Title: | Obtaining Star Databases from Flat Tables |
---|---|
Description: | Data in multidimensional systems is obtained from operational systems and is transformed to adapt it to the new structure. Frequently, the operations to be performed aim to transform a flat table into a ROLAP (Relational On-Line Analytical Processing) star database. The main objective of the package is to allow the definition of these transformations easily. The implementation of the multidimensional database obtained can be exported to work with multidimensional analysis tools on spreadsheets or relational databases. |
Authors: | Jose Samos [aut, cre] , Universidad de Granada [cph] |
Maintainer: | Jose Samos <[email protected]> |
License: | MIT + file LICENSE |
Version: | 2.5.1 |
Built: | 2024-12-06 06:57:02 UTC |
Source: | CRAN |
Add a column returned by a function that takes the data of the flat table as a parameter.
add_custom_column(ft, name, definition) ## S3 method for class 'flat_table' add_custom_column(ft, name = NULL, definition)
add_custom_column(ft, name, definition) ## S3 method for class 'flat_table' add_custom_column(ft, name = NULL, definition)
ft |
A |
name |
A string, new column name. |
definition |
A function that returns a table column. |
A flat_table
object.
Other flat table transformation functions:
remove_instances_without_measures()
,
replace_empty_values()
,
replace_string()
,
replace_unknown_values()
,
select_attributes()
,
select_instances_by_comparison()
,
select_instances()
,
select_measures()
,
separate_measures()
,
transform_attribute_format()
,
transform_from_values()
,
transform_to_attribute()
,
transform_to_measure()
,
transform_to_values()
f <- function(table) { paste0(table$City, ' - ', table$State) } ft <- flat_table('ft_num', ft_num) |> add_custom_column(name = 'city_state', definition = f)
f <- function(table) { paste0(table$City, ' - ', table$State) } ft <- flat_table('ft_num', ft_num) |> add_custom_column(name = 'city_state', definition = f)
To port databases to other work environments it is useful to be able to export them as csv files, as this function does.
as_csv_files(db, dir, type) ## S3 method for class 'star_database' as_csv_files(db, dir = NULL, type = 1)
as_csv_files(db, dir, type) ## S3 method for class 'star_database' as_csv_files(db, dir = NULL, type = 1)
db |
A |
dir |
A string, name of a dir. |
type |
An integer, 1: uses "." for the decimal point and a comma for the separator; 2: uses a comma for the decimal point and a semicolon for the separator. |
A string, name of a dir.
Other star database exportation functions:
as_dm_class()
,
as_multistar()
,
as_rdb()
,
as_single_tibble_list()
,
as_tibble_list()
,
as_xlsx_file()
,
draw_tables()
db1 <- star_database(mrs_cause_schema, ft_num) |> snake_case() tl1 <- db1 |> as_csv_files() db2 <- star_database(mrs_age_schema, ft_age) |> snake_case() ct <- constellation("MRS", db1, db2) d <- ct |> as_csv_files(dir = tempdir())
db1 <- star_database(mrs_cause_schema, ft_num) |> snake_case() tl1 <- db1 |> as_csv_files() db2 <- star_database(mrs_age_schema, ft_age) |> snake_case() ct <- constellation("MRS", db1, db2) d <- ct |> as_csv_files(dir = tempdir())
dm
class with fact and dimension tablesTo port databases to other work environments it is useful to be able to
export them as a dm
class, as this function does, in this way it can be
saved directly in a DBMS.
as_dm_class(db, pk_facts, fk) ## S3 method for class 'star_database' as_dm_class(db, pk_facts = TRUE, fk = TRUE)
as_dm_class(db, pk_facts, fk) ## S3 method for class 'star_database' as_dm_class(db, pk_facts = TRUE, fk = TRUE)
db |
A |
pk_facts |
A boolean, include primary key in fact tables. |
fk |
A boolean, include foreign key in fact tables. |
A dm
object.
Other star database exportation functions:
as_csv_files()
,
as_multistar()
,
as_rdb()
,
as_single_tibble_list()
,
as_tibble_list()
,
as_xlsx_file()
,
draw_tables()
db1 <- star_database(mrs_cause_schema, ft_num) |> snake_case() dm1 <- db1 |> as_dm_class() db2 <- star_database(mrs_age_schema, ft_age) |> snake_case() ct <- constellation("MRS", db1, db2) dm <- ct |> as_dm_class()
db1 <- star_database(mrs_cause_schema, ft_num) |> snake_case() dm1 <- db1 |> as_dm_class() db2 <- star_database(mrs_age_schema, ft_age) |> snake_case() ct <- constellation("MRS", db1, db2) dm <- ct |> as_dm_class()
geolayer
objectFrom a star_database
with at least one geoattribute, we obtain a geolayer
object that allows us to select the data to obtain a vector layer with
geographic information.
as_geolayer(db, dimension, attribute, geometry, include_nrow_agg) ## S3 method for class 'star_database' as_geolayer( db, dimension = NULL, attribute = NULL, geometry = NULL, include_nrow_agg = FALSE )
as_geolayer(db, dimension, attribute, geometry, include_nrow_agg) ## S3 method for class 'star_database' as_geolayer( db, dimension = NULL, attribute = NULL, geometry = NULL, include_nrow_agg = FALSE )
db |
An |
dimension |
A string, dimension name. |
attribute |
A vector, attribute names. |
geometry |
A string, geometry name. |
include_nrow_agg |
A boolean, include default measure. |
If only one geographic attribute is defined, it is not necessary to indicate the dimension or the attribute. By default, polygon geometry is considered.
A geolayer
object.
Other query functions:
as_GeoPackage()
,
filter_dimension()
,
get_layer()
,
get_variable_description()
,
get_variables()
,
run_query()
,
select_dimension()
,
select_fact()
,
set_layer()
,
set_variables()
,
star_query()
gl_polygon <- mrs_db_geo |> as_geolayer() gl_point <- mrs_db_geo |> as_geolayer(geometry = "point")
gl_polygon <- mrs_db_geo |> as_geolayer() gl_point <- mrs_db_geo |> as_geolayer(geometry = "point")
GeoPackage
Save the geolayer (geographic information layer) and the variables layer in a
file in GeoPackage
format to be able to work with other tools.
as_GeoPackage(gl, dir, name, keep_all_variables_na) ## S3 method for class 'geolayer' as_GeoPackage(gl, dir = NULL, name = NULL, keep_all_variables_na = FALSE)
as_GeoPackage(gl, dir, name, keep_all_variables_na) ## S3 method for class 'geolayer' as_GeoPackage(gl, dir = NULL, name = NULL, keep_all_variables_na = FALSE)
gl |
A |
dir |
A string. |
name |
A string, file name. |
keep_all_variables_na |
A boolean, keep rows with all variables NA. |
If the file name is not indicated, it defaults to the name of the geovariable.
By default, rows that are NA for all variables are eliminated.
The GeoPackage
format only allows defining a maximum of 1998 columns. If the
number of variables and columns in the geographic layer exceeds this number,
it cannot be saved in this format.
A string, file name.
Other query functions:
as_geolayer()
,
filter_dimension()
,
get_layer()
,
get_variable_description()
,
get_variables()
,
run_query()
,
select_dimension()
,
select_fact()
,
set_layer()
,
set_variables()
,
star_query()
gl <- mrs_db_geo |> as_geolayer() f <- gl |> as_GeoPackage(dir = tempdir())
gl <- mrs_db_geo |> as_geolayer() f <- gl |> as_GeoPackage(dir = tempdir())
geomultistar::multistar
objectIn order to be able to use the query and integration functions with geographic
information offered by the geomultistar
package, we can obtain a multistar
object from a star database or a constellation.
as_multistar(db) ## S3 method for class 'star_database' as_multistar(db)
as_multistar(db) ## S3 method for class 'star_database' as_multistar(db)
db |
A |
A geomultistar::multistar
object.
Other star database exportation functions:
as_csv_files()
,
as_dm_class()
,
as_rdb()
,
as_single_tibble_list()
,
as_tibble_list()
,
as_xlsx_file()
,
draw_tables()
db1 <- star_database(mrs_cause_schema, ft_num) |> snake_case() ms1 <- db1 |> as_multistar() db2 <- star_database(mrs_age_schema, ft_age) |> snake_case() ct <- constellation("MRS", db1, db2) ms <- ct |> as_multistar()
db1 <- star_database(mrs_cause_schema, ft_num) |> snake_case() ms1 <- db1 |> as_multistar() db2 <- star_database(mrs_age_schema, ft_age) |> snake_case() ct <- constellation("MRS", db1, db2) ms <- ct |> as_multistar()
Given a connection to a relational database, it stores the facts and dimensions in the form of tables. Tables can be overwritten.
as_rdb(db, con, overwrite) ## S3 method for class 'star_database' as_rdb(db, con, overwrite = FALSE)
as_rdb(db, con, overwrite) ## S3 method for class 'star_database' as_rdb(db, con, overwrite = FALSE)
db |
A |
con |
A |
overwrite |
A boolean, allow overwriting tables in the database. |
Invisible NULL.
Other star database exportation functions:
as_csv_files()
,
as_dm_class()
,
as_multistar()
,
as_single_tibble_list()
,
as_tibble_list()
,
as_xlsx_file()
,
draw_tables()
my_db <- DBI::dbConnect(RSQLite::SQLite()) db <- star_database(mrs_cause_schema, ft_num) |> snake_case() db |> as_rdb(my_db) DBI::dbDisconnect(my_db)
my_db <- DBI::dbConnect(RSQLite::SQLite()) db <- star_database(mrs_cause_schema, ft_num) |> snake_case() db |> as_rdb(my_db) DBI::dbDisconnect(my_db)
Allows you to transform a star database into a flat table. If we have a constellation, it returns a list of flat tables.
as_single_tibble_list(db) ## S3 method for class 'star_database' as_single_tibble_list(db)
as_single_tibble_list(db) ## S3 method for class 'star_database' as_single_tibble_list(db)
db |
A |
A list of tibble
Other star database exportation functions:
as_csv_files()
,
as_dm_class()
,
as_multistar()
,
as_rdb()
,
as_tibble_list()
,
as_xlsx_file()
,
draw_tables()
db1 <- star_database(mrs_cause_schema, ft_num) |> snake_case() tl1 <- db1 |> as_single_tibble_list() db2 <- star_database(mrs_age_schema, ft_age) |> snake_case() ct <- constellation("MRS", db1, db2) tl <- ct |> as_single_tibble_list()
db1 <- star_database(mrs_cause_schema, ft_num) |> snake_case() tl1 <- db1 |> as_single_tibble_list() db2 <- star_database(mrs_age_schema, ft_age) |> snake_case() ct <- constellation("MRS", db1, db2) tl <- ct |> as_single_tibble_list()
Obtain a star database from the flat table and a star schema.
as_star_database(ft, schema) ## S3 method for class 'flat_table' as_star_database(ft, schema)
as_star_database(ft, schema) ## S3 method for class 'flat_table' as_star_database(ft, schema)
ft |
A |
schema |
A |
A star_database
object.
Other flat table definition functions:
flat_table()
,
get_table()
,
get_unknown_value_defined()
,
get_unknown_values()
,
read_flat_table_file()
,
read_flat_table_folder()
db <- flat_table('ft_num', ft_num) |> as_star_database(mrs_cause_schema)
db <- flat_table('ft_num', ft_num) |> as_star_database(mrs_cause_schema)
To port databases to other work environments it is useful to be able to export them as a list of tibbles, as this function does.
as_tibble_list(db) ## S3 method for class 'star_database' as_tibble_list(db)
as_tibble_list(db) ## S3 method for class 'star_database' as_tibble_list(db)
db |
A |
A list of tibble
Other star database exportation functions:
as_csv_files()
,
as_dm_class()
,
as_multistar()
,
as_rdb()
,
as_single_tibble_list()
,
as_xlsx_file()
,
draw_tables()
db1 <- star_database(mrs_cause_schema, ft_num) |> snake_case() tl1 <- db1 |> as_tibble_list() db2 <- star_database(mrs_age_schema, ft_age) |> snake_case() ct <- constellation("MRS", db1, db2) tl <- ct |> as_tibble_list()
db1 <- star_database(mrs_cause_schema, ft_num) |> snake_case() tl1 <- db1 |> as_tibble_list() db2 <- star_database(mrs_age_schema, ft_age) |> snake_case() ct <- constellation("MRS", db1, db2) tl <- ct |> as_tibble_list()
To port databases to other work environments it is useful to be able to export them as a xlsx file, as this function does.
as_xlsx_file(db, file) ## S3 method for class 'star_database' as_xlsx_file(db, file = NULL)
as_xlsx_file(db, file) ## S3 method for class 'star_database' as_xlsx_file(db, file = NULL)
db |
A |
file |
A string, name of a file. |
A string, name of a file.
Other star database exportation functions:
as_csv_files()
,
as_dm_class()
,
as_multistar()
,
as_rdb()
,
as_single_tibble_list()
,
as_tibble_list()
,
draw_tables()
db1 <- star_database(mrs_cause_schema, ft_num) |> snake_case() tl1 <- db1 |> as_xlsx_file() db2 <- star_database(mrs_age_schema, ft_age) |> snake_case() ct <- constellation("MRS", db1, db2) f <- ct |> as_xlsx_file(file = tempfile())
db1 <- star_database(mrs_cause_schema, ft_num) |> snake_case() tl1 <- db1 |> as_xlsx_file() db2 <- star_database(mrs_age_schema, ft_age) |> snake_case() ct <- constellation("MRS", db1, db2) f <- ct |> as_xlsx_file(file = tempfile())
Cancel deployment
cancel_deployment(db, name) ## S3 method for class 'star_database' cancel_deployment(db, name)
cancel_deployment(db, name) ## S3 method for class 'star_database' cancel_deployment(db, name)
db |
A |
name |
A string, name of the deployment. |
A star_database
object.
Other star database deployment functions:
deploy()
,
get_deployment_names()
,
load_star_database()
mrs_rdb_file <- tempfile("mrs", fileext = ".rdb") mrs_sqlite_file <- tempfile("mrs", fileext = ".sqlite") mrs_sqlite_connect <- function() { DBI::dbConnect(RSQLite::SQLite(), dbname = mrs_sqlite_file) } mrs_db <- mrs_db |> deploy( name = "mrs", connect = mrs_sqlite_connect, file = mrs_rdb_file ) mrs_db <- mrs_db |> cancel_deployment(name = "mrs")
mrs_rdb_file <- tempfile("mrs", fileext = ".rdb") mrs_sqlite_file <- tempfile("mrs", fileext = ".sqlite") mrs_sqlite_connect <- function() { DBI::dbConnect(RSQLite::SQLite(), dbname = mrs_sqlite_file) } mrs_db <- mrs_db |> deploy( name = "mrs", connect = mrs_sqlite_connect, file = mrs_rdb_file ) mrs_db <- mrs_db |> cancel_deployment(name = "mrs")
geoattribute
geometry instances.Get unrelated instances of a geoattribute
for a geometry.
check_geoattribute_geometry(db, dimension, attribute, geometry) ## S3 method for class 'star_database' check_geoattribute_geometry( db, dimension = NULL, attribute = NULL, geometry = "polygon" )
check_geoattribute_geometry(db, dimension, attribute, geometry) ## S3 method for class 'star_database' check_geoattribute_geometry( db, dimension = NULL, attribute = NULL, geometry = "polygon" )
db |
A |
dimension |
A string, dimension name. |
attribute |
A vector, attribute names. |
geometry |
A string, geometry name ('point' or 'polygon'). |
We obtain the values of the dimension attribute that do not have an associated geographic element of the indicated geometry.
If there is only one geoattribute defined, neither the dimension nor the attribute must be indicated.
A tibble
.
Other star database geographic attributes:
define_geoattribute()
,
get_geoattribute_geometries()
,
get_geoattributes()
,
get_layer_geometry()
,
get_point_geometry()
,
summarize_layer()
db <- mrs_db |> define_geoattribute( dimension = "where", attribute = "state", from_layer = us_layer_state, by = "STUSPS" ) instances <- check_geoattribute_geometry(db, dimension = "where", attribute = "state")
db <- mrs_db |> define_geoattribute( dimension = "where", attribute = "state", from_layer = us_layer_state, by = "STUSPS" ) instances <- check_geoattribute_geometry(db, dimension = "where", attribute = "state")
Before joining a flat table with a lookup table we can check the result to determine if we need to adapt the values of some instances or add new elements to the lookup table. This function returns the values of the foreign key of the flat table that do not correspond to the primary key of the lookup table.
check_lookup_table(ft, fk_attributes, lookup) ## S3 method for class 'flat_table' check_lookup_table(ft, fk_attributes = NULL, lookup)
check_lookup_table(ft, fk_attributes, lookup) ## S3 method for class 'flat_table' check_lookup_table(ft, fk_attributes = NULL, lookup)
ft |
A |
fk_attributes |
A vector of strings, attribute names. |
lookup |
A |
If no attributes are indicated, those that form the primary key of the lookup table are considered in the flat table.
A tibble
with attribute values.
