Title: | Radiocarbon Calibration Curves |
---|---|
Description: | The IntCal20 radiocarbon calibration curves (Reimer et al. 2020 <doi:10.1017/RDC.2020.68>) are provided as a data package, together with previous IntCal curves (IntCal13, IntCal09, IntCal04, IntCal98), other curves (e.g., NOTCal04 [van der Plicht et al. 2004], Arnold & Libby 1951) and postbomb curves. Also provided are functions to copy the curves into memory, and to read, query and plot the data underlying the IntCal20 curves. |
Authors: | Maarten Blaauw [aut, cre] |
Maintainer: | Maarten Blaauw <[email protected]> |
License: | GPL (>= 2) |
Version: | 1.1.1 |
Built: | 2024-12-20 11:01:06 UTC |
Source: | CRAN |
Copy one of the calibration curves into memory.
ccurve( cc = 1, postbomb = FALSE, cc.dir = NULL, resample = 0, glue = FALSE, as.F = FALSE )
ccurve( cc = 1, postbomb = FALSE, cc.dir = NULL, resample = 0, glue = FALSE, as.F = FALSE )
cc |
Calibration curve for 14C dates: |
postbomb |
Use |
cc.dir |
Directory of the calibration curves. Defaults to where the package's files are stored (system.file), but can be set to, e.g., |
resample |
The IntCal curves come at a range of 'bin sizes'; every year from 0 to 5 kcal BP, then every 5 yr until 15 kcal BP, then every 10 yr until 25 kcal BP, and every 20 year thereafter. The curves can be resampled to constant bin sizes, e.g. |
glue |
If a postbomb curve is requested, it can be 'glued' to the pre-bomb curve. This feature is currently disabled - please use |
as.F |
If loading a curve that contains 2 additional columns containing the D14C values, then these can be used instead of the curve's C14 ages and errors. Defaults to |
Copy the radiocarbon calibration curve defined by cc into memory.
The calibration curve (invisible).
Hammer and Levin 2017, "Monthly mean atmospheric D14CO2 at Jungfraujoch and Schauinsland from 1986 to 2016", heiDATA: Heidelberg Research Data Repository V2 doi:10.11588/data/10100
Heaton et al. 2020 Marine20-the marine radiocarbon age calibration curve (0-55,000 cal BP). Radiocarbon 62, 779-820, doi:10.1017/RDC.2020.68
Hogg et al. 2013 SHCal13 Southern Hemisphere Calibration, 0-50,000 Years cal BP. Radiocarbon 55, 1889-1903, doi:10.2458/azu_js_rc.55.16783
Hogg et al. 2020 SHCal20 Southern Hemisphere calibration, 0-55,000 years cal BP. Radiocarbon 62, 759-778, doi:10.1017/RDC.2020.59
Hua et al. 2013 Atmospheric radiocarbon for the period 1950-2010. Radiocarbon 55(4), doi:10.2458/azu_js_rc.v55i2.16177
Hua et al. 2022 Atmospheric radiocarbon for the period 1950-2019. Radiocarbon 64(4), 723-745, doi:10.1017/RDC.2021.95
Levin and Kromer 2004 The tropospheric 14CO2 level in mid latitudes of the Northern Hemisphere. Radiocarbon 46, 1261-1272
Reimer et al. 2004 IntCal04 terrestrial radiocarbon age calibration, 0-26 cal kyr BP. Radiocarbon 46, 1029-1058, doi:10.1017/S0033822200032999
Reimer et al. 2009 IntCal09 and Marine09 radiocarbon age calibration curves, 0-50,000 years cal BP. Radiocarbon 51, 1111-1150, doi:10.1017/S0033822200034202
Reimer et al. 2013 IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal BP. Radiocarbon 55, 1869-1887, doi:10.2458/azu_js_rc.55.16947
Reimer et al. 2020 The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0-55 cal kBP). Radiocarbon 62, 725-757, doi:10.1017/RDC.2020.41
Stuiver et al. 1998 INTCAL98 radiocarbon age calibration, 24,000-0 cal BP. Radiocarbon 40, 1041-1083, doi:10.1017/S0033822200019123
van der Plicht et al. 2004. NotCal04—Comparison/Calibration 14C Records 26–50 Cal Kyr BP. Radiocarbon 46, 1225-1238, doi:10.1017/S0033822200033117
intcal20 <- ccurve(1) marine20 <- ccurve(2) shcal20 <- ccurve(3) marine98 <- ccurve("Marine98") pb.sh3 <- ccurve("sh3")
intcal20 <- ccurve(1) marine20 <- ccurve(2) shcal20 <- ccurve(3) marine98 <- ccurve("Marine98") pb.sh3 <- ccurve("sh3")
Copy one of the calibration curves into memory. Renamed to ccurve, and copyCalibrationCurve will become obsolete
copyCalibrationCurve(cc = 1, postbomb = FALSE)
copyCalibrationCurve(cc = 1, postbomb = FALSE)
cc |
Calibration curve for 14C dates: |
postbomb |
Use |
Copy the radiocarbon calibration curve defined by cc into memory.
