
Package: rotations (via r-universe)
October 3, 2024

Type Package

Title Working with Rotation Data

Version 1.6.5

Description Tools for working with rotational data, including
simulation from the most commonly used distributions on SO(3),
methods for different Bayes, mean and median type estimators
for the central orientation of a sample, confidence/credible
regions for the central orientation based on those estimators
and a novel visualization technique for rotation data. Most
recently, functions to identify potentially discordant
(outlying) values have been added. References: Bingham,
Melissa A. and Nordman, Dan J. and Vardeman, Steve B. (2009),
Bingham, Melissa A and Vardeman, Stephen B and Nordman, Daniel
J (2009), Bingham, Melissa A and Nordman, Daniel J and
Vardeman, Stephen B (2010), Leon, C.A. and Masse, J.C. and
Rivest, L.P. (2006), Hartley, R and Aftab, K and Trumpf, J.
(2011), Stanfill, Bryan and Genschel, Ulrike and Hofmann, Heike
(2013), Maonton, Jonathan (2004), Mardia, KV and Jupp, PE
(2000, ISBN:9780471953333), Rancourt, D. and Rivest, L.P. and
Asselin, J. (2000), Chang, Ted and Rivest, Louis-Paul (2001),
Fisher, Nicholas I. (1996, ISBN:0521568900).

License MIT + file LICENSE

Depends R (>= 2.10)

Imports ggplot2, gridExtra, Rcpp

Suggests knitr, onion, orientlib, testthat, rmarkdown

LinkingTo Rcpp, RcppArmadillo

URL https://github.com/stanfill/rotationsC

BugReports https://github.com/stanfill/rotationsC/issues

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

1

https://github.com/stanfill/rotationsC
https://github.com/stanfill/rotationsC/issues

2 Contents

VignetteBuilder knitr

Collate 'Q4-class.R' 'RcppExports.R' 'preliminary.R' 'SO3-class.R'
'bayes.R' 'data.R' 'distributions.R' 'estimators.R'
'grid-search.R' 'help.R' 'kappa.R' 'plot.R' 'primitives.R'
'regions.R' 'robust.R' 'rotations-package.R' 'zzz.R'

NeedsCompilation yes

Author Bryan Stanfill [aut, cre], Heike Hofmann [aut], Ulrike Genschel
[aut], Aymeric Stamm [ctb]
(<https://orcid.org/0000-0002-8725-3654>), Luciano Selzer [ctb]

Maintainer Bryan Stanfill <bstanfill2003@gmail.com>

Repository CRAN

Date/Publication 2023-12-08 00:10:02 UTC

Contents
Angular-distributions . 3
Arithmetic . 3
bayes.mean . 5
bayesCR . 6
Cayley . 8
cayley.kappa . 9
center . 10
chang . 11
discord . 12
drill . 13
Fisher . 14
fisher.kappa . 16
fisheretal . 17
genR . 18
gradient.search . 19
Haar . 20
head . 21
log.SO3 . 24
Maxwell . 25
maxwell.kappa . 26
MCMCSO3 . 27
mean . 28
median . 30
mis.angle . 31
mis.axis . 33
Mises . 34
nickel . 35
plot . 37
pointsXYZ . 39
prentice . 40
project.SO3 . 41

https://orcid.org/0000-0002-8725-3654

Angular-distributions 3

Q4 . 42
region . 44
rot.dist . 45
rotations . 46
rotdist.sum . 46
skew.exp . 48
SO3 . 48
tail . 50
UARS . 53
vmises.kappa . 54
weighted.mean . 55
zhang . 57

Index 59

Angular-distributions Angular distributions

Description

Density, distribution function and random variate generation for symmetric probability distributions
in the rotations package.

Details

The functions for the density function and random variate generation are named in the usual form
dxxxx, pxxxx and rxxxx, respectively.

• See Cayley for the Cayley distribution.

• See Fisher for the matrix Fisher distribution.

• See Haar for the uniform distribution on the circle.

• See Maxwell for the Maxwell-Boltzmann distribution on the circle.

• See Mises for the von Mises-Fisher distribution.

Arithmetic Arithmetic operators on SO(3)

Description

These binary operators perform arithmetic on rotations in quaternion or rotation matrix form (or
objects which can be coerced into them).

4 Arithmetic

Usage

S3 method for class 'SO3'
x + y

S3 method for class 'SO3'
x - y = NULL

S3 method for class 'Q4'
x + y

S3 method for class 'Q4'
x - y = NULL

Arguments

x first argument

y second argument (optional for subtraction)

Details

The rotation group SO(3) is a multiplicative group so “adding" rotations R1 and R2 results in
R1 + R2 = R2R1. Similarly, the difference between rotations R1 and R2 is R1 − R2 = R⊤

2 R1.
With this definition it is clear that R1+R2−R2 = R⊤

2 R2R1 = R1. If only one rotation is provided
to subtraction then the inverse (transpose) it returned, e.g. −R2 = R⊤

2 .

Value

+ the result of rotating the identity frame through x then y

- the difference of the rotations, or the inverse rotation of only one argument is
provided

Examples

U <- c(1, 0, 0) #Rotate about the x-axis
R1 <- as.SO3(U, pi/8) #Rotate pi/8 radians about the x-axis
R2 <- R1 + R1 #Rotate pi/8 radians about the x-axis twice
mis.axis(R2) #x-axis: (1,0,0)
mis.angle(R2) #pi/8 + pi/8 = pi/4

R3 <- R1 - R1 #Rotate pi/8 radians about x-axis then back again
R3 #Identity matrix

R4 <- -R1 #Rotate in the opposite direction through pi/8
R5 <- as.SO3(U, -pi/8) #Equivalent to R4

M1 <- matrix(R1, 3, 3) #If element-wise addition is requred,
M2 <- matrix(R2, 3, 3) #translate them to matrices then treat as usual
M3 <- M1 + M2

M1 %*% M1 #Equivalent to R2

bayes.mean 5

t(M1) %*% M1 #Equivalent to R3
t(M1) #Equivalent to R4 and R5

#The same can be done with quaternions: the identity rotation is (1, 0, 0, 0)
#and the inverse rotation of Q=(a, b, c, d) is -Q=(a, -b, -c, -d)

Q1 <- as.Q4(R1)
Q2 <- Q1 + Q1
mis.axis(Q2)
mis.angle(Q2)

Q1 - Q1 #id.Q4 = (1, 0, 0, 0)

bayes.mean Parameter estimates based on non-informative Bayes

Description

Use non-informative Bayes to estimate the central orientation and concentration parameter of a
sample of rotations.

Usage

bayes.mean(x, type, S0, kappa0, tuneS, tuneK, burn_in, m = 5000)

S3 method for class 'SO3'
bayes.mean(x, type, S0, kappa0, tuneS, tuneK, burn_in, m = 5000)

S3 method for class 'Q4'
bayes.mean(x, type, S0, kappa0, tuneS, tuneK, burn_in, m = 5000)

Arguments

x n×p matrix where each row corresponds to a random rotation in matrix (p = 9)
or quaternion (p = 4) form.

type Angular distribution assumed on R. Options are Cayley, Fisher or Mises

S0 initial estimate of central orientation

kappa0 initial estimate of concentration parameter

tuneS central orientation tuning parameter, concentration of proposal distribution

tuneK concentration tuning parameter, standard deviation of proposal distribution

burn_in number of draws to use as burn-in

m number of draws to keep from posterior distribution

6 bayesCR

Details

The procedures detailed in bingham2009b and bingham2010 are implemented to obtain draws from
the posterior distribution for the central orientation and concentration parameters for a sample of
3D rotations. A uniform prior on SO(3) is used for the central orientation and the Jeffreys prior
determined by type is used for the concentration parameter.

bingham2009b bingham2010

Value

list of

• Shat Mode of the posterior distribution for the central orientation S

• kappa Mean of the posterior distribution for the concentration kappa

See Also

mean.SO3, median.SO3

Examples

Rs <- ruars(20, rvmises, kappa = 10)

Shat <- mean(Rs) #Estimate the central orientation using the projected mean
rotdist.sum(Rs, Shat, p = 2) #The projected mean minimizes the sum of squared Euclidean
rot.dist(Shat) #distances, compute the minimized sum and estimator bias

#Estimate the central orientation using the posterior mode (not run due to time constraints)
#Compare it to the projected mean in terms of the squared Euclidean distance and bias

ests <- bayes.mean(Rs, type = "Mises", S0 = mean(Rs), kappa0 = 10, tuneS = 5000,
tuneK = 1, burn_in = 1000, m = 5000)

Shat2 <- ests$Shat #The posterior mode is the 'Shat' object
rotdist.sum(Rs, Shat2, p = 2) #Compute sum of squared Euclidean distances
rot.dist(Shat2) #Bayes estimator bias

bayesCR Bayes credible regions

Description

Find the radius of a 100(1 − α)% credible region for the central orientation and concentration
parameter using non-informative Bayesian methods.

bayesCR 7

Usage

bayesCR(x, type, S0, kappa0, tuneS, tuneK, burn_in, m = 5000, alp = 0.1)

S3 method for class 'SO3'
bayesCR(x, type, S0, kappa0, tuneS, tuneK, burn_in, m = 5000, alp = 0.1)

S3 method for class 'Q4'
bayesCR(x, type, S0, kappa0, tuneS, tuneK, burn_in, m = 5000, alp = 0.1)

Arguments

x n×p matrix where each row corresponds to a random rotation in matrix (p = 9)
or quaternion (p = 4) form.

type Angular distribution assumed on R. Options are Cayley, Fisher or Mises

S0 initial estimate of central orientation

kappa0 initial estimate of concentration parameter

tuneS central orientation tuning parameter, concentration of proposal distribution

tuneK concentration tuning parameter, standard deviation of proposal distribution

burn_in number of draws to use as burn-in

m number of draws to keep from posterior distribution

alp alpha level desired, e.g. 0.05 or 0.10.

