
Replication Code For Simulation Studies

Manuel Koller

Abstract

Instructions how to replicate several simulation studies made to study properties
of the robust scoring equations estimator (RSE). All the required code and the
simulation results are included. The code is written in a way that makes sure that
the stored simulation results are still reproduced by the current code.

Keywords: robust statistics, mixed-effects model, hierarchical model, ANOVA, R, crossed,
random effect, simulation study.

1. Introduction

This is a technical document that should make it easy for others to replicate the results
of the simulation studies presented in Koller (2013) and Koller and Stahel (2022). For
the sake of brevity, the full descriptions of the studies are not duplicated here. Please
refer to the cited document. The same goes for the code itself. Instead of printing long
listings here that are not very useful, robustlmm provides a function that opens the the
corresponding script in the user’s editor. All code is implemented in R (R Core Team
2022).

In the next section, we give an overview of the included simulation studies and how to
access the code. In Section 3 we will cover the general structure of the code that is
used to run each simulation study. Section 4 shows a list of R packages that were used
in the simulation studies’ code. The charts for each simulation study are then shown
in turn. Simulation studies that have not been published elsewhere are described in
detail while others are just referenced. Section 5 contains the results for the Sensitivity
curves simulation study, consistency and efficiency for varying tuning parameters of the
ψ-functions in Section 6, breakdown in Section 7, convergence for increasing number
of observations in Section 8, and, robustness and empirical test coverage in Section 9.
Finally, Section 10 shows the output of sessionInfo() that lists all versions of packages
that were loaded when the simulation studies were run.



2 Replication Code For Simulation Studies

2. The code

The code for each simulation study is shipped as script file with robustlmm. To see it,
run a variation of following command in R or click the script name in this document to
open the file on github.

R> robustlmm::viewCopyOfSimulationStudy("sensitivityCurves.R")

This will create a copy of the sensitivityCurves.R script in the local working directory
and open the script for editing and running.
As CRAN does not allow built package archives to be more than 5 MB in size, the
version of the package on CRAN does not contain the full simulation results. Instead,
only aggregated simulation results are included. A version of the package with the full
results is available on github. You can install said version using the following command.

R> remotes::install_github("kollerma/robustlmm", "full-results")

The following simulation studies are provided:

• Section 5: sensitivityCurves.R reproduces Figure 4.1 in Koller (2013) and Fig-
ure 1.1 in Koller and Stahel (2022).

• Section 6: consistencyAndEfficiencyDiagonal.R reproduces Figure 4.2, Fig-
ure 4.3 and Figure 4.4 in Koller (2013).

• Section 6.2: consistencyAndEfficiencyBlockDiagonal.R a previously unpub-
lished simulation study, the analogue of the previous script but for the block diag-
onal case.

• Section 8: convergence.R a previously unpublished simulation study, in which
the effect of increasing sample size is studied.

• Section 7: breakdown.R reproduces Figure 4.5 in Koller (2013).

• Section 9: robustnessDiagonal.R replicates the simulation study in Section 4.2
in Koller and Stahel (2022) (Figure 2 and Figure 3)

• Section 9.2: robustnessBlockDiagonal.R replicates the simulation study in Sec-
tion 4.4 in Koller and Stahel (2022) (Figure 4 and Figure 5).

consistencyAndEfficiencyBlockDiagonal.R and convergence.R have not been pub-
lished elsewhere, so a description of the study and a discussion are included in this
document.

https://github.com/kollerma/robustlmm/blob/master/inst/simulationStudy/sensitivityCurves.R
https://github.com/kollerma/robustlmm/blob/master/inst/simulationStudy/consistencyAndEfficiencyDiagonal.R
https://github.com/kollerma/robustlmm/blob/master/inst/simulationStudy/consistencyAndEfficiencyBlockDiagonal.R
https://github.com/kollerma/robustlmm/blob/master/inst/simulationStudy/convergence.R
https://github.com/kollerma/robustlmm/blob/master/inst/simulationStudy/breakdown.R
https://github.com/kollerma/robustlmm/blob/master/inst/simulationStudy/robustnessDiagonal.R
https://github.com/kollerma/robustlmm/blob/master/inst/simulationStudy/robustnessBlockDiagonal.R
https://github.com/kollerma/robustlmm/blob/master/inst/simulationStudy/consistencyAndEfficiencyBlockDiagonal.R
https://github.com/kollerma/robustlmm/blob/master/inst/simulationStudy/convergence.R


Manuel Koller 3

3. General structure of code for each presented study

All the simulation studies presented here follow the same pattern, consisting, broadly
speaking, of the following four steps:

3.1 Generation of datasets which will be fitted using various methods,

3.2 fitting each dataset using each method and extracting all relevant information from
the fitted models,

3.3 preparing one or more datasets of results suitable for plotting and finally,

3.4 plotting the results.

The robustlmm R package provides a set of methods that cover all of these steps and
make it easy to run a simulation study. Full documentation is available in the help for
each function. The simplest way to get started is probably by working through one of the
scripts that are provided in robustlmm. Each of those scripts is discussed in Section 5
and later.
We will now go though each of the four steps and provide a few pointers how to use the
provided functions.