Other flat table join functions:
get_pk_attribute_names()
,
join_lookup_table()
,
lookup_table()
lookup <- flat_table('iris', iris) |> lookup_table( measures = c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width"), measure_agg = c('MAX', 'MIN', 'SUM', 'MEAN') ) values <- flat_table('iris', iris) |> check_lookup_table(lookup = lookup)
lookup <- flat_table('iris', iris) |> lookup_table( measures = c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width"), measure_agg = c('MAX', 'MIN', 'SUM', 'MEAN') ) values <- flat_table('iris', iris) |> check_lookup_table(lookup = lookup)
Creates a constellation from a list of star_database
objects. A constellation
is also represented by a star_database
object. All dimensions with the same
name in the star schemas have to be conformable (share the same structure, even
though they have different instances).
constellation(name = NULL, ...)
constellation(name = NULL, ...)
name |
A string. |
... |
|
A star_database
object.
db1 <- star_database(mrs_cause_schema, ft_num) |> snake_case() db2 <- star_database(mrs_age_schema, ft_age) |> snake_case() ct1 <- constellation("MRS", db1, db2) db3 <- star_database(mrs_cause_schema_rpd, ft_cause_rpd) |> role_playing_dimension( rpd = "When", roles = c("When Available", "When Received") ) db4 <- star_database(mrs_age_schema_rpd, ft_age_rpd) |> role_playing_dimension( rpd = "When Arrived", roles = c("When Available") ) ct2 <- constellation("MRS", db3, db4)
db1 <- star_database(mrs_cause_schema, ft_num) |> snake_case() db2 <- star_database(mrs_age_schema, ft_age) |> snake_case() ct1 <- constellation("MRS", db1, db2) db3 <- star_database(mrs_cause_schema_rpd, ft_cause_rpd) |> role_playing_dimension( rpd = "When", roles = c("When Available", "When Received") ) db4 <- star_database(mrs_age_schema_rpd, ft_age_rpd) |> role_playing_dimension( rpd = "When Arrived", roles = c("When Available") ) ct2 <- constellation("MRS", db3, db4)
From the coordinates defined in fields such as latitude and longitude, it returns a layer of points.
coordinates_to_point(table, lon_lat = c("intptlon", "intptlat"), crs = NULL)
coordinates_to_point(table, lon_lat = c("intptlon", "intptlat"), crs = NULL)
table |
A |
lon_lat |
A vector, name of longitude and latitude attributes. |
crs |
A coordinate reference system: integer with the EPSG code, or character with proj4string. |
If we start from a geographic layer, it initially transforms it into a table.
The CRS of the new layer is indicated. If a CRS is not indicated, it considers the layer's CRS by default and, if it is not a layer, it considers 4326 CRS (WGS84).
A sf
object.
us_state_point <- coordinates_to_point(us_layer_state, lon_lat = c("INTPTLON", "INTPTLAT"))
us_state_point <- coordinates_to_point(us_layer_state, lon_lat = c("INTPTLON", "INTPTLAT"))
star_schema
object.Dimensions are part of a star_schema
object. They can be defined directly
as a dimension_schema
object or giving the name and a set of attributes.
define_dimension( schema, dimension, name, attributes, scd_nk, scd_t0, scd_t1, scd_t2, scd_t3, scd_t6, is_when, ... ) ## S3 method for class 'star_schema' define_dimension( schema, dimension = NULL, name = NULL, attributes = NULL, scd_nk = NULL, scd_t0 = NULL, scd_t1 = NULL, scd_t2 = NULL, scd_t3 = NULL, scd_t6 = NULL, is_when = FALSE, ... )
define_dimension( schema, dimension, name, attributes, scd_nk, scd_t0, scd_t1, scd_t2, scd_t3, scd_t6, is_when, ... ) ## S3 method for class 'star_schema' define_dimension( schema, dimension = NULL, name = NULL, attributes = NULL, scd_nk = NULL, scd_t0 = NULL, scd_t1 = NULL, scd_t2 = NULL, scd_t3 = NULL, scd_t6 = NULL, is_when = FALSE, ... )
schema |
A |
dimension |
A |
name |
A string, name of the dimension. |
attributes |
A vector of attribute names. |
scd_nk |
A vector of attribute names, scd natural key. |
scd_t0 |
A vector of attribute names, scd T0 attributes. |
scd_t1 |
A vector of attribute names, scd T1 attributes. |
scd_t2 |
A vector of attribute names, scd T2 attributes. |
scd_t3 |
A vector of attribute names, scd T3 attributes. |
scd_t6 |
A vector of attribute names, scd T6 attributes. |
is_when |
A boolean, is when dimension. |
... |
When dimension configuration parameters. |
A star_schema
object.
Other star schema definition functions:
define_facts()
,
dimension_schema()
,
fact_schema()
,
star_schema()
s <- star_schema() |> define_dimension( name = "when", attributes = c( "Week Ending Date", "WEEK", "Year" ) ) s <- star_schema() d <- dimension_schema( name = "when", attributes = c( "Week Ending Date", "WEEK", "Year" ) ) s <- s |> define_dimension(d)
s <- star_schema() |> define_dimension( name = "when", attributes = c( "Week Ending Date", "WEEK", "Year" ) ) s <- star_schema() d <- dimension_schema( name = "when", attributes = c( "Week Ending Date", "WEEK", "Year" ) ) s <- s |> define_dimension(d)
star_schema
object.Facts are part of a star_schema
object. They can be defined directly
as a fact_schema
object or giving the name and a set of measures
that can be empty (does not have explicit measures).
define_facts(schema, facts, name, measures, agg_functions, nrow_agg) ## S3 method for class 'star_schema' define_facts( schema, facts = NULL, name = NULL, measures = NULL, agg_functions = NULL, nrow_agg = NULL )
define_facts(schema, facts, name, measures, agg_functions, nrow_agg) ## S3 method for class 'star_schema' define_facts( schema, facts = NULL, name = NULL, measures = NULL, agg_functions = NULL, nrow_agg = NULL )
schema |
A |
facts |
A |
name |
A string, name of the fact. |
measures |
A vector of measure names. |
agg_functions |
A vector of aggregation function names, each one for its corresponding measure. If none is indicated, the default is SUM. Additionally they can be MAX or MIN. |
nrow_agg |
A string, name of a new measure that represents the COUNT of rows aggregated for each resulting row. |
Associated with each measurement there is an aggregation function that can be SUM, MAX or MIN. AVG is not considered among the possible aggregation functions: The reason is that calculating AVG by considering subsets of data does not necessarily yield the AVG of the total data.
An additional measurement corresponding to the COUNT of aggregated rows is added which, together with SUM, allows us to obtain the mean if needed.
A star_schema
object.
Other star schema definition functions:
define_dimension()
,
dimension_schema()
,
fact_schema()
,
star_schema()
s <- star_schema() |> define_facts( name = "mrs_cause", measures = c( "Pneumonia and Influenza Deaths", "Other Deaths" ) ) s <- star_schema() f <- fact_schema( name = "mrs_cause", measures = c( "Pneumonia and Influenza Deaths", "Other Deaths" ) ) s <- s |> define_facts(f)
s <- star_schema() |> define_facts( name = "mrs_cause", measures = c( "Pneumonia and Influenza Deaths", "Other Deaths" ) ) s <- star_schema() f <- fact_schema( name = "mrs_cause", measures = c( "Pneumonia and Influenza Deaths", "Other Deaths" ) ) s <- s |> define_facts(f)
geoattribute
of a dimensionDefine a set of attributes as a dimension's geoattribute
. The set of attribute
values must uniquely designate the instances of the given geographic layer.
define_geoattribute(db, dimension, attribute, from_layer, by, from_attribute) ## S3 method for class 'star_database' define_geoattribute( db, dimension = NULL, attribute = NULL, from_layer = NULL, by = NULL, from_attribute = NULL )
define_geoattribute(db, dimension, attribute, from_layer, by, from_attribute) ## S3 method for class 'star_database' define_geoattribute( db, dimension = NULL, attribute = NULL, from_layer = NULL, by = NULL, from_attribute = NULL )
db |
A |
dimension |
A string, dimension name. |
attribute |
A vector, attribute names. |
from_layer |
A |
by |
a vector of correspondence of attributes of the dimension with the
|
from_attribute |
A vector, attribute names. |
The definition can be done in two ways: Associates the instances of the attributes with the instances of a geographic layer or defines it from the geometry of previously defined geographic attributes.
Multiple attributes can be specified in the attribute
parameter, the geographical
attribute is the combination of all of them.
If defined from a layer (from_layer
parameter), additionally the attributes
used for the join between the tables (dimension and layer tables) must be
indicated (by
parameter).
If defined from another attribute, it should have the same or finer granularity, to obtain the result by grouping its instances. The considered attribute can be the pair that defines longitude and latitude.
If other geographic information has previously been associated with that attribute, the new information is considered and previous instances for which no new information is provided are also added.
If the geometry provided is polygons, a point layer is also generated.
A star_database
object.
Other star database geographic attributes:
check_geoattribute_geometry()
,
get_geoattribute_geometries()
,
get_geoattributes()
,
get_layer_geometry()
,
get_point_geometry()
,
summarize_layer()
db <- mrs_db |> define_geoattribute( dimension = "where", attribute = "state", from_layer = us_layer_state, by = "STUSPS" ) |> define_geoattribute( dimension = "where", attribute = "region", from_attribute = "state" ) |> define_geoattribute( dimension = "where", attribute = "city", from_attribute = c("long", "lat") )
db <- mrs_db |> define_geoattribute( dimension = "where", attribute = "state", from_layer = us_layer_state, by = "STUSPS" ) |> define_geoattribute( dimension = "where", attribute = "region", from_attribute = "state" ) |> define_geoattribute( dimension = "where", attribute = "city", from_attribute = c("long", "lat") )
To deploy the star database, we must indicate a name for the deployment, a connection function and a disconnection function from the database. If it is the first deployment, we must also indicate the name of a local file where the star database will be stored.
deploy(db, name, connect, disconnect, file) ## S3 method for class 'star_database' deploy(db, name, connect, disconnect = NULL, file = NULL)
deploy(db, name, connect, disconnect, file) ## S3 method for class 'star_database' deploy(db, name, connect, disconnect = NULL, file = NULL)
db |
A |
name |
A string, name of the deployment. |
connect |
A function that returns a |
disconnect |
A function that receives a |
file |
A string, name of the file to store the object. |
If the disconnection function consists only of calling DBI::dbDisconnect(con)
,
there is no need to indicate it, it is taken by default.
As a result, it exports the tables from the star database to the connection database and from now on will keep them updated with each periodic refresh. Additionally, it will also keep a copy of the star database updated on file, which can be used when needed.
A star_database
object.
Other star database deployment functions:
cancel_deployment()
,
get_deployment_names()
,
load_star_database()
mrs_rdb_file <- tempfile("mrs", fileext = ".rdb") mrs_sqlite_file <- tempfile("mrs", fileext = ".sqlite") mrs_sqlite_connect <- function() { DBI::dbConnect(RSQLite::SQLite(), dbname = mrs_sqlite_file) } mrs_db <- mrs_db |> deploy( name = "mrs", connect = mrs_sqlite_connect, file = mrs_rdb_file )
mrs_rdb_file <- tempfile("mrs", fileext = ".rdb") mrs_sqlite_file <- tempfile("mrs", fileext = ".sqlite") mrs_sqlite_connect <- function() { DBI::dbConnect(RSQLite::SQLite(), dbname = mrs_sqlite_file) } mrs_db <- mrs_db |> deploy( name = "mrs", connect = mrs_sqlite_connect, file = mrs_rdb_file )
dimension_schema
S3 classA dimension_schema
object is created, we have to define its name and the
set of attributes that make it up.
dimension_schema( name = NULL, attributes = NULL, scd_nk = NULL, scd_t0 = NULL, scd_t1 = NULL, scd_t2 = NULL, scd_t3 = NULL, scd_t6 = NULL, is_when = FALSE, ... )
dimension_schema( name = NULL, attributes = NULL, scd_nk = NULL, scd_t0 = NULL, scd_t1 = NULL, scd_t2 = NULL, scd_t3 = NULL, scd_t6 = NULL, is_when = FALSE, ... )
name |
A string, name of the dimension. |
attributes |
A vector of attribute names. |
scd_nk |
A vector of attribute names, scd natural key. |
scd_t0 |
A vector of attribute names, scd T0 attributes. |
scd_t1 |
A vector of attribute names, scd T1 attributes. |
scd_t2 |
A vector of attribute names, scd T2 attributes. |
scd_t3 |
A vector of attribute names, scd T3 attributes. |
scd_t6 |
A vector of attribute names, scd T6 attributes. |
is_when |
A boolean, is when dimension. |
... |
When dimension configuration parameters. |
A dimension_schema
object is part of a star_schema
object, defines
a dimension of the star schema.
A dimension_schema
object.
Other star schema definition functions:
define_dimension()
,
define_facts()
,
fact_schema()
,
star_schema()
d <- dimension_schema( name = "when", attributes = c( "Week Ending Date", "WEEK", "Year" ) )
d <- dimension_schema( name = "when", attributes = c( "Week Ending Date", "WEEK", "Year" ) )
Draw the tables of the ROLAP star diagrams.
draw_tables(db) ## S3 method for class 'star_database' draw_tables(db)
draw_tables(db) ## S3 method for class 'star_database' draw_tables(db)
db |
A |
An object with a print()
method.
Other star database exportation functions:
as_csv_files()
,
as_dm_class()
,
as_multistar()
,
as_rdb()
,
as_single_tibble_list()
,
as_tibble_list()
,
as_xlsx_file()
db <- star_database(mrs_cause_schema, ft_num) |> snake_case() db |> draw_tables()
db <- star_database(mrs_cause_schema, ft_num) |> snake_case() db |> draw_tables()
fact_schema
S3 classA fact_schema
object is created, the essential data is a name and
a set of measures that can be empty (does not have explicit measures).
It is part of a star_schema
object, defines the facts of the star schema.
fact_schema( name = NULL, measures = NULL, agg_functions = NULL, nrow_agg = NULL )
fact_schema( name = NULL, measures = NULL, agg_functions = NULL, nrow_agg = NULL )
name |
A string, name of the fact. |
measures |
A vector of measure names. |
agg_functions |
A vector of aggregation function names, each one for its corresponding measure. If none is indicated, the default is SUM. Additionally they can be MAX or MIN. |
nrow_agg |
A string, name of a new measure that represents the COUNT of rows aggregated for each resulting row. |
Associated with each measure there is an aggregation function that can be SUM, MAX or MIN. AVG is not considered among the possible aggregation functions: The reason is that calculating AVG by considering subsets of data does not necessarily yield the AVG of the total data.
An additional measure corresponding to the COUNT of aggregated rows is added which, together with SUM, allows us to obtain the AVG if needed.
A fact_schema
object.
Other star schema definition functions:
define_dimension()
,
define_facts()
,
dimension_schema()
,
star_schema()
f <- fact_schema( name = "mrs_cause", measures = c( "Pneumonia and Influenza Deaths", "Other Deaths" ) ) f <- fact_schema( name = "mrs_cause", measures = c( "Pneumonia and Influenza Deaths", "Other Deaths" ), agg_functions = c( "MAX", "SUM" ), nrow_agg = "Nrow" )
f <- fact_schema( name = "mrs_cause", measures = c( "Pneumonia and Influenza Deaths", "Other Deaths" ) ) f <- fact_schema( name = "mrs_cause", measures = c( "Pneumonia and Influenza Deaths", "Other Deaths" ), agg_functions = c( "MAX", "SUM" ), nrow_agg = "Nrow" )
Allows you to define selection conditions for dimension rows.
filter_dimension(sq, name, ...) ## S3 method for class 'star_query' filter_dimension(sq, name = NULL, ...)
filter_dimension(sq, name, ...) ## S3 method for class 'star_query' filter_dimension(sq, name = NULL, ...)
sq |
A |
name |
A string, name of the dimension. |
... |
Conditions, defined in exactly the same way as in |
Conditions can be defined on any attribute of the dimension (not only on
attributes selected in the query for the dimension). The selection is made
based on the function dplyr::filter
. Conditions are defined in exactly the
same way as in that function.
A star_query
object.
Other query functions:
as_GeoPackage()
,
as_geolayer()
,
get_layer()
,
get_variable_description()
,
get_variables()
,
run_query()
,
select_dimension()
,
select_fact()
,
set_layer()
,
set_variables()
,
star_query()
sq <- mrs_db |> star_query() |> filter_dimension(name = "when", week <= " 3") |> filter_dimension(name = "where", city == "Cambridge")
sq <- mrs_db |> star_query() |> filter_dimension(name = "when", week <= " 3") |> filter_dimension(name = "where", city == "Cambridge")
flat_table
S3 classCreates a flat_table
object.
flat_table(name = NULL, instances, unknown_value = NULL)
flat_table(name = NULL, instances, unknown_value = NULL)
name |
A string. |
instances |
A |
unknown_value |
A string, value used to replace empty and NA values in attributes. |
The objective is to allow the transformation of flat tables.
We indicate the name of the flat table and we can also give the value that will be used to replace NA or empty values.