Details

Compute the radius of a 100(1− α)% credible region for the central orientation and concentration
parameter as described in bingham2009b and bingham2010. The posterior mode is returned along
with the radius of the credible region centered at the posterior mode.

bingham2009b bingham2010

Value

list of

• Shat,Qhat Mode of the posterior distribution for the central orientation S

• Radius Radius of the credible region centered at the posterior mode

See Also

fisheretal, prentice, chang, zhang

Examples

#Not run due to time constraints

Rs <- ruars(20, rvmises, kappa = 10)

#Compare the region size of the moment based theory mean estimator to the

8 Cayley

#Bayes region.

region(Rs, method = "direct", type = "theory", estimator = "mean", alp=0.1, m = 100)
bayesCR <- region(Rs, type = "Mises", method = "Bayes", estimator = "mean", S0 = mean(Rs),

kappa0 = 10, tuneS = 5000, tuneK = 1, burn_in = 1000, alp = .01, m = 5000)

bayesCR$Radius #Region size is give by "Radius"
bayesCR$Shat #The Bayes region is centered around the posterior mode: "Shat"

Cayley The symmetric Cayley distribution

Description

Density, distribution function and random generation for the Cayley distribution with concentration
kappa κ.

Usage

dcayley(r, kappa = 1, nu = NULL, Haar = TRUE)

pcayley(q, kappa = 1, nu = NULL, lower.tail = TRUE)

rcayley(n, kappa = 1, nu = NULL)

Arguments

r, q vector of quantiles.

kappa concentration parameter.

nu circular variance, can be used in place of kappa.

Haar logical; if TRUE density is evaluated with respect to the Haar measure.

lower.tail logical; if TRUE (default) probabilities are P (X ≤ x) otherwise, P (X > x).

n number of observations. If length(n)>1, the length is taken to be the number
required.

Details

The symmetric Cayley distribution with concentration κ has density

CC(r|κ) =
1√
π

Γ(κ+ 2)

Γ(κ+ 1/2)
2−(κ+1)(1 + cos r)κ(1− cos r).

The Cayley distribution is equivalent to the de la Vallee Poussin distribution of Schaeben1997.

Schaeben1997 leon2006

cayley.kappa 9

Value

dcayley gives the density
pcayley gives the distribution function
rcayley generates a vector of random deviates

See Also

Angular-distributions for other distributions in the rotations package.

Examples

r <- seq(-pi, pi, length = 500)

#Visualize the Cayley density fucntion with respect to the Haar measure
plot(r, dcayley(r, kappa = 10), type = "l", ylab = "f(r)")

#Visualize the Cayley density fucntion with respect to the Lebesgue measure
plot(r, dcayley(r, kappa = 10, Haar = FALSE), type = "l", ylab = "f(r)")

#Plot the Cayley CDF
plot(r,pcayley(r,kappa = 10), type = "l", ylab = "F(r)")

#Generate random observations from Cayley distribution
rs <- rcayley(20, kappa = 1)
hist(rs, breaks = 10)

cayley.kappa Circular variance and concentration parameter

Description

Return the concentration parameter that corresponds to a given circular variance.

Usage

cayley.kappa(nu)

Arguments

nu circular variance

Details

The concentration parameter κ does not translate across circular distributions. A commonly used
measure of spread in circular distributions that does translate is the circular variance defined as
ν = 1−E[cos(r)] where E[cos(r)] is the mean resultant length. See mardia2000 for more details.
This function translates the circular variance ν into the corresponding concentration parameter κ
for the Cayley distribution.

mardia2000

10 center

Value

Concentration parameter corresponding to nu.

See Also

Cayley

Examples

Find the concentration parameter for circular variances 0.25, 0.5, 0.75
cayley.kappa(0.25)
cayley.kappa(0.5)
cayley.kappa(0.75)

center Center rotation data

Description

This function will take the sample Rs and return the sample Rs centered at S. That is, the ith
observation of Rs denoted Ri is returned as S⊤Ri. If S is the true center then the projected mean
should be close to the 3-by-3 identity matrix.

Usage

center(x, S)

S3 method for class 'SO3'
center(x, S)

S3 method for class 'Q4'
center(x, S)

Arguments

x n×p matrix where each row corresponds to a random rotation in matrix (p = 9)
or quaternion (p = 4) form.

S the rotation or a matrix of n× p rotations about which to center each row of x.

Value

The sample centered about S

chang 11

Examples

Rs <- ruars(5, rcayley)
cRs <- center(Rs, mean(Rs))
mean(cRs) #Close to identity matrix

all.equal(cRs, Rs - mean(Rs)) #TRUE, center and '-' have the same effect
#See ?"-.SO3" for more details

center(Rs,Rs) #n-Identity matrices: If the second argument is of the same dimension
#as Rs then each row is centered around the corresponding
#row in the first argument

chang M-estimator asymptotic confidence region

Description

Compute the radius of a 100(1 − α)% confidence region for the central orientation based on M-
estimation theory.

Usage

chang(x, estimator, alp = NULL)

S3 method for class 'SO3'
chang(x, estimator, alp = NULL)

S3 method for class 'Q4'
chang(x, estimator, alp = NULL)

Arguments

x n×p matrix where each row corresponds to a random rotation in matrix (p = 9)
or quaternion (p = 4) form.

estimator character string either "mean" or "median."

alp alpha level desired, e.g. 0.05 or 0.10.

Details

Compute the radius of a 100(1 − α)% confidence region for the central orientation centered at
the projected mean or median based on a result due to chang2001 among others. By construction
each axis will have the same radius so the radius reported is for all three axes. This method is
called "direct" because it uses M-estimation theory for SO(3) directly instead of relying on the
transformation of a result from directional statistics like prentice and fisheretal do.

chang2001

12 discord

Value

Radius of the confidence region centered at the specified estimator.

See Also

bayesCR, prentice, fisheretal, zhang

Examples

Rs <- ruars(20, rcayley, kappa = 100)

The chang method can be accesed from the "region" function or the "chang" function
region(Rs, method = "direct", type = "asymptotic", alp = 0.1, estimator = "mean")
chang(Rs, estimator = "mean", alp = 0.1)

discord Measure of Discord

Description

This function computes a measure of discord for a sample of random rotations. The larger the statis-
tic value the less likely it is the corresponding observation was generated by the same mechanism
the rest of the data as generated by. It can be used to test for outliers in SO(3) by comparing it to an
F distribution with 3,3(n-2) df for the Cayley or matrix Fisher distributions or to an F distribution
with 1,n-2 df for the von Mises Fisher distribution.

Usage

discord(x, type, t = 1L, obs = 1:nrow(x))

Arguments

x The sample of random rotations

type To specify if "intrinsic" or "extrinsic" approach should be used to compute the
statistic

t If test blocs then the bloc size, set to 1 by default

obs integer vector specifying which observation(s) to compute the measure of dis-
cord for

Value

The Hi statistic for each group of size t is returned. If t>1 then which observations that define each
group of size t is returned as well.

drill 13

Examples

#Compute the measures of discord for a sample from the Cayley distribution
Intrinsic examples are commented out but are below if you're interested

Rss <- ruars(20,rcayley,kappa=1)
Hi <- discord(Rss, type='intrinsic')
He <- discord(Rss, type='extrinsic')

#Compare to the theoretical F distribution
OrdHi <- sort(Hi)
OrdHe <- sort(He)

par(mfrow=c(1,2))
plot(ecdf(OrdHi),main='Intrinsic',xlim=range(c(OrdHi,OrdHe)))
lines(OrdHi,pf(OrdHi,3,3*(length(OrdHi)-2)))

plot(ecdf(OrdHe),main='Extrinsic',xlim=range(c(OrdHi,OrdHe)))
lines(OrdHi,pf(OrdHi,3,3*(length(OrdHe)-2)))
layout(1)

drill Drill data set

Description

The drill data set was collected to assess variation in human movement while performing a task
(Rancourt, 1995). Eight subjects drilled into a metal plate while being monitored by infared cam-
eras. Quaternions are used to represent the orientation of each subjects’ wrist, elbow and shoulder
in one of six positions. For some subjects several replicates are available. See Rancourt et al. (2000)
for one approach to analyzing these data.

Usage

drill

Format

A data frame with 720 observations on the following 8 variables:

Subject Subject number (1-8)

Joint Joint name (Wrist, elbow, shoulder)

Position Drilling position (1-6)

Replicate Replicate number (1-5)

Q1 First element of orientation (quaternion)

Q2 Second element of orientation (quaternion)

Q3 Third element of orientation (quaternion)

Q4 Fourth element of orientation (quaternion)

14 Fisher

Source

https://www.fsg.ulaval.ca/departements/professeurs/louis-paul-rivest-98

References

1. Rancourt, D. (1995). "Arm posture and hand mechanical impedance in the control of a hand-
held power drill." Ph.D. Thesis, MIT.

2. Rancourt, D., Rivest, L. & Asselin, J. (2000). "Using orientation statistics to investigate varia-
tions in human kinematics." Journal of the Royal Statistical Society: Series C (Applied Statis-
tics), 49(1), pp. 81-94.

Examples

Estimate central orientation of the first subject's wrist
Subject1Wrist <- subset(drill, Subject == 1 & Joint == "Wrist")
Qs <- as.Q4(Subject1Wrist[, 5:8])
mean(Qs)

Plot Subject 1's wrist measurements using the connection to rotation matrices
plot(Qs, col = c(1, 2, 3))

Translate the quaternion measurements into rotations and
estimate the central orientation in terms of rotations
Rs <- as.SO3(Qs)
mean(Rs)

Fisher The matrix-Fisher distribution

Description

Density, distribution function and random generation for the matrix-Fisher distribution with con-
centration kappa κ.

Usage

dfisher(r, kappa = 1, nu = NULL, Haar = TRUE)

pfisher(q, kappa = 1, nu = NULL, lower.tail = TRUE)

rfisher(n, kappa = 1, nu = NULL)

https://www.fsg.ulaval.ca/departements/professeurs/louis-paul-rivest-98

Fisher 15

Arguments

r, q vector of quantiles.
kappa concentration parameter.
nu circular variance, can be used in place of kappa.
Haar logical; if TRUE density is evaluated with respect to the Haar measure.
lower.tail logical; if TRUE (default), probabilities are P (X ≤ x) otherwise, P (X > x).
n number of observations. If length(n)>1, the length is taken to be the number

required.

Details

The matrix-Fisher distribution with concentration κ has density

CF(r|κ) =
1

2π[I0(2κ)− I1(2κ)]
e2κ cos(r)[1− cos(r)]

with respect to Lebesgue measure where Ip(·) denotes the Bessel function of order p defined as
Ip(κ) = 1

2π

∫ π

−π
cos(pr)eκ cos rdr. If kappa>354 then random deviates are generated from the

Cayley distribution because they agree closely for large kappa and generation is more stable from
the Cayley distribution.

For large κ, the Bessel functon gives errors so a large κ approximation to the matrix-Fisher distri-
bution is used instead, which is the Maxwell-Boltzmann density.