3.1. Generation of datasets

The methods provided in robustlmm assume that the datasets come in a specific format.
Besides the datasets themselves, one also has to provide all the information that needs
to be passed to each of the fitting functions, e.g., the formula that specifies the model.
There are four functions available in robustlmm:

1. createDatasetsFromList converts a list of generated datasets into the required
format.

2. generateAnovaDatasets create a ANOVA type balanced dataset with a variety
of fixed and random grouping variables.

3. generateMixedEffectDatasets creates datasets using parameterized bootstrap
off a base dataset that was prepared using prepareMixedEffectDataset.

4. generateSensitivityCurveDatasets creates datasets where one or more obser-
vations are changed more and more away from the original values in order to show
how sensitive a method is to changes in the data.



4 Replication Code For Simulation Studies

All the functions produce a list that contains all the ingredients used later on. The
resulting list contains functions that can produce a dataset for a given dataset index and
other functions that are useful to combine multiple datasets together.

createDatasetsFromList is the most flexible way of creating a dataset list, the only
limitation is that one can specify only one formula per dataset list. The trade off for
the flexibility is that createDatasetsFromList is not as memory efficient as the two
generateAnovaDatasets and generateMixedEffectDatasets functions.

Both generateAnovaDatasets and generateMixedEffectDatasets store as little re-
dundant information as possible and only generate the full dataset on demand.

3.2. Fitting each dataset and extracting the relevant information

After the datasets have been simulated / generated, the next step is to apply each of
the methods to each of the datasets. Then results need to be extracted into a memory
efficient form and stored on disk for later re-use.

For each method that should be used for fitting the datasets, one has to provide a
function that takes the dataset list produced in the previous step as the first argument.
robustlmm comes with many pre-defined methods, see ?fitDatasets. These functions
are essentially wrappers that prepare some arguments needed for the fitting function
and then call lapplyDatasets which does the actual work.

The fitted objects are preferably not stored on disk as these are usually very large when
saved. To reduce the amount of disk space required, the fitted objects are passed through
processFit. processFit is a S3 generic function, so it should be easy to add additional
implementations for packages that are not supported by robustlmm already.

Except for debugging, it is usually not needed to call one of the fitDatasets and
processFit functions directly. This is done either by processDatasetsInParallel or
processFile.

For smaller simulation studies that can be run on a single machine, as the ones presented
in this vignette, the function processDatasetsInParallel does all the work. The
datasets are split into chunks and then run in parallel using parLapply of the parallel
package (R Core Team 2022).

Larger simulation studies or more computationally expensive methods may require to
be run on a compute server. This is possible, but requires a bit more work from
the user. First, one has to use saveDatasets to split the full list of datasets into
chunks. For each of the chunks of datasets, a file is created. Second, these files need
to be distributed to each of the computing machines. Third, there the files are pro-
cessed using processFile. Fourth and finally, the collected results are merged using
loadAndMergePartialResults.



Manuel Koller 5

To ensure that the results stay valid over a long period of time (for example when
R or packages are updated), one can repeat this step with checkProcessed set to true.
Then the first dataset is fit using all the methods and the newly produced results are
compared with the stored results. This is also useful to weed out hidden dependencies
on the random number generator seed.
To satisfy even stricter hard disk space limits (such as when submitting a package to
CRAN), the argument createMinimalSaveFile can be used. This creates a file with
the processed results of only the first three generated datasets. This subset of results
can be used to run the code for the next step.

3.3. Prepare results for plotting

The results are stored in a list with several matrices. Using cbind these can be converted
into a data frame.
If the full results are not permanently stored and only the minimal results are kept (see
last paragraph in previous section), this step will have to include some code to load the
aggreated data from disk and verify that the data before aggreation hasn’t changed. It
is good practice to keep running the aggregation code on the partial results anyway.
While this does not protect against all possible problems, this at least will make sure
that the aggregation code is valid code and can be run.

3.4. Plotting the results

This step is entirely up to the user. This vignette uses ggplot2 (Wickham 2016), but
this is just the author’s preference.

4. List of Functions From Other Packages

Several R packages were used to run the simulation studies presented here. Many func-
tions from R ’s base packages (R Core Team 2022) were used – they are not listed
here.
Models were fit using code from robustlmm Koller (2016), lme4 (Bates, Mächler, Bolker,
and Walker 2015), robustvarComp (Agostinelli and Yohai 2019), heavy (no longer on
CRAN) (Osorio and F. 2019), lqmm (Geraci 2014). Support for rlme from rlme (Bilgic,
Susmann, and McKean 2018) is also available, but it was not included in any simulation
studies as all studied datasets were balanced.
The function hubers from MASS (Venables and Ripley 2002) is used to compute ro-
bust mean and scale estimates when aggregating simulation results. The function
geom_pointline from lemon (Edwards 2020) is used to draw lines of type b. Colors



6 Replication Code For Simulation Studies

are taken from palettes provided by RColorBrewer (Neuwirth 2022). The skewed t-
distribution is implemented in skewt (King and Anderson 2021). We ensure file names
are file system compatible using path_sanitize from fs (Hester, Wickham, and Csárdi
2021). The function arrange from dplyr (Wickham, François, Henry, and Müller 2022)
is used to work around a bug in robustvarComp. The function melt from reshape2
(Wickham 2007) is used to convert data.frame from long to wide format. The function
facet_grid2 from ggh4x (van den Brand 2021) is used to create faceted plots in grid
format that all have different y axes.

