Title: | Wrapper for MUMPS Library |
---|---|
Description: | Some basic features of 'MUMPS' (Multifrontal Massively Parallel sparse direct Solver) are wrapped in a class whose methods can be used for sequentially solving a sparse linear system (symmetric or not) with one or many right hand sides (dense or sparse). There is a possibility to do separately symbolic analysis, LU (or LDL^t) factorization and system solving. Third part ordering libraries are included and can be used: 'PORD', 'METIS', 'SCOTCH'. 'MUMPS' method was first described in Amestoy et al. (2001) <doi:10.1137/S0895479899358194> and Amestoy et al. (2006) <doi:10.1016/j.parco.2005.07.004>. |
Authors: | Serguei Sokol [aut, cre], Emmanuel Agullo [ctb], Patrick Amestoy [ctb, cph], Maurice Bremond [ctb], Alfredo Buttari [ctb], Philippe Combes [ctb], Marie Durand [ctb], Aurelia Fevre [ctb], Abdou Guermouche [ctb], Guillaume Joslin [ctb], Jacko Koster [ctb], Jean-Yves L'Excellent [ctb], Stephane Pralet [ctb], Chiara Puglisi [ctb], Francois-Henry Rouet [ctb], Wissam Sid-Lakhdar [ctb], Tzvetomila Slavova [ctb], Bora Ucar [ctb], Clement Weisbecker [ctb], Juergen Schulze [ctb], George Karypis [ctb], Douglas C. Schmidt [ctb], Isamu Hasegawa [ctb], Alexander Chemeris [ctb], Makoto Matsumoto [ctb], Takuji Nishimura [ctb], Francois Pellegrini [ctb], David Goudin [ctb], Pascal Henon [ctb], Pierre Ramet [ctb], Sebastien Fourestier [ctb], Jun-Ho Her [ctb], Cedric Chevalier [ctb], Timothy A. Davis [ctb, cph], Iain S. Duff [ctb, cph], John K. Reid [ctb, cph], Richard Stallman [ctb], Samuel Thibault [ctb, cph], CERFACS [cph], CNRS [cph], ENS Lyon [cph], INP Toulouse [cph], INRIA [cph], University of Bordeaux [cph], Regents of the University of Minnesota [cph], Free Software Foundation, Inc [cph], Alexander Chemeris [cph], Makoto Matsumoto [cph], Takuji Nishimura [cph], Universite de Bordeaux [cph], CNRS [cph], INSA [cph], INRAE [cph] |
Maintainer: | Serguei Sokol <[email protected]> |
License: | GPL (>= 2) |
Version: | 5.2.1-30 |
Built: | 2024-11-12 06:53:42 UTC |
Source: | CRAN |
Creates a MUMPS compatible object storing a sparse matrix. Gives a possibility to do separately symbolic analysis, factorization and system solving.
Create a new Rmumps object with A <- Rmumps$new(asparse)
then solve a
linear system with one or many right hand sides x <- solve(A, b)
.
Cf. Rmumps
Serguei Sokol, INRA
Maintainer: Serguei Sokol (sokol at insa-toulouse.fr)
MUMPS official site http://mumps.enseeiht.fr
Sokol S (2024). _Rmumps: Rcpp port of MUMPS_. rmumps package version 5.2.1-29, <URL: http://CRAN.R-project.org/package=rmumps>.
## Not run: A <- Rmumps$new(asparse) x <- solve(A, b) ## End(Not run)
## Not run: A <- Rmumps$new(asparse) x <- solve(A, b) ## End(Not run)
This class can be used for storing sparse matrix and solving corresponding linear system with one or many right hand sides. There is a possibility to do separately symbolic analysis, LU factorization and system solving.
sym
:integer (read only), 0=non symmetric matrix, 1=symmetric with pivots on diagonal or 2=general symmetric
copy
:logical, copy or not rhs and matrix values
mrhs
:numeric matrix, multiple rhs (always overwritten with solution)
rhs
:numeric vector, single rhs (always overwritten with solution)
new(asp, sym=0, copy=TRUE)
:constructor from Matrix::dgTMatrix class (or from convertible to it) and slam::simple_triplet_matrix class
new(i, j, x, n, copy=TRUE)
:constructor from triade rows, cols, vals
symbolic()
:do symbolic analysis (stored internally)
numeric()
:do LU or LDL^t factorization (stored internally)
solve(b)
:solve single rhs (if b is a vector) or multiple rhs if b is a matrix (can be dense or sparse). Return the solution(s).