The calibration curve (invisible).
Produce a custom curve by merging two calibration curves, e.g. a prebomb and a postbomb one for dates which straddle both curves.
glue.ccurves( prebomb = "IntCal20", postbomb = "NH1", thisprebombcurve = c(), thispostbombcurve = c(), cc.dir = c() )
glue.ccurves( prebomb = "IntCal20", postbomb = "NH1", thisprebombcurve = c(), thispostbombcurve = c(), cc.dir = c() )
prebomb |
The prebomb curve. Defaults to "IntCal20" |
postbomb |
The postbomb curve. Defaults to "NH1" (Hua et al. 2013) |
thisprebombcurve |
As an alternative to using existing curves, a tailor-made curve can be provided for the prebomb curve (as three columns: cal BP, C14 age, error) |
thispostbombcurve |
As an alternative to using existing curves, a tailor-made curve can be provided for the postbomb curve (as three columns: cal BP, C14 age, error) |
cc.dir |
Directory of the calibration curves. Defaults to where the package's files are stored (system.file), but can be set to, e.g., |
The custom-made curve (invisibly)
my.cc <- glue.ccurves()
my.cc <- glue.ccurves()
The IntCal20 calibration curves and their underpinning data. This is based on a json file produced by Prof. Christopher Bronk Ramsey, University of Oxford.
intcal
intcal
## 'intcal' A list with six main entries:
IntChron project name
a list with 139 entries for each IntCal dataset
a list with 5 entries: IntCal20, Marine20, SHCal20, a list of the underlying datasets, and a GICC vs IntCal20 comparison
an empty list
a list with 141 bibliography entries
a list of 17 options (not used)
<https://intchron.org/archive/IntCal/IntCal20/index.json>
plot the C14 ages underpinning the IntCal20/Marine20/SHCal20 calibration curves
intcal.data( cal1, cal2, cc1 = "IntCal20", cc2 = NA, calcurve.data = "IntCal20", select.sets = c(), realm = "C14", BCAD = FALSE, cal.lab = NA, cal.rev = FALSE, c14.lab = NA, c14.lim = NA, c14.rev = FALSE, ka = FALSE, cc1.col = rgb(0, 0, 1, 0.5), cc1.fill = rgb(0, 0, 1, 0.2), cc2.col = rgb(0, 0.5, 0, 0.5), cc2.fill = rgb(0, 0.5, 0, 0.2), data.cols = c(), data.pch = c(1, 2, 5, 6, 15:19), pch.cex = 0.5, legend.loc = "topleft", legend.ncol = 2, legend.cex = 0.7, cc.legend = "bottomright", bty = "l", ... )
intcal.data( cal1, cal2, cc1 = "IntCal20", cc2 = NA, calcurve.data = "IntCal20", select.sets = c(), realm = "C14", BCAD = FALSE, cal.lab = NA, cal.rev = FALSE, c14.lab = NA, c14.lim = NA, c14.rev = FALSE, ka = FALSE, cc1.col = rgb(0, 0, 1, 0.5), cc1.fill = rgb(0, 0, 1, 0.2), cc2.col = rgb(0, 0.5, 0, 0.5), cc2.fill = rgb(0, 0.5, 0, 0.2), data.cols = c(), data.pch = c(1, 2, 5, 6, 15:19), pch.cex = 0.5, legend.loc = "topleft", legend.ncol = 2, legend.cex = 0.7, cc.legend = "bottomright", bty = "l", ... )
cal1 |
First calendar year for the plot |
cal2 |
Last calendar year for the plot |
cc1 |
Name of the calibration curve. Can be "IntCal20", "Marine20", "SHCal20", or for the previous curves "IntCal13", "Marine13" or "SHCal13". |
cc2 |
Optional second calibration curve to plot. Can be "IntCal20", "Marine20", "SHCal20", or for the previous curves "IntCal13", "Marine13" or "SHCal13". Defaults to nothing, NA. |
calcurve.data |
Which dataset to use. Defaults to |
select.sets |
Which datasets to plot. Defaults to all datasets within the selected period. |
realm |
Which 'realm' of radiocarbon to use. Defaults to |
BCAD |
The calendar scale of graphs and age output-files is in cal BP (calendar or calibrated years before the present, where the present is AD 1950) by default, but can be changed to BC/AD using |
cal.lab |
The labels for the calendar axis (default |
cal.rev |
Reverse the calendar axis. |
c14.lab |
Label for the C-14 axis. Defaults to 14C BP (or 14C kBP if ka=TRUE). |
c14.lim |
Axis limits for the C-14 axis. Calculated automatically by default. |
c14.rev |
Reverse the C-14 axis. |
ka |
Use kcal BP (and C14 kBP). |
cc1.col |
Colour of the calibration curve (outline). |
cc1.fill |
Colour of the calibration curve (fill). |