A flat_table
object.
Other flat table definition functions:
as_star_database()
,
get_table()
,
get_unknown_value_defined()
,
get_unknown_values()
,
read_flat_table_file()
,
read_flat_table_folder()
ft <- flat_table('iris', iris) ft <- flat_table('ft_num', ft_num)
ft <- flat_table('iris', iris) ft <- flat_table('ft_num', ft_num)
Selection of 20 rows from the 122 Cities Mortality Reporting System.
ft
ft
A tibble
.
The original dataset covers from 1962 to 2016. For each week, in 122 US cities, mortality figures by age group and cause, considered separately, are included. In the cause, only a distinction is made between pneumonia or influenza and others.
Other mrs example data:
ft_age_rpd
,
ft_age
,
ft_cause_rpd
,
ft_num
,
mrs_db_geo
,
mrs_db
,
mrs_ft_new
,
mrs_ft
Selection data from the 122 Cities Mortality Reporting System by age group.
ft_age
ft_age
A tibble
.
The original dataset covers from 1962 to 2016. For each week, in 122 US cities, mortality figures by age group and cause, considered separately, are included.
Other mrs example data:
ft_age_rpd
,
ft_cause_rpd
,
ft_num
,
ft
,
mrs_db_geo
,
mrs_db
,
mrs_ft_new
,
mrs_ft
# The operations to obtain it from the `ft` data set are: if (rlang::is_installed("stringr")) { ft_age <- ft |> dplyr::select(-`Pneumonia and Influenza Deaths`, -`All Deaths`) |> tidyr::gather("Age", "All Deaths", 7:11) |> dplyr::mutate(`All Deaths` = as.integer(`All Deaths`)) |> dplyr::mutate(Age = stringr::str_replace(Age, " \\(all cause deaths\\)", "")) }
# The operations to obtain it from the `ft` data set are: if (rlang::is_installed("stringr")) { ft_age <- ft |> dplyr::select(-`Pneumonia and Influenza Deaths`, -`All Deaths`) |> tidyr::gather("Age", "All Deaths", 7:11) |> dplyr::mutate(`All Deaths` = as.integer(`All Deaths`)) |> dplyr::mutate(Age = stringr::str_replace(Age, " \\(all cause deaths\\)", "")) }
Selection of data from the 122 Cities Mortality Reporting System by age group, for the first 9 weeks of 1962 and 4 cities.
ft_age_rpd
ft_age_rpd
A tibble
.
The original dataset begins in 1962. For each week, in 122 US cities, mortality figures by age group and cause, considered separately, are included (i.e., the combination of age group and cause is not included). In the cause, only a distinction is made between pneumonia or influenza and others.
Two additional dates have been generated, which were not present in the original dataset.
Other mrs example data:
ft_age
,
ft_cause_rpd
,
ft_num
,
ft
,
mrs_db_geo
,
mrs_db
,
mrs_ft_new
,
mrs_ft
Selection of data from the 122 Cities Mortality Reporting System by cause, for the first 9 weeks of 1962 and 4 cities.
ft_cause_rpd
ft_cause_rpd
A tibble
.
The original dataset begins in 1962. For each week, in 122 US cities, mortality figures by age group and cause, considered separately, are included (i.e., the combination of age group and cause is not included). In the cause, only a distinction is made between pneumonia or influenza and others.
Two additional dates have been generated, which were not present in the original dataset.
Other mrs example data:
ft_age_rpd
,
ft_age
,
ft_num
,
ft
,
mrs_db_geo
,
mrs_db
,
mrs_ft_new
,
mrs_ft
Selection of 20 rows from the 122 Cities Mortality Reporting System. Measures have been defined as integer values.
ft_num
ft_num
A tibble
.
The original dataset covers from 1962 to 2016. For each week, in 122 US cities, mortality figures by age group and cause, considered separately, are included. In the cause, only a distinction is made between pneumonia or influenza and others.
Other mrs example data:
ft_age_rpd
,
ft_age
,
ft_cause_rpd
,
ft
,
mrs_db_geo
,
mrs_db
,
mrs_ft_new
,
mrs_ft
# The operations to obtain it from the `ft` data set are: ft_num <- ft |> dplyr::mutate(`Pneumonia and Influenza Deaths` = as.integer(`Pneumonia and Influenza Deaths`)) |> dplyr::mutate(`All Deaths` = as.integer(`All Deaths`))
# The operations to obtain it from the `ft` data set are: ft_num <- ft |> dplyr::mutate(`Pneumonia and Influenza Deaths` = as.integer(`Pneumonia and Influenza Deaths`)) |> dplyr::mutate(`All Deaths` = as.integer(`All Deaths`))
Obtain the names of the attributes in a flat table or a dimension in a star database.
## S3 method for class 'flat_table' get_attribute_names(db, name = NULL, ordered = FALSE, as_definition = FALSE) get_attribute_names(db, name, ordered, as_definition) ## S3 method for class 'star_database' get_attribute_names(db, name, ordered = FALSE, as_definition = FALSE)
## S3 method for class 'flat_table' get_attribute_names(db, name = NULL, ordered = FALSE, as_definition = FALSE) get_attribute_names(db, name, ordered, as_definition) ## S3 method for class 'star_database' get_attribute_names(db, name, ordered = FALSE, as_definition = FALSE)
db |
A |
name |
A string, dimension name. |
ordered |
A boolean, sort names alphabetically. |
as_definition |
A boolean, get the names as a vector definition in R. |
If indicated, names can be obtained in alphabetical order or as a vector definition in R
A vector of strings or a string, attribute names.
Other star database and flat table functions:
get_measure_names.flat_table()
,
get_similar_attribute_values.flat_table()
,
get_similar_attribute_values_individually.flat_table()
,
get_unique_attribute_values.flat_table()
,
replace_attribute_values.flat_table()
,
set_attribute_names.flat_table()
,
set_measure_names.flat_table()
,
snake_case.flat_table()
names <- star_database(mrs_cause_schema, ft_num) |> get_attribute_names(name = "where") names <- flat_table('iris', iris) |> get_attribute_names()
names <- star_database(mrs_cause_schema, ft_num) |> get_attribute_names(name = "where") names <- flat_table('iris', iris) |> get_attribute_names()
Obtain the names of the facts of a star database.
get_deployment_names(db) ## S3 method for class 'star_database' get_deployment_names(db)
get_deployment_names(db) ## S3 method for class 'star_database' get_deployment_names(db)
db |
A |
A vector of strings, fact names.
Other star database deployment functions:
cancel_deployment()
,
deploy()
,
load_star_database()
mrs_rdb_file <- tempfile("mrs", fileext = ".rdb") mrs_sqlite_file <- tempfile("mrs", fileext = ".sqlite") mrs_sqlite_connect <- function() { DBI::dbConnect(RSQLite::SQLite(), dbname = mrs_sqlite_file) } mrs_db <- mrs_db |> deploy( name = "mrs", connect = mrs_sqlite_connect, file = mrs_rdb_file ) names <- mrs_db |> get_deployment_names()
mrs_rdb_file <- tempfile("mrs", fileext = ".rdb") mrs_sqlite_file <- tempfile("mrs", fileext = ".sqlite") mrs_sqlite_connect <- function() { DBI::dbConnect(RSQLite::SQLite(), dbname = mrs_sqlite_file) } mrs_db <- mrs_db |> deploy( name = "mrs", connect = mrs_sqlite_connect, file = mrs_rdb_file ) names <- mrs_db |> get_deployment_names()
Obtain the names of the dimensions of a star database.
get_dimension_names(db, star) ## S3 method for class 'star_database' get_dimension_names(db, star = NULL)
get_dimension_names(db, star) ## S3 method for class 'star_database' get_dimension_names(db, star = NULL)
db |
A |
star |
A string or integer, star database name or index in constellation. |
A vector of strings, dimension names.
Other star database definition functions:
get_dimension_table()
,
get_fact_names()
,
get_role_playing_dimension_names()
,
get_table_names()
,
group_dimension_instances()
,
role_playing_dimension()
,
star_database()
names <- star_database(mrs_cause_schema, ft_num) |> get_dimension_names()
names <- star_database(mrs_cause_schema, ft_num) |> get_dimension_names()
Get the table for the dimension indicated by its name.
get_dimension_table(db, name) ## S3 method for class 'star_database' get_dimension_table(db, name = NULL)
get_dimension_table(db, name) ## S3 method for class 'star_database' get_dimension_table(db, name = NULL)
db |
A |
name |
A string, dimension name. |
A tibble
, dimension table.
Other star database definition functions:
get_dimension_names()
,
get_fact_names()
,
get_role_playing_dimension_names()
,
get_table_names()
,
group_dimension_instances()
,
role_playing_dimension()
,
star_database()
table <- star_database(mrs_cause_schema, ft_num) |> get_dimension_table("where")
table <- star_database(mrs_cause_schema, ft_num) |> get_dimension_table("where")
From the planned update, it obtains the instances of the update facts that are already included in the star database facts to be updated.
get_existing_fact_instances(sdbu) ## S3 method for class 'star_database_update' get_existing_fact_instances(sdbu)
get_existing_fact_instances(sdbu) ## S3 method for class 'star_database_update' get_existing_fact_instances(sdbu)
sdbu |
A |
The most common thing is that refresh operations only include new instances in fact tables, but it may be the case that repeated instances appear: They may have different values in the measures, but the same values in the dimension foreign keys. When the update occurs, we need to determine what happens to these instances.
A tibble
object.
Other star database refresh functions:
get_lookup_tables()
,
get_new_dimension_instances()
,
get_star_database()
,
get_star_schema()
,
get_transformation_code()
,
get_transformation_file()
,
incremental_refresh()
,
update_according_to()
f1 <- flat_table('ft_num', ft_cause_rpd[ft_cause_rpd$City != 'Cambridge' & ft_cause_rpd$WEEK != '4',]) |> as_star_database(mrs_cause_schema_rpd) |> role_playing_dimension(rpd = "When", roles = c("When Available", "When Received")) f2 <- flat_table('ft_num2', ft_cause_rpd[ft_cause_rpd$City != 'Bridgeport' & ft_cause_rpd$WEEK != '2',]) f2 <- f2 |> update_according_to(f1) fact_instances <- f2 |> get_existing_fact_instances()
f1 <- flat_table('ft_num', ft_cause_rpd[ft_cause_rpd$City != 'Cambridge' & ft_cause_rpd$WEEK != '4',]) |> as_star_database(mrs_cause_schema_rpd) |> role_playing_dimension(rpd = "When", roles = c("When Available", "When Received")) f2 <- flat_table('ft_num2', ft_cause_rpd[ft_cause_rpd$City != 'Bridgeport' & ft_cause_rpd$WEEK != '2',]) f2 <- f2 |> update_according_to(f1) fact_instances <- f2 |> get_existing_fact_instances()
Obtain the names of the facts of a star database.
get_fact_names(db) ## S3 method for class 'star_database' get_fact_names(db)
get_fact_names(db) ## S3 method for class 'star_database' get_fact_names(db)
db |
A |
A vector of strings, fact names.
Other star database definition functions:
get_dimension_names()
,
get_dimension_table()
,
get_role_playing_dimension_names()
,
get_table_names()
,
group_dimension_instances()
,
role_playing_dimension()
,
star_database()
names <- star_database(mrs_cause_schema, ft_num) |> get_fact_names()
names <- star_database(mrs_cause_schema, ft_num) |> get_fact_names()
For each geoattribute, get its geometries.
get_geoattribute_geometries(db, dimension, attribute) ## S3 method for class 'star_database' get_geoattribute_geometries(db, dimension = NULL, attribute = NULL)
get_geoattribute_geometries(db, dimension, attribute) ## S3 method for class 'star_database' get_geoattribute_geometries(db, dimension = NULL, attribute = NULL)
db |
A |
dimension |
A string, dimension name. |
attribute |
A vector, attribute names. |
If the name of the dimension is not indicated, it is considered the first one that has geoattributes defined.
A vector of strings.
Other star database geographic attributes:
check_geoattribute_geometry()
,
define_geoattribute()
,
get_geoattributes()
,
get_layer_geometry()
,
get_point_geometry()
,
summarize_layer()
db <- mrs_db |> define_geoattribute( dimension = "where", attribute = "state", from_layer = us_layer_state, by = "STUSPS" ) geometries <- db |> get_geoattribute_geometries( dimension = "where", attribute = "state" )
db <- mrs_db |> define_geoattribute( dimension = "where", attribute = "state", from_layer = us_layer_state, by = "STUSPS" ) geometries <- db |> get_geoattribute_geometries( dimension = "where", attribute = "state" )
For each dimension, get a list of available geoattributes.
get_geoattributes(db) ## S3 method for class 'star_database' get_geoattributes(db)
get_geoattributes(db) ## S3 method for class 'star_database' get_geoattributes(db)
db |
A |
A list of dimension geoattributes.
Other star database geographic attributes:
check_geoattribute_geometry()
,
define_geoattribute()
,
get_geoattribute_geometries()
,
get_layer_geometry()
,
get_point_geometry()
,
summarize_layer()
db <- mrs_db |> define_geoattribute( dimension = "where", attribute = "state", from_layer = us_layer_state, by = "STUSPS" ) attributes <- db |> get_geoattributes()
db <- mrs_db |> define_geoattribute( dimension = "where", attribute = "state", from_layer = us_layer_state, by = "STUSPS" ) attributes <- db |> get_geoattributes()
Get the geographic information layer from a geolayer
object.
get_layer(gl, keep_all_variables_na) ## S3 method for class 'geolayer' get_layer(gl, keep_all_variables_na = FALSE)
get_layer(gl, keep_all_variables_na) ## S3 method for class 'geolayer' get_layer(gl, keep_all_variables_na = FALSE)
gl |
A |
keep_all_variables_na |
A boolean, keep rows with all variables NA. |
By default, rows that are NA for all variables are eliminated.
A sf
object.
Other query functions:
as_GeoPackage()
,
as_geolayer()
,
filter_dimension()
,
get_variable_description()
,
get_variables()
,
run_query()
,
select_dimension()
,
select_fact()
,
set_layer()
,
set_variables()
,
star_query()
gl <- mrs_db_geo |> as_geolayer() l <- gl |> get_layer()
gl <- mrs_db_geo |> as_geolayer() l <- gl |> get_layer()
Get the geometry of a layer. It will only be valid if one of the two geometries is interpreted: point or polygon.
get_layer_geometry(layer)
get_layer_geometry(layer)
layer |
A |
A string.
Other star database geographic attributes:
check_geoattribute_geometry()
,
define_geoattribute()
,
get_geoattribute_geometries()
,
get_geoattributes()
,
get_point_geometry()
,
summarize_layer()
geometry <- get_layer_geometry(us_layer_state)
geometry <- get_layer_geometry(us_layer_state)
From the planned update, it obtains the lookup tables used to define the data.
get_lookup_tables(sdbu) ## S3 method for class 'star_database_update' get_lookup_tables(sdbu)
get_lookup_tables(sdbu) ## S3 method for class 'star_database_update' get_lookup_tables(sdbu)
sdbu |
A |
A list of flat_table
objects.
Other star database refresh functions:
get_existing_fact_instances()
,
get_new_dimension_instances()
,
get_star_database()
,
get_star_schema()
,
get_transformation_code()
,
get_transformation_file()
,
incremental_refresh()
,
update_according_to()
f1 <- flat_table('ft_num', ft_cause_rpd) |> as_star_database(mrs_cause_schema_rpd) f2 <- flat_table('ft_num2', ft_cause_rpd) |> update_according_to(f1) ft <- f2 |> get_lookup_tables()
f1 <- flat_table('ft_num', ft_cause_rpd) |> as_star_database(mrs_cause_schema_rpd) f2 <- flat_table('ft_num2', ft_cause_rpd) |> update_according_to(f1) ft <- f2 |> get_lookup_tables()
Obtain the names of the measures in a flat table or in a star database.
## S3 method for class 'flat_table' get_measure_names(db, name = NULL, ordered = FALSE, as_definition = FALSE) get_measure_names(db, name, ordered, as_definition) ## S3 method for class 'star_database' get_measure_names(db, name = NULL, ordered = FALSE, as_definition = FALSE)
## S3 method for class 'flat_table' get_measure_names(db, name = NULL, ordered = FALSE, as_definition = FALSE) get_measure_names(db, name, ordered, as_definition) ## S3 method for class 'star_database' get_measure_names(db, name = NULL, ordered = FALSE, as_definition = FALSE)
db |
A |
name |
A string, dimension name. |
ordered |
A boolean, sort names alphabetically. |
as_definition |
A boolean, get the names as a vector definition in R. |
A vector of strings or a string, measure names.
