Usage

getExperimentOutput(e)

Arguments

e

The experiement object returned by RunExperiment

Value

The reference to output container.


Helper function to get experiment paramset

Description

The RunExperiment function returns a list holding the paramset, output and dataset collection. The paramset collection contains the parameters used for running the experimental setup. The output has the results from user provided calibration function. The dataset collection has the raw output of 'Repast' aggregated dataset.

Usage

getExperimentParamSet(e)

Arguments

e

The experiement object returned by RunExperiment

Value

The reference to output container.

Examples

## Not run: 
   d<- "C:/usr/models/your-model-directory"
   m<- Model(d)
   ...
   e<- RunExperiment(e,r=1,exp.design,my.cost)
   p<- getExperimentParamSet(e)
## End(Not run)

GetFactorLevels

Description

Returns the fator's levels

Usage

GetFactorLevels(factors, name)

Arguments

factors

The current factor collection

name

The factor name

Value

Levels

Examples

## Not run: 
   f<- AddFactor0(name="Age",levels=c(25,30,40,65))
   f<- AddFactor0(factors=f, name="Weight",levels=c(60,70,80,90))
   
   GetFactorLevels(factors=f, "Age")
## End(Not run)

Get the number of factors

Description

Returns the total number of factors

Usage

GetFactorsSize(factors)

Arguments

factors

A collection of factors created with AddFactor

Value

The number of parameters in factors collection


Gets the model name

Description

Provides the name of the model currently instantiated.

Usage

getId()

Gets Repast randomSeed name

Description

Returns the Repast randomSeed parameter name.

Usage

getKeyRandom()

Value

A string value holding the randomSeed name.


getLogDir()

Description

Returns the value for log directory

Usage

getLogDir()

Gets the output

Description

Returns the results of a model a data.frame from the last RUN. Should be used only if model replication is equal to 1, otherwise GetResults must be used.

Usage

GetOutput(e)

Arguments

e

An engine object instance

Value

Returns a data.frame with output data

Examples

## Not run: 
   d<- "C:/usr/models/your-model-directory"
   m<- Model(d)
   ...
   data<- GetOutput(m)
## End(Not run)

Gets output directory

Description

Returns the value of module variable for storing the current output directory.

Usage

getOutputDir()

getpkgcores

Description

Returns the maximum number of cores to be used in parallel computations

Usage

getpkgcores()

Value

The number of cores


getpkgdefaultcores

Description

Provides the package default parallelism level which is 80% of total cores available

Usage

getpkgdefaultcores()

Value

Cores used by R/Repast


Returns the model results

Description

Returns the model results

Usage

GetResults()

Gets the parameters

Description

Returns the current set of paramters used for the last model run.

Usage

GetResultsParameters()

Value

A data.frame with parameters of the model.


Gets the simulation parameters

Description

Returns a dataframe with the current set of input parameters for the last model run.

Usage

GetSimulationParameters(e)

Arguments

e

An engine object instance

Value

A data frame with simulation parameters


GetSimulationParameterType

Description

Returns the declared parameter type.

Usage

GetSimulationParameterType(e, k)

Arguments

e

An instance of 'Engine' object

k

The parameter name

Value

The parameter type as string


GoToPreviousDir

Description

Returns to the saved work directory

Usage

GoToPreviousDir()

GoToWorkDir

Description

Changes the current work directory saving the previous one which is used in GoToPreviousDir. This function is called by Easy.Setup

Usage

GoToWorkDir()

hybrid.distance

Description

Calculates the distance between some value a reference target value. It is an hybrid distance because when the value falls whithin a reference range the distance is 0, otherwise the distance between the value and the reference value is calculated using the user provided distance function.

Usage

hybrid.distance(value, reference, FUN = AoE.NRMSD)

Arguments

value

The value which will be compared against the reference

reference

The reference value. It should be a list holding the value, the range of values.

