Package 'robStepSplitReg'

Title: Robust Stepwise Split Regularized Regression
Description: Functions to perform robust stepwise split regularized regression. The approach first uses a robust stepwise algorithm to split the variables into the models of an ensemble. An adaptive robust regularized estimator is then applied to each subset of predictors in the models of an ensemble.
Authors: Anthony Christidis [aut, cre], Gabriela Cohen-Freue [aut]
Maintainer: Anthony Christidis <[email protected]>
License: GPL (>= 2)
Version: 1.1.0
Built: 2024-11-02 06:35:05 UTC
Source: CRAN

Help Index


Coefficients for robStepSplitReg Object

Description

coef.robStepSplitReg returns the coefficients for a robStepSplitReg object.

Usage

## S3 method for class 'robStepSplitReg'
coef(object, group_index = NULL, ...)

Arguments

object

An object of class robStepSplitReg

group_index

Groups included in the ensemble. Default setting includes all the groups.

...

Additional arguments for compatibility.

Value

The coefficients for the robStepSplitReg object.

Author(s)

Anthony-Alexander Christidis, [email protected]

See Also

robStepSplitReg

Examples

# Required library
library(mvnfast)

# Simulation parameters
n <- 50
p <- 500
rho <- 0.5
p.active <- 100
snr <- 1
contamination.prop <- 0.2

# Setting the seed
set.seed(0)

# Simulation of beta vector
true.beta <- c(runif(p.active, 0, 5)*(-1)^rbinom(p.active, 1, 0.7), rep(0, p - p.active))

# Simulation of uncontaminated data 
sigma.mat <- matrix(0, nrow = p, ncol = p)
sigma.mat[1:p.active, 1:p.active] <- rho
diag(sigma.mat) <- 1
x <- mvnfast::rmvn(n, mu = rep(0, p), sigma = sigma.mat)
sigma <- as.numeric(sqrt(t(true.beta) %*% sigma.mat %*% true.beta)/sqrt(snr))
y <- x %*% true.beta + rnorm(n, 0, sigma)

# Contamination of data 
contamination_indices <- 1:floor(n*contamination.prop)
k_lev <- 2
k_slo <- 100
x_train <- x
y_train <- y
beta_cont <- true.beta
beta_cont[true.beta!=0] <- beta_cont[true.beta!=0]*(1 + k_slo)
beta_cont[true.beta==0] <- k_slo*max(abs(true.beta))
for(cont_id in contamination_indices){
  
  a <- runif(p, min = -1, max = 1)
  a <- a - as.numeric((1/p)*t(a) %*% rep(1, p))
  x_train[cont_id,] <- mvnfast::rmvn(1, rep(0, p), 0.1^2*diag(p)) + 
    k_lev * a / as.numeric(sqrt(t(a) %*% solve(sigma.mat) %*% a))
  y_train[cont_id] <- t(x_train[cont_id,]) %*% beta_cont
}

# Ensemble models
ensemble_fit <- robStepSplitReg(x_train, y_train,
                                n_models = 5,
                                model_saturation = c("fixed", "p-value")[1],
                                alpha = 0.05, model_size = n - 1,
                                robust = TRUE,
                                compute_coef = TRUE,
                                en_alpha = 1/4)

# Ensemble coefficients
ensemble_coefs <- coef(ensemble_fit, group_index = 1:ensemble_fit$n_models)
sens_ensemble <- sum(which((ensemble_coefs[-1]!=0)) <= p.active)/p.active
spec_ensemble <- sum(which((ensemble_coefs[-1]!=0)) <= p.active)/sum(ensemble_coefs[-1]!=0)

# Simulation of test data
m <- 2e3
x_test <- mvnfast::rmvn(m, mu = rep(0, p), sigma = sigma.mat)
y_test <- x_test %*% true.beta + rnorm(m, 0, sigma)

# Prediction of test samples
ensemble_preds <- predict(ensemble_fit, newx = x_test, 
                          group_index = 1:ensemble_fit$n_models,
                          dynamic = FALSE)
mspe_ensemble <- mean((y_test - ensemble_preds)^2)/sigma^2

Predictions for robStepSplitReg Object

Description

predict.robStepSplitReg returns the predictions for a robStepSplitReg object.