Value

dfisher gives the density
pfisher gives the distribution function
rfisher generates random deviates

See Also

Angular-distributions for other distributions in the rotations package.

Examples

r <- seq(-pi, pi, length = 500)

#Visualize the matrix Fisher density fucntion with respect to the Haar measure
plot(r, dfisher(r, kappa = 10), type = "l", ylab = "f(r)")

#Visualize the matrix Fisher density fucntion with respect to the Lebesgue measure
plot(r, dfisher(r, kappa = 10, Haar = FALSE), type = "l", ylab = "f(r)")

#Plot the matrix Fisher CDF
plot(r,pfisher(r,kappa = 10), type = "l", ylab = "F(r)")

#Generate random observations from matrix Fisher distribution
rs <- rfisher(20, kappa = 1)
hist(rs, breaks = 10)

16 fisher.kappa

fisher.kappa Circular variance and concentration parameter

Description

Return the concentration parameter that corresponds to a given circular variance.

Usage

fisher.kappa(nu)

Arguments

nu circular variance

Details

The concentration parameter κ does not translate across circular distributions. A commonly used
measure of spread in circular distributions that does translate is the circular variance defined as
ν = 1−E[cos(r)] where E[cos(r)] is the mean resultant length. See mardia2000 for more details.
This function translates the circular variance ν into the corresponding concentration parameter κ
for the matrix-Fisher distribution. For numerical stability, a maximum κ of 350 is returned.

mardia2000

Value

Concentration parameter corresponding to nu.

See Also

Fisher

Examples

Find the concentration parameter for circular variances 0.25, 0.5, 0.75
fisher.kappa(0.25)
fisher.kappa(0.5)
fisher.kappa(0.75)

fisheretal 17

fisheretal Transformation based pivotal bootstrap confidence region

Description

Find the radius of a 100(1−α)% confidence region for the central orientation based on transforming
a result from directional statistics.

Usage

fisheretal(x, alp = NULL, boot = TRUE, m = 300, symm = TRUE)

S3 method for class 'Q4'
fisheretal(x, alp = NULL, boot = TRUE, m = 300, symm = TRUE)

S3 method for class 'SO3'
fisheretal(x, alp = NULL, boot = TRUE, m = 300, symm = TRUE)

Arguments

x n×p matrix where each row corresponds to a random rotation in matrix (p = 9)
or quaternion (p = 4) form.

alp alpha level desired, e.g. 0.05 or 0.10.

boot should the bootstrap or normal theory critical value be used.

m number of bootstrap replicates to use to estimate critical value.

symm logical; if TRUE (default), a symmetric region is constructed.

Details

Compute the radius of a 100(1 − α)% confidence region for the central orientation based on the
projected mean estimator using the method for the mean polar axis as proposed in fisher1996. To be
able to reduce their method to a radius requires the additional assumption of rotational symmetry,
equation (10) in fisher1996.

fisher1996

Value

Radius of the confidence region centered at the projected mean.

See Also

bayesCR, prentice, chang, zhang

18 genR

Examples

Qs<-ruars(20, rcayley, kappa = 100, space = 'Q4')

The Fisher et al. method can be accesed from the "region" function or the "fisheretal" function
region(Qs, method = "transformation", type = "bootstrap", alp = 0.1,
symm = TRUE, estimator = "mean")
fisheretal(Qs, alp = 0.1, boot = TRUE, symm = TRUE)

genR Generate rotations

Description

Generate rotations in matrix format using Rodrigues’ formula or quaternions.

Usage

genR(r, S = NULL, space = "SO3")

Arguments

r vector of angles.

S central orientation.

space indicates the desired representation: rotation matrix "SO3" or quaternions "Q4."

Details

Given a vector U = (u1, u2, u3)
⊤ ∈ R3 of length one and angle of rotation r, a 3 × 3 rotation

matrix is formed using Rodrigues’ formula

cos(r)I3×3 + sin(r)Φ(U) + (1− cos(r))UU⊤

where I3×3 is the 3×3 identity matrix, Φ(U) is a 3×3 skew-symmetric matrix with upper triangular
elements −u3, u2 and −u1 in that order.

For the same vector and angle a quaternion is formed according to

q = [cos(θ/2), sin(θ/2)U]⊤.

Value

A n× p matrix where each row is a random rotation matrix (p = 9) or quaternion (p = 4).

Examples

r <- rvmises(20, kappa = 0.01)
Rs <- genR(r, space = "SO3")
Qs <- genR(r, space = "Q4")

gradient.search 19

gradient.search Gradient optimization for rotation data

Description

Gradient based optimization for user defined central orientation of a rotation sample.

Usage

gradient.search(
sample,
error,
minerr = 1e-05,
start = mean(sample),
theta = NULL

)

Arguments

sample sample of rotations.

error user defined function to observed distance between sample and estimate, has to
have parameters for the sample and the estimate.

minerr minimal distance to consider for convergence.

start starting value for the estimation.

theta size of the grid considered.

Value

list of

• Shat estimate of the main direction

• iter number of iterations necessary for convergence

• theta final size of the grid

• minerr error used for convergence

• error numeric value of total sample’s distance from main direction

Examples

minimize L1 norm:
L1.error <- function(sample, Shat) {

sum(rot.dist(sample, Shat, method = "intrinsic", p = 1))
}

cayley.sample <- ruars(n = 10, rangle = rcayley, nu = 1, space = 'SO3')
SL1 <- gradient.search(cayley.sample, L1.error, start = id.SO3)

20 Haar

visually no perceptible difference between median estimates from in-built function and
gradient based search (for almost all starting values)

plot(cayley.sample, center=SL1$Shat, show_estimates="all")

Haar Uniform distribution

Description

Density, distribution function and random generation for the uniform distribution.

Usage

dhaar(r)

phaar(q, lower.tail = TRUE)

rhaar(n)

Arguments

r, q vector of quantiles.
lower.tail logical; if TRUE (default), probabilities are P (X ≤ x) otherwise, P (X > x).
n number of observations. If length(n)>1, the length is taken to be the number

required.

Details

The uniform distribution has density

CU (r) =
[1− cos(r)]

2π

with respect to the Lebesgue measure. The Haar measure is the volume invariant measure for
SO(3) that plays the role of the uniform measure on SO(3) and CU (r) is the angular distribution
that corresponds to the uniform distribution on SO(3), see UARS. The uniform distribution with
respect to the Haar measure is given by

CU (r) =
1

2π
.

Because the uniform distribution with respect to the Haar measure gives a horizontal line at 1 with
respect to the Lebesgue measure, we called this distribution ’Haar.’

Value

dhaar gives the density
phaar gives the distribution function
rhaar generates random deviates

head 21

See Also

Angular-distributions for other distributions in the rotations package.

Examples

r <- seq(-pi, pi, length = 1000)

#Visualize the uniform distribution with respect to Lebesgue measure
plot(r, dhaar(r), type = "l", ylab = "f(r)")

#Visualize the uniform distribution with respect to Haar measure, which is
#a horizontal line at 1
plot(r, 2*pi*dhaar(r)/(1-cos(r)), type = "l", ylab = "f(r)")

#Plot the uniform CDF
plot(r,phaar(r), type = "l", ylab = "F(r)")

#Generate random observations from uniform distribution
rs <- rhaar(50)

#Visualize on the real line
hist(rs, breaks = 10)

head Return the First or Last Parts of an Object

Description

Returns the first or last parts of a vector, matrix, table, data frame or function. Since head() and
tail() are generic functions, they may also have been extended to other classes.

Usage

S3 method for class 'SO3'
head(x, n = 6L, ...)

S3 method for class 'Q4'
head(x, n = 6L, ...)

Arguments

x an object

n an integer vector of length up to dim(x) (or 1, for non-dimensioned objects). A
logical is silently coerced to integer. Values specify the indices to be selected
in the corresponding dimension (or along the length) of the object. A positive
value of n[i] includes the first/last n[i] indices in that dimension, while a neg-
ative value excludes the last/first abs(n[i]), including all remaining indices. NA

22 head

or non-specified values (when length(n) < length(dim(x))) select all indices
in that dimension. Must contain at least one non-missing value.

... arguments to be passed to or from other methods.

Details

For vector/array based objects, head() (tail()) returns a subset of the same dimensionality as x,
usually of the same class. For historical reasons, by default they select the first (last) 6 indices in
the first dimension ("rows") or along the length of a non-dimensioned vector, and the full extent (all
indices) in any remaining dimensions. head.matrix() and tail.matrix() are exported.

The default and array(/matrix) methods for head() and tail() are quite general. They will work
as is for any class which has a dim() method, a length() method (only required if dim() returns
NULL), and a [method (that accepts the drop argument and can subset in all dimensions in the
dimensioned case).

For functions, the lines of the deparsed function are returned as character strings.

When x is an array(/matrix) of dimensionality two and more, tail() will add dimnames similar
to how they would appear in a full printing of x for all dimensions k where n[k] is specified and
non-missing and dimnames(x)[[k]] (or dimnames(x) itself) is NULL. Specifically, the form of the
added dimnames will vary for different dimensions as follows:

k=1 (rows): "[n,]" (right justified with whitespace padding)

k=2 (columns): "[,n]" (with no whitespace padding)

k>2 (higher dims): "n", i.e., the indices as character values

Setting keepnums = FALSE suppresses this behaviour.

As data.frame subsetting (‘indexing’) keeps attributes, so do the head() and tail() methods
for data frames.

Value

An object (usually) like x but generally smaller. Hence, for arrays, the result corresponds to x[..,
drop=FALSE]. For ftable objects x, a transformed format(x).

Note

For array inputs the output of tail when keepnums is TRUE, any dimnames vectors added for dimen-
sions >2 are the original numeric indices in that dimension as character vectors. This means that,
e.g., for 3-dimensional array arr, tail(arr, c(2,2,-1))[, , 2] and tail(arr, c(2,2,-1))[,
, "2"] may both be valid but have completely different meanings.