FUN

The distance function. The default is the NRMSD

Value

The distance metric


hybrid.value

Description

A simple helper function for generating the input list for the function 'hybrid.distance'. This list must hold the value and a range centered over the value.

Usage

hybrid.value(value, distance)

Arguments

value

The reference value

distance

The distance interval.

Value

The list holding the value and the interval 'min — value — max'


jarfile

Description

The jarfile returns the full path to some jar file available inside rrpast package

Usage

jarfile(fjar)

Arguments

fjar

The name of jar file

Value

The full path to jar file


jvm.enablejmx

Description

Enable jmx for the current R/rJava session

Usage

jvm.enablejmx()

Details

Configures the JMX subsystem for the current session of R/rJava. This function must be called before any other function which initializes r/Java such as Easy.Setup or Model otherwise it will have no effect.

Examples

## Not run: 
   jvm.enablejmx()
## End(Not run)

jvm.get_parameters

Description

Returns the current java virtual machine parameters

Usage

jvm.get_parameters()

Value

A string with JVM parameters.


jvm.getruntime

Description

A wrapper for System.getRuntime()

Usage

jvm.getruntime()

Details

A simple wrapper for System.getRuntime() java method


Init R/JVM environment

Description

Initialize rJava and repast environment with classpath. This function is called internally and it is not meant to be used directlly.

Usage

jvm.init()

Details

The default parameters can be changed as needed calling the primitive jvm.set_parameters befor instantiating the model engine.

References

[1] rJava: Low-Level R to Java Interface. Low-level interface to Java VM very much like .C/.Call and friends. Allows creation of objects, calling methods and accessing fields.

Examples

## Not run: 
     jvm.init()
## End(Not run)

jvm.memory

Description

JVM memory state

Usage

jvm.memory()

Details

Provides information about the memory used by the JVM subsystem


jvm.resetOut

Description

Reset the System.out filed value to console output

Usage

jvm.resetOut()

Examples

## Not run: 
   jvm.resetOut()
## End(Not run)

jvm.runtimegc

Description

A wrapper for Runntime.gc()

Usage

jvm.runtimegc()

Details

Forces the execution of the JVM garbage collector


jvm.set_parameters

Description

Configures the jvm parameters

Usage

jvm.set_parameters(s)

Arguments

s

The paramter string to be passed to the underlying JVM

Details

Set the underlying parameters for java virtual machine. The default values are "-server -Xms1024m -Xmx1024m". These defaults can be changed to fit the model requirements.

Examples

## Not run: 
   jvm.set_parameters("-server -Xms512m -Xmx2048m")
## End(Not run)

jvm.setOut

Description

Set the System.out filed to a file

Usage

jvm.setOut(f)

Arguments

f

The output file name

Examples

## Not run: 
   jvm.setOut("/tmp/SysteOut.log")
## End(Not run)

lcontains

Description

Cheks if a list contains a name

Usage

lcontains(l, n)

Arguments

l

The list object

n

The item name

Value

Boolean TRUE if name is found on list


get

Description

Retrieve the value for a list item

Usage

lget(l, n)

Arguments

l

The list object

n

The item name

Value

The item value


The Scenario loader

Description

Loads the model's scenario. This function must be called before running the model.

Usage

Load(e)

Arguments

e

An engine object instance

Examples

## Not run: 
   d<- "C:/usr/models/your-model-directory"
   m<- Model(d)
   Load(m)
## End(Not run)

Set the log level to INFO

Description

Configures the underlying logging system

Usage

Logger.setLevelInfo()

Set the log level to WARNING

Description

Configures the underlying logging system

Usage

Logger.setLevelWarning()

The easy API for model initilization

Description

Instantiate a repast model from the model dir without loading the scenario file.

Usage

Model(modeldir = "", maxtime = 300, dataset = "none", load = FALSE)

Arguments

modeldir

The installation directory of some repast model

maxtime

The total simulated time

dataset

The name of any model aggregate dataset

load

If true instantiate model and load scenario

Details

This is the entry point for model execution. Typically any model execution will start with this function which encapsulates all low level calls for model initialization. In order to perform simulations with repast from R code only Model and a few more function calls are required: Load, Run. Finally the output of model is managed with functions GetResults and SaveSimulationData.