Other star database and flat table functions:
get_attribute_names.flat_table()
,
get_similar_attribute_values.flat_table()
,
get_similar_attribute_values_individually.flat_table()
,
get_unique_attribute_values.flat_table()
,
replace_attribute_values.flat_table()
,
set_attribute_names.flat_table()
,
set_measure_names.flat_table()
,
snake_case.flat_table()
names <- star_database(mrs_cause_schema, ft_num) |> get_measure_names() names <- flat_table('iris', iris) |> get_measure_names()
names <- star_database(mrs_cause_schema, ft_num) |> get_measure_names() names <- flat_table('iris', iris) |> get_measure_names()
From the planned update, it obtains the instances of the update dimensions that are not included in the star database dimensions to be updated.
get_new_dimension_instances(sdbu) ## S3 method for class 'star_database_update' get_new_dimension_instances(sdbu)
get_new_dimension_instances(sdbu) ## S3 method for class 'star_database_update' get_new_dimension_instances(sdbu)
sdbu |
A |
A list of tibble
objects.
Other star database refresh functions:
get_existing_fact_instances()
,
get_lookup_tables()
,
get_star_database()
,
get_star_schema()
,
get_transformation_code()
,
get_transformation_file()
,
incremental_refresh()
,
update_according_to()
f1 <- flat_table('ft_num', ft_cause_rpd[ft_cause_rpd$City != 'Cambridge' & ft_cause_rpd$WEEK != '4',]) |> as_star_database(mrs_cause_schema_rpd) |> role_playing_dimension(rpd = "When", roles = c("When Available", "When Received")) f2 <- flat_table('ft_num2', ft_cause_rpd[ft_cause_rpd$City != 'Bridgeport' & ft_cause_rpd$WEEK != '2',]) f2 <- f2 |> update_according_to(f1) dim_instances <- f2 |> get_new_dimension_instances()
f1 <- flat_table('ft_num', ft_cause_rpd[ft_cause_rpd$City != 'Cambridge' & ft_cause_rpd$WEEK != '4',]) |> as_star_database(mrs_cause_schema_rpd) |> role_playing_dimension(rpd = "When", roles = c("When Available", "When Received")) f2 <- flat_table('ft_num2', ft_cause_rpd[ft_cause_rpd$City != 'Bridgeport' & ft_cause_rpd$WEEK != '2',]) f2 <- f2 |> update_according_to(f1) dim_instances <- f2 |> get_new_dimension_instances()
Obtain the names of the attributes that form the primary key of a flat table, if defined.
get_pk_attribute_names(ft, as_definition) ## S3 method for class 'flat_table' get_pk_attribute_names(ft, as_definition = FALSE)
get_pk_attribute_names(ft, as_definition) ## S3 method for class 'flat_table' get_pk_attribute_names(ft, as_definition = FALSE)
ft |
A |
as_definition |
A boolean, as the definition of the vector in R. |
A vector of strings or a tibble
, attribute names.
Other flat table join functions:
check_lookup_table()
,
join_lookup_table()
,
lookup_table()
ft <- flat_table('iris', iris) |> lookup_table( measures = c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width"), measure_agg = c('MAX', 'MIN', 'SUM', 'MEAN') ) names <- ft |> get_pk_attribute_names()
ft <- flat_table('iris', iris) |> lookup_table( measures = c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width"), measure_agg = c('MAX', 'MIN', 'SUM', 'MEAN') ) names <- ft |> get_pk_attribute_names()
Obtain point geometry from polygon geometry.
get_point_geometry(layer)
get_point_geometry(layer)
layer |
A |
A sf
object.
Other star database geographic attributes:
check_geoattribute_geometry()
,
define_geoattribute()
,
get_geoattribute_geometries()
,
get_geoattributes()
,
get_layer_geometry()
,
summarize_layer()
layer <- get_point_geometry(us_layer_state)
layer <- get_point_geometry(us_layer_state)
Role playing dimensions are defined in star_databases. When integrating several star_databases to form a constellation, role playing dimensions are also integrated. This function allows you to see the result.
get_role_playing_dimension_names(db) ## S3 method for class 'star_database' get_role_playing_dimension_names(db)
get_role_playing_dimension_names(db) ## S3 method for class 'star_database' get_role_playing_dimension_names(db)
db |
A |
A list of vector of strings with dimension names.
Other star database definition functions:
get_dimension_names()
,
get_dimension_table()
,
get_fact_names()
,
get_table_names()
,
group_dimension_instances()
,
role_playing_dimension()
,
star_database()
db1 <- star_database(mrs_cause_schema_rpd, ft_cause_rpd) |> role_playing_dimension( rpd = "When", roles = c("When Available", "When Received") ) db2 <- star_database(mrs_age_schema_rpd, ft_age_rpd) |> role_playing_dimension( rpd = "When Arrived", roles = c("When Available") ) rpd <- constellation("MRS", db1, db2) |> get_role_playing_dimension_names()
db1 <- star_database(mrs_cause_schema_rpd, ft_cause_rpd) |> role_playing_dimension( rpd = "When", roles = c("When Available", "When Received") ) db2 <- star_database(mrs_age_schema_rpd, ft_age_rpd) |> role_playing_dimension( rpd = "When Arrived", roles = c("When Available") ) rpd <- constellation("MRS", db1, db2) |> get_role_playing_dimension_names()
Get sets of attribute values for individual attributes that differ only by tildes, spaces, or punctuation marks. If no attributes are indicated, all are considered.
## S3 method for class 'flat_table' get_similar_attribute_values_individually( db, name = NULL, attributes = NULL, exclude_numbers = FALSE, col_as_vector = NULL ) get_similar_attribute_values_individually( db, name, attributes, exclude_numbers, col_as_vector ) ## S3 method for class 'star_database' get_similar_attribute_values_individually( db, name = NULL, attributes = NULL, exclude_numbers = FALSE, col_as_vector = NULL )
## S3 method for class 'flat_table' get_similar_attribute_values_individually( db, name = NULL, attributes = NULL, exclude_numbers = FALSE, col_as_vector = NULL ) get_similar_attribute_values_individually( db, name, attributes, exclude_numbers, col_as_vector ) ## S3 method for class 'star_database' get_similar_attribute_values_individually( db, name = NULL, attributes = NULL, exclude_numbers = FALSE, col_as_vector = NULL )
db |
A |
name |
A vector of strings, dimension names. |
attributes |
A vector of strings, attribute names. |
exclude_numbers |
A boolean, exclude numbers from comparison. |
col_as_vector |
A string, name of the column to include a vector of values. |
For star databases, if no dimension name is indicated, all dimensions are considered.
You can indicate that the numbers are ignored to make the comparison.
If a name is indicated in the col_as_vector
parameter, it includes a column
with the data in vector form to be used in other functions.
A vector of tibble
objects with similar instances.
Other star database and flat table functions:
get_attribute_names.flat_table()
,
get_measure_names.flat_table()
,
get_similar_attribute_values.flat_table()
,
get_unique_attribute_values.flat_table()
,
replace_attribute_values.flat_table()
,
set_attribute_names.flat_table()
,
set_measure_names.flat_table()
,
snake_case.flat_table()
instances <- star_database(mrs_cause_schema, ft_num) |> get_similar_attribute_values_individually(name = c("where", "when")) instances <- star_database(mrs_cause_schema, ft_num) |> get_similar_attribute_values_individually() ft <- flat_table('iris', iris) ft$table$Species[20] <- "se.Tosa." ft$table$Species[60] <- "Versicolor" instances <- ft |> get_similar_attribute_values_individually()
instances <- star_database(mrs_cause_schema, ft_num) |> get_similar_attribute_values_individually(name = c("where", "when")) instances <- star_database(mrs_cause_schema, ft_num) |> get_similar_attribute_values_individually() ft <- flat_table('iris', iris) ft$table$Species[20] <- "se.Tosa." ft$table$Species[60] <- "Versicolor" instances <- ft |> get_similar_attribute_values_individually()
Get sets of attribute values that differ only by tildes, spaces, or punctuation marks, for the combination of the given set of attributes. If no attributes are indicated, they are all considered together.
## S3 method for class 'flat_table' get_similar_attribute_values( db, name = NULL, attributes = NULL, exclude_numbers = FALSE, col_as_vector = NULL ) get_similar_attribute_values( db, name, attributes, exclude_numbers, col_as_vector ) ## S3 method for class 'star_database' get_similar_attribute_values( db, name = NULL, attributes = NULL, exclude_numbers = FALSE, col_as_vector = NULL )
## S3 method for class 'flat_table' get_similar_attribute_values( db, name = NULL, attributes = NULL, exclude_numbers = FALSE, col_as_vector = NULL ) get_similar_attribute_values( db, name, attributes, exclude_numbers, col_as_vector ) ## S3 method for class 'star_database' get_similar_attribute_values( db, name = NULL, attributes = NULL, exclude_numbers = FALSE, col_as_vector = NULL )
db |
A |
name |
A string, dimension name. |
attributes |
A vector of strings, attribute names. |
exclude_numbers |
A boolean, exclude numbers from comparison. |
col_as_vector |
A string, name of the column to include a vector of values. |
For star databases, a list of dimensions can be indicated, otherwise it considers all dimensions. If a dimension is indicated, a list of attributes to be considered in it can also be indicated.
You can indicate that the numbers are ignored to make the comparison.
If a name is indicated in the col_as_vector
parameter, it includes a column
with the data in vector form to be used in other functions.
A vector of tibble
objects with similar instances.
Other star database and flat table functions:
get_attribute_names.flat_table()
,
get_measure_names.flat_table()
,
get_similar_attribute_values_individually.flat_table()
,
get_unique_attribute_values.flat_table()
,
replace_attribute_values.flat_table()
,
set_attribute_names.flat_table()
,
set_measure_names.flat_table()
,
snake_case.flat_table()
instances <- star_database(mrs_cause_schema, ft_num) |> get_similar_attribute_values(name = "where") db <- star_database(mrs_cause_schema, ft_num) db$dimensions$where$table$City[2] <- " BrId gEport " instances <- db |> get_similar_attribute_values("where") db <- star_database(mrs_cause_schema, ft_num) db$dimensions$where$table$City[2] <- " BrId gEport " instances <- db |> get_similar_attribute_values("where", attributes = c("City", "State"), col_as_vector = "As a vector") ft <- flat_table('iris', iris) ft$table$Species[20] <- "se.Tosa." ft$table$Species[60] <- "Versicolor" instances <- ft |> get_similar_attribute_values()
instances <- star_database(mrs_cause_schema, ft_num) |> get_similar_attribute_values(name = "where") db <- star_database(mrs_cause_schema, ft_num) db$dimensions$where$table$City[2] <- " BrId gEport " instances <- db |> get_similar_attribute_values("where") db <- star_database(mrs_cause_schema, ft_num) db$dimensions$where$table$City[2] <- " BrId gEport " instances <- db |> get_similar_attribute_values("where", attributes = c("City", "State"), col_as_vector = "As a vector") ft <- flat_table('iris', iris) ft$table$Species[20] <- "se.Tosa." ft$table$Species[60] <- "Versicolor" instances <- ft |> get_similar_attribute_values()
It obtains the star database: For updates, the one defined from the data; for constellations, the one indicated by the parameter.
get_star_database(db, name) ## S3 method for class 'star_database_update' get_star_database(db, name = NULL) ## S3 method for class 'star_database' get_star_database(db, name)
get_star_database(db, name) ## S3 method for class 'star_database_update' get_star_database(db, name = NULL) ## S3 method for class 'star_database' get_star_database(db, name)
db |
A |
name |
A string, star database name (fact name). |
A star_database
object.
Other star database refresh functions:
get_existing_fact_instances()
,
get_lookup_tables()
,
get_new_dimension_instances()
,
get_star_schema()
,
get_transformation_code()
,
get_transformation_file()
,
incremental_refresh()
,
update_according_to()
f1 <- flat_table('ft_num', ft_cause_rpd) |> as_star_database(mrs_cause_schema_rpd) f2 <- flat_table('ft_num2', ft_cause_rpd) |> update_according_to(f1) st <- f2 |> get_star_database() db1 <- star_database(mrs_cause_schema, ft_num) |> snake_case() db2 <- star_database(mrs_age_schema, ft_age) |> snake_case() ct <- constellation("MRS", db1, db2) names <- ct |> get_fact_names() st <- ct |> get_star_database(names[1])
f1 <- flat_table('ft_num', ft_cause_rpd) |> as_star_database(mrs_cause_schema_rpd) f2 <- flat_table('ft_num2', ft_cause_rpd) |> update_according_to(f1) st <- f2 |> get_star_database() db1 <- star_database(mrs_cause_schema, ft_num) |> snake_case() db2 <- star_database(mrs_age_schema, ft_age) |> snake_case() ct <- constellation("MRS", db1, db2) names <- ct |> get_fact_names() st <- ct |> get_star_database(names[1])
From the planned update, it obtains the star schema used to define the data.
get_star_schema(sdbu) ## S3 method for class 'star_database_update' get_star_schema(sdbu)
get_star_schema(sdbu) ## S3 method for class 'star_database_update' get_star_schema(sdbu)
sdbu |
A |
A star_schema
object.
Other star database refresh functions:
get_existing_fact_instances()
,
get_lookup_tables()
,
get_new_dimension_instances()
,
get_star_database()
,
get_transformation_code()
,
get_transformation_file()
,
incremental_refresh()
,
update_according_to()
f1 <- flat_table('ft_num', ft_cause_rpd) |> as_star_database(mrs_cause_schema_rpd) f2 <- flat_table('ft_num2', ft_cause_rpd) |> update_according_to(f1) st <- f2 |> get_star_schema()
f1 <- flat_table('ft_num', ft_cause_rpd) |> as_star_database(mrs_cause_schema_rpd) f2 <- flat_table('ft_num2', ft_cause_rpd) |> update_according_to(f1) st <- f2 |> get_star_schema()
Obtain the table of a flat table.
get_table(ft) ## S3 method for class 'flat_table' get_table(ft)
get_table(ft) ## S3 method for class 'flat_table' get_table(ft)
ft |
A |
A tibble
, the table.
Other flat table definition functions:
as_star_database()
,
flat_table()
,
get_unknown_value_defined()
,
get_unknown_values()
,
read_flat_table_file()
,
read_flat_table_folder()
table <- flat_table('iris', iris) |> get_table()
table <- flat_table('iris', iris) |> get_table()
Obtain the names of the tables of a star database.
get_table_names(db) ## S3 method for class 'star_database' get_table_names(db)
get_table_names(db) ## S3 method for class 'star_database' get_table_names(db)
db |
A |
A vector of strings, table names.
Other star database definition functions:
get_dimension_names()
,
get_dimension_table()
,
get_fact_names()
,
get_role_playing_dimension_names()
,
group_dimension_instances()
,
role_playing_dimension()
,
star_database()
names <- star_database(mrs_cause_schema, ft_num) |> get_table_names()
names <- star_database(mrs_cause_schema, ft_num) |> get_table_names()
From the planned update, it obtains the function with the source code of the transformations performed on the original data in string vector format.
get_transformation_code(sdbu) ## S3 method for class 'star_database_update' get_transformation_code(sdbu)
get_transformation_code(sdbu) ## S3 method for class 'star_database_update' get_transformation_code(sdbu)
sdbu |
A |
A vector of strings.
Other star database refresh functions:
get_existing_fact_instances()
,
get_lookup_tables()
,
get_new_dimension_instances()
,
get_star_database()
,
get_star_schema()
,
get_transformation_file()
,
incremental_refresh()
,
update_according_to()
f1 <- flat_table('ft_num', ft_cause_rpd) |> as_star_database(mrs_cause_schema_rpd) |> replace_attribute_values( name = "When Available", old = c('1962', '11', '1962-03-14'), new = c('1962', '3', '1962-01-15') ) |> group_dimension_instances(name = "When") f2 <- flat_table('ft_num2', ft_cause_rpd) |> update_according_to(f1) code <- f2 |> get_transformation_code()
f1 <- flat_table('ft_num', ft_cause_rpd) |> as_star_database(mrs_cause_schema_rpd) |> replace_attribute_values( name = "When Available", old = c('1962', '11', '1962-03-14'), new = c('1962', '3', '1962-01-15') ) |> group_dimension_instances(name = "When") f2 <- flat_table('ft_num2', ft_cause_rpd) |> update_according_to(f1) code <- f2 |> get_transformation_code()
From the planned update, it obtains the function with the source code of the transformations performed on the original data in file format.
get_transformation_file(sdbu, file) ## S3 method for class 'star_database_update' get_transformation_file(sdbu, file = NULL)
get_transformation_file(sdbu, file) ## S3 method for class 'star_database_update' get_transformation_file(sdbu, file = NULL)
sdbu |
A |
file |
A string, file name. |
A string, file name.
Other star database refresh functions:
get_existing_fact_instances()
,
get_lookup_tables()
,
get_new_dimension_instances()
,
get_star_database()
,
get_star_schema()
,
get_transformation_code()
,
incremental_refresh()
,
update_according_to()
f1 <- flat_table('ft_num', ft_cause_rpd) |> as_star_database(mrs_cause_schema_rpd) |> replace_attribute_values( name = "When Available", old = c('1962', '11', '1962-03-14'), new = c('1962', '3', '1962-01-15') ) |> group_dimension_instances(name = "When") f2 <- flat_table('ft_num2', ft_cause_rpd) |> update_according_to(f1) file <- f2 |> get_transformation_file()
f1 <- flat_table('ft_num', ft_cause_rpd) |> as_star_database(mrs_cause_schema_rpd) |> replace_attribute_values( name = "When Available", old = c('1962', '11', '1962-03-14'), new = c('1962', '3', '1962-01-15') ) |> group_dimension_instances(name = "When") f2 <- flat_table('ft_num2', ft_cause_rpd) |> update_according_to(f1) file <- f2 |> get_transformation_file()
Get unique set of values for the given attributes. If no attributes are indicated, all are considered.