5. Sensitivity Curves

This section reproduces the Figure 4.1 in Koller (2013) and Figure 1 in Koller and
Stahel (2022). The plots have been defined in sensitivityCurves.R. Method lme cor-
responds to fitDataset_lmer, RSEn to fitDatasets_rlmer_DAStau_noAdj and RSEa
to fitDatasets_rlmer_DAStau.
The plots are shown in Figure 1.

6. Consistency and Efficiency

6.1. Diagonal Case

This section reproduces Figure 4.2, Figure 4.3 and Figure 4.4 in Koller (2013). The
plots have been defined in consistencyAndEfficiencyDiagonal.R. Method lme corre-
sponds to fitDataset_lmer, RSEn to fitDatasets_rlmer_DAStau_noAdj and RSEa
to fitDatasets_rlmer_DAStau. The tuning parameters are set as shown in Table 1.

Table 1: Tuning parameters k used for the smoothed ψ-function, s is always set to 10,
diagonal case.

rho.e 0.5 1.345 2 5
rho.sigma.e (RSEn) 0.5 1.345 2 5
rho.sigma.e (RSEa) 1.47 2.18 2.9 5.03

rho.b 0.5 1.345 2 5
rho.sigma.b 1.47 2.18 2.9 5.03

The plots are shown in Figure 2 and Figure 3.

6.2. Block Diagonal Case

This section contains a previously unpublished simulation study. The study is the ana-

https://github.com/kollerma/robustlmm/blob/master/inst/simulationStudy/sensitivityCurves.R
https://github.com/kollerma/robustlmm/blob/master/inst/simulationStudy/consistencyAndEfficiencyDiagonal.R


Manuel Koller 7

logue of study presented in the previous section, but for a model with a block diagonal
random effects covariance matrix. The study is based upon the Sleep Study dataset
that is also used in Section 9.2. The Sleep Study dataset is available in lme4 (Bates
et al. 2015) and was originally published by Belenky, Wesensten, Thorne, Thomas, Sing,
Redmond, Russo, and Balkin (2003).
The tuning parameters for the smoothed Huber ψ-function used in this study are as
indicated in the charts for rho.e. For rho.sigma.e, the squared robustness weights
are used (psi2propII). For rho.sigma.b the same function is used as for rho.b. The
tuning parameters are set as shown in Table 2.

Table 2: Tuning parameters k used for the smoothed ψ-function, s is always set to 10,
block diagonal case.

rho.e 0.5 1.345 2 5
rho.sigma.e (RSEn) 0.5 1.345 2 5
rho.sigma.e (RSEa) 1.47 2.18 2.9 5.03

rho.b 2.17 5.14 8.44 34.21
rho.sigma.b 2.17 5.14 8.44 34.21

The plots are shown in Figure 4 and Figure 5. The plots have been defined in
consistencyAndEfficiencyBlockDiagonal.R.

Discussion

The results are similar to the diagonal case presented in the previous section. It is crucial
though that the tuning parameters for rho.b and rho.sigma.b are increased, otherwise
the methods are not consistent (as for k = 0.5 where even the larger tuning parameters
are not sufficient). This is because squared Mahalanobis distances are used for blocks
of dimension 2 and larger and not simple residuals or predicted random effects as in the
one dimensional case. The expected values of the distances grows by the dimension of a
block, so one has to adjust tuning parameters per block size.

7. Breakdown

This section reproduces Figure 4.5 in Koller (2013). The plots have been defined in
breakdown.R. Method lme corresponds to fitDataset_lmer, RSEn to
fitDatasets_rlmer_DAStau_noAdj and RSEa to fitDatasets_rlmer_DAStau.
The plot is shown in Figure 6.

8. Convergence

https://github.com/kollerma/robustlmm/blob/master/inst/simulationStudy/consistencyAndEfficiencyBlockDiagonal.R
https://github.com/kollerma/robustlmm/blob/master/inst/simulationStudy/breakdown.R


8 Replication Code For Simulation Studies

This section contains the details on a simulation study we ran to answer a referee’s com-
ment about the convergence of the estimator for increasing sample sizes. The plots have
been defined in convergence.R. Method lme corresponds to fitDataset_lmer, RSEn
to fitDatasets_rlmer_DAStau_noAdj and RSEa to fitDatasets_rlmer_DAStau.