Value

Returns the instance of repast model

References

[1] North, M.J., N.T. Collier, and J.R. Vos, "Experiences Creating Three Implementations of the Repast Agent Modeling Toolkit," ACM Transactions on Modeling and Computer Simulation, Vol. 16, Issue 1, pp. 1-25, ACM, New York, New York, USA (January 2006).

Examples

## Not run: 
   d<- "C:/usr/models/your-model-directory"
   m<- Model(d)
## End(Not run)

ParallelClose

Description

Finalize the parallel execution environment for R/Repast

Usage

ParallelClose()

ParallelInit

Description

Initialize the parallel execution environment for R/Repast

Usage

ParallelInit()

parallelize

Description

Tells R/Repast to use multicore. Default is using just one core.

Usage

parallelize(v = NULL)

Arguments

v

A Bollean value telling if use multiple cores. When null just returns the current setting

Value

Boolean with current state


ParallellRunExperiment

Description

Run the model multiple times for different parameters given by design matrix function parameter.

Usage

ParallellRunExperiment(modeldir, datasource, maxtime, r = 1, design, FUN,
  default = NULL)

Arguments

modeldir

The installation directory of some repast model

datasource

The name of any model aggregate dataset

maxtime

The total simulated time

r

The number of experiment replications

design

The desing matrix holding parameter sampling

FUN

THe calibration function.

default

The alternative values for parameters which should be kept fixed

Details

The FUN function must return zero for perfect fit and values greater than zero otherwise.

Value

A list with output and dataset

Examples

## Not run: 
   my.cost<- function(params, results) { # your best fit calculation, being 0 the best metric.  }
   d<- "/usr/models/your-model-directory"
   f<- AddFactor(name="cyclePoint",min=40,max=90)
   f<- AddFactor(factors=f, name="conjugationCost",min=1,max=80)
   d<- AoE.LatinHypercube(factors=f)
   v<- ParallellRunExperiment()
## End(Not run)

ParallelRun

Description

Run simulations in parallel. This function executes the time steps of an instantiated model. The number of replications of model runs can be specified by the function parameter. The seed parameter may be omitted and will be generated internally. If provided, the seed collection, must contain the same number of r parameter.

Usage

ParallelRun(modeldir, datasource, maxtime, r = 1, seed = c(),
  design = NULL, default = NULL)

Arguments

modeldir

The installation directory of some repast model

datasource

The name of any model aggregate dataset

maxtime

The total simulated time

r

The number of experiment replications

seed

The random seed collection

design

The desing matrix holding parameter sampling

default

The alternative values for parameters which should be kept fixed

Value

The model output dataset

Examples

## Not run: 
   md<- "/usr/models/your-model-directory"
   output<- ParallelRun(modeldir= md, maxtime = 360, dataset= ds, r=4)
## End(Not run)

PB.close

Description

Close the progress bar descriptor

Usage

PB.close()

PB.disable

Description

Disable the progress bar visualization

Usage

PB.disable()

PB.enable

Description

Enables the progress bar visualization

Usage

PB.enable()

PB.get

Description

Gets the the progress bar descriptor

Usage

PB.get()

PB.init

Description

Initialize progress bar for model execution.

Usage

PB.init(psets, replications)

Arguments

psets

– The total number of paramter sets being simulated

replications

– The number of replications per simulation round


PB.isEnabled

Description

Returns the global value indicating if progress bar is enabled.