## S3 method for class 'flat_table' get_unique_attribute_values( db, name = NULL, attributes = NULL, col_as_vector = NULL ) get_unique_attribute_values(db, name, attributes, col_as_vector) ## S3 method for class 'star_database' get_unique_attribute_values( db, name = NULL, attributes = NULL, col_as_vector = NULL )
## S3 method for class 'flat_table' get_unique_attribute_values( db, name = NULL, attributes = NULL, col_as_vector = NULL ) get_unique_attribute_values(db, name, attributes, col_as_vector) ## S3 method for class 'star_database' get_unique_attribute_values( db, name = NULL, attributes = NULL, col_as_vector = NULL )
db |
A |
name |
A string, dimension name. |
attributes |
A vector of strings, attribute names. |
col_as_vector |
A string, name of the column to include a vector of values. |
If we work on a star database, a dimension must be indicated.
A vector of tibble
objects with unique instances.
Other star database and flat table functions:
get_attribute_names.flat_table()
,
get_measure_names.flat_table()
,
get_similar_attribute_values.flat_table()
,
get_similar_attribute_values_individually.flat_table()
,
replace_attribute_values.flat_table()
,
set_attribute_names.flat_table()
,
set_measure_names.flat_table()
,
snake_case.flat_table()
instances <- star_database(mrs_cause_schema, ft_num) |> get_unique_attribute_values() instances <- star_database(mrs_cause_schema, ft_num) |> get_unique_attribute_values(name = "where") instances <- star_database(mrs_cause_schema, ft_num) |> get_unique_attribute_values("where", attributes = c("REGION", "State")) instances <- flat_table('iris', iris) |> get_unique_attribute_values()
instances <- star_database(mrs_cause_schema, ft_num) |> get_unique_attribute_values() instances <- star_database(mrs_cause_schema, ft_num) |> get_unique_attribute_values(name = "where") instances <- star_database(mrs_cause_schema, ft_num) |> get_unique_attribute_values("where", attributes = c("REGION", "State")) instances <- flat_table('iris', iris) |> get_unique_attribute_values()
Obtain the unknown value of a flat table.
get_unknown_value_defined(ft) ## S3 method for class 'flat_table' get_unknown_value_defined(ft)
get_unknown_value_defined(ft) ## S3 method for class 'flat_table' get_unknown_value_defined(ft)
ft |
A |
A string.
Other flat table definition functions:
as_star_database()
,
flat_table()
,
get_table()
,
get_unknown_values()
,
read_flat_table_file()
,
read_flat_table_folder()
table <- flat_table('iris', iris) |> get_unknown_value_defined()
table <- flat_table('iris', iris) |> get_unknown_value_defined()
Obtain the instances that have an empty or unknown value in any given attribute. If no attribute is given, all are considered.
get_unknown_values(ft, attributes, col_as_vector) ## S3 method for class 'flat_table' get_unknown_values(ft, attributes = NULL, col_as_vector = NULL)
get_unknown_values(ft, attributes, col_as_vector) ## S3 method for class 'flat_table' get_unknown_values(ft, attributes = NULL, col_as_vector = NULL)
ft |
A |
attributes |
A vector of strings, attribute names. |
col_as_vector |
A string, name of the column to include a vector of values. |
If a name is indicated in the col_as_vector
parameter, it includes a column
with the data in vector form to be used in other functions.
A tibble
with unknown values in instances.
Other flat table definition functions:
as_star_database()
,
flat_table()
,
get_table()
,
get_unknown_value_defined()
,
read_flat_table_file()
,
read_flat_table_folder()
iris2 <- iris iris2[10, 'Species'] <- NA instances <- flat_table('iris', iris2) |> get_unknown_values()
iris2 <- iris iris2[10, 'Species'] <- NA instances <- flat_table('iris', iris2) |> get_unknown_values()
Obtain a description of the variables whose name is indicated. If no name is indicated, all are returned.
get_variable_description(gl, name, only_values) ## S3 method for class 'geolayer' get_variable_description(gl, name = NULL, only_values = FALSE)
get_variable_description(gl, name, only_values) ## S3 method for class 'geolayer' get_variable_description(gl, name = NULL, only_values = FALSE)
gl |
A |
name |
A string vector. |
only_values |
A boolean, add names to component values. |
Using the parameter only_values
, we can obtain only the combination of values
or also the combination of names with values.
A string vector.
Other query functions:
as_GeoPackage()
,
as_geolayer()
,
filter_dimension()
,
get_layer()
,
get_variables()
,
run_query()
,
select_dimension()
,
select_fact()
,
set_layer()
,
set_variables()
,
star_query()
gl <- mrs_db_geo |> as_geolayer() vd <- gl |> get_variable_description()
gl <- mrs_db_geo |> as_geolayer() vd <- gl |> get_variable_description()
The variables layer includes the names and description through various fields of the variables contained in the geolayer.
get_variables(gl) ## S3 method for class 'geolayer' get_variables(gl)
get_variables(gl) ## S3 method for class 'geolayer' get_variables(gl)
gl |
A |
The way to select the variables we want to work with is to filter this layer
and subsequently set it as the object's variables layer using the set_variables()
function.
A tibble
object.
Other query functions:
as_GeoPackage()
,
as_geolayer()
,
filter_dimension()
,
get_layer()
,
get_variable_description()
,
run_query()
,
select_dimension()
,
select_fact()
,
set_layer()
,
set_variables()
,
star_query()
gl <- mrs_db_geo |> as_geolayer() v <- gl |> get_variables()
gl <- mrs_db_geo |> as_geolayer() v <- gl |> get_variables()
After changes in values in the instances of a dimension, groups the instances and, if necessary, also the related facts.
group_dimension_instances(db, name) ## S3 method for class 'star_database' group_dimension_instances(db, name)
group_dimension_instances(db, name) ## S3 method for class 'star_database' group_dimension_instances(db, name)
db |
A |
name |
A string, dimension name. |
A star_database
object.
Other star database definition functions:
get_dimension_names()
,
get_dimension_table()
,
get_fact_names()
,
get_role_playing_dimension_names()
,
get_table_names()
,
role_playing_dimension()
,
star_database()
db <- star_database(mrs_cause_schema, ft_num) |> group_dimension_instances(name = "where")
db <- star_database(mrs_cause_schema, ft_num) |> group_dimension_instances(name = "where")
Incremental update of a star database from the star database generated with the new data.
incremental_refresh(db, sdbu, existing_instances, replace_transformations, ...) ## S3 method for class 'star_database' incremental_refresh( db, sdbu, existing_instances = "ignore", replace_transformations = FALSE, ... )
incremental_refresh(db, sdbu, existing_instances, replace_transformations, ...) ## S3 method for class 'star_database' incremental_refresh( db, sdbu, existing_instances = "ignore", replace_transformations = FALSE, ... )
db |
A |
sdbu |
A |
existing_instances |
A string, operation to be carried out on the instances of already existing facts. The possible values are: "ignore", "replace", "group" and "delete". |
replace_transformations |
A boolean, replace the |
... |
internal test parameters. |
There may be data in the update that already exists in the facts: it is indicated what to do with it, replace it, group it, delete it or ignore it in the update.
If to obtain the update data we have had to perform new transformations (which were not necessary to obtain the star database), we can indicate that these are the new transformation operations for the star database. These operations are not applied to the star database, they will only be applied to new periodic updates.
A star_database
object.
Other star database refresh functions:
get_existing_fact_instances()
,
get_lookup_tables()
,
get_new_dimension_instances()
,
get_star_database()
,
get_star_schema()
,
get_transformation_code()
,
get_transformation_file()
,
update_according_to()
db <- flat_table('ft_num', ft_cause_rpd[ft_cause_rpd$City != 'Cambridge' & ft_cause_rpd$WEEK != '4',]) |> as_star_database(mrs_cause_schema_rpd) |> role_playing_dimension(rpd = "When", roles = c("When Available", "When Received")) f2 <- flat_table('ft_num2', ft_cause_rpd[ft_cause_rpd$City != 'Bridgeport' & ft_cause_rpd$WEEK != '2',]) f2 <- f2 |> update_according_to(db) db <- db |> incremental_refresh(f2)
db <- flat_table('ft_num', ft_cause_rpd[ft_cause_rpd$City != 'Cambridge' & ft_cause_rpd$WEEK != '4',]) |> as_star_database(mrs_cause_schema_rpd) |> role_playing_dimension(rpd = "When", roles = c("When Available", "When Received")) f2 <- flat_table('ft_num2', ft_cause_rpd[ft_cause_rpd$City != 'Bridgeport' & ft_cause_rpd$WEEK != '2',]) f2 <- f2 |> update_according_to(db) db <- db |> incremental_refresh(f2)
To join a flat table with a lookup table, the attributes of the first table that will be used in the operation are indicated. The lookup table must have the primary key previously defined.
join_lookup_table(ft, fk_attributes, lookup) ## S3 method for class 'flat_table' join_lookup_table(ft, fk_attributes = NULL, lookup)
join_lookup_table(ft, fk_attributes, lookup) ## S3 method for class 'flat_table' join_lookup_table(ft, fk_attributes = NULL, lookup)
ft |
A |
fk_attributes |
A vector of strings, attribute names. |
lookup |
A |
If no attributes are indicated, those that form the primary key of the lookup table are considered in the flat table.
A flat_table
object.
Other flat table join functions:
check_lookup_table()
,
get_pk_attribute_names()
,
lookup_table()
lookup <- flat_table('iris', iris) |> lookup_table( measures = c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width"), measure_agg = c('MAX', 'MIN', 'SUM', 'MEAN') ) ft <- flat_table('iris', iris) |> join_lookup_table(lookup = lookup)
lookup <- flat_table('iris', iris) |> lookup_table( measures = c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width"), measure_agg = c('MAX', 'MIN', 'SUM', 'MEAN') ) ft <- flat_table('iris', iris) |> join_lookup_table(lookup = lookup)
Load star_database (from a RDS file)
load_star_database(file)
load_star_database(file)
file |
A string, name of the file that stores the object. |
A star_database
object.
Other star database deployment functions:
cancel_deployment()
,
deploy()
,
get_deployment_names()
mrs_rdb_file <- tempfile("mrs", fileext = ".rdb") mrs_sqlite_file <- tempfile("mrs", fileext = ".sqlite") mrs_sqlite_connect <- function() { DBI::dbConnect(RSQLite::SQLite(), dbname = mrs_sqlite_file) } mrs_db <- mrs_db |> deploy( name = "mrs", connect = mrs_sqlite_connect, file = mrs_rdb_file ) mrs_db2 <- load_star_database(mrs_rdb_file)
mrs_rdb_file <- tempfile("mrs", fileext = ".rdb") mrs_sqlite_file <- tempfile("mrs", fileext = ".sqlite") mrs_sqlite_connect <- function() { DBI::dbConnect(RSQLite::SQLite(), dbname = mrs_sqlite_file) } mrs_db <- mrs_db |> deploy( name = "mrs", connect = mrs_sqlite_connect, file = mrs_rdb_file ) mrs_db2 <- load_star_database(mrs_rdb_file)
Checks that the given attributes form a primary key of the table. Otherwise, group the records so that they form a primary key. To carry out the groupings, aggregation functions for attributes and measures must be provided.
lookup_table( ft, pk_attributes, attributes, attribute_agg, measures, measure_agg ) ## S3 method for class 'flat_table' lookup_table( ft, pk_attributes = NULL, attributes = NULL, attribute_agg = NULL, measures = NULL, measure_agg = NULL )
lookup_table( ft, pk_attributes, attributes, attribute_agg, measures, measure_agg ) ## S3 method for class 'flat_table' lookup_table( ft, pk_attributes = NULL, attributes = NULL, attribute_agg = NULL, measures = NULL, measure_agg = NULL )
ft |
A |
pk_attributes |
A vector of strings, attribute names. |
attributes |
A vector of strings, rest of attribute names. |
attribute_agg |
A vector of strings, attribute aggregation functions. |
measures |
A vector of strings, measure names. |
measure_agg |
A vector of strings, measure aggregation functions. |
If the table does not have measures, attributes with equal values are grouped without the need to indicate a grouping function.
If no attribute is indicated, all the attributes are considered to form the primary key.
A flat_table
object.
Other flat table join functions:
check_lookup_table()
,
get_pk_attribute_names()
,
join_lookup_table()
ft <- flat_table('iris', iris) |> lookup_table( measures = c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width"), measure_agg = c('MAX', 'MIN', 'SUM', 'MEAN') )
ft <- flat_table('iris', iris) |> lookup_table( measures = c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width"), measure_agg = c('MAX', 'MIN', 'SUM', 'MEAN') )
Definition of schemas for facts and dimensions for the Mortality Reporting System considering the age classification.
mrs_age_schema
mrs_age_schema
A star_schema
object.
Dimension schemes can be defined using variables so that you do not have to repeat the definition in several multidimensional designs.
Other mrs example schema:
mrs_age_schema_rpd
,
mrs_cause_schema_rpd
,
mrs_cause_schema
# Defined by: when <- dimension_schema(name = "When", attributes = c("Year")) where <- dimension_schema(name = "Where", attributes = c("REGION", "State", "City")) mrs_age_schema <- star_schema() |> define_facts(name = "MRS Age", measures = c("All Deaths")) |> define_dimension(when) |> define_dimension(where) |> define_dimension(name = "Who", attributes = c("Age"))
# Defined by: when <- dimension_schema(name = "When", attributes = c("Year")) where <- dimension_schema(name = "Where", attributes = c("REGION", "State", "City")) mrs_age_schema <- star_schema() |> define_facts(name = "MRS Age", measures = c("All Deaths")) |> define_dimension(when) |> define_dimension(where) |> define_dimension(name = "Who", attributes = c("Age"))
Definition of schemas for facts and dimensions for the Mortality Reporting System considering the cause classification with additional dates to be used as role playing dimensions..
mrs_age_schema_rpd
mrs_age_schema_rpd
A star_schema
object.
Other mrs example schema:
mrs_age_schema
,
mrs_cause_schema_rpd
,
mrs_cause_schema
# Defined by: mrs_age_schema_rpd <- star_schema() |> define_facts(fact_schema( name = "mrs_age", measures = c( "Deaths" ) )) |> define_dimension(dimension_schema( name = "When", attributes = c( "Year", "WEEK", "Week Ending Date" ) )) |> define_dimension(dimension_schema( name = "When Available", attributes = c( "Data Availability Year", "Data Availability Week", "Data Availability Date" ) )) |> define_dimension(dimension_schema( name = "When Arrived", attributes = c( "Arrival Year", "Arrival Week", "Arrival Date" ) )) |> define_dimension(dimension_schema( name = "Who", attributes = c( "Age Range" ) )) |> define_dimension(dimension_schema( name = "where", attributes = c( "REGION", "State", "City" ) ))
# Defined by: mrs_age_schema_rpd <- star_schema() |> define_facts(fact_schema( name = "mrs_age", measures = c( "Deaths" ) )) |> define_dimension(dimension_schema( name = "When", attributes = c( "Year", "WEEK", "Week Ending Date" ) )) |> define_dimension(dimension_schema( name = "When Available", attributes = c( "Data Availability Year", "Data Availability Week", "Data Availability Date" ) )) |> define_dimension(dimension_schema( name = "When Arrived", attributes = c( "Arrival Year", "Arrival Week", "Arrival Date" ) )) |> define_dimension(dimension_schema( name = "Who", attributes = c( "Age Range" ) )) |> define_dimension(dimension_schema( name = "where", attributes = c( "REGION", "State", "City" ) ))
Definition of schemas for facts and dimensions for the Mortality Reporting System considering the cause classification.
mrs_cause_schema
mrs_cause_schema
A star_schema
object.
Dimension schemes can be defined using variables so that you do not have to repeat the definition in several multidimensional designs.
Other mrs example schema:
mrs_age_schema_rpd
,
mrs_age_schema
,
mrs_cause_schema_rpd
# Defined by: when <- dimension_schema(name = "When", attributes = c("Year")) where <- dimension_schema(name = "Where", attributes = c("REGION", "State", "City")) mrs_cause_schema <- star_schema() |> define_facts(name = "MRS Cause", measures = c("Pneumonia and Influenza Deaths", "All Deaths")) |> define_dimension(when) |> define_dimension(where)
# Defined by: when <- dimension_schema(name = "When", attributes = c("Year")) where <- dimension_schema(name = "Where", attributes = c("REGION", "State", "City")) mrs_cause_schema <- star_schema() |> define_facts(name = "MRS Cause", measures = c("Pneumonia and Influenza Deaths", "All Deaths")) |> define_dimension(when) |> define_dimension(where)
Definition of schemas for facts and dimensions for the Mortality Reporting System considering the cause classification with additional dates to be used as role playing dimensions..
mrs_cause_schema_rpd
mrs_cause_schema_rpd
A star_schema
object.