8.1. Setup

We simulated a balanced dataset with varying number of subjects and replicates per
subject. For both, we varied the numbers between 5, 10, 20 and 50. We simulated all
16 combinations. The model we used is

Yhi = β0 + βcontinuousxcontinuous + βbinaryxbinary +Bh + εhi

where xcontinuous is a continuous variable generated by a uniform distribution between 0
and 1, xbinary is a binary variable that takes 0 and 1 with equal probability, εhi ∼ N (0, σ2)
and Bh ∼ N (0, σ2

b ), h = 1, . . . ,nSubject and i = 1, . . . ,nReplicates.
The other simulation settings are chosen as described in sections 1.4 and 1.4.2 of the
manuscript. We show summary statistics (location and scale) computed by using Huber’s
Proposal 2 using hubers as provided by the MASS R package (Venables and Ripley 2002).
We also compute the empirical efficiencies by dividing the scale of the classical estimator
by the scale of the robust estimator.

8.2. Discussion

The simulation results are shown in Figure 7, Figure 8 and Figure 9 for the N/N case
and Figure 10, Figure 11 and Figure 12 for the t3/t3 case.
Except for small differences in the case with just 5 subjects, both the classic estimator
and our proposed method in the manuscript behave in the same way. Our method is
tuned for 95% asymptotic efficiency at the central (N/N) model. The tuning works as
expected and is independent of the number of subjects or replicates within subjects,
as can be seen in the Figure 8. The empirical efficiency shown in Figure 9 reiterates
this point. The RSEa method has been tuned for 95% asymptotic efficiency, and this
efficiency is surpassed most of the time. Only in the 5 subjects / 5 replicates case the
empirical efficiency drops to 80%. The empirical efficiency of RSEn is lower, as it is
tuned for higher robustness for the scale estimates.
The charts for the t3/t3 case shown in Figure 10, Figure 11 and Figure 12 also show
expected behavior. Neither method shows a large bias for the betas as the contamina-
tion is symmetric. Our method shows less bias for σ̂ and σ̂b as expected for a robust
method. The empirical efficiency is higher for our method throughout, except for one
the 5 subjects / 5 replicates case where the empirical efficiency for σ̂b comes out slightly

https://github.com/kollerma/robustlmm/blob/master/inst/simulationStudy/convergence.R


Manuel Koller 9

lower. The higher robustness for the scale estimates pays off with a higher empirical
efficiency for RSEn than RSEa.

9. Robustness and Empirical Test Coverage

9.1. Diagonal Case

This section replicates the simulation study in Section 4.2 in Koller and Stahel (2022)
(Figure 2 and Figure 3). The plots have been defined in robustnessDiagonal.R. Method
lme corresponds to fitDataset_lmer, RSEn to fitDatasets_rlmer_DAStau_noAdj and
RSEa to fitDatasets_rlmer_DAStau.
The plots are shown in Figure 13, Figure 14.

9.2. Block Diagonal Case

This section replicates the simulation study in Section 4.4 in Koller and Stahel (2022)
(Figure 4 and Figure 5). The plots have been defined in robustnessBlockDiagonal.R.
The plots are shown in Figure 15, Figure 16.

https://github.com/kollerma/robustlmm/blob/master/inst/simulationStudy/robustnessDiagonal.R
https://github.com/kollerma/robustlmm/blob/master/inst/simulationStudy/robustnessBlockDiagonal.R


10 Replication Code For Simulation Studies

Figure 1: Sensitivity curves for a balanced one-way dataset with 10 groups of 5 obser-
vations. lme is the classical estimator, RSEn is the RSE estimator for the smoothed
Huber ψ-function where the tuning parameter k for rho.sigma.e is the same as
for rho.e (k = 1.345), similar for rho.sigma.b and rho.b. RSEa is the same as
RSEn, but the tuning parameter for rho.sigma.e and rho.sigma.b are both adjusted
(k = 2.28). Plots from top to bottom correspond to plot_shiftFirstObservation,
plot_shiftFirstGroup, and plot_scaleFirstGroup.

beta0 sigma B.sigma b1

−20 −10 0 10 20 −20 −10 0 10 20 −20 −10 0 10 20 −20 −10 0 10 20
−2

0
2

4.34.44.54.6

3.63.84.04.24.44.6

3.63.84.04.24.4

shift

va
lu

e

Method lme RSEn RSEa

(A) shift of first observation

beta0 sigma B.sigma b1

−20 −10 0 10 20 −20 −10 0 10 20 −20 −10 0 10 20 −20 −10 0 10 20

−2

0

2

4.3

4.4

4.5

4.6

3.6

3.8

4.0

4.2

4.4

4.6

3.6

3.8

4.0

4.2

4.4

shift

va
lu

e

(A) shift of first observation

beta0 sigma B.sigma b1

−20 −10 0 10 20 −20 −10 0 10 20 −20 −10 0 10 20 −20 −10 0 10 20

−10

0

10

20

5

6

7

8

3.6

3.7

3.8

2

3

4

5

6

shift

va
lu

e

(B) shift of first group

beta0 sigma B.sigma b1

0.1 1.0 10.0 0.1 1.0 10.0 0.1 1.0 10.0 0.1 1.0 10.0
−2.5

0.0

2.5

5.0

7.5

10.0

4

5

6

7

8

9

4

6

8

10

4

6

8

10

scale

va
lu

e

(C) scaling of first group



Manuel Koller 11

Figure 2: Mean values and quartiles of 1000 fits of randomly generated, balanced one-
way designs with 20 groups and 20 observations per group. The tuning parameters for
rho.e are shown on the horizontal axis, the corresponding tuning parameters for the
other functions are shown in Table 1. The black line indicates the true values. The
yellow line shows the classical fit (solid: mean, dashed: quartiles). Plot corresponds to
plot_consistencyDiagonal.