Usage

## S3 method for class 'robStepSplitReg'
predict(object, newx, group_index = NULL, dynamic = FALSE, ...)

Arguments

object

An object of class robStepSplitReg

newx

New data for predictions.

group_index

Groups included in the ensemble. Default setting includes all the groups.

dynamic

Argument to determine whether dynamic predictions are used based on deviating cells. Default is FALSE.

...

Additional arguments for compatibility.

Value

The predictions for the robStepSplitReg object.

Author(s)

Anthony-Alexander Christidis, [email protected]

See Also

robStepSplitReg

Examples

# Required library
library(mvnfast)

# Simulation parameters
n <- 50
p <- 500
rho <- 0.5
p.active <- 100
snr <- 1
contamination.prop <- 0.2

# Setting the seed
set.seed(0)

# Simulation of beta vector
true.beta <- c(runif(p.active, 0, 5)*(-1)^rbinom(p.active, 1, 0.7), rep(0, p - p.active))

# Simulation of uncontaminated data 
sigma.mat <- matrix(0, nrow = p, ncol = p)
sigma.mat[1:p.active, 1:p.active] <- rho
diag(sigma.mat) <- 1
x <- mvnfast::rmvn(n, mu = rep(0, p), sigma = sigma.mat)
sigma <- as.numeric(sqrt(t(true.beta) %*% sigma.mat %*% true.beta)/sqrt(snr))
y <- x %*% true.beta + rnorm(n, 0, sigma)

# Contamination of data 
contamination_indices <- 1:floor(n*contamination.prop)
k_lev <- 2
k_slo <- 100
x_train <- x
y_train <- y
beta_cont <- true.beta
beta_cont[true.beta!=0] <- beta_cont[true.beta!=0]*(1 + k_slo)
beta_cont[true.beta==0] <- k_slo*max(abs(true.beta))
for(cont_id in contamination_indices){
  
  a <- runif(p, min = -1, max = 1)
  a <- a - as.numeric((1/p)*t(a) %*% rep(1, p))
  x_train[cont_id,] <- mvnfast::rmvn(1, rep(0, p), 0.1^2*diag(p)) + 
    k_lev * a / as.numeric(sqrt(t(a) %*% solve(sigma.mat) %*% a))
  y_train[cont_id] <- t(x_train[cont_id,]) %*% beta_cont
}

# Ensemble models
ensemble_fit <- robStepSplitReg(x_train, y_train,
                                n_models = 5,
                                model_saturation = c("fixed", "p-value")[1],
                                alpha = 0.05, model_size = n - 1,
                                robust = TRUE,
                                compute_coef = TRUE,
                                en_alpha = 1/4)

# Ensemble coefficients
ensemble_coefs <- coef(ensemble_fit, group_index = 1:ensemble_fit$n_models)
sens_ensemble <- sum(which((ensemble_coefs[-1]!=0)) <= p.active)/p.active
spec_ensemble <- sum(which((ensemble_coefs[-1]!=0)) <= p.active)/sum(ensemble_coefs[-1]!=0)

# Simulation of test data
m <- 2e3
x_test <- mvnfast::rmvn(m, mu = rep(0, p), sigma = sigma.mat)
y_test <- x_test %*% true.beta + rnorm(m, 0, sigma)

# Prediction of test samples
ensemble_preds <- predict(ensemble_fit, newx = x_test, 
                          group_index = 1:ensemble_fit$n_models,
                          dynamic = FALSE)
mspe_ensemble <- mean((y_test - ensemble_preds)^2)/sigma^2

Robust Stepwise Split Regularized Regression

Description

robStepSplitReg performs robust stepwise split regularized regression.