Author(s)

Patrick Burns, improved and corrected by R-Core. Negative argument added by Vincent Goulet.
Multi-dimension support added by Gabriel Becker.

head 23

Examples

head(letters)
head(letters, n = -6L)

head(freeny.x, n = 10L)
head(freeny.y)

head(iris3)
head(iris3, c(6L, 2L))
head(iris3, c(6L, -1L, 2L))

tail(letters)
tail(letters, n = -6L)

tail(freeny.x)
the bottom-right "corner" :
tail(freeny.x, n = c(4, 2))
tail(freeny.y)

tail(iris3)
tail(iris3, c(6L, 2L))
tail(iris3, c(6L, -1L, 2L))

iris with dimnames stripped
a3d <- iris3 ; dimnames(a3d) <- NULL
tail(a3d, c(6, -1, 2)) # keepnums = TRUE is default here!
tail(a3d, c(6, -1, 2), keepnums = FALSE)

data frame w/ a (non-standard) attribute:
treeS <- structure(trees, foo = "bar")
(n <- nrow(treeS))
stopifnot(exprs = { # attribute is kept

identical(htS <- head(treeS), treeS[1:6,])
identical(attr(htS, "foo") , "bar")
identical(tlS <- tail(treeS), treeS[(n-5):n,])
BUT if I use "useAttrib(.)", this is *not* ok, when n is of length 2:
--- because [i,j]-indexing of data frames *also* drops "other" attributes ..
identical(tail(treeS, 3:2), treeS[(n-2):n, 2:3])

})

tail(library) # last lines of function

head(stats::ftable(Titanic))

1d-array (with named dim) :
a1 <- array(1:7, 7); names(dim(a1)) <- "O2"
stopifnot(exprs = {

identical(tail(a1, 10), a1)
identical(head(a1, 10), a1)
identical(head(a1, 1), a1 [1 , drop=FALSE]) # was a1[1] in R <= 3.6.x
identical(tail(a1, 2), a1[6:7])
identical(tail(a1, 1), a1 [7 , drop=FALSE]) # was a1[7] in R <= 3.6.x

24 log.SO3

})

log.SO3 Rotation logarithm

Description

Compute the logarithm of a rotation matrix, which results in a 3× 3 skew-symmetric matrix. This
function maps the lie group SO(3) into its tangent space, which is the space of all 3 × 3 skew
symmetric matrices, the lie algebra so(3). For details see e.g. moakher02.

Usage

S3 method for class 'SO3'
log(x, ...)

Arguments

x n× 9 matrix where each row corresponds to a random rotation matrix.

... additional arguments.

Details

moakher02

Value

Skew symmetric matrix log(R).

Examples

Rs <- ruars(20, rcayley)

#Here we demonstrate how the logarithm can be used to determine the angle and
#axis corresponding to the provided sample

lRs <- log(Rs) #Take the logarithm of the sample
Ws <- lRs[,c(6, 7, 2)] #The appropriate diagonal entries are the axis*angle
lens <- sqrt(rowSums(Ws^2))
axes <- mis.axis(Rs)
angs <- mis.angle(Rs)
all.equal(axes, Ws/lens)
all.equal(angs, lens)

Maxwell 25

Maxwell The modified Maxwell-Boltzmann distribution

Description

Density, distribution function and random generation for the Maxwell-Boltzmann distribution with
concentration kappa κ restricted to the range [−π, π).

Usage

dmaxwell(r, kappa = 1, nu = NULL, Haar = TRUE)

pmaxwell(q, kappa = 1, nu = NULL, lower.tail = TRUE)

rmaxwell(n, kappa = 1, nu = NULL)

Arguments

r, q vector of quantiles.

kappa concentration parameter.

nu circular variance, can be used in place of kappa.

Haar logical; if TRUE density is evaluated with respect to the Haar measure.

lower.tail logical; if TRUE (default) probabilities are P (X ≤ x) otherwise, P (X > x).

n number of observations. If length(n)>1, the length is taken to be the number
required.

Details

The Maxwell-Boltzmann distribution with concentration κ has density

CM(r|κ) = 2κ

√
κ

π
r2e−κr2

with respect to Lebesgue measure. The usual expression for the Maxwell-Boltzmann distribution
can be recovered by setting a = (2κ)0.5.

bingham2010

Value

dmaxwell gives the density

pmaxwell gives the distribution function

rmaxwell generates a vector of random deviates

See Also

Angular-distributions for other distributions in the rotations package.

26 maxwell.kappa

Examples

r <- seq(-pi, pi, length = 500)

#Visualize the Maxwell-Boltzmann density fucntion with respect to the Haar measure
plot(r, dmaxwell(r, kappa = 10), type = "l", ylab = "f(r)")

#Visualize the Maxwell-Boltzmann density fucntion with respect to the Lebesgue measure
plot(r, dmaxwell(r, kappa = 10, Haar = FALSE), type = "l", ylab = "f(r)")

#Plot the Maxwell-Boltzmann CDF
plot(r,pmaxwell(r,kappa = 10), type = "l", ylab = "F(r)")

#Generate random observations from Maxwell-Boltzmann distribution
rs <- rmaxwell(20, kappa = 1)
hist(rs, breaks = 10)

maxwell.kappa Circular variance and concentration parameter

Description

Return the concentration parameter that corresponds to a given circular variance.

Usage

maxwell.kappa(nu)

Arguments

nu circular variance

Details

The concentration parameter κ does not translate across circular distributions. A commonly used
measure of spread in circular distributions that does translate is the circular variance defined as
ν = 1−E[cos(r)] where E[cos(r)] is the mean resultant length. See mardia2000 for more details.
This function translates the circular variance ν into the corresponding concentration parameter κ
for the modified Maxwell-Boltzmann distribution. For numerical stability, a maximum κ of 1000 is
returned.

Value

Concentration parameter corresponding to nu.

See Also

Maxwell

MCMCSO3 27

Examples

Find the concentration parameter for circular variances 0.25, 0.5, 0.75
maxwell.kappa(0.25)
maxwell.kappa(0.5)
maxwell.kappa(0.75)

MCMCSO3 MCMC for rotation data

Description

Use non-informative Bayesian methods to infer about the central orientation and concentration
parameter for a sample of rotations.

Usage

MCMCSO3(x, type, S0, kappa0, tuneS, tuneK, burn_in, m = 5000)

S3 method for class 'SO3'
MCMCSO3(x, type, S0, kappa0, tuneS, tuneK, burn_in, m = 5000)

S3 method for class 'Q4'
MCMCSO3(x, type, S0, kappa0, tuneS, tuneK, burn_in, m = 5000)

Arguments

x n×p matrix where each row corresponds to a random rotation in matrix (p = 9)
or quaternion (p = 4) form.

type Angular distribution assumed on R. Options are Cayley, Fisher or Mises

S0 initial estimate of central orientation

kappa0 initial estimate of concentration parameter

tuneS central orientation tuning parameter, concentration of proposal distribution

tuneK concentration tuning parameter, standard deviation of proposal distribution

burn_in number of draws to use as burn-in

m number of draws to keep from posterior distribution

Details

The procedures detailed in bingham2009b and bingham2010 are implemented to obtain draws from
the posterior distribution for the central orientation and concentration parameters for a sample of
3D rotations. A uniform prior on SO(3) is used for the central orientation and the Jeffreys prior
determined by type is used for the concentration parameter.

bingham2009b bingham2010

28 mean

Value

list of

• S Draws from the posterior distribution for central orientation S

• kappa Draws from the posterior distribution for concentration parameter kappa

• Saccept Acceptance rate for central orientation draws

• Kaccept Acceptance rate for concentration draws

Examples

#Not run due to time constraints

Rs <- ruars(20, rfisher, kappa = 10)
draws <- MCMCSO3(Rs, type = "Fisher", S0 = mean(Rs), kappa0 = 10, tuneS = 5000,

tuneK = 1,burn_in = 1000, m = 5000)

mean Mean rotation

Description

Compute the sample geometric or projected mean.

Usage

S3 method for class 'SO3'
mean(x, type = "projected", epsilon = 1e-05, maxIter = 2000, ...)

S3 method for class 'Q4'
mean(x, type = "projected", epsilon = 1e-05, maxIter = 2000, ...)

Arguments

x n × p matrix where each row corresponds to a random rotation in matrix form
(p = 9) or quaternion (p = 4) form.

type string indicating "projected" or "geometric" type mean estimator.

epsilon stopping rule for the geometric-mean.

maxIter maximum number of iterations allowed for geometric-mean.

... additional arguments.

mean 29

Details

This function takes a sample of 3D rotations (in matrix or quaternion form) and returns the projected
arithmetic mean denoted ŜP or geometric mean ŜG according to the type option. For a sample of
n rotations in matrix form Ri ∈ SO(3), i = 1, 2, . . . , n, the mean-type estimator is defined as

Ŝ = argminS∈SO(3)

n∑
i=1

d2(Ri,S)

where d is the Riemannian or Euclidean distance. For more on the projected mean see moakher02
and for the geometric mean see manton04. For the projected mean from a quaternion point of view
see tyler1981.

tyler1981, moakher02, manton04

Value

Estimate of the projected or geometric mean of the sample in the same parametrization.

See Also

median.SO3, bayes.mean, weighted.mean.SO3

Examples

Rs <- ruars(20, rvmises, kappa = 0.01)

Projected mean
mean(Rs)

Same as mean(Rs)
project.SO3(colMeans(Rs))

Geometric mean
mean(Rs, type = "geometric")

Bias of the projected mean
rot.dist(mean(Rs))

Bias of the geometric mean
rot.dist(mean(Rs, type = "geometric"))

Same thing with quaternion form
Qs <- as.Q4(Rs)
mean(Qs)
mean(Qs, type = "geometric")
rot.dist(mean(Qs))
rot.dist(mean(Qs, type = "geometric"))

30 median

median Median rotation

Description

Compute the sample projected or geometric median.

Usage

S3 method for class 'SO3'
median(
x,
na.rm = FALSE,
type = "projected",
epsilon = 1e-05,
maxIter = 2000,
...

)

S3 method for class 'Q4'
median(
x,
na.rm = FALSE,
type = "projected",
epsilon = 1e-05,
maxIter = 2000,
...

)

Arguments

x n × p matrix where each row corresponds to a random rotation in matrix form
(p = 9) or quaternion (p = 4) form.

na.rm a logical value indicating whether NA values should be stripped before the com-
putation proceeds.

type string indicating "projected" or "geometric" type mean estimator.

epsilon stopping rule.

maxIter maximum number of iterations allowed before returning most recent estimate.

... additional arguments.

Details

The median-type estimators are defined as

S̃ = argminS∈SO(3)

n∑
i=1

d(Ri,S).

mis.angle 31

If the choice of distance metric d is Riemannian then the estimator is called the geometric median,
and if the distance metric in Euclidean then it is called the projected median. The algorithm used in
the geometric case is discussed in hartley11 and the projected case is in stanfill2013.

hartley11 stanfill2013

Value

Estimate of the projected or geometric median in the same parametrization.