theta meanB meanAbsB

beta0 beta1 beta2 log(sigma)

0.5 1.345 2 5 0.5 1.345 2 5 0.5 1.345 2 5

0.5 1.345 2 5

1.30

1.35

1.40

0.4

0.8

1.2

1.6

2.5

3.0

3.5

0.4

0.8

1.2

1.6

−0.4

−0.2

0.0

0.2

0.4

0.0

0.5

1.0

1.5

2.0

0.8

1.0

1.2

k

m
ea

n 
an

d 
qu

ar
til

es

Method

lme

RSEn

RSEa

Figure 3: For the same setup as shown in Figure 2, the empirical efficiencies were
computed. The efficiency was computed on the bias corrected estimates. The parameters
are shown in facet columns, while the rows correspond to the same choice of ψ-functions,
both are indicated in the facet strip. Plot corresponds to plot_efficiencyDiagonal.

log(sigma) theta

beta0 beta1 beta2

0.5 1.345 2 5 0.5 1.345 2 5

0.5 1.345 2 5

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

k

em
pi

ric
al

 e
ffi

ci
en

cy

Method

RSEn

RSEa



12 Replication Code For Simulation Studies

Figure 4: Mean values and quartiles of 1000 fits of parametric bootstrap samples of the
Sleep Study dataset. The tuning parameters for rho.e are shown on the horizontal axis,
the corresponding tuning parameters for the other functions are shown in Table 2. The
black line indicates the true values. The yellow line shows the classical fit (solid: mean,
dashed: quartiles). Plot corresponds to plot_consistencyBlockDiagonal.

b1 sd b corr meanB meanAbsB

beta0 beta1 log(sigma) b0 sd

0.5 1.345 2 5 0.5 1.345 2 5 0.5 1.345 2 5 0.5 1.345 2 5

0.5

0.7

0.9

1.1

7

8

9

10

11

12

3.10

3.15

3.20

3.25

3.30

−0.3

0.0

0.3

0.6

9.5

10.0

10.5

11.0

0.00

0.04

0.08

0.12

247.5

250.0

252.5

255.0

0.20

0.25

k

m
ea

n 
an

d 
qu

ar
til

es

Method lme RSEn RSEa

Figure 5: For the same setup as shown in Figure 4, the empirical efficiencies were
computed. The efficiency was computed on the bias corrected estimates. The
parameters are shown in facet columns, while the rows correspond to the same
choice of ψ-functions, both are indicated in the facet strip. Plot corresponds to
plot_efficiencyBlockDiagonal.

b0 sd b1 sd

beta0 beta1 log(sigma)

0.5 1.345 2 5 0.5 1.345 2 5

0.5 1.345 2 5

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

k

em
pi

ric
al

 e
ffi

ci
en

cy

Method

RSEn

RSEa



Manuel Koller 13

Figure 6: Example of breakdown for a one-way random model with 20 groups and 5
observations per group. Group after group, one observation after another was replaced
by its absolute value multiplied by 106. lme is the classical estimator, RSEn is the
RSE estimator for the smoothed Huber ψ-function where the tuning parameter k for
rho.sigma.e is the same as for rho.e (k = 1.345), similar for rho.sigma.b and rho.b.
RSEa is the same as RSEn, but the tuning parameter for rho.sigma.e and rho.sigma.b
are both adjusted (k = 2.28). Plot corresponds to plot_breakdown.

theta b1

beta sigma

0.00 0.05 0.10 0.15 0.00 0.05 0.10 0.15

0.1

1.0

10.0

100.0

0.1

1.0

10.0

100.0

amount of contamination epsilon

va
lu

e



14 Replication Code For Simulation Studies

Figure 7: Convergence simulation study, N/N case, bias, estimated as the robust mean
computed using Huber’s Proposal 2 from 1000 fits. lme is the classical estimator, RSEn is
the RSE estimator for the smoothed Huber ψ-function where the tuning parameter k for
rho.sigma.e is the same as for rho.e (k = 1.345), similar for rho.sigma.b and rho.b.
RSEa is the same as RSEn, but the tuning parameter for rho.sigma.e and rho.sigma.b
are both adjusted (k = 2.28). Plot corresponds to plot_convergence_N_N_bias.