Other mrs example schema:
mrs_age_schema_rpd
,
mrs_age_schema
,
mrs_cause_schema
# Defined by: mrs_cause_schema_rpd <- star_schema() |> define_facts(fact_schema( name = "mrs_cause", measures = c( "Pneumonia and Influenza Deaths", "All Deaths" ) )) |> define_dimension(dimension_schema( name = "When", attributes = c( "Year", "WEEK", "Week Ending Date" ) )) |> define_dimension(dimension_schema( name = "When Available", attributes = c( "Data Availability Year", "Data Availability Week", "Data Availability Date" ) )) |> define_dimension(dimension_schema( name = "When Received", attributes = c( "Reception Year", "Reception Week", "Reception Date" ) )) |> define_dimension(dimension_schema( name = "where", attributes = c( "REGION", "State", "City" ) ))
# Defined by: mrs_cause_schema_rpd <- star_schema() |> define_facts(fact_schema( name = "mrs_cause", measures = c( "Pneumonia and Influenza Deaths", "All Deaths" ) )) |> define_dimension(dimension_schema( name = "When", attributes = c( "Year", "WEEK", "Week Ending Date" ) )) |> define_dimension(dimension_schema( name = "When Available", attributes = c( "Data Availability Year", "Data Availability Week", "Data Availability Date" ) )) |> define_dimension(dimension_schema( name = "When Received", attributes = c( "Reception Year", "Reception Week", "Reception Date" ) )) |> define_dimension(dimension_schema( name = "where", attributes = c( "REGION", "State", "City" ) ))
The original dataset covers from 1962 to 2016. For each week, in 122 US cities, from the original file, we have stored in the package a file with the same format as the original file but that includes only 1% of its data, selected at random.
mrs_db
mrs_db
A star_database
.
From these data the constellation in the vignette titled 'Obtaining and transforming flat tables' has been generated. This variable contains the defined constellation.
Other mrs example data:
ft_age_rpd
,
ft_age
,
ft_cause_rpd
,
ft_num
,
ft
,
mrs_db_geo
,
mrs_ft_new
,
mrs_ft
The original dataset covers from 1962 to 2016. For each week, in 122 US cities, from the original file, we have stored in the package a file with the same format as the original file but that includes only 1% of its data, selected at random.
mrs_db_geo
mrs_db_geo
A star_database
.
From these data the constellation in the vignette titled 'Obtaining and transforming flat tables' has been generated. This variable contains the defined constellation.
Other mrs example data:
ft_age_rpd
,
ft_age
,
ft_cause_rpd
,
ft_num
,
ft
,
mrs_db
,
mrs_ft_new
,
mrs_ft
# Defined by: sq <- mrs_db |> star_query() |> select_dimension(name = "where", attributes = "state") |> select_dimension(name = "when", attributes = "year") |> select_fact( name = "mrs_age", measures = "all_deaths" ) |> select_fact( name = "mrs_cause", measures = "pneumonia_and_influenza_deaths" ) db <- mrs_db |> run_query(sq) mrs_db_geo <- db |> define_geoattribute( dimension = "where", attribute = "state", from_layer = us_layer_state, by = "STUSPS" )
# Defined by: sq <- mrs_db |> star_query() |> select_dimension(name = "where", attributes = "state") |> select_dimension(name = "when", attributes = "year") |> select_fact( name = "mrs_age", measures = "all_deaths" ) |> select_fact( name = "mrs_cause", measures = "pneumonia_and_influenza_deaths" ) db <- mrs_db |> run_query(sq) mrs_db_geo <- db |> define_geoattribute( dimension = "where", attribute = "state", from_layer = us_layer_state, by = "STUSPS" )
The original dataset covers from 1962 to 2016. For each week, in 122 US cities, from the original file, we have stored in the package a file with the same format as the original file but that includes only 1% of its data, selected at random.
mrs_ft
mrs_ft
A flat_table
.
Other mrs example data:
ft_age_rpd
,
ft_age
,
ft_cause_rpd
,
ft_num
,
ft
,
mrs_db_geo
,
mrs_db
,
mrs_ft_new
The original dataset covers from 1962 to 2016. For each week, in 122 US cities, from the original file, we have stored in the package a file with the same format as the original file but that includes only 0,1% of its data, selected at random to test the incremental refresh.
mrs_ft_new
mrs_ft_new
A flat_table
.
Other mrs example data:
ft_age_rpd
,
ft_age
,
ft_cause_rpd
,
ft_num
,
ft
,
mrs_db_geo
,
mrs_db
,
mrs_ft
Gets the keys that have multiple values associated with them. The first field in the table is the key, the rest of fields are the values.
multiple_value_key(tb, col_as_vector = NULL)
multiple_value_key(tb, col_as_vector = NULL)
tb |
A |
col_as_vector |
A string, name of the column to include a vector of values. |
If a name is indicated in the col_as_vector
parameter, it includes a column
with the data in vector form to be used in other functions.
A tibble
.
tb <- unique(ft[, c('WEEK', 'Week Ending Date')]) mvk <- multiple_value_key(tb)
tb <- unique(ft[, c('WEEK', 'Week Ending Date')]) mvk <- multiple_value_key(tb)
Reads a text file and creates a flat_table
object. The file is expected to
contain a flat table whose first row contains the name of the columns. All
columns are considered to be of type String.
read_flat_table_file(name, file, sep = ",", page = NULL, unknown_value = NULL)
read_flat_table_file(name, file, sep = ",", page = NULL, unknown_value = NULL)
name |
A string, flat table name. |
file |
A string, name of a text file. |
sep |
Column separator character. |
page |
A string, name of the new field in which to include the name of the file. |
unknown_value |
A string, value used to replace empty and NA values in attributes. |
When multiple files are handled, the file name may contain information associated with the flat table, it could be the table page information if the name of a new field in which to store it is indicated in the page parameter.
We can also indicate the value that is used in the data with undefined values.
A flat_table
object.
Other flat table definition functions:
as_star_database()
,
flat_table()
,
get_table()
,
get_unknown_value_defined()
,
get_unknown_values()
,
read_flat_table_folder()
file <- system.file("extdata/mrs", "mrs_122_us_cities_1962_2016_new.csv", package = "rolap") ft <- read_flat_table_file('mrs_new', file)
file <- system.file("extdata/mrs", "mrs_122_us_cities_1962_2016_new.csv", package = "rolap") ft <- read_flat_table_file('mrs_new', file)
Reads all text files in a folder and creates a flat_table
object. Each file
is expected to contain a flat table, all with the same structure, whose first
row contains the name of the columns. All columns are considered to be of type
String.
read_flat_table_folder( name, folder, sep = ",", page = NULL, unknown_value = NULL, same_columns = FALSE, snake_case = FALSE )
read_flat_table_folder( name, folder, sep = ",", page = NULL, unknown_value = NULL, same_columns = FALSE, snake_case = FALSE )
name |
A string, flat table name. |
folder |
A string, folder name. |
sep |
Column separator character. |
page |
A string, name of the new field in which to include the name of the file. |
unknown_value |
A string, value used to replace empty and NA values in attributes. |
same_columns |
A boolean, indicates whether all tables have the same columns in the same order. |
snake_case |
A boolean, indicates if we want to transform the names of the columns to snake case. |
When multiple files are handled, the file name may contain information associated with the flat table, it could be the table page information if the name of a new field in which to store it is indicated.
We can also indicate the value that is used in the data with undefined values.
In some situations all the files have the same structure but the column names may change slightly. In these cases it can be useful to transform the names to snake case or consider for all the files the names of the columns of the first one. These operations can be indicated by the corresponding parameters.
A flat_table
object.
Other flat table definition functions:
as_star_database()
,
flat_table()
,
get_table()
,
get_unknown_value_defined()
,
get_unknown_values()
,
read_flat_table_file()
file <- system.file("extdata/mrs", package = "rolap") ft <- read_flat_table_folder('mrs_new', file)
file <- system.file("extdata/mrs", package = "rolap") ft <- read_flat_table_folder('mrs_new', file)
Delete instances that have all measures undefined.
remove_instances_without_measures(ft) ## S3 method for class 'flat_table' remove_instances_without_measures(ft)
remove_instances_without_measures(ft) ## S3 method for class 'flat_table' remove_instances_without_measures(ft)
ft |
A |
A flat_table
object.
Other flat table transformation functions:
add_custom_column()
,
replace_empty_values()
,
replace_string()
,
replace_unknown_values()
,
select_attributes()
,
select_instances_by_comparison()
,
select_instances()
,
select_measures()
,
separate_measures()
,
transform_attribute_format()
,
transform_from_values()
,
transform_to_attribute()
,
transform_to_measure()
,
transform_to_values()
ft <- flat_table('iris', iris) |> remove_instances_without_measures()
ft <- flat_table('iris', iris) |> remove_instances_without_measures()
Given the values of a possible instance, for that combination, replace them with the new data values.
## S3 method for class 'flat_table' replace_attribute_values(db, name = NULL, attributes = NULL, old, new) replace_attribute_values(db, name, attributes, old, new) ## S3 method for class 'star_database' replace_attribute_values(db, name, attributes = NULL, old, new)
## S3 method for class 'flat_table' replace_attribute_values(db, name = NULL, attributes = NULL, old, new) replace_attribute_values(db, name, attributes, old, new) ## S3 method for class 'star_database' replace_attribute_values(db, name, attributes = NULL, old, new)
db |
A |
name |
A string, dimension name. |
attributes |
A vector of strings, attribute names. |
old |
A vector of values. |
new |
A vector of values. |
A flat_table
or star_database
object.
Other star database and flat table functions:
get_attribute_names.flat_table()
,
get_measure_names.flat_table()
,
get_similar_attribute_values.flat_table()
,
get_similar_attribute_values_individually.flat_table()
,
get_unique_attribute_values.flat_table()
,
set_attribute_names.flat_table()
,
set_measure_names.flat_table()
,
snake_case.flat_table()
db <- star_database(mrs_cause_schema, ft_num) |> replace_attribute_values(name = "where", old = c('1', 'CT', 'Bridgeport'), new = c('1', 'CT', 'Hartford')) db <- star_database(mrs_cause_schema, ft_num) |> replace_attribute_values(name = "where", attributes = c('REGION', 'State'), old = c('1', 'CT'), new = c('2', 'CT')) ft <- flat_table('iris', iris) |> replace_attribute_values( attributes = 'Species', old = c('setosa'), new = c('versicolor') )
db <- star_database(mrs_cause_schema, ft_num) |> replace_attribute_values(name = "where", old = c('1', 'CT', 'Bridgeport'), new = c('1', 'CT', 'Hartford')) db <- star_database(mrs_cause_schema, ft_num) |> replace_attribute_values(name = "where", attributes = c('REGION', 'State'), old = c('1', 'CT'), new = c('2', 'CT')) ft <- flat_table('iris', iris) |> replace_attribute_values( attributes = 'Species', old = c('setosa'), new = c('versicolor') )
Transforms the given attributes by replacing the empty values with the unknown value.
replace_empty_values(ft, attributes, empty_values) ## S3 method for class 'flat_table' replace_empty_values(ft, attributes = NULL, empty_values = NULL)
replace_empty_values(ft, attributes, empty_values) ## S3 method for class 'flat_table' replace_empty_values(ft, attributes = NULL, empty_values = NULL)
ft |
A |
attributes |
A vector of names. |
empty_values |
A vector of values that correspond to empty values. |
In addition to the NA or empty values, those indicated (e.g., "-") can be considered as empty values.
A flat_table
object.
Other flat table transformation functions:
add_custom_column()
,
remove_instances_without_measures()
,
replace_string()
,
replace_unknown_values()
,
select_attributes()
,
select_instances_by_comparison()
,
select_instances()
,
select_measures()
,
separate_measures()
,
transform_attribute_format()
,
transform_from_values()
,
transform_to_attribute()
,
transform_to_measure()
,
transform_to_values()
iris2 <- iris iris2[10, 'Species'] <- NA ft <- flat_table('iris', iris2) |> replace_empty_values()
iris2 <- iris iris2[10, 'Species'] <- NA ft <- flat_table('iris', iris2) |> replace_empty_values()
Transforms the given attributes by replacing the string values with the replacement value.
replace_string(ft, attributes, string, replacement) ## S3 method for class 'flat_table' replace_string(ft, attributes = NULL, string, replacement = NULL)
replace_string(ft, attributes, string, replacement) ## S3 method for class 'flat_table' replace_string(ft, attributes = NULL, string, replacement = NULL)
ft |
A |
attributes |
A vector of strings, attribute names. |
string |
A character string to replace. |
replacement |
A replacement for matched string. |
A flat_table
object.
Other flat table transformation functions:
add_custom_column()
,
remove_instances_without_measures()
,
replace_empty_values()
,
replace_unknown_values()
,
select_attributes()
,
select_instances_by_comparison()
,
select_instances()
,
select_measures()
,
separate_measures()
,
transform_attribute_format()
,
transform_from_values()
,
transform_to_attribute()
,
transform_to_measure()
,
transform_to_values()
ft <- flat_table('iris', iris) |> replace_string( attributes = 'Species', string = c('set'), replacement = c('Set') )
ft <- flat_table('iris', iris) |> replace_string( attributes = 'Species', string = c('set'), replacement = c('Set') )
Transforms the given attributes by replacing unknown values in them with the given value.
replace_unknown_values(ft, attributes, value) ## S3 method for class 'flat_table' replace_unknown_values(ft, attributes = NULL, value)
replace_unknown_values(ft, attributes, value) ## S3 method for class 'flat_table' replace_unknown_values(ft, attributes = NULL, value)
ft |
A |
attributes |
A vector of names. |
value |
A value. |
A flat_table
object.
Other flat table transformation functions:
add_custom_column()
,
remove_instances_without_measures()
,
replace_empty_values()
,
replace_string()
,
select_attributes()
,
select_instances_by_comparison()
,
select_instances()
,
select_measures()
,
separate_measures()
,
transform_attribute_format()
,
transform_from_values()
,
transform_to_attribute()
,
transform_to_measure()
,
transform_to_values()
iris2 <- iris iris2[10, 'Species'] <- NA ft <- flat_table('iris', iris2) |> replace_empty_values() |> replace_unknown_values(value = "Not available")
iris2 <- iris iris2[10, 'Species'] <- NA ft <- flat_table('iris', iris2) |> replace_empty_values() |> replace_unknown_values(value = "Not available")
The same dimension can play several roles in relation to the facts. We can define the main dimension and the dimensions that play different roles.
role_playing_dimension(db, rpd, roles, rpd_att_names, att_names) ## S3 method for class 'star_database' role_playing_dimension(db, rpd, roles, rpd_att_names = FALSE, att_names = NULL)
role_playing_dimension(db, rpd, roles, rpd_att_names, att_names) ## S3 method for class 'star_database' role_playing_dimension(db, rpd, roles, rpd_att_names = FALSE, att_names = NULL)
db |
A |
rpd |
A string, dimension name (role playing dimension). |
roles |
A vector of strings, dimension names (dimension roles). |
rpd_att_names |
A boolean, common attribute names taken from rpd dimension. |
att_names |
A vector of strings, common attribute names. |
As a result, all the dimensions will have the same instances and, if we deem it necessary, also the same name of their attributes (except the surrogate key).
A star_database
object.
Other star database definition functions:
get_dimension_names()
,
get_dimension_table()
,
get_fact_names()
,
get_role_playing_dimension_names()
,
get_table_names()
,
group_dimension_instances()
,
star_database()
s <- star_schema() |> define_facts(fact_schema( name = "mrs_cause", measures = c( "Pneumonia and Influenza Deaths", "All Deaths" ) )) |> define_dimension(dimension_schema( name = "When", attributes = c( "Year", "WEEK", "Week Ending Date" ) )) |> define_dimension(dimension_schema( name = "When Available", attributes = c( "Data Availability Year", "Data Availability Week", "Data Availability Date" ) )) |> define_dimension(dimension_schema( name = "When Received", attributes = c( "Reception Year", "Reception Week", "Reception Date" ) )) |> define_dimension(dimension_schema( name = "where", attributes = c( "REGION", "State", "City" ) )) db <- star_database(s, ft_cause_rpd) |> role_playing_dimension( rpd = "When", roles = c("When Available", "When Received"), rpd_att_names = TRUE ) db <- star_database(s, ft_cause_rpd) |> role_playing_dimension("When", c("When Available", "When Received"), att_names = c("Year", "Week", "Date"))
s <- star_schema() |> define_facts(fact_schema( name = "mrs_cause", measures = c( "Pneumonia and Influenza Deaths", "All Deaths" ) )) |> define_dimension(dimension_schema( name = "When", attributes = c( "Year", "WEEK", "Week Ending Date" ) )) |> define_dimension(dimension_schema( name = "When Available", attributes = c( "Data Availability Year", "Data Availability Week", "Data Availability Date" ) )) |> define_dimension(dimension_schema( name = "When Received", attributes = c( "Reception Year", "Reception Week", "Reception Date" ) )) |> define_dimension(dimension_schema( name = "where", attributes = c( "REGION", "State", "City" ) )) db <- star_database(s, ft_cause_rpd) |> role_playing_dimension( rpd = "When", roles = c("When Available", "When Received"), rpd_att_names = TRUE ) db <- star_database(s, ft_cause_rpd) |> role_playing_dimension("When", c("When Available", "When Received"), att_names = c("Year", "Week", "Date"))
Once we have selected the facts, dimensions and defined the conditions on the instances, we can execute the query to obtain the result.
run_query(db, sq) ## S3 method for class 'star_database' run_query(db, sq)
run_query(db, sq) ## S3 method for class 'star_database' run_query(db, sq)
db |
A |
sq |
A |
As an option, we can indicate if we do not want to unify the facts in the case of having the same grain.