See Also

mean.SO3, bayes.mean, weighted.mean.SO3

Examples

Rs <- ruars(20, rvmises, kappa = 0.01)

Projected median
median(Rs)

Geometric median
median(Rs, type = "geometric")

Bias of the projected median
rot.dist(median(Rs))

Bias of the geometric median
rot.dist(median(Rs, type = "geometric"))

Qs <- as.Q4(Rs)

Projected median
median(Qs)

Geometric median
median(Qs, type = "geometric")

Bias of the projected median
rot.dist(median(Qs))

Bias of the geometric median
rot.dist(median(Qs, type = "geometric"))

mis.angle Misorientation angle

Description

Compute the misorientation angle of a rotation.

32 mis.angle

Usage

mis.angle(x)

S3 method for class 'SO3'
mis.angle(x)

S3 method for class 'Q4'
mis.angle(x)

Arguments

x n×p matrix where each row corresponds to a random rotation in matrix (p = 9)
or quaternion (p = 4) form.

Details

Every rotation can be thought of as some reference coordinate system rotated about an axis through
an angle. These quantities are referred to as the misorientation axis and misorientation angle, re-
spectively, in the material sciences literature. This function returns the misorentation angle associ-
ated with a rotation assuming the reference coordinate system is the identity.

Value

Angle of rotation.

See Also

mis.axis

Examples

rs <- rcayley(20, kappa = 20)
Rs <- genR(rs, S = id.SO3)
mis.angle(Rs)

#If the central orientation is id.SO3 then mis.angle(Rs) and abs(rs) are equal
all.equal(mis.angle(Rs), abs(rs)) #TRUE

#For other reference frames, the data must be centered first
S <- genR(pi/2)
RsS <- genR(rs, S = S)
mis.axis(RsS-S)
all.equal(mis.angle(RsS-S),abs(rs)) #TRUE

#If the central orientation is NOT id.SO3 then mis.angle(Rs) and abs(rs) are usual unequal
Rs <- genR(rs, S = genR(pi/8))
all.equal(mis.angle(Rs), abs(rs)) #Mean relative difference > 0

mis.axis 33

mis.axis Misorientation axis

Description

Determine the misorientation axis of a rotation.

Usage

mis.axis(x, ...)

S3 method for class 'SO3'
mis.axis(x, ...)

S3 method for class 'Q4'
mis.axis(x, ...)

Arguments

x n×p matrix where each row corresponds to a random rotation in matrix (p = 9)
or quaternion (p = 4) form.

... additional arguments.

Details

Every rotation can be interpreted as some reference coordinate system rotated about an axis through
an angle. These quantities are referred to as the misorientation axis and misorientation angle, re-
spectively, in the material sciences literature. This function returns the misorentation axis associated
with a rotation assuming the reference coordinate system is the identity. The data must be centered
before calling mis.axis if a different coordinate system is required.

Value

Axis in form of three dimensional vector of length one.

See Also

mis.angle

Examples

rs <- rcayley(20, kappa = 20)

#If the reference frame is set to id.SO3 then no centering is required
Rs <- genR(rs, S = id.SO3)
mis.axis(Rs)
all.equal(Rs, as.SO3(mis.axis(Rs), mis.angle(Rs)))

34 Mises

#For other reference frames, the data must be centered first
S <- genR(pi/2)
RsS <- genR(rs, S = S)
mis.axis(RsS-S)
all.equal(mis.angle(RsS-S),abs(rs)) #TRUE

Qs <- genR(rs, S = id.Q4, space = "Q4")
mis.axis(Qs)
all.equal(Qs, as.Q4(mis.axis(Qs), mis.angle(Qs)))

Mises The circular-von Mises distribution

Description

Density, distribution function and random generation for the circular-von Mises distribution with
concentration kappa κ.

Usage

dvmises(r, kappa = 1, nu = NULL, Haar = TRUE)

pvmises(q, kappa = 1, nu = NULL, lower.tail = TRUE)

rvmises(n, kappa = 1, nu = NULL)

Arguments

r, q vector of quantiles

kappa concentration parameter.

nu circular variance, can be used in place of kappa.

Haar logical; if TRUE density is evaluated with respect to the Haar measure.

lower.tail logical; if TRUE (default), probabilities are P (X ≤ x) otherwise, P (X > x).

n number of observations. If length(n)>1, the length is taken to be the number
required.

Details

The circular von Mises distribution with concentration κ has density

CM(r|κ) = 1

2πI0(κ)
eκcos(r).

where I0(κ) is the modified Bessel function of order 0.

nickel 35

Value

dvmises gives the density

pvmises gives the distribution function

rvmises generates random deviates

See Also

Angular-distributions for other distributions in the rotations package.

Examples

r <- seq(-pi, pi, length = 500)

#Visualize the von Mises density fucntion with respect to the Haar measure
plot(r, dvmises(r, kappa = 10), type = "l", ylab = "f(r)", ylim = c(0, 100))

#Visualize the von Mises density fucntion with respect to the Lebesgue measure
plot(r, dvmises(r, kappa = 10, Haar = FALSE), type = "l", ylab = "f(r)")

#Plot the von Mises CDF
plot(r,pvmises(r,kappa = 10), type = "l", ylab = "F(r)")

#Generate random observations from von Mises distribution
rs <- rvmises(20, kappa = 1)
hist(rs, breaks = 10)

nickel Nickel electron backscatter diffraction data set

Description

This data set consists of electron backscatter diffraction (EBSD) data obtained by scanning a fixed
12.5 µm-by-10 µm nickel surface at individual locations spaced 0.2 µm apart. This scan was re-
peated 14 times for each of the 3,449 locations yielding a total of 48,286 observations. Every
observation corresponds to the orientation, expressed as a rotation matrix, of a cubic crystal on the
metal surface at a particular location. Be aware that there are missing values and erroneous scans
at some locations and scans. See Bingham et al. (2009) and Bingham et al. (2010) for more details
and analysis.

Usage

nickel

36 nickel

Format

A data frame with 48,286 rows and the following 13 columns:

xpos location x position

ypos location y position

location Location number for easy reference

rep Replicate scan identifier

V1 First element of x-axis describing crystal orientation at corresponding location

V2 Second element of x-axis describing crystal orientation at corresponding location

V3 Third element of x-axis describing crystal orientation at corresponding location

V4 First element of y-axis describing crystal orientation at corresponding location

V5 Second element of y-axis describing crystal orientation at corresponding location

V6 Third element of y-axis describing crystal orientation at corresponding location

V7 First element of z-axis describing crystal orientation at corresponding location

V8 Second element of z-axis describing crystal orientation at corresponding location

V9 Third element of z-axis describing crystal orientation at corresponding location

Source

The data set was collected by the Ames Lab located in Ames, IA.

References

1. Bingham, M. A., Nordman, D., & Vardeman, S. (2009). "Modeling and inference for mea-
sured crystal orientations and a tractable class of symmetric distributions for rotations in three
dimensions." Journal of the American Statistical Association, 104(488), pp. 1385-1397.

2. Bingham, M. A., Lograsso, B. K., & Laabs, F. C. (2010). "A statistical analysis of the variation
in measured crystal orientations obtained through electron backscatter diffraction." Ultrami-
croscopy, 110(10), pp. 1312-1319.

3. Stanfill, B., Genschel, U., & Heike, H. (2013). "Point estimation of the central orientation of
random rotations". Technometrics, 55(4), pp. 524-535.

Examples

Subset the data to include only the first scan
Rep1 <- subset(nickel, rep == 1)

Get a rough idea of how the grain map looks by plotting the first
element of the rotation matrix at each location
ggplot2::qplot(xpos, ypos, data = Rep1, colour = V1, size = I(2))

Focus in on a particular location, for example location 698
Rs <- subset(nickel, location == 698)

Translate the Rs data.frame into an object of class 'SO3'
Rs <- as.SO3(Rs[,5:13])

plot 37

Some observations are not rotations, remove them
Rs <- Rs[is.SO3(Rs),]

Estimate the central orientation with the average
mean(Rs)

Re-estimate central orientation robustly
median(Rs)

Visualize the location, there appears to be two groups
plot(Rs, col = c(1, 2, 3))

plot Visualizing random rotations

Description

This function produces a static three-dimensional globe onto which one of the columns of the pro-
vided sample of rotations is projected. The data are centered around a user-specified rotation matrix.
The static plot uses ggplot2. Interactive plots are no longer supported.

Usage

S3 method for class 'SO3'
plot(
x,
center = mean(x),
col = 1,
to_range = FALSE,
show_estimates = NULL,
label_points = NULL,
mean_regions = NULL,
median_regions = NULL,
alp = NULL,
m = 300,
interactive = FALSE,
...

)

S3 method for class 'Q4'
plot(
x,
center = mean(x),
col = 1,
to_range = FALSE,

38 plot

show_estimates = NULL,
label_points = NULL,
mean_regions = NULL,
median_regions = NULL,
alp = NULL,
m = 300,
interactive = FALSE,
...

)

Arguments

x n rotations in SO3 or Q4 format.

center rotation about which to center the observations.

col integer or vector comprised of 1, 2, 3 indicating which column(s) to display. If
length(col)>1 then each eyeball is labelled with the corresponding axis.

to_range logical; if TRUE only part of the globe relevant to the data is displayed

show_estimates character vector to specify which of the four estimates of the principal direc-
tion to show. Possibilities are "all", "proj.mean", "proj.median", "geom.mean",
"geom.median".

label_points vector of labels.

mean_regions character vector to specify which of the three confidence regions to show for
the projected mean. Possibilities are "all", "trans.theory","trans.bootstrap, "di-
rect.theory", "direct.bootstrap".

median_regions character vector to specify which of the three confidence regions to show for the
projected median. Possibilities are "all", "theory", "bootstrap."

alp alpha level to be used for confidence regions. See region for more details.

m number of bootstrap replicates to use in bootstrap confidence regions.

interactive deprecated; sphereplot was set to be removed from CRAN and was going to
take this package down with it

... parameters passed onto the points layer.

Value

A visualization of rotation data.

Examples

r <- rvmises(200, kappa = 1.0)
Rs <- genR(r)
plot(Rs, center = mean(Rs), show_estimates = "proj.mean", shape = 4)

Z is computed internally and contains information on depth
plot(

Rs,

pointsXYZ 39

center = mean(Rs),
show_estimates = c("proj.mean", "geom.mean"),
label_points = sample(LETTERS, 200, replace = TRUE)

) +
ggplot2::aes(size = Z, alpha = Z) +
ggplot2::scale_size(limits = c(-1, 1), range = c(0.5, 2.5))

pointsXYZ Project rotation data onto sphere

Description

Projection of rotation matrices onto sphere with given center.