Intercept beta.continuous beta.binary sigma B.sigma

5
10

20
50

5 10 20 50 5 10 20 50 5 10 20 50 5 10 20 50 5 10 20 50

0.85

0.90

0.95

1.00

0.85

0.90

0.95

1.00

0.85

0.90

0.95

1.00

0.85

0.90

0.95

1.00

numberOfSubjects

Lo
ca

tio
n

numberOfReplicates 5 10 20 50 Method lme RSEn RSEa



Manuel Koller 15

Figure 8: For the same setup as shown in Figure 7, but showing the robust scale. Plot
corresponds to plot_convergence_N_N_scale.

sigma B.sigma

Intercept beta.continuous beta.binary

5 10 20 50 5 10 20 50

5 10 20 50

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

numberOfSubjects

S
ca

le

numberOfReplicates 5 10 20 50 Method lme RSEn RSEa



16 Replication Code For Simulation Studies

Figure 9: For the same setup as shown in Figure 7, but showing the empirical efficiency,
computed by dividing the scale of the classical estimator by the one of the robust esti-
mator. Plot corresponds to plot_convergence_N_N_efficiency.

sigma B.sigma

Intercept beta.continuous beta.binary

5 10 20 50 5 10 20 50

5 10 20 50
0.80

0.85

0.90

0.95

1.00

0.80

0.85

0.90

0.95

1.00

numberOfSubjects

E
m

pi
ric

al
 e

ffi
ci

en
cy

Method RSEn RSEa numberOfReplicates 5 10 20 50



Manuel Koller 17

Figure 10: Convergence simulation study, t3/t3 case, bias, estimated as the robust mean
computed using Huber’s Proposal 2 from 1000 fits. lme is the classical estimator, RSEn is
the RSE estimator for the smoothed Huber ψ-function where the tuning parameter k for
rho.sigma.e is the same as for rho.e (k = 1.345), similar for rho.sigma.b and rho.b.
RSEa is the same as RSEn, but the tuning parameter for rho.sigma.e and rho.sigma.b
are both adjusted (k = 2.28). Plot corresponds to plot_convergence_t3_t3_bias.

Intercept beta.continuous beta.binary sigma B.sigma

5
10

20
50

5 10 20 50 5 10 20 50 5 10 20 50 5 10 20 50 5 10 20 50

1.0

1.1

1.2

1.3

1.4

1.0

1.1

1.2

1.3

1.4

1.0

1.1

1.2

1.3

1.4

1.0

1.1

1.2

1.3

1.4

numberOfSubjects

Lo
ca

tio
n

numberOfReplicates 5 10 20 50 Method lme RSEn RSEa



18 Replication Code For Simulation Studies

Figure 11: For the same setup as shown in Figure 10, but showing the robust scale. Plot
corresponds to plot_convergence_t3_t3_scale.

sigma B.sigma

Intercept beta.continuous beta.binary

5 10 20 50 5 10 20 50

5 10 20 50

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

numberOfSubjects

S
ca

le

numberOfReplicates 5 10 20 50 Method lme RSEn RSEa



Manuel Koller 19

Figure 12: For the same setup as shown in Figure 10, but showing the empirical effi-
ciency, computed by dividing the scale of the classical estimator by the one of the robust
estimator. Plot corresponds to plot_convergence_t3_t3_efficiency.

sigma B.sigma

Intercept beta.continuous beta.binary

5 10 20 50 5 10 20 50

5 10 20 50

1

2

3

4

1

2

3

4

numberOfSubjects

E
m

pi
ric

al
 e

ffi
ci

en
cy

Method RSEn RSEa numberOfReplicates 5 10 20 50



20 Replication Code For Simulation Studies

Figure 13: Simulation results for the diagonal case. The left column shows a robust
location estimate of the simulated estimates for the diverse methods and the five param-
eters β0, β1, β2, σ, σb. The true values are indicated by gray horizontal lines. Deviations
from them thus represent biases. The right column shows robust scale parameters—
measures of simulated standard errors—in an analogous way. Plot corresponds to
plot_robustnessDiagonal.

location scale

beta0
beta1

beta2
sigm

a
B

.sigm
a

N/N N/CN CN/N CN/CN t3/t3 skt3/skt3 N/N N/CN CN/N CN/CN t3/t3 skt3/skt3

1.50

1.75

2.00

2.25

2.50

0.8

0.9

1.0

1.1

1.2

0.8

0.9

1.0

1.1

1.2

0.2

0.4

0.6

0.8

1.0

1.5

2.0

0.5

1.0

1.5

2.0

2.5

0.99

1.02

1.05

1.08

0.96

1.00

1.04

4.0

4.5

5.0

5.5

3.0

3.5

4.0

va
lu

e

Method lme RSEa RSEn cTau S



Manuel Koller 21

Figure 14: Simulation results for the diagonal case showing empirical coverage probabil-
ities for the intercept β0 (left), β1 (middle) and β2 (right). The expected level of 0.95 is
shown by a gray line. Plot corresponds to plot_coverageDiagonal.

beta0 beta1 beta2

N/N N/CN CN/NCN/CN t3/t3skt3/skt3 N/N N/CN CN/NCN/CN t3/t3skt3/skt3 N/N N/CN CN/NCN/CN t3/t3skt3/skt3