Usage

PB.isEnabled()

Value

Boolean TRUE if progress bar must be shown


PB.pset

Description

Update pset value

Usage

PB.pset(v)

Arguments

v

The current parameter set being simulated


PB.rnum

Description

Update run number value

Usage

PB.rnum(v)

Arguments

v

The current run number


PB.set

Description

Ses the progress bar descriptor

Usage

PB.set(obj)

Arguments

obj

– The progress bar descriptor


PB.update

Description

Update progress bar

Usage

PB.update(r = NULL)

Arguments

r

The current replication number


pick.fittest

Description

Choose the best solutions minimizing the objective function

Usage

pick.fittest(out, goals = c(), n = 4)

Arguments

out

The output data set holding the values of goals

goals

The column names which must be used as goal

n

The number of solutions

Value

The n rows holding the best results


Plot of calibration

Description

Generate plot for parameter sets providing best fit

Usage

Plot.Calibration(obj, key, title = NULL)

Arguments

obj

An instance of calibration Object

key

The column name

title

Chart title, may be null

Value

The resulting ggplot2 plot object


Plot of Morris output

Description

Generate plot for Morris's screening method

Usage

Plot.Morris(obj, type, title = NULL)

Arguments

obj

An instance of Morris Object AoE.Morris

type

The chart type (mu*sigma|musigma|mu*mu)

title

Chart title, may be null

Value

The resulting ggplot2 plot object


Plot of Sobol output

Description

Generate plot for Sobol's GSA

Usage

Plot.Sobol(obj, type, title = NULL)

Arguments

obj

An instance of Sobol Object AoE.Sobol

type

The chart type

title

Chart title, may be null

Value

The resulting ggplot2 plot object


Plot stability of output

Description

Generate plot for visually access the stability of coefficient of variation as function of simulation sample size.

Usage

Plot.Stability(obj, title = NULL)

Arguments

obj

An instance of Morris Object AoE.Morris

title

Chart title, may be null

Value

The resulting ggplot2 plot object


Results.GetCharts

Description

Simplify the access to the charts member

Usage

Results.GetCharts(obj)

Arguments

obj

An instance of the object returned by Easy methods

Value

The charts element inside results


Results.GetExperiment

Description

Simplify the access to the experiment member

Usage

Results.GetExperiment(obj)

Arguments

obj

An instance of the object returned by Easy methods

Value

The experiment element inside results


Results.GetObject

Description

Simplify the access to the object member

Usage

Results.GetObject(obj)

Arguments

obj

An instance of the object returned by Easy methods

Value

The object element inside results


Run simulations

Description

This function executes the time steps of an instantiated model. The number of replications of model runs can be specified by the function parameter. The seed parameter may be omitted and will be generated internally. If provided, the seed collection, must contain the same number of r parameter.

Usage

Run(e, r = 1, seed = c())

Arguments

e

An engine object instance

r

The number of experiment replications

seed

The random seed collection

Value

The model output dataset

Examples

## Not run: 
   d<- "C:/usr/models/your-model-directory"
   m<- Model(d)
   Load(m)
   Run(m,r=2) # or Run(m,r=2,seed=c(1,2))
## End(Not run)

Run an experimental setup

Description

Run the model multiple times for different parameters given by design matrix function parameter.

Usage

RunExperiment(e, r = 1, design, FUN)

Arguments

e

An engine object instance

r

The number of experiment replications

design

The desing matrix holding parameter sampling

FUN

THe calibration function.

Details

The FUN function must return zero for perfect fit and values greater than zero otherwise.

Value

A list with output and dataset

Examples

## Not run: 
   my.cost<- function(params, results) { # your best fit calculation, being 0 the best metric.  }
   d<- "c:/usr/models/your-model-directory"
   m<- Model(d,dataset="ds::Output")
   Load(m)
   f<- AddFactor(name="cyclePoint",min=40,max=90)
   f<- AddFactor(factors=f, name="conjugationCost",min=1,max=80)
   d<- LatinHypercube(factors=f)
   p<- GetSimulationParameters(e)
   exp.design<- BuildParameterSet(d,p)
   v<- RunExperiment(e,r=1,exp.design,my.cost) 
## End(Not run)

Saving simulation output

Description

Saves the simulation results of last call to Run(e) function.