Usage

pointsXYZ(data, center = id.SO3, column = 1)

Arguments

data data frame of rotation matrices in 3× 3 matrix representation.

center rotation matrix about which to center the observations.

column integer 1 to 3 indicating which column to display.

Value

Data frame with columns X, Y, Z standing for the respective coordinates in 3D space.

Examples

Rs<-ruars(20, rcayley)

#Project the sample's 3 axes onto the 3-shere centered at the identity rotation

pointsXYZ(Rs, center = id.SO3, column = 1) #x-axis
pointsXYZ(Rs, center = id.SO3, column = 2) #y-axis
pointsXYZ(Rs, center = id.SO3, column = 3) #z-axis

40 prentice

prentice Transformation based asymptotic confidence region

Description

Find the radius of a 100(1− α)% confidence region for the projected mean based on a result from
directional statistics.

Usage

prentice(x, alp)

S3 method for class 'Q4'
prentice(x, alp = NULL)

S3 method for class 'SO3'
prentice(x, alp = NULL)

Arguments

x n×p matrix where each row corresponds to a random rotation in matrix (p = 9)
or quaternion (p = 4) form.

alp alpha level desired, e.g. 0.05 or 0.10.

Details

Compute the radius of a 100(1 − α)% confidence region for the central orientation based on the
projected mean estimator using the method due to prentice1986. For a rotation specific version see
rancourt2000. The variability in each axis is different so each axis will have its own radius.

prentice1986, rancourt2000

Value

Radius of the confidence region centered at the projected mean for each of the x-, y- and z-axes.

See Also

bayesCR, fisheretal, chang, zhang

Examples

Qs<-ruars(20, rcayley, kappa = 100, space = 'Q4')

The prentice method can be accessed from the "region" function or the "prentice" function
region(Qs, method = "transformation", type = "asymptotic", alp = 0.1, estimator = "mean")
prentice(Qs, alp = 0.1)

project.SO3 41

project.SO3 Projection into SO(3)

Description

Project an arbitrary 3× 3 matrix into SO(3).

Usage

project.SO3(M)

Arguments

M 3× 3 matrix to project into SO(3).

Details

This function uses the process detailed in Section 3.1 of moakher02 to project an arbitrary 3 × 3
matrix into SO(3). More specifically it finds the closest orthogonal 3-by-3 matrix with determinant
one to the provided matrix.

Value

Projection of M into SO(3).

See Also

mean.SO3, median.SO3

Examples

#Project an arbitrary 3x3 matrix into SO(3)
M<-matrix(rnorm(9), 3, 3)
project.SO3(M)

#Project a sample arithmetic mean into SO(3), same as 'mean'
Rs <- ruars(20, rcayley)
Rbar <- colSums(Rs)/nrow(Rs)
project.SO3(Rbar) #The following is equivalent
mean(Rs)

42 Q4

Q4 ‘Q4‘ class for storing rotation data as quaternions

Description

Creates or tests for objects of class "Q4".

Usage

as.Q4(x, ...)

Default S3 method:
as.Q4(x, theta = NULL, ...)

S3 method for class 'SO3'
as.Q4(x, ...)

S3 method for class 'Q4'
as.Q4(x, ...)

S3 method for class 'data.frame'
as.Q4(x, ...)

is.Q4(x)

id.Q4

Arguments

x object to be coerced or tested

... additional arguments.

theta vector or single rotation angle; if length(theta)==1, the same theta is used for
all axes

Format

id.Q4 is the identity rotation given by the matrix [1, 0, 0, 0]⊤.

An object of class Q4 with 1 rows and 4 columns.

Details

Construct a single or sample of rotations in 3-dimensions in quaternion form. Several possible
inputs for x are possible and they are differentiated based on their class and dimension.

For x an n-by-3 matrix or a vector of length 3, the angle-axis representation of rotations is utilized.
More specifically, each quaternion can be interpreted as a rotation of some reference frame about

Q4 43

the axis U (of unit length) through the angle θ. For each axis and angle the quaternion is formed
through

q = [cos(θ/2), sin(θ/2)U]⊤.

The object x is treated as if it has rows U and theta is a vector or angles. If no angle is supplied
then the length of each axis is taken to be the angle of rotation theta.

For x an n-by-9 matrix of rotation matrices or an object of class "SO3", this function will return the
quaternion equivalent of x. See SO3 or the vignette "rotations-intro" for more details on rotation
matrices.

For x an n-by-4 matrix, rows are treated as quaternions; rows that aren’t of unit length are made
unit length while the rest are returned untouched. A message is printed if any of the rows are not
quaternions.

For x a "data.frame", it is translated into a matrix of the same dimension and the dimensionality of
x is used to determine the data type: angle-axis, quaternion or rotation (see above). As demonstrated
below, is.Q4 may return TRUE for a data frame, but the functions defined for objects of class 'Q4'
will not be called until as.Q4 has been used.

Value

as.Q4 coerces its object into a Q4 type

is.Q4 returns TRUE or FALSE depending on whether its argument satisfies the condi-
tions to be an quaternion; namely it must be four-dimensional and of unit length

Examples

Pull off subject 1's wrist measurements
Subj1Wrist <- subset(drill, Subject == '1' & Joint == 'Wrist')

The measurements are in columns 5:8
all(is.Q4(Subj1Wrist[,5:8])) #TRUE, even though Qs is a data.frame, the rows satisfy the

#conditions necessary to be quaternions BUT,
#S3 methods (e.g. 'mean' or 'plot') for objects of class
#'Q4' will not work until 'as.Q4' is used

Qs <- as.Q4(Subj1Wrist[,5:8]) #Coerce measurements into 'Q4' type using as.Q4.data.frame
all(is.Q4(Qs)) #TRUE
mean(Qs) #Estimate central orientation for subject 1's wrist, see ?mean.Q4
Rs <- as.SO3(Qs) #Coerce a 'Q4' object into rotation matrix format, see ?as.SO3

#Visualize the measurements, see ?plot.Q4 for more

plot(Qs, col = c(1, 2, 3))

44 region

region Confidence and credible regions for the central orientation

Description

Find the radius of a 100(1 − α)% confidence or credible region for the central orientation based
on the projected mean or median. For more on the currently available methods see prentice,
fisheretal, chang, zhang and bayesCR.

Usage

region(x, method, type, estimator, alp = NULL, ...)

S3 method for class 'Q4'
region(x, method, type, estimator, alp = NULL, ...)

S3 method for class 'SO3'
region(x, method, type, estimator, alp = NULL, ...)

Arguments

x n×p matrix where each row corresponds to a random rotation in matrix (p = 9)
or quaternion (p = 4) form.

method character string specifying which type of interval to report, "bayes", "transfor-
mation" or "direct" based theory.

type character string, "bootstrap" or "asymptotic" are available. For Bayes regions,
give the type of likelihood: "Cayley","Mises" or "Fisher."

estimator character string either "mean" or "median." Note that not all method/type com-
binations are available for both estimators.

alp the alpha level desired, e.g. 0.05 or 0.10.

... additional arguments that are method specific.

Value

For frequentist regions only the radius of the confidence region centered at the specified estimator
is returned. For Bayes regions the posterior mode and radius of the credible region centered at that
mode is returned.

See Also

bayesCR, prentice, fisheretal, chang, zhang

rot.dist 45

Examples

Rs <- ruars(20, rvmises, kappa = 10)

Compare the region sizes that are currently available

region(Rs, method = "transformation", type = "asymptotic", estimator = "mean", alp = 0.1)
region(Rs, method = "transformation", type = "bootstrap", estimator = "mean",
alp = 0.1, symm = TRUE)
region(Rs, method = "direct", type = "bootstrap", estimator = "mean", alp = 0.1, m = 100)
region(Rs, method = "direct", type = "asymptotic", estimator = "mean", alp = 0.1)

region(Rs, method = "Bayes", type = "Mises", estimator = "mean",
S0 = mean(Rs), kappa0 = 10, tuneS = 5000, tuneK = 1, burn_in = 1000, alp = .01, m = 5000)

rot.dist Rotational distance

Description

Calculate the extrinsic or intrinsic distance between two rotations.

Usage

rot.dist(x, ...)

S3 method for class 'SO3'
rot.dist(x, R2 = id.SO3, method = "extrinsic", p = 1, ...)

S3 method for class 'Q4'
rot.dist(x, Q2 = id.Q4, method = "extrinsic", p = 1, ...)

Arguments

x n×p matrix where each row corresponds to a random rotation in matrix (p = 9)
or quaternion (p = 4) form.

... additional arguments.

R2, Q2 a single, second rotation in the same parametrization as x.

method string indicating "extrinsic" or "intrinsic" method of distance.

p the order of the distance.

Details

This function will calculate the intrinsic (Riemannian) or extrinsic (Euclidean) distance between
two rotations. R2 and Q2 are set to the identity rotations by default. For rotations R1 and R2 both in
SO(3), the Euclidean distance between them is

||R1 −R2||F

46 rotdist.sum

where || · ||F is the Frobenius norm. The Riemannian distance is defined as

||Log(R⊤
1 R2)||F

where Log is the matrix logarithm, and it corresponds to the misorientation angle of R⊤
1 R2. See

the vignette ‘rotations-intro’ for a comparison of these two distance measures.

Value

The rotational distance between each rotation in x and R2 or Q2.

Examples

rs <- rcayley(20, kappa = 10)
Rs <- genR(rs, S = id.SO3)
dEs <- rot.dist(Rs,id.SO3)
dRs <- rot.dist(Rs, id.SO3 , method = "intrinsic")

#The intrinsic distance between the true central orientation and each observation
#is the same as the absolute value of observations' respective misorientation angles
all.equal(dRs, abs(rs)) #TRUE

#The extrinsic distance is related to the intrinsic distance
all.equal(dEs, 2*sqrt(2)*sin(dRs/2)) #TRUE

rotations A package for working with rotation data.