solvet(b)
:same as solve() but solves with transposed matrix
det()
:Return determinant of the matrix
inv()
:Return inverse of the matrix)
set_mat_data(x)
:updates matrix entries (x must be in the same order as in previous calls
set_icntl(iv, ii)
:set ICNTL parameter vector
get_icntl()
:get ICNTL parameter vector
set_cntl(v, iv)
:set CNTL parameter vector
get_cntl()
:get CNTL parameter vector
get_infos()
:get a named list of information vectors: info, rinfo, infog and rinfog
dim()
:Return a dimension vector of the matrix
nrow()
:Return a row number of the matrix
ncol()
:Return a column number of the matrix
print()
:Print summary information on the matrix
show()
:Print summary information on the matrix
set_keep()
:Set KEEP array elements (undocumented feature of MUMPS)
get_keep()
:Get a copy of KEEP array elements (length=500)
set_permutation(perm)
:Set permutation type which can impact storage and factorization performances. Parameter perm can take one of the following predefined integer values RMUMPS_PERM_AMD, RMUMPS_PERM_AMF, RMUMPS_PERM_SCOTCH, RMUMPS_PERM_PORD, RMUMPS_PERM_METIS, RMUMPS_PERM_QAMD. This method should be called once and before symbolic analysis of the matrix. If it is called afterward, a new symbolic and numeric factorization will be performed when one of other methods (e.g. solve()) will request them. In other words, previous symbolic and numeric factorizations are canceled by this method.
get_permutation()
:get permutation type currently set in the object
mumps_version()
:Return a string with MUMPS version used in rmumps
When creating a symmetric matrix (sym=1 or sym=2), the upper (or lower) mart of the input matrix must be zeroed.
For meaning of entries in MUMPS vectors cntl, icntl, info, rinfo, infog and rinfog cf. original documentation of MUMPS project.
No need to call symbolic() and numeric() methods before a solve() call.
If in constructor, a parameter copy
is set to FALSE, no rhs neither matrix copying is done.
The solution is written "in place" thus overwriting rhs (watch out side effects)
For a detailed error diagnostic (e.g. when factorizing a singular matrix), use method get_infos() and cf. MUMPS documentation on the official MUMPS site).
Serguei Sokol, INRA
MUMPS official site http://mumps.enseeiht.fr
Sokol S (2020). _Rmumps: Rcpp port of MUMPS_. rmumps package version 5.2.1-X, <URL: http://CRAN.R-project.org/package=rmumps>.
## Not run: # prepare random sparse matrix library(Matrix) library(rmumps) n=2000 a=Matrix(0, n, n) set.seed(7) ij=sample(1:(n*n), 15*n) a[ij]=runif(ij) diag(a)=0 diag(a)=-rowSums(a) a[1,1]=a[1,1]-1 am=Rmumps$new(a) b=as.double(a%*%(1:n)) # rhs for an exact solution vector 1:n # following time includes symbolic analysis, LU factorization and system solving system.time(x<-solve(am, b)) bb=2*b # this second time should be much shorter # as symbolic analysis and LU factorization are already done system.time(xx<-solve(am, bb)) # compare to Matrix corresponding times system.time(xm<-solve(a, b)) system.time(xxm<-solve(a, bb)) # compare to Matrix precision range(x-1:n) # mumps range(xm-1:n) # Matrix # matrix inversion system.time(aminv <- solve(am)) system.time(ainv <- solve(a)) # the same in Matrix # symmetric matrix asy=as(a+t(a), "symmetricMatrix") bs=as.double(asy%*%(1:n)) # rhs for 1:n solution au=asy # Here, we keep only diagonal and upper values of asy matrix. # It could be also diagonal and lower values. au[row(au)>col(au)]=0 ams=Rmumps$new(au, sym=1) system.time(xs<-solve(ams, bs)) # rmumps system.time(xsm<-solve(asy, bs))# Matrix # compare to Matrix precision range(xs-1:n) # mumps range(xsm-1:n) # Matrix # clean up by hand to avoid possible interference between gc() and # Rcpp object destructor after unloading this namespace rm(am, ams) gc() ## End(Not run)
## Not run: # prepare random sparse matrix library(Matrix) library(rmumps) n=2000 a=Matrix(0, n, n) set.seed(7) ij=sample(1:(n*n), 15*n) a[ij]=runif(ij) diag(a)=0 diag(a)=-rowSums(a) a[1,1]=a[1,1]-1 am=Rmumps$new(a) b=as.double(a%*%(1:n)) # rhs for an exact solution vector 1:n # following time includes symbolic analysis, LU factorization and system solving system.time(x<-solve(am, b)) bb=2*b # this second time should be much shorter # as symbolic analysis and LU factorization are already done system.time(xx<-solve(am, bb)) # compare to Matrix corresponding times system.time(xm<-solve(a, b)) system.time(xxm<-solve(a, bb)) # compare to Matrix precision range(x-1:n) # mumps range(xm-1:n) # Matrix # matrix inversion system.time(aminv <- solve(am)) system.time(ainv <- solve(a)) # the same in Matrix # symmetric matrix asy=as(a+t(a), "symmetricMatrix") bs=as.double(asy%*%(1:n)) # rhs for 1:n solution au=asy # Here, we keep only diagonal and upper values of asy matrix. # It could be also diagonal and lower values. au[row(au)>col(au)]=0 ams=Rmumps$new(au, sym=1) system.time(xs<-solve(ams, bs)) # rmumps system.time(xsm<-solve(asy, bs))# Matrix # compare to Matrix precision range(xs-1:n) # mumps range(xsm-1:n) # Matrix # clean up by hand to avoid possible interference between gc() and # Rcpp object destructor after unloading this namespace rm(am, ams) gc() ## End(Not run)
This is a C wrapper to Rmumps::~Rmumps()
destructor. Available in R too.
