Package: rnetcarto (via r-universe)

October 8, 2024

Type Package

tle Fast Network Modularity and Roles Computation by Simulated Annealing (Rgraph C Library Wrapper for R)								
Version 0.2.6								
Description Provides functions to compute the modularity and modularity-related roles in networks. It is a wrapper around the rgraph library (Guimera & Amaral, 2005, <doi:10.1038 nature03288="">).</doi:10.1038>								
License GPL (>= 2)								
Encoding UTF-8								
LazyLoad no								
SystemRequirements GNU GSL								
NeedsCompilation yes								
Suggests testthat, knitr, rmarkdown, igraph								
VignetteBuilder knitr								
RoxygenNote 7.2.1								
Author Daniel B. Stouffer [cre, aut, ths] (Maintainer), Guilhem Doulcier [aut] (R bindings, current implementation of the simulated annealing algorithm), Roger Guimera [ctb] (Author of the original rgraph library)								
Maintainer Daniel B. Stouffer <daniel.stouffer@canterbury.ac.nz></daniel.stouffer@canterbury.ac.nz>								
Repository CRAN								
Date/Publication 2023-01-16 21:50:02 UTC								
Contents								
rnetcarto	2							
Index	3							

2 rnetcarto

~	n	\sim	t.	^	1	~	+	^
		С	ι.	ι.	а	•		

Computes modularity and modularity roles from a network.

Description

Compute modularity and modularity roles for graphs using simulated annealing

Usage

```
netcarto(
  web,
  seed = as.integer(floor(runif(1, 1, 100000001))),
  iterfac = 1,
  coolingfac = 0.995,
  bipartite = FALSE
)
```

Arguments

web network either as a square adjacency matrix or a list describing E interactions

a->b: the first (resp. second) element is the vector of the labels of a (resp. b),

the third (optional) is the vector of interaction weights.

seed Seed for the random number generator: Must be a positive integer.

iterfac At each temperature of the simulated annealing (SA), the program performs

fN² individual-node updates (involving the movement of a single node from one module to another) and fN collective updates (involving the merging of two

modules and the split of a module). The number "f" is the iteration factor.

coolingfac Temperature cooling factor.

bipartite If True use the bipartite definition of modularity.

Value

A list. The first element is a dataframe with the name, module, z-score, and participation coefficient for each row of the input matrix. The second element is the modularity of this partition.

Examples

```
# Generate a simple random network
a = matrix(as.integer(runif(100)<.3), ncol=10)
a[lower.tri(a)] = 0
# Find an optimal partition for modularity using netcarto.
netcarto(a)</pre>
```

Index

netcarto (rnetcarto), 2 rnetcarto, 2