Description

This package implements tools for working with rotational data: it allows simulation from the most
commonly used distributions on SO(3), it includes methods for different mean and median type
estimators for the central orientation of a sample, it provides confidence regions for those estimates
and it includes a novel visualization technique for rotation data.

rotdist.sum Sample distance

Description

Compute the sum of the pth order distances between each row of x and S.

rotdist.sum 47

Usage

rotdist.sum(x, S = genR(0, space = class(x)), method = "extrinsic", p = 1)

S3 method for class 'SO3'
rotdist.sum(x, S = id.SO3, method = "extrinsic", p = 1)

S3 method for class 'Q4'
rotdist.sum(x, S = id.Q4, method = "extrinsic", p = 1)

Arguments

x n×p matrix where each row corresponds to a random rotation in matrix (p = 9)
or quaternion (p = 4) form.

S the individual matrix of interest, usually an estimate of the mean.
method type of distance used method in "extrinsic" or "intrinsic"
p the order of the distances to compute.

Value

The sum of the pth order distance between each row of x and S.

See Also

rot.dist

Examples

Rs <- ruars(20, rvmises, kappa = 10)

SE1 <- median(Rs) #Projected median
SE2 <- mean(Rs) #Projected mean
SR2 <- mean(Rs, type = "geometric") #Geometric mean

#I will use "rotdist.sum" to verify these three estimators minimize the
#loss function they are designed to minimize relative to the other esimators.
#All of the following statements should evaluate to "TRUE"

#The projected mean minimizes the sum of squared Euclidean distances
rotdist.sum(Rs, S = SE2, p = 2) < rotdist.sum(Rs, S = SE1, p = 2)
rotdist.sum(Rs, S = SE2, p = 2) < rotdist.sum(Rs, S = SR2, p = 2)

#The projected median minimizes the sum of first order Euclidean distances
rotdist.sum(Rs, S = SE1, p = 1) < rotdist.sum(Rs, S = SE2, p = 1)
rotdist.sum(Rs, S = SE1, p = 1) < rotdist.sum(Rs, S = SR2, p = 1)

#The geometric mean minimizes the sum of squared Riemannian distances
rotdist.sum(Rs, S = SR2, p = 2, method = "intrinsic") <

rotdist.sum(Rs, S = SE1, p = 2, method = "intrinsic")
rotdist.sum(Rs, S = SR2, p = 2, method = "intrinsic") <

rotdist.sum(Rs, S = SE2, p = 2, method = "intrinsic")

48 SO3

skew.exp Matrix exponential

Description

Compute the matrix exponential for skew-symmetric matrices according to the usual Taylor expan-
sion. The expansion is significantly simplified for skew-symmetric matrices, see moakher02. Maps
a matrix belonging to the lie algebra so(3) into the lie group SO(3).

Usage

skew.exp(x)

Arguments

x single 3×3 skew-symmetric matrix or n×9 sample of skew-symmetric matrices.

Details

moakher02

Value

Matrix eH in SO(3) .

Examples

Rs <- ruars(20, rcayley)
lRs <- log(Rs) #Take the matrix logarithm for rotation matrices
Rs2 <- skew.exp(lRs) #Go back to rotation matrices
all.equal(Rs, Rs2)

SO3 ‘SO3‘ class for storing rotation data as rotation matrices

Description

Creates or tests for objects of class "SO3".

SO3 49

Usage

as.SO3(x, ...)

Default S3 method:
as.SO3(x, theta = NULL, ...)

S3 method for class 'Q4'
as.SO3(x, ...)

S3 method for class 'SO3'
as.SO3(x, ...)

S3 method for class 'data.frame'
as.SO3(x, ...)

is.SO3(x)

id.SO3

Arguments

x object to be coerced or tested; see details for possible forms

... additional arguments.

theta vector or single rotation angle; if length(theta)==1 the same theta is used for
all axes

Format

id.SO3 is the identity rotation given by the the 3-by-3 identity matrix.

An object of class SO3 with 1 rows and 9 columns.

Details

Construct a single or sample of rotations in 3-dimensions in 3-by-3 matrix form. Several possible
inputs for x are possible and they are differentiated based on their class and dimension.

For x an n-by-3 matrix or a vector of length 3, the angle-axis representation of rotations is utilized.
More specifically, each rotation matrix can be interpreted as a rotation of some reference frame
about the axis U (of unit length) through the angle θ. If a single axis (in matrix or vector format) or
matrix of axes are provided for x, then for each axis and angle the matrix is formed through

R = exp[Φ(Uθ)]

where U is replace by x. If axes are provided but theta is not provided then the length of each axis
is taken to be the angle of rotation, theta.

For x an n-by-4 matrix of quaternions or an object of class "Q4", this function will return the rotation
matrix equivalent of x. See Q4 or the vignette "rotations-intro" for more details on quaternions.

For x an n-by-9 matrix, rows are treated as 3-by-3 matrices; rows that don’t form matrices in
SO(3) are projected into SO(3) and those that are already in SO(3) are returned untouched. See

50 tail

project.SO3 for more on projecting arbitrary matrices into SO(3). A message is printed if any of
the rows are not proper rotations.

For x a "data.frame", it is translated into a matrix of the same dimension and the dimensionality
of x is used to determine the data type: angle-axis, quaternion or rotation. As demonstrated below,
is.SO3 may return TRUE for a data frame, but the functions defined for objects of class "SO3" will
not be called until as.SO3 has been used.

Value

as.SO3 coerces provided data into an SO3 type.

is.SO3 returns TRUE or False depending on whether its argument satisfies the condi-
tions to be an rotation matrix. Namely, has determinant one and its transpose is
its inverse.

Examples

Select one location to focus on
Loc698 <- subset(nickel, location == 698)

is.SO3(Loc698[,5:13]) #Some of the rows are not rotations due to rounding or entry errors
#as.SO3 will project matrices not in SO(3) to SO(3)

Rs <- as.SO3(Loc698[,5:13]) #Translate the Rs data.frame into an object of class 'SO3'
#Rows 4, 6 and 13 are not in SO(3) so they are projected to SO(3)

mean(Rs) #Estimate the central orientation with the average
median(Rs) #Re-estimate central orientation robustly
Qs <- as.Q4(Rs) #Coerse into "SO3" format, see ?as.SO3 for more

#Visualize the location, there appears to be two groups

plot(Rs, col = c(1, 2, 3))

tail Return the First or Last Parts of an Object

Description

Returns the first or last parts of a vector, matrix, table, data frame or function. Since head() and
tail() are generic functions, they may also have been extended to other classes.

Usage

S3 method for class 'SO3'
tail(x, n = 6L, addrownums = TRUE, ...)

S3 method for class 'Q4'
tail(x, n = 6L, addrownums = TRUE, ...)

tail 51

Arguments

x an object
n an integer vector of length up to dim(x) (or 1, for non-dimensioned objects). A

logical is silently coerced to integer. Values specify the indices to be selected
in the corresponding dimension (or along the length) of the object. A positive
value of n[i] includes the first/last n[i] indices in that dimension, while a neg-
ative value excludes the last/first abs(n[i]), including all remaining indices. NA
or non-specified values (when length(n) < length(dim(x))) select all indices
in that dimension. Must contain at least one non-missing value.

addrownums deprecated - keepnums should be used instead. Taken as the value of keepnums
if it is explicitly set when keepnums is not.

... arguments to be passed to or from other methods.

Details

For vector/array based objects, head() (tail()) returns a subset of the same dimensionality as x,
usually of the same class. For historical reasons, by default they select the first (last) 6 indices in
the first dimension ("rows") or along the length of a non-dimensioned vector, and the full extent (all
indices) in any remaining dimensions. head.matrix() and tail.matrix() are exported.

The default and array(/matrix) methods for head() and tail() are quite general. They will work
as is for any class which has a dim() method, a length() method (only required if dim() returns
NULL), and a [method (that accepts the drop argument and can subset in all dimensions in the
dimensioned case).

For functions, the lines of the deparsed function are returned as character strings.

When x is an array(/matrix) of dimensionality two and more, tail() will add dimnames similar
to how they would appear in a full printing of x for all dimensions k where n[k] is specified and
non-missing and dimnames(x)[[k]] (or dimnames(x) itself) is NULL. Specifically, the form of the
added dimnames will vary for different dimensions as follows:

k=1 (rows): "[n,]" (right justified with whitespace padding)
k=2 (columns): "[,n]" (with no whitespace padding)
k>2 (higher dims): "n", i.e., the indices as character values

Setting keepnums = FALSE suppresses this behaviour.

As data.frame subsetting (‘indexing’) keeps attributes, so do the head() and tail() methods
for data frames.

Value

An object (usually) like x but generally smaller. Hence, for arrays, the result corresponds to x[..,
drop=FALSE]. For ftable objects x, a transformed format(x).

Note

For array inputs the output of tail when keepnums is TRUE, any dimnames vectors added for dimen-
sions >2 are the original numeric indices in that dimension as character vectors. This means that,
e.g., for 3-dimensional array arr, tail(arr, c(2,2,-1))[, , 2] and tail(arr, c(2,2,-1))[,
, "2"] may both be valid but have completely different meanings.

52 tail

Author(s)

Patrick Burns, improved and corrected by R-Core. Negative argument added by Vincent Goulet.
Multi-dimension support added by Gabriel Becker.

Examples

head(letters)
head(letters, n = -6L)

head(freeny.x, n = 10L)
head(freeny.y)

head(iris3)
head(iris3, c(6L, 2L))
head(iris3, c(6L, -1L, 2L))

tail(letters)
tail(letters, n = -6L)

tail(freeny.x)
the bottom-right "corner" :
tail(freeny.x, n = c(4, 2))
tail(freeny.y)

tail(iris3)
tail(iris3, c(6L, 2L))
tail(iris3, c(6L, -1L, 2L))

iris with dimnames stripped
a3d <- iris3 ; dimnames(a3d) <- NULL
tail(a3d, c(6, -1, 2)) # keepnums = TRUE is default here!
tail(a3d, c(6, -1, 2), keepnums = FALSE)

data frame w/ a (non-standard) attribute:
treeS <- structure(trees, foo = "bar")
(n <- nrow(treeS))
stopifnot(exprs = { # attribute is kept

identical(htS <- head(treeS), treeS[1:6,])
identical(attr(htS, "foo") , "bar")
identical(tlS <- tail(treeS), treeS[(n-5):n,])
BUT if I use "useAttrib(.)", this is *not* ok, when n is of length 2:
--- because [i,j]-indexing of data frames *also* drops "other" attributes ..
identical(tail(treeS, 3:2), treeS[(n-2):n, 2:3])

})

tail(library) # last lines of function

head(stats::ftable(Titanic))

1d-array (with named dim) :
a1 <- array(1:7, 7); names(dim(a1)) <- "O2"
stopifnot(exprs = {

UARS 53

identical(tail(a1, 10), a1)
identical(head(a1, 10), a1)
identical(head(a1, 1), a1 [1 , drop=FALSE]) # was a1[1] in R <= 3.6.x
identical(tail(a1, 2), a1[6:7])
identical(tail(a1, 1), a1 [7 , drop=FALSE]) # was a1[7] in R <= 3.6.x

})

UARS Generic UARS Distribution

Description

Density, distribution function and random generation for the the generic uniform axis-random spin
(UARS) class of distributions.