In C++ code can be used as rmumps::Rmumps__del_ptr(pm)
Rmumps__del_ptr(pm)
Rmumps__del_ptr(pm)
pm |
pointer of type XPtr<Rmumps>, object to be deleted |
This is a C wrapper to Rmumps::get_permutation()
method. Available in R too.
In C++ code can be used as rmumps::Rmumps__get_permutation(pm)
Rmumps__get_permutation(pm)
Rmumps__get_permutation(pm)
pm |
pointer of type XPtr<Rmumps>, object having sparse matrix permuted according to some method. |
integer defining permutation method used before matrix decomposition.
This is a C wrapper to Rmumps::Rmumps(i, j, v, n, nz, sym)
constructor. Available in R too.
In C++ code can be used as rmumps::Rmumps__ptr_ijv(pi, pj, pa, n, nz, sym)
Rmumps__ptr_ijv(pi, pj, pa, n, nz, sym)
Rmumps__ptr_ijv(pi, pj, pa, n, nz, sym)
pi |
pointer of type XPtr<int>, vector of i-indeces for sparse triplet |
pj |
pointer of type XPtr<int>, vector of j-indeces for sparse triplet |
pa |
pointer of type XPtr<double>, vector or values for sparse triplet |
n |
integer, size of the matrix (n x n) |
nz |
integer, number of non zeros in the matrix |
sym |
integer, 0 means general (non symmetric) matrix, 1 - symmetric with pivotes on the main diagonal, 2 - general symmetric (pivotes may be anywhere) |
pointer of type XPtr<Rmumps> pointing to newly created object. To avoid memory leakage, it is user's responsibility to call Rmumps__del_ptr(pm)
in a due moment (where pm
is the returned pointer).
This is a C wrapper to Rmumps::set_mat_ptr(a)
method. Available in R too.
In C++ code can be used as rmumps::Rmumps__set_mat_ptr(pm)
. Using this method invalidates previous numeric decomposition (but not symbolic one).
Rmumps__set_mat_ptr(pm, pa)
Rmumps__set_mat_ptr(pm, pa)
pm |
pointer of type XPtr<Rmumps>, object having sparse matrix to be replaced with second parameter |
pa |
pointer of type XPtr<double>, value vector from sparse triplet providing a new matrix. Structure of the new matrix must be identical to the old one. That's why there is no need to provide i and j for the new triplet. |
This is a C wrapper to Rmumps::set_permutation(permutation)
method. Available in R too.
In C++ code can be used as rmumps::Rmumps__set_permutation(pm, permutation)
Rmumps__set_permutation(pm, permutation)
Rmumps__set_permutation(pm, permutation)
pm |
pointer of type XPtr<Rmumps>, object having sparse matrix permuted according to a chosen method. |
permutation |
integer one of predefined constants (cf. |
This is a C wrapper to Rmumps::solveptr()
method. Available in R too.
In C++ code can be used as rmumps::Rmumps__solveptr(pobj, pb, lrhs, nrhs)
Rmumps__solveptr(pobj, pb, lrhs, nrhs)
Rmumps__solveptr(pobj, pb, lrhs, nrhs)
pobj |
pointer of type XPtr<Rmumps>, object having sparse matrix |
pb |
pointer of type XPtr<double>, vector or dense matrix of rhs |
lrhs |
integer, leading dimension in pb |
nrhs |
integer, number of rhs to solve. |
This is a C wrapper to Rmumps::triplet()
method. Available in R too.
In C++ code can be used as rmumps::Rmumps__triplet(pm)
Rmumps__triplet(pm)
Rmumps__triplet(pm)
pm |
pointer of type XPtr<Rmumps>, object having sparse matrix to be explored |
a list with sparse triplet described with fields i, j, v
Integer constants defining permutation types and exported from rmumps are following:
RMUMPS_PERM_AMD
RMUMPS_PERM_AMF
RMUMPS_PERM_SCOTCH
RMUMPS_PERM_PORD
RMUMPS_PERM_METIS
RMUMPS_PERM_QAMD
RMUMPS_PERM_AUTO
They are all regrouped in a named vector RMUMPS_PERM
where names are items above and values are corresponding constants.
am=rmumps::Rmumps$new(slam::as.simple_triplet_matrix(diag(1:3))) am$set_permutation(RMUMPS_PERM_SCOTCH) am$solve(1:3)
am=rmumps::Rmumps$new(slam::as.simple_triplet_matrix(diag(1:3))) am$set_permutation(RMUMPS_PERM_SCOTCH) am$solve(1:3)