cc2.col |
Colour of the calibration curve (outline), if activated (default cc2=NA). |
cc2.fill |
Colour of the calibration curve (fill), if activated (default cc2=NA). |
data.cols |
colours of the data points. Defaults to R's colours 1 to 8 (black, red, green, darkblue, lightblue, purple, orange, and grey) |
data.pch |
Symbols of the data points. Defaults to R's symbols 1, 2, 5, 6, and 15 to 19 (open circle, open upward triangle, open diamond, open downward triangle, closed square, closed circle, closed upward triangle, closed diamond) |
pch.cex |
Size of the data symbols. Defaults to 0.5. |
legend.loc |
Location of the data legend. Defaults to topleft. Set to NA for no plotting. |
legend.ncol |
Number of columns of the data legend. |
legend.cex |
Size of the legend. Defaults to 0.7. |
cc.legend |
Location of the legend for the calibration curve(s). |
bty |
Box type around the plot. Defaults to "l"-shaped. |
... |
Any additional optional plotting parameters. |
These datasets were downloaded from Intcal.org. All data have both uncertainties in C14 age and on the calendar scale. For trees this is the sample thickness (e.g., 10 years or 1 year). The name of each dataset starts with a lower-case letter which indicates their nature (t = tree-rings, l = lake sediment, c = coral, m = marine sediment, s = speleothem), followed by either the radiocarbon laboratory's placename or the lastname of the main author. Most of the tree-ring datasets are dated at calendar year precision; tSeattle (references 1-2), tBelfast (3-5), tWaikato (4-7), tGroningen (8-10), tHeidelberg (11-14), tPretoria (16), tIrvine (17-20), tGalimberti (21), tMannheim (22-25), tAix (26-27), tAarhus (22, 28-30), tManningKromer (31-32), tVienna (33-34), tTokyo (35-39), tArizona (40), tMiyake (41), tPearson (22, 41-45), and tZurich (22-23, 25, 41, 43, 46-49). Horizontal error bars for these series indicate the numbers of rings in the samples (e.g., 10 tree-rings; 1-yr samples do not have error bars). Additionally, there are some floating tree-ring datasets with imprecisely known calendar ages; tAdolphy (50) and tTurney (51-52). For these and the following datasets, horizontal error bars indicate their 1 sd calendar age uncertainties. Beside trees, other datasets include lake sediment (lSuigestu, 53-54), corals (cBard 55-56, cFairbanks 57, cCutler 58 and cDurand 61, marine sediment (mCariaco 59-60, 62-63, mBard 64-65) and speleothems (sSouthon 66-67, sHoffman 68, sBeck 69). The southern hemisphere calibration curve SHCal20 is mostly modelled on IntCal20, but it contains datasets from the southern hemisphere; tPretoria (70), tWaikato (72-75), tBelfast (76-67), tSydney (78-80), tLivermore (81), tArizona, tIrvineWaikato and tZurich (82-83).
A plot of the IntCal curve and the underlying data, as well as (invisibly) the data themselves
[1]Stuiver, M, and Braziunas, TF. 1993. Sun, ocean, climate and atmospheric 14CO2: an evaluation of causal and spectral relationships. Holocene 3: 289-305.
[2] Stuiver, M, Reimer, PJ, Braziunas, TF. 1998. High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 40:1127-1151.
[3] McCormac FG, Bayliss A, Baillie MGL, Brown DM. 2004. Radiocarbon calibration in the Anglo-Saxon period: AD 495-725. Radiocarbon 46(3):1123-5.
[4] McCormac, FG, Hogg, AG, Higham, TFG, Lynch-Stieglitz, J, Broecker, WS, Baillie, MGL, Palmer, J, Xiong, L, Pilcher, JR, Brown, D, Hoper, ST, 1998. Temporal variation in the interhemispheric C-14 offset. Geophysical Research Letters 25, 1321-1324.
[5] Pearson, G. W., Pilcher, J. R., Baillie, M. G. L., Corbett, D. M., and Qua, F. (1986). High-Precision C-14 Measurement of Irish Oaks to Show the Natural C-14 Variations from AD 1840 to 5210 BC Radiocarbon 28: 911-934.
[6] Hogg, A. G., McCormac, F. G., Higham, T. F. G., Reimer, P. J., Baillie, M. G. L., and Palmer, J. G. (2002). High-precision radiocarbon measurements of contemporaneous tree-ring dated wood from the British Isles and New