0.875

0.900

0.925

0.950

0.975

co
ve

ra
ge

 p
ro

ba
bi

lit
y

Method lme RSEa RSEn cTau S



22 Replication Code For Simulation Studies

Figure 15: Simulation results for the block-diagonal case, shown as in Figure 13. Plot
corresponds to plot_robustnessBlockDiagonal.

location scale

beta0
beta1

sigm
a

B
0.sigm

a
B

1.sigm
a

B
.corr

N/N N/CN CN/N CN/CN t3/t3 skt3/skt3 N/N N/CN CN/N CN/CN t3/t3 skt3/skt3

8

10

12

1.5

2.0

2.5

3.0

2

3

4

5

6

7.5

10.0

12.5

15.0

2

3

0.4

0.5

0.6

255

260

10.5

11.0

11.5

12.0

25

30

35

40

20

25

30

6

7

8

9

0.0

0.1

0.2

va
lu

e

Method lme RSEa RSEn cTau S



Manuel Koller 23

Figure 16: Simulated distribution of estimates in the block-diagonal case. The green
horizontal line marks the true value. Plot corresponds to plot_violinBlockDiagonal.

N/N N/CN CN/N CN/CN t3/t3 skt3/skt3

beta0
beta1

sigm
a

B
0.sigm

a
B

1.sigm
a

B
.corr

lm
e

R
S

E
a

R
S

E
n

cT
au S

lm
e

R
S

E
a

R
S

E
n

cT
au S

lm
e

R
S

E
a

R
S

E
n

cT
au S

lm
e

R
S

E
a

R
S

E
n

cT
au S

lm
e

R
S

E
a

R
S

E
n

cT
au S

lm
e

R
S

E
a

R
S

E
n

cT
au S

250

300

0

10

20

30

50

100

0

100

200

0

20

40

60

−1.0

−0.5

0.0

0.5

1.0

va
lu

e



24 Replication Code For Simulation Studies

10. Session Info

• R version 4.2.1 (2022-06-23), aarch64-apple-darwin20

• Running under: macOS Monterey 12.4

• Matrix products: default

• BLAS: /Library/Frameworks/R.framework/Versions/4.2-arm64/
Resources/lib/libRblas.0.dylib

• LAPACK: /Library/Frameworks/R.framework/Versions/4.2-arm64/
Resources/lib/libRlapack.dylib

• Base packages: base, datasets, graphics, grDevices, methods, stats, utils

• Other packages: lme4 1.1-29, Matrix 1.4-1, robustlmm 3.0

• Loaded via a namespace (and not attached): boot 1.3-28, cellWise 2.2.6, cli 3.3.0,
codetools 0.2-18, colorspace 2.0-3, compiler 4.2.1, crayon 1.5.1, DEoptimR 1.0-11,
dplyr 1.0.9, ellipsis 0.3.2, emmeans 1.7.5, estimability 1.3, fansi 1.0.3,
fastGHQuad 1.0.1, fit.models 0.64, generics 0.1.3, ggplot2 3.3.6, glue 1.6.2,
grid 4.2.1, gridExtra 2.3, GSE 4.2, gtable 0.3.0, heavy 0.38.196, lattice 0.20-45,
lifecycle 1.0.1, lqmm 1.5.8, magrittr 2.0.3, MASS 7.3-57, matrixStats 0.62.0,
minqa 1.2.4, munsell 0.5.0, mvtnorm 1.1-3, nlme 3.1-158, nloptr 2.0.3,
numDeriv 2016.8-1.1, parallel 4.2.1, pcaPP 2.0-1, pillar 1.7.0, pkgconfig 2.0.3,
plyr 1.8.7, purrr 0.3.4, R6 2.5.1, Rcpp 1.0.8.3, reshape2 1.4.4, rlang 1.0.3,
robust 0.7-0, robustbase 0.95-0, robustvarComp 0.1-5, rrcov 1.7-0, scales 1.2.0,
SparseGrid 0.8.2, splines 4.2.1, stats4 4.2.1, stringi 1.7.6, stringr 1.4.0, svd 0.5.1,
tibble 3.1.7, tidyselect 1.1.2, tools 4.2.1, utf8 1.2.2, vctrs 0.4.1, xtable 1.8-4

References

Agostinelli C, Yohai VJ (2019). robustvarComp: Robust estimation for Variance Compo-
nent Models. R package version 0.1-5, URL https://CRAN.R-project.org/package=
robustvarComp.

Bates D, Mächler M, Bolker B, Walker S (2015). “Fitting Linear Mixed-Effects Models
Using lme4.” Journal of Statistical Software, 67(1), 1–48. doi:10.18637/jss.v067.
i01.

https://CRAN.R-project.org/package=robustvarComp
https://CRAN.R-project.org/package=robustvarComp
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01


Manuel Koller 25

Belenky G, Wesensten NJ, Thorne DR, Thomas ML, Sing HC, Redmond DP, Russo
MB, Balkin TJ (2003). “Patterns of Performance Degradation and Restoration During
Sleep Restriction and Subsequent Recovery: A Sleep Dose-response Study.” Journal
of Sleep Research, 12, 1–12.