A star_database
object.
Other query functions:
as_GeoPackage()
,
as_geolayer()
,
filter_dimension()
,
get_layer()
,
get_variable_description()
,
get_variables()
,
select_dimension()
,
select_fact()
,
set_layer()
,
set_variables()
,
star_query()
sq <- mrs_db |> star_query() |> select_dimension(name = "where", attributes = c("city", "state")) |> select_dimension(name = "when", attributes = "year") |> select_fact( name = "mrs_age", measures = "all_deaths", agg_functions = "MAX" ) |> select_fact( name = "mrs_cause", measures = c("pneumonia_and_influenza_deaths", "all_deaths") ) |> filter_dimension(name = "when", week <= " 3") |> filter_dimension(name = "where", city == "Bridgeport") mrs_db_2 <- mrs_db |> run_query(sq)
sq <- mrs_db |> star_query() |> select_dimension(name = "where", attributes = c("city", "state")) |> select_dimension(name = "when", attributes = "year") |> select_fact( name = "mrs_age", measures = "all_deaths", agg_functions = "MAX" ) |> select_fact( name = "mrs_cause", measures = c("pneumonia_and_influenza_deaths", "all_deaths") ) |> filter_dimension(name = "when", week <= " 3") |> filter_dimension(name = "where", city == "Bridgeport") mrs_db_2 <- mrs_db |> run_query(sq)
Select only the indicated attributes from the flat table.
select_attributes(ft, attributes) ## S3 method for class 'flat_table' select_attributes(ft, attributes)
select_attributes(ft, attributes) ## S3 method for class 'flat_table' select_attributes(ft, attributes)
ft |
A |
attributes |
A vector of names. |
A flat_table
object.
Other flat table transformation functions:
add_custom_column()
,
remove_instances_without_measures()
,
replace_empty_values()
,
replace_string()
,
replace_unknown_values()
,
select_instances_by_comparison()
,
select_instances()
,
select_measures()
,
separate_measures()
,
transform_attribute_format()
,
transform_from_values()
,
transform_to_attribute()
,
transform_to_measure()
,
transform_to_values()
ft <- flat_table('iris', iris) |> select_attributes(attributes = c('Species')) ft <- flat_table('ft_num', ft_num) |> select_attributes(attributes = c('Year', 'WEEK', 'Week Ending Date'))
ft <- flat_table('iris', iris) |> select_attributes(attributes = c('Species')) ft <- flat_table('ft_num', ft_num) |> select_attributes(attributes = c('Year', 'WEEK', 'Week Ending Date'))
To add a dimension in a star_query
object, we have to define its name and a
subset of the dimension attributes. If only the name of the dimension is
indicated, it is considered that all its attributes should be added.
select_dimension(sq, name, attributes) ## S3 method for class 'star_query' select_dimension(sq, name = NULL, attributes = NULL)
select_dimension(sq, name, attributes) ## S3 method for class 'star_query' select_dimension(sq, name = NULL, attributes = NULL)
sq |
A |
name |
A string, name of the dimension. |
attributes |
A vector of attribute names. |
A star_query
object.
Other query functions:
as_GeoPackage()
,
as_geolayer()
,
filter_dimension()
,
get_layer()
,
get_variable_description()
,
get_variables()
,
run_query()
,
select_fact()
,
set_layer()
,
set_variables()
,
star_query()
sq <- mrs_db |> star_query() |> select_dimension(name = "where", attributes = c("city", "state")) |> select_dimension(name = "when")
sq <- mrs_db |> star_query() |> select_dimension(name = "where", attributes = c("city", "state")) |> select_dimension(name = "when")
To define the fact to be consulted, its name is indicated, optionally, a vector of names of selected measures, another of aggregation functions and another of new names for measures are also indicated.
select_fact(sq, name, measures, agg_functions, new, nrow_agg) ## S3 method for class 'star_query' select_fact( sq, name = NULL, measures = NULL, agg_functions = NULL, new = NULL, nrow_agg = NULL )
select_fact(sq, name, measures, agg_functions, new, nrow_agg) ## S3 method for class 'star_query' select_fact( sq, name = NULL, measures = NULL, agg_functions = NULL, new = NULL, nrow_agg = NULL )
sq |
A |
name |
A string, name of the fact. |
measures |
A vector of measure names. |
agg_functions |
A vector of aggregation function names, each one for its corresponding measure. They can be SUM, MAX or MIN. |
new |
A vector of measure new names. |
nrow_agg |
A string, name of a new measure that represents the COUNT of rows aggregated for each resulting row. |
If there is only one fact table, it is the one that is considered if no name is indicated.
If no aggregation function is given, those defined for the measures are considered.
If no new names are given, the original names will be considered. If the aggregation function is different from the one defined by default, it will be included as a prefix to the name.
A star_query
object.
Other query functions:
as_GeoPackage()
,
as_geolayer()
,
filter_dimension()
,
get_layer()
,
get_variable_description()
,
get_variables()
,
run_query()
,
select_dimension()
,
set_layer()
,
set_variables()
,
star_query()
sq <- mrs_db |> star_query() sq_1 <- sq |> select_fact( name = "mrs_age", measures = "all_deaths", agg_functions = "MAX" ) sq_2 <- sq |> select_fact(name = "mrs_age", measures = "all_deaths") sq_3 <- sq |> select_fact(name = "mrs_age")
sq <- mrs_db |> star_query() sq_1 <- sq |> select_fact( name = "mrs_age", measures = "all_deaths", agg_functions = "MAX" ) sq_2 <- sq |> select_fact(name = "mrs_age", measures = "all_deaths") sq_3 <- sq |> select_fact(name = "mrs_age")
Select only the indicated instances from the flat table.
select_instances(ft, not, attributes, values) ## S3 method for class 'flat_table' select_instances(ft, not = FALSE, attributes = NULL, values)
select_instances(ft, not, attributes, values) ## S3 method for class 'flat_table' select_instances(ft, not = FALSE, attributes = NULL, values)
ft |
A |
not |
A boolean. |
attributes |
A vector of names. |
values |
A list of value vectors. |
Several values can be indicated for attributes (performs an OR operation) or several attributes and a value for each one (performs an AND operation).
If the parameter not
is true, the reported values are those that are not
included.
A flat_table
object.
Other flat table transformation functions:
add_custom_column()
,
remove_instances_without_measures()
,
replace_empty_values()
,
replace_string()
,
replace_unknown_values()
,
select_attributes()
,
select_instances_by_comparison()
,
select_measures()
,
separate_measures()
,
transform_attribute_format()
,
transform_from_values()
,
transform_to_attribute()
,
transform_to_measure()
,
transform_to_values()
ft <- flat_table('iris', iris) |> select_instances(attributes = c('Species'), values = c('versicolor', 'virginica')) ft <- flat_table('ft_num', ft_num) |> select_instances( not = TRUE, attributes = c('Year', 'WEEK'), values = list(c('1962', '2'), c('1964', '2')) )
ft <- flat_table('iris', iris) |> select_instances(attributes = c('Species'), values = c('versicolor', 'virginica')) ft <- flat_table('ft_num', ft_num) |> select_instances( not = TRUE, attributes = c('Year', 'WEEK'), values = list(c('1962', '2'), c('1964', '2')) )
Select only the indicated instances from the flat table by comparison.
select_instances_by_comparison(ft, not, attributes, comparisons, values) ## S3 method for class 'flat_table' select_instances_by_comparison( ft, not = FALSE, attributes = NULL, comparisons, values )
select_instances_by_comparison(ft, not, attributes, comparisons, values) ## S3 method for class 'flat_table' select_instances_by_comparison( ft, not = FALSE, attributes = NULL, comparisons, values )
ft |
A |
not |
A boolean. |
attributes |
A list of name vectors. |
comparisons |
A list of comparison operator vectors. |
values |
A list of value vectors. |
The elements of the three parameter lists correspond (all three must have the same structure and length or be of length 1). AND is performed for each combination of attribute, operator and value within each element of each list and OR between elements of the lists.
If the parameter not
is true, the negation operation will be applied to the
result.
A flat_table
object.
Other flat table transformation functions:
add_custom_column()
,
remove_instances_without_measures()
,
replace_empty_values()
,
replace_string()
,
replace_unknown_values()
,
select_attributes()
,
select_instances()
,
select_measures()
,
separate_measures()
,
transform_attribute_format()
,
transform_from_values()
,
transform_to_attribute()
,
transform_to_measure()
,
transform_to_values()
ft <- flat_table('iris', iris) |> select_instances_by_comparison(attributes = 'Species', comparisons = '>=', values = 'v') ft <- flat_table('ft_num', ft_num) |> select_instances_by_comparison( not = FALSE, attributes = c('Year', 'Year', 'WEEK'), comparisons = c('>=', '<=', '=='), values = c('1962', '1964', '2') ) ft <- flat_table('ft_num', ft_num) |> select_instances_by_comparison( not = FALSE, attributes = c('Year', 'Year', 'WEEK'), comparisons = c('>=', '<=', '=='), values = list(c('1962', '1964', '2'), c('1962', '1964', '4')) )
ft <- flat_table('iris', iris) |> select_instances_by_comparison(attributes = 'Species', comparisons = '>=', values = 'v') ft <- flat_table('ft_num', ft_num) |> select_instances_by_comparison( not = FALSE, attributes = c('Year', 'Year', 'WEEK'), comparisons = c('>=', '<=', '=='), values = c('1962', '1964', '2') ) ft <- flat_table('ft_num', ft_num) |> select_instances_by_comparison( not = FALSE, attributes = c('Year', 'Year', 'WEEK'), comparisons = c('>=', '<=', '=='), values = list(c('1962', '1964', '2'), c('1962', '1964', '4')) )
Select only the indicated measures from the flat table.
select_measures(ft, measures, na_rm) ## S3 method for class 'flat_table' select_measures(ft, measures = NULL, na_rm = TRUE)
select_measures(ft, measures, na_rm) ## S3 method for class 'flat_table' select_measures(ft, measures = NULL, na_rm = TRUE)
ft |
A |
measures |
A vector of names. |
na_rm |
A boolean, remove rows from output where all measure values are NA. |
A flat_table
object.
Other flat table transformation functions:
add_custom_column()
,
remove_instances_without_measures()
,
replace_empty_values()
,
replace_string()
,
replace_unknown_values()
,
select_attributes()
,
select_instances_by_comparison()
,
select_instances()
,
separate_measures()
,
transform_attribute_format()
,
transform_from_values()
,
transform_to_attribute()
,
transform_to_measure()
,
transform_to_values()
ft <- flat_table('iris', iris) |> select_measures(measures = c('Sepal.Length', 'Sepal.Width'))
ft <- flat_table('iris', iris) |> select_measures(measures = c('Sepal.Length', 'Sepal.Width'))
Separate groups of measures into different flat tables. For each group we must indicate a name. If we indicate more names than groups of measures, the measures not included in other groups are also included in a new group.
separate_measures(ft, measures, names, na_rm) ## S3 method for class 'flat_table' separate_measures(ft, measures = NULL, names = NULL, na_rm = TRUE)
separate_measures(ft, measures, names, na_rm) ## S3 method for class 'flat_table' separate_measures(ft, measures = NULL, names = NULL, na_rm = TRUE)
ft |
A |
measures |
A list of string vectors, groups of measure names. |
names |
A list of string, measure group names. |
na_rm |
A boolean, remove rows from output where all measure values are NA. |
A list of flat tables is returned. It assign the names to the result list.
A list of flat_table
objects.
Other flat table transformation functions:
add_custom_column()
,
remove_instances_without_measures()
,
replace_empty_values()
,
replace_string()
,
replace_unknown_values()
,
select_attributes()
,
select_instances_by_comparison()
,
select_instances()
,
select_measures()
,
transform_attribute_format()
,
transform_from_values()
,
transform_to_attribute()
,
transform_to_measure()
,
transform_to_values()
lft <- flat_table('iris', iris) |> separate_measures( measures = list( c('Petal.Length'), c('Petal.Width'), c('Sepal.Length') ), names = c('PL', 'PW', 'SL', 'SW') )
lft <- flat_table('iris', iris) |> separate_measures( measures = list( c('Petal.Length'), c('Petal.Width'), c('Sepal.Length') ), names = c('PL', 'PW', 'SL', 'SW') )
Rename attributes in a flat table or a dimension in a star database.
## S3 method for class 'flat_table' set_attribute_names(db, name = NULL, old = NULL, new) set_attribute_names(db, name, old, new) ## S3 method for class 'star_database' set_attribute_names(db, name, old = NULL, new)
## S3 method for class 'flat_table' set_attribute_names(db, name = NULL, old = NULL, new) set_attribute_names(db, name, old, new) ## S3 method for class 'star_database' set_attribute_names(db, name, old = NULL, new)
db |
A |
name |
A string, dimension name. |
old |
A vector of names. |
new |
A vector of names. |
To rename the attributes there are three possibilities: 1) give only one vector with the new names for all the attributes; 2) a vector of old names and another of new names that must correspond; 3) a vector of new names whose names are the old names they replace.
A flat_table
or star_database
object.
Other star database and flat table functions:
get_attribute_names.flat_table()
,
get_measure_names.flat_table()
,
get_similar_attribute_values.flat_table()
,
get_similar_attribute_values_individually.flat_table()
,
get_unique_attribute_values.flat_table()
,
replace_attribute_values.flat_table()
,
set_measure_names.flat_table()
,
snake_case.flat_table()
db <- star_database(mrs_cause_schema, ft_num) |> set_attribute_names( name = "where", new = c( "Region", "State", "City" ) ) db <- star_database(mrs_cause_schema, ft_num) |> set_attribute_names(name = "where", old = "REGION", new = "Region") new <- "Region" names(new) <- "REGION" db <- star_database(mrs_cause_schema, ft_num) |> set_attribute_names(name = "where", new = new) ft <- flat_table('iris', iris) |> set_attribute_names( old = 'Species', new = 'species') new <- "species" names(new) <- "Species" ft <- flat_table('iris', iris) |> set_attribute_names( new = new)
db <- star_database(mrs_cause_schema, ft_num) |> set_attribute_names( name = "where", new = c( "Region", "State", "City" ) ) db <- star_database(mrs_cause_schema, ft_num) |> set_attribute_names(name = "where", old = "REGION", new = "Region") new <- "Region" names(new) <- "REGION" db <- star_database(mrs_cause_schema, ft_num) |> set_attribute_names(name = "where", new = new) ft <- flat_table('iris', iris) |> set_attribute_names( old = 'Species', new = 'species') new <- "species" names(new) <- "Species" ft <- flat_table('iris', iris) |> set_attribute_names( new = new)
If for some reason we modify the geographic layer, for example, to add a new
calculated variable, we can set that layer to become the new geographic layer
of the geolayer
object using this function.
set_layer(gl, layer) ## S3 method for class 'geolayer' set_layer(gl, layer)
set_layer(gl, layer) ## S3 method for class 'geolayer' set_layer(gl, layer)
gl |
A |
layer |
A |
A geolayer
object.
Other query functions:
as_GeoPackage()
,
as_geolayer()
,
filter_dimension()
,
get_layer()
,
get_variable_description()
,
get_variables()
,
run_query()
,
select_dimension()
,
select_fact()
,
set_variables()
,
star_query()
gl <- mrs_db_geo |> as_geolayer() l <- gl |> get_layer() l$tpc_001 <- l$var_002 * 100 / l$var_001 gl <- gl |> set_layer(l)
gl <- mrs_db_geo |> as_geolayer() l <- gl |> get_layer() l$tpc_001 <- l$var_002 * 100 / l$var_001 gl <- gl |> set_layer(l)
Rename measures in a flat table or in facts in a star database.
## S3 method for class 'flat_table' set_measure_names(db, name = NULL, old = NULL, new) set_measure_names(db, name, old, new) ## S3 method for class 'star_database' set_measure_names(db, name = NULL, old = NULL, new)
## S3 method for class 'flat_table' set_measure_names(db, name = NULL, old = NULL, new) set_measure_names(db, name, old, new) ## S3 method for class 'star_database' set_measure_names(db, name = NULL, old = NULL, new)
db |
A |
name |
A string, fact name. |
old |
A vector of names. |
new |
A vector of names. |
To rename the measures there are three possibilities: 1) give only one vector with the new names for all the measures; 2) a vector of old names and another of new names that must correspond; 3) a vector of new names whose names are the old names they replace.