Usage

SaveSimulationData(as = "csv", experiment = NULL)

Arguments

as

The desired output type, must be csv or xls

experiment

The experiment output

Details

The model must have been initialized or user must call setId explicitelly.

Value

The id of saved data


SequenceItem

Description

Generate a sequence from min to max using an increment based on the number of of elements in v

Usage

SequenceItem(v, min, max)

Arguments

v

A column of n x k design matrix

min

The lower boundary of range

max

The uper boundary of range

Value

A sequence between min and max value


Sets the model name

Description

Set the name of the model currently instantiated.

Usage

setId(s)

Arguments

s

The model name


Sets Repast randomSeed name

Description

Configures a non-default value for Repast randomSeed parameter name.

Usage

setKeyRandom(k)

Arguments

k

The string with an alternative name for randomSeed


Sets output directory

Description

Configure the desired directoy to save model output data.

Usage

setOutputDir(s)

Arguments

s

The full path for output directory


setpkgcores

Description

Configures the maximum number of cores to be used in parallel computations

Usage

setpkgcores(v)

Arguments

v

The number of cores


Stores a data.frame

Description

Stores a data.frame

Usage

SetResults(d)

Arguments

d

A data frame containing one replication data


Sets the parameters

Description

Save the current set of paramters used for the last model run.

Usage

SetResultsParameters(d)

Arguments

d

A data.frame with parameter values


SetSimulationParameter

Description

Modify model's default parameter collection

Usage

SetSimulationParameter(e, key, value)

Arguments

e

An engine object instance

key

The paramter name

value

The parameter value


Set parameters for running model

Description

Modify the repast model parameters with values provided in parameter 'p' which is a data frame with just one row.

Usage

SetSimulationParameters(e, p)

Arguments

e

An engine object instance

p

A data frame with simulation parameters


ShowClassPath

Description

Shows the current classpath

Usage

ShowClassPath()

Value

the current setting of JVM classpath

Examples

## Not run: 
   ShowClassPath()
## End(Not run)

ShowUsedCores

Description

Prints the number of cores used

Usage

ShowCores()

ShowModelPaths

Description

Prints the paths. Shows the directories currently used to load model scenario and lib. The output of this function is informational only and can be used to check whether model data is being loaded properly from correct locations.

Usage

ShowModelPaths()

Examples

## Not run: 
   ShowModelPaths()
## End(Not run)

UpdateDefaultParameters

Description

Modify the value of the default parameters which should be kept fixed

Usage

UpdateDefaultParameters(e, p)

Arguments

e

An engine object instance

p

The collection of model fixed paramters to change

Examples

## Not run: 
   d<- "C:/usr/models/your-model-directory"
   m<- Model(d)
   Load(m)

   p<- c(name1=value1, name2=2)
   UpdateDefaultParameters(m,p)
## End(Not run)

WrapperRun

Description

Wrapper for the Run and ParallelRun functions

Usage

WrapperRun(modeldir, datasource, maxtime, r = 1, seed = c(),
  design = NULL, default = NULL, multi = TRUE)

Arguments

modeldir

The installation directory of some repast model

datasource

The name of any model aggregate dataset

maxtime

The total simulated time

r

The number of experiment replications

seed

The random seed collection

design

The desing matrix holding parameter sampling

default

The alternative values for parameters which should be kept fixed

multi

allows forcing single core execution, default is using multi-core

Value

The model output dataset


WrapperRunExperiment

Description

Wrapper for the RunExperiment and ParallelRunExperiment functions

Usage

WrapperRunExperiment(modeldir, datasource, maxtime, r = 1, design, FUN,
  default = NULL)

Arguments

modeldir

The installation directory of some repast model

datasource

The name of any model aggregate dataset

maxtime

The total simulated time

r

The number of experiment replications

design

The desing matrix holding parameter sampling

FUN

The objective function.

default

The alternative values for parameters which should be kept fixed

Value

The model output dataset