Usage

robStepSplitReg(
  x,
  y,
  n_models = 1,
  model_saturation = c("fixed", "p-value")[1],
  alpha = 0.05,
  model_size = NULL,
  robust = TRUE,
  compute_coef = FALSE,
  en_alpha = 1/4
)

Arguments

x

Design matrix.

y

Response vector.

n_models

Number of models into which the variables are split.

model_saturation

Criterion to determine if a model is saturated. Must be one of "fixed" (default) or "p-value".

alpha

P-value used to determine when the model is saturated

model_size

Size of the models in the ensemble.

robust

Argument to determine if robust measures of location, scale and correlation are used. Default is TRUE.

compute_coef

Argument to determine if coefficients are computed (via adaptive PENSE) for each model. Default is FALSE.

en_alpha

Elastic net mixing parmeter for parameters shrinkage. Default is 1/4.

Value

An object of class robStepSplitReg.

Author(s)

Anthony-Alexander Christidis, [email protected]

See Also

coef.robStepSplitReg, predict.robStepSplitReg

Examples

# Required library
library(mvnfast)

# Simulation parameters
n <- 50
p <- 500
rho <- 0.5
p.active <- 100
snr <- 1
contamination.prop <- 0.2

# Setting the seed
set.seed(0)

# Simulation of beta vector
true.beta <- c(runif(p.active, 0, 5)*(-1)^rbinom(p.active, 1, 0.7), rep(0, p - p.active))

# Simulation of uncontaminated data 
sigma.mat <- matrix(0, nrow = p, ncol = p)
sigma.mat[1:p.active, 1:p.active] <- rho
diag(sigma.mat) <- 1
x <- mvnfast::rmvn(n, mu = rep(0, p), sigma = sigma.mat)
sigma <- as.numeric(sqrt(t(true.beta) %*% sigma.mat %*% true.beta)/sqrt(snr))
y <- x %*% true.beta + rnorm(n, 0, sigma)

# Contamination of data 
contamination_indices <- 1:floor(n*contamination.prop)
k_lev <- 2
k_slo <- 100
x_train <- x
y_train <- y
beta_cont <- true.beta
beta_cont[true.beta!=0] <- beta_cont[true.beta!=0]*(1 + k_slo)
beta_cont[true.beta==0] <- k_slo*max(abs(true.beta))
for(cont_id in contamination_indices){
  
  a <- runif(p, min = -1, max = 1)
  a <- a - as.numeric((1/p)*t(a) %*% rep(1, p))
  x_train[cont_id,] <- mvnfast::rmvn(1, rep(0, p), 0.1^2*diag(p)) + 
    k_lev * a / as.numeric(sqrt(t(a) %*% solve(sigma.mat) %*% a))
  y_train[cont_id] <- t(x_train[cont_id,]) %*% beta_cont
}

# Ensemble models
ensemble_fit <- robStepSplitReg(x_train, y_train,
                                n_models = 5,
                                model_saturation = c("fixed", "p-value")[1],
                                alpha = 0.05, model_size = n - 1,
                                robust = TRUE,
                                compute_coef = TRUE,
                                en_alpha = 1/4)

# Ensemble coefficients
ensemble_coefs <- coef(ensemble_fit, group_index = 1:ensemble_fit$n_models)
sens_ensemble <- sum(which((ensemble_coefs[-1]!=0)) <= p.active)/p.active
spec_ensemble <- sum(which((ensemble_coefs[-1]!=0)) <= p.active)/sum(ensemble_coefs[-1]!=0)

# Simulation of test data
m <- 2e3
x_test <- mvnfast::rmvn(m, mu = rep(0, p), sigma = sigma.mat)
y_test <- x_test %*% true.beta + rnorm(m, 0, sigma)

# Prediction of test samples
ensemble_preds <- predict(ensemble_fit, newx = x_test, 
                          group_index = 1:ensemble_fit$n_models,
                          dynamic = FALSE)
mspe_ensemble <- mean((y_test - ensemble_preds)^2)/sigma^2