A flat_table
or star_database
object.
Other star database and flat table functions:
get_attribute_names.flat_table()
,
get_measure_names.flat_table()
,
get_similar_attribute_values.flat_table()
,
get_similar_attribute_values_individually.flat_table()
,
get_unique_attribute_values.flat_table()
,
replace_attribute_values.flat_table()
,
set_attribute_names.flat_table()
,
snake_case.flat_table()
db <- star_database(mrs_cause_schema, ft_num) |> set_measure_names( new = c( "Pneumonia and Influenza", "All", "Rows Aggregated" ) ) ft <- flat_table('iris', iris) |> set_measure_names( old = c('Petal.Length', 'Petal.Width', 'Sepal.Length', 'Sepal.Width'), new = c('pl', 'pw', 'ls', 'sw')) new <- c('pl', 'pw', 'ls', 'sw') names(new) <- c('Petal.Length', 'Petal.Width', 'Sepal.Length', 'Sepal.Width') ft <- flat_table('iris', iris) |> set_measure_names( new = new)
db <- star_database(mrs_cause_schema, ft_num) |> set_measure_names( new = c( "Pneumonia and Influenza", "All", "Rows Aggregated" ) ) ft <- flat_table('iris', iris) |> set_measure_names( old = c('Petal.Length', 'Petal.Width', 'Sepal.Length', 'Sepal.Width'), new = c('pl', 'pw', 'ls', 'sw')) new <- c('pl', 'pw', 'ls', 'sw') names(new) <- c('Petal.Length', 'Petal.Width', 'Sepal.Length', 'Sepal.Width') ft <- flat_table('iris', iris) |> set_measure_names( new = new)
The variables layer includes the names and description through various fields of the variables contained in the reports.
set_variables(gl, variables, keep_all_variables_na) ## S3 method for class 'geolayer' set_variables(gl, variables, keep_all_variables_na = FALSE)
set_variables(gl, variables, keep_all_variables_na) ## S3 method for class 'geolayer' set_variables(gl, variables, keep_all_variables_na = FALSE)
gl |
A |
variables |
A |
keep_all_variables_na |
A boolean, keep rows with all variables NA. |
When we set the variables layer, after filtering it, the data layer is also filtered keeping only the variables from the variables layer.
By default, rows that are NA for all variables are eliminated.
A sf
object.
Other query functions:
as_GeoPackage()
,
as_geolayer()
,
filter_dimension()
,
get_layer()
,
get_variable_description()
,
get_variables()
,
run_query()
,
select_dimension()
,
select_fact()
,
set_layer()
,
star_query()
gl <- mrs_db_geo |> as_geolayer() v <- gl |> get_variables() v <- v |> dplyr::filter(year == '1966' | year == '2016') gl_sel <- gl |> set_variables(v)
gl <- mrs_db_geo |> as_geolayer() v <- gl |> get_variables() v <- v |> dplyr::filter(year == '1966' | year == '2016') gl_sel <- gl |> set_variables(v)
For flat tables, transform attribute and measure names according to the snake case style. For star databases, transform fact, dimension, measures, and attribute names according to the snake case style.
## S3 method for class 'flat_table' snake_case(db) snake_case(db) ## S3 method for class 'star_database' snake_case(db)
## S3 method for class 'flat_table' snake_case(db) snake_case(db) ## S3 method for class 'star_database' snake_case(db)
db |
A |
This style is suitable if we are going to work with databases.
A flat_table
or star_database
object.
Other star database and flat table functions:
get_attribute_names.flat_table()
,
get_measure_names.flat_table()
,
get_similar_attribute_values.flat_table()
,
get_similar_attribute_values_individually.flat_table()
,
get_unique_attribute_values.flat_table()
,
replace_attribute_values.flat_table()
,
set_attribute_names.flat_table()
,
set_measure_names.flat_table()
db <- star_database(mrs_cause_schema, ft_num) |> snake_case() ft <- flat_table('iris', iris) |> snake_case()
db <- star_database(mrs_cause_schema, ft_num) |> snake_case() ft <- flat_table('iris', iris) |> snake_case()
star_database
S3 classA star_database
object is created from a star_schema
object and a flat
table that contains the data from which database instances are derived.
star_database(schema, instances, unknown_value = NULL)
star_database(schema, instances, unknown_value = NULL)
schema |
A |
instances |
A flat table to define the database instances according to the schema. |
unknown_value |
A string, value used to replace NA values in dimensions. |
Measures and measures of the star_schema
must correspond to the names of
the columns of the flat table.
Since NA values cause problems when doing Join operations between tables, you can indicate the value that will be used to replace them before doing these operations. If none is indicated, a default value is taken.
A star_database
object.
Other star database definition functions:
get_dimension_names()
,
get_dimension_table()
,
get_fact_names()
,
get_role_playing_dimension_names()
,
get_table_names()
,
group_dimension_instances()
,
role_playing_dimension()
db <- star_database(mrs_cause_schema, ft_num)
db <- star_database(mrs_cause_schema, ft_num)
star_query
S3 classAn empty star_query
object is created where we can select facts and
measures, dimensions, dimension attributes and filter dimension rows.
star_query(db) ## S3 method for class 'star_database' star_query(db)
star_query(db) ## S3 method for class 'star_database' star_query(db)
db |
A |
A star_query
object.
Other query functions:
as_GeoPackage()
,
as_geolayer()
,
filter_dimension()
,
get_layer()
,
get_variable_description()
,
get_variables()
,
run_query()
,
select_dimension()
,
select_fact()
,
set_layer()
,
set_variables()
sq <- mrs_db |> star_query()
sq <- mrs_db |> star_query()
star_schema
S3 classAn empty star_schema
object is created in which definition of facts
and dimensions can be added.
star_schema()
star_schema()
To get a star database (a star_database
object) we need a flat table
and a star_schema
object. The definition of facts and dimensions in
the star_schema
object is made from the flat table columns.
A star_schema
object.
Other star schema definition functions:
define_dimension()
,
define_facts()
,
dimension_schema()
,
fact_schema()
s <- star_schema()
s <- star_schema()
Groups the geometric elements of a layer according to the values of the indicated attribute.
summarize_layer(layer, attribute)
summarize_layer(layer, attribute)
layer |
A |
attribute |
A string, attribute name. |
A sf
object.
Other star database geographic attributes:
check_geoattribute_geometry()
,
define_geoattribute()
,
get_geoattribute_geometries()
,
get_geoattributes()
,
get_layer_geometry()
,
get_point_geometry()
layer <- summarize_layer(us_layer_state, "REGION")
layer <- summarize_layer(us_layer_state, "REGION")
Transforms numeric attributes adapting their format as indicated.
transform_attribute_format( ft, attributes, width, decimal_places, k_sep, decimal_sep, space_filling ) ## S3 method for class 'flat_table' transform_attribute_format( ft, attributes, width = 1, decimal_places = 0, k_sep = NULL, decimal_sep = NULL, space_filling = TRUE )
transform_attribute_format( ft, attributes, width, decimal_places, k_sep, decimal_sep, space_filling ) ## S3 method for class 'flat_table' transform_attribute_format( ft, attributes, width = 1, decimal_places = 0, k_sep = NULL, decimal_sep = NULL, space_filling = TRUE )
ft |
A |
attributes |
A vector of strings, attribute names. |
width |
An integer, string length. |
decimal_places |
An integer, number of decimal places. |
k_sep |
A character, thousands separator used (It can not be changed). |
decimal_sep |
A character, decimal separator used (It can not be changed). |
space_filling |
A boolean, fill on the left with spaces (with '0' otherwise). |
If a number > 1 is specified in the width
parameter, at least that length
will be obtained in the result, padded with blanks on the left.
ft A flat_table
object.
Other flat table transformation functions:
add_custom_column()
,
remove_instances_without_measures()
,
replace_empty_values()
,
replace_string()
,
replace_unknown_values()
,
select_attributes()
,
select_instances_by_comparison()
,
select_instances()
,
select_measures()
,
separate_measures()
,
transform_from_values()
,
transform_to_attribute()
,
transform_to_measure()
,
transform_to_values()
ft <- flat_table('iris', iris) |> transform_to_attribute(measures = "Sepal.Length", decimal_places = 2) |> transform_attribute_format( attributes = "Sepal.Length", width = 5, decimal_places = 1 )
ft <- flat_table('iris', iris) |> transform_to_attribute(measures = "Sepal.Length", decimal_places = 2) |> transform_attribute_format( attributes = "Sepal.Length", width = 5, decimal_places = 1 )
The values of an attribute will become measure names. There can only be one measure that will be from where the new defined measures take the values.
transform_from_values(ft, attribute) ## S3 method for class 'flat_table' transform_from_values(ft, attribute = NULL)
transform_from_values(ft, attribute) ## S3 method for class 'flat_table' transform_from_values(ft, attribute = NULL)
ft |
A |
attribute |
A string, attribute that stores the measures names. |
A flat_table
object.
Other flat table transformation functions:
add_custom_column()
,
remove_instances_without_measures()
,
replace_empty_values()
,
replace_string()
,
replace_unknown_values()
,
select_attributes()
,
select_instances_by_comparison()
,
select_instances()
,
select_measures()
,
separate_measures()
,
transform_attribute_format()
,
transform_to_attribute()
,
transform_to_measure()
,
transform_to_values()
ft <- flat_table('iris', iris) |> transform_to_values(attribute = 'Characteristic', measure = 'Value', id_reverse = 'id') ft <- ft |> transform_from_values(attribute = 'Characteristic')
ft <- flat_table('iris', iris) |> transform_to_values(attribute = 'Characteristic', measure = 'Value', id_reverse = 'id') ft <- ft |> transform_from_values(attribute = 'Characteristic')
Transform measures into attributes. We can indicate if we want all the numbers in the result to have the same length and the number of decimal places.
transform_to_attribute(ft, measures, width, decimal_places, k_sep, decimal_sep) ## S3 method for class 'flat_table' transform_to_attribute( ft, measures, width = 1, decimal_places = 0, k_sep = ",", decimal_sep = "." )
transform_to_attribute(ft, measures, width, decimal_places, k_sep, decimal_sep) ## S3 method for class 'flat_table' transform_to_attribute( ft, measures, width = 1, decimal_places = 0, k_sep = ",", decimal_sep = "." )
ft |
A |
measures |
A vector of strings, measure names. |
width |
An integer, string length. |
decimal_places |
An integer, number of decimal places. |
k_sep |
A character, indicates thousands separator. |
decimal_sep |
A character, indicates decimal separator. |
If a number > 1 is specified in the width
parameter, at least that length
will be obtained in the result, padded with blanks on the left.
ft A flat_table
object.
Other flat table transformation functions:
add_custom_column()
,
remove_instances_without_measures()
,
replace_empty_values()
,
replace_string()
,
replace_unknown_values()
,
select_attributes()
,
select_instances_by_comparison()
,
select_instances()
,
select_measures()
,
separate_measures()
,
transform_attribute_format()
,
transform_from_values()
,
transform_to_measure()
,
transform_to_values()
ft <- flat_table('iris', iris) |> transform_to_attribute( measures = "Sepal.Length", width = 3, decimal_places = 2 )
ft <- flat_table('iris', iris) |> transform_to_attribute( measures = "Sepal.Length", width = 3, decimal_places = 2 )
Transform attributes into measures.
transform_to_measure(ft, attributes, k_sep, decimal_sep) ## S3 method for class 'flat_table' transform_to_measure(ft, attributes, k_sep = NULL, decimal_sep = NULL)
transform_to_measure(ft, attributes, k_sep, decimal_sep) ## S3 method for class 'flat_table' transform_to_measure(ft, attributes, k_sep = NULL, decimal_sep = NULL)
ft |
A |
attributes |
A vector of strings, attribute names. |
k_sep |
A character, thousands separator to remove. |
decimal_sep |
A character, new decimal separator to use, if necessary. |
We can indicate a thousands indicator to remove and a decimal separator to use. The only decimal separators considered are "." and ",".
ft A flat_table
object.
Other flat table transformation functions:
add_custom_column()
,
remove_instances_without_measures()
,
replace_empty_values()
,
replace_string()
,
replace_unknown_values()
,
select_attributes()
,
select_instances_by_comparison()
,
select_instances()
,
select_measures()
,
separate_measures()
,
transform_attribute_format()
,
transform_from_values()
,
transform_to_attribute()
,
transform_to_values()
ft <- flat_table('iris', iris) |> transform_to_attribute(measures = "Sepal.Length", decimal_places = 2) |> transform_to_measure(attributes = "Sepal.Length", decimal_sep = ".")
ft <- flat_table('iris', iris) |> transform_to_attribute(measures = "Sepal.Length", decimal_places = 2) |> transform_to_measure(attributes = "Sepal.Length", decimal_sep = ".")
Transforms the measure names into values of a new attribute. The values of the measures will become values of the new measure that is indicated.
transform_to_values(ft, attribute, measure, id_reverse, na_rm) ## S3 method for class 'flat_table' transform_to_values( ft, attribute = NULL, measure = NULL, id_reverse = NULL, na_rm = TRUE )
transform_to_values(ft, attribute, measure, id_reverse, na_rm) ## S3 method for class 'flat_table' transform_to_values( ft, attribute = NULL, measure = NULL, id_reverse = NULL, na_rm = TRUE )
ft |
A |
attribute |
A string, new attribute that will store the measures names. |
measure |
A string, new measure that will store the measure value. |
id_reverse |
A string, name of a new attribute that will store the row id. |
na_rm |
A boolean, remove rows from output where the value column is NA. |
If we wanted to perform the reverse operation later using the transform_from_values
function, we would need to uniquely identify each original row. By indicating
a value in the id_reverse
parameter, an identifier is added that will allow
us to always carry out the inverse operation.
A flat_table
object.
Other flat table transformation functions:
add_custom_column()
,
remove_instances_without_measures()
,
replace_empty_values()
,
replace_string()
,
replace_unknown_values()
,
select_attributes()
,
select_instances_by_comparison()
,
select_instances()
,
select_measures()
,
separate_measures()
,
transform_attribute_format()
,
transform_from_values()
,
transform_to_attribute()
,
transform_to_measure()
ft <- flat_table('iris', iris) |> transform_to_values(attribute = 'Characteristic', measure = 'Value') ft <- flat_table('iris', iris) |> transform_to_values(attribute = 'Characteristic', measure = 'Value', id_reverse = 'id')
ft <- flat_table('iris', iris) |> transform_to_values(attribute = 'Characteristic', measure = 'Value') ft <- flat_table('iris', iris) |> transform_to_values(attribute = 'Characteristic', measure = 'Value', id_reverse = 'id')
Update a flat table with the operations of another structure based on a flat table.
update_according_to(ft, sdb, star, sdb_operations) ## S3 method for class 'flat_table' update_according_to(ft, sdb, star = 1, sdb_operations = NULL)
update_according_to(ft, sdb, star, sdb_operations) ## S3 method for class 'flat_table' update_according_to(ft, sdb, star = 1, sdb_operations = NULL)
ft |
A |
sdb |
A |
star |
A string or integer, star database name or index in constellation. |
sdb_operations |
A |
A star_database_update
object.
Other star database refresh functions:
get_existing_fact_instances()
,
get_lookup_tables()
,
get_new_dimension_instances()
,
get_star_database()
,
get_star_schema()
,
get_transformation_code()
,
get_transformation_file()
,
incremental_refresh()
f1 <- flat_table('ft_num', ft_cause_rpd) |> as_star_database(mrs_cause_schema_rpd) |> replace_attribute_values( name = "When Available", old = c('1962', '11', '1962-03-14'), new = c('1962', '3', '1962-01-15') ) |> group_dimension_instances(name = "When") f2 <- flat_table('ft_num2', ft_cause_rpd) |> update_according_to(f1)
f1 <- flat_table('ft_num', ft_cause_rpd) |> as_star_database(mrs_cause_schema_rpd) |> replace_attribute_values( name = "When Available", old = c('1962', '11', '1962-03-14'), new = c('1962', '3', '1962-01-15') ) |> group_dimension_instances(name = "When") f2 <- flat_table('ft_num2', ft_cause_rpd) |> update_according_to(f1)
Census of US States, by sex and age, obtained from the United States Census Bureau (USCB), American Community Survey (ACS). Obtained from the variables defined in reports, classifying the concepts according to the defined subjects.
us_census_state
us_census_state
A tibble
.
U.S. Census Bureau. “Government Units: US and State: Census Years 1942 - 2022.” Public Sector, PUB Public Sector Annual Surveys and Census of Governments, Table CG00ORG01, 2022, https://data.census.gov/table/GOVSTIMESERIES.CG00ORG01?q=census+state+year. Accessed on October 25, 2023.
https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-data.2021.html
Geographic layer with data from the States of the USA in polygon format, with simplified geometry so that it takes up less space.
us_layer_state
us_layer_state
A sf
.
It has been obtained from the geographic data included in the US census prepared by the U.S. Census Bureau.
https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-data.2021.html