Bilgic Y, Susmann H, McKean J (2018). rlme: Rank-Based Estimation and Pre-
diction in Random Effects Nested Models. R package version 0.5, URL https:
//CRAN.R-project.org/package=rlme.

Edwards SM (2020). lemon: Freshing Up your ’ggplot2’ Plots. R package version 0.4.5,
URL https://CRAN.R-project.org/package=lemon.

Geraci M (2014). “Linear Quantile Mixed Models: The lqmm Package for Laplace
Quantile Regression.” Journal of Statistical Software, 57(13), 1–29. doi:10.18637/
jss.v057.i13.

Hester J, Wickham H, Csárdi G (2021). fs: Cross-Platform File System Operations Based
on ’libuv’. R package version 1.5.2, URL https://CRAN.R-project.org/package=fs.

King R, Anderson E (2021). skewt: The Skewed Student-t Distribution. R package
version 1.0, URL https://CRAN.R-project.org/package=skewt.

Koller M (2013). “Robust Estimation of Linear Mixed Models.” Diss., ETH Zürich,
Nr. 20997, 2013, URL http://e-collection.library.ethz.ch/eserv/eth:6670/
eth-6670-02.pdf?pid=eth:6670&dsID=eth-6670-02.pdf.

Koller M (2016). “robustlmm: An R Package for Robust Estimation of Linear Mixed-
Effects Models.” Journal of Statistical Software, 75(6), 1–24. doi:10.18637/jss.
v075.i06.

Koller M, Stahel WA (2022). “Robust Estimation of General Linear Mixed Effects Mod-
els.” In PM Yi, PK Nordhausen (eds.), Robust and Multivariate Statistical Methods.
Springer Nature Switzerland AG.

Neuwirth E (2022). RColorBrewer: ColorBrewer Palettes. R package version 1.1-3, URL
https://CRAN.R-project.org/package=RColorBrewer.

Osorio, F (2019). heavy: Robust estimation using heavy-tailed distributions. R package
version 0.38.196, URL https://CRAN.R-project.org/package=heavy.

R Core Team (2022). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. URL https://www.
R-project.org/.

https://CRAN.R-project.org/package=rlme
https://CRAN.R-project.org/package=rlme
https://CRAN.R-project.org/package=lemon
https://doi.org/10.18637/jss.v057.i13
https://doi.org/10.18637/jss.v057.i13
https://CRAN.R-project.org/package=fs
https://CRAN.R-project.org/package=skewt
http://e-collection.library.ethz.ch/eserv/eth:6670/eth-6670- 02.pdf?pid=eth:6670&dsID=eth-6670-02.pdf
http://e-collection.library.ethz.ch/eserv/eth:6670/eth-6670- 02.pdf?pid=eth:6670&dsID=eth-6670-02.pdf
https://doi.org/10.18637/jss.v075.i06
https://doi.org/10.18637/jss.v075.i06
https://CRAN.R-project.org/package=RColorBrewer
https://CRAN.R-project.org/package=heavy
https://www.R-project.org/
https://www.R-project.org/


26 Replication Code For Simulation Studies

van den Brand T (2021). ggh4x: Hacks for ’ggplot2’. R package version 0.2.1, URL
https://CRAN.R-project.org/package=ggh4x.

Venables WN, Ripley BD (2002). Modern Applied Statistics with S. Fourth edition.
Springer, New York. ISBN 0-387-95457-0, URL https://www.stats.ox.ac.uk/pub/
MASS4/.

Wickham H (2007). “Reshaping Data with the reshape Package.” Journal of Statistical
Software, 21(12), 1–20. URL http://www.jstatsoft.org/v21/i12/.

Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New
York. ISBN 978-3-319-24277-4. URL https://ggplot2.tidyverse.org.

Wickham H, François R, Henry L, Müller K (2022). dplyr: A Grammar of Data Manipu-
lation. R package version 1.0.9, URL https://CRAN.R-project.org/package=dplyr.

Affiliation:
Manuel Koller
E-mail: kollerma@proton.me

https://CRAN.R-project.org/package=ggh4x
https://www.stats.ox.ac.uk/pub/MASS4/
https://www.stats.ox.ac.uk/pub/MASS4/
http://www.jstatsoft.org/v21/i12/
https://ggplot2.tidyverse.org
https://CRAN.R-project.org/package=dplyr
mailto:kollerma@proton.me

	Introduction
	The code
	General structure of code for each presented study
	Generation of datasets
	Fitting each dataset and extracting the relevant information
	Prepare results for plotting
	Plotting the results

	List of Functions From Other Packages
	Sensitivity Curves
	Consistency and Efficiency
	Diagonal Case
	Block Diagonal Case
	Discussion


	Breakdown
	Convergence
	Setup
	Discussion

	Robustness and Empirical Test Coverage
	Diagonal Case
	Block Diagonal Case

	Session Info