Usage

duars(R, dangle, S = id.SO3, kappa = 1, ...)

puars(R, pangle = NULL, S = id.SO3, kappa = 1, ...)

ruars(n, rangle, S = NULL, kappa = 1, space = "SO3", ...)

Arguments

R Value at which to evaluate the UARS density.

dangle The function to evaluate the angles from, e.g. dcayley, dvmises, dfisher, dhaar.

S central orientation of the distribution.

kappa concentration parameter.

... additional arguments.

pangle The form of the angular density, e.g. pcayley, pvmises, pfisher, phaar.

n number of observations. If length(n)>1, the length is taken to be the number
required.

rangle The function from which to simulate angles, e.g. rcayley, rvmises, rhaar, rfisher.

space indicates the desired representation: matrix ("SO3") or quaternion ("Q4").

Details

For the rotation R with central orientation S and concentration κ the UARS density is given by

f(R|S, κ) = 4π

3− tr(S⊤R)
C(cos−1[tr(S⊤R)− 1]/2|κ)

where C(r|κ) is one of the Angular-distributions.

bingham09

54 vmises.kappa

Value

duars gives the density

puars gives the distribution function. If pangle is left empty, the empirical CDF is
returned.

ruars generates random deviates

See Also

For more on the angular distribution options see Angular-distributions.

Examples

#Generate random rotations from the Cayley-UARS distribution with central orientation
#rotated about the y-axis through pi/2 radians
S <- as.SO3(c(0, 1, 0), pi/2)
Rs <- ruars(20, rangle = rcayley, kappa = 1, S = S)

rs <- mis.angle(Rs-S) #Find the associated misorientation angles
frs <- duars(Rs, dcayley, kappa = 10, S = S) #Compute UARS density evaluated at each rotations
plot(rs, frs)

cdf <- puars(Rs, pcayley, S = S) #By supplying 'pcayley', it is used to compute the
plot(rs, cdf) #the CDF

ecdf <- puars(Rs, S = S) #No 'puars' arguement is supplied so the empirical
plot(rs, ecdf) #cdf is returned

vmises.kappa Circular variance and concentration parameter

Description

Return the concentration parameter that corresponds to a given circular variance.

Usage

vmises.kappa(nu)

Arguments

nu circular variance

weighted.mean 55

Details

The concentration parameter κ does not translate across circular distributions. A commonly used
measure of spread in circular distributions that does translate is the circular variance defined as
ν = 1−E[cos(r)] where E[cos(r)] is the mean resultant length. See mardia2000 for more details.
This function translates the circular variance ν into the corresponding concentration parameter κ
for the circular-von Mises distribution. For numerical stability, a maximum κ of 500 is returned.

mardia2000

Value

Concentration parameter corresponding to nu.

See Also

Mises

Examples

Find the concentration parameter for circular variances 0.25, 0.5, 0.75
vmises.kappa(0.25)
vmises.kappa(0.5)
vmises.kappa(0.75)

weighted.mean Weighted mean rotation

Description

Compute the weighted geometric or projected mean of a sample of rotations.

Usage

S3 method for class 'SO3'
weighted.mean(
x,
w = NULL,
type = "projected",
epsilon = 1e-05,
maxIter = 2000,
...

)

S3 method for class 'Q4'
weighted.mean(
x,
w = NULL,
type = "projected",

56 weighted.mean

epsilon = 1e-05,
maxIter = 2000,
...

)

Arguments

x n × p matrix where each row corresponds to a random rotation in matrix form
(p = 9) or quaternion (p = 4) form.

w vector of weights the same length as the number of rows in x giving the weights
to use for elements of x. Default is NULL, which falls back to the usual mean
function.

type string indicating "projected" or "geometric" type mean estimator.

epsilon stopping rule for the geometric method.

maxIter maximum number of iterations allowed before returning most recent estimate.

... only used for consistency with mean.default.

Details

This function takes a sample of 3D rotations (in matrix or quaternion form) and returns the weighted
projected arithmetic mean ŜP or geometric mean ŜG according to the type option. For a sample
of n rotations in matrix form Ri ∈ SO(3), i = 1, 2, . . . , n, the weighted mean is defined as

Ŝ = argminS∈SO(3)

n∑
i=1

wid
2(Ri,S)

where d is the Riemannian or Euclidean distance. For more on the projected mean see moakher02
and for the geometric mean see manton04.

moakher02

Value

Weighted mean of the sample in the same parametrization.

See Also

median.SO3, mean.SO3, bayes.mean

Examples

Rs <- ruars(20, rvmises, kappa = 0.01)

Find the equal-weight projected mean
mean(Rs)

Use the rotation misorientation angle as weight
wt <- abs(1 / mis.angle(Rs))
weighted.mean(Rs, wt)

zhang 57

rot.dist(mean(Rs))

Usually much smaller than unweighted mean
rot.dist(weighted.mean(Rs, wt))

Can do the same thing with quaternions
Qs <- as.Q4(Rs)
mean(Qs)
wt <- abs(1 / mis.angle(Qs))
weighted.mean(Qs, wt)
rot.dist(mean(Qs))
rot.dist(weighted.mean(Qs, wt))

zhang M-estimator theory pivotal bootstrap confidence region

Description

Compute the radius of a 100(1 − α)% confidence region for the central orientation based on M-
estimation theory.

Usage

zhang(x, estimator, alp = NULL, m = 300)

S3 method for class 'SO3'
zhang(x, estimator, alp = NULL, m = 300)

S3 method for class 'Q4'
zhang(x, estimator, alp = NULL, m = 300)

Arguments

x n×p matrix where each row corresponds to a random rotation in matrix (p = 9)
or quaternion (p = 4) form.

estimator character string either "mean" or "median."
alp alpha level desired, e.g. 0.05 or 0.10.
m number of replicates to use to estimate the critical value.

Details

Compute the radius of a 100(1 − α)% confidence region for the central orientation based on the
projected mean estimator using the method due to Zhang & Nordman (2009) (unpublished MS
thesis). By construction each axis will have the same radius so the radius reported is for all three
axis. A normal theory version of this procedure uses the theoretical chi-square limiting distribution
and is given by the chang option. This method is called "direct" because it used M-estimation
theory for SO(3) directly instead of relying on transforming a result from directional statistics as
prentice and fisheretal do.

58 zhang

Value

Radius of the confidence region centered at the specified estimator.

See Also

bayesCR, prentice, fisheretal, chang

Examples

Rs <- ruars(20, rcayley, kappa = 100)

The zhang method can be accesed from the "region" function or the "zhang" function
They will be different because it is a bootstrap.
region(Rs, method = "direct", type = "bootstrap", alp = 0.1, estimator = "mean")
zhang(Rs, estimator = "mean", alp = 0.1)

Index

∗ datasets
drill, 13
nickel, 35
Q4, 42
SO3, 48

+.Q4 (Arithmetic), 3
+.SO3 (Arithmetic), 3
-.Q4 (Arithmetic), 3
-.SO3 (Arithmetic), 3

Angular-distributions, 3, 9, 15, 21, 25, 35,
53, 54

Arithmetic, 3
array, 22, 51
as.Q4 (Q4), 42
as.SO3 (SO3), 48
attributes, 22, 51

bayes.mean, 5, 29, 31, 56
bayesCR, 6, 12, 17, 40, 44, 58

Cayley, 3, 5, 7, 8, 10, 15, 27
cayley.kappa, 9
center, 10
chang, 7, 11, 17, 40, 44, 57, 58

data.frame, 22, 51
dcayley (Cayley), 8
dfisher (Fisher), 14
dhaar (Haar), 20
discord, 12
dmaxwell (Maxwell), 25
drill, 13
duars (UARS), 53
dvmises (Mises), 34

Fisher, 3, 5, 7, 14, 16, 27
fisher.kappa, 16
fisheretal, 7, 11, 12, 17, 40, 44, 57, 58
ftable, 22, 51

genR, 18
gradient.search, 19

Haar, 3, 20
head, 21

id.Q4 (Q4), 42
id.SO3 (SO3), 48
is.Q4 (Q4), 42
is.SO3 (SO3), 48

log.SO3, 24

Maxwell, 3, 25, 26
maxwell.kappa, 26
MCMCSO3, 27
mean, 28
mean.SO3, 6, 31, 41, 56
median, 30
median.SO3, 6, 29, 41, 56
mis.angle, 31, 33
mis.axis, 32, 33
Mises, 3, 5, 7, 27, 34, 55

nickel, 35

pcayley (Cayley), 8
pfisher (Fisher), 14
phaar (Haar), 20
plot, 37
pmaxwell (Maxwell), 25
pointsXYZ, 39
prentice, 7, 11, 12, 17, 40, 44, 57, 58
project.SO3, 41, 50
puars (UARS), 53
pvmises (Mises), 34

Q4, 42, 49

rcayley (Cayley), 8
region, 38, 44

59

60 INDEX

rfisher (Fisher), 14
rhaar (Haar), 20
rmaxwell (Maxwell), 25
rot.dist, 45, 47
rotations, 46
rotdist.sum, 46
ruars (UARS), 53
rvmises (Mises), 34

skew.exp, 48
SO3, 43, 48

tail, 50

UARS, 20, 53

vmises.kappa, 54

weighted.mean, 55
weighted.mean.SO3, 29, 31

zhang, 7, 12, 17, 40, 44, 57

	Angular-distributions
	Arithmetic
	bayes.mean
	bayesCR
	Cayley
	cayley.kappa
	center
	chang
	discord
	drill
	Fisher
	fisher.kappa
	fisheretal
	genR
	gradient.search
	Haar
	head
	log.SO3
	Maxwell
	maxwell.kappa
	MCMCSO3
	mean
	median
	mis.angle
	mis.axis
	Mises
	nickel
	plot
	pointsXYZ
	prentice
	project.SO3
	Q4
	region
	rot.dist
	rotations
	rotdist.sum
	skew.exp
	SO3
	tail
	UARS
	vmises.kappa
	weighted.mean
	zhang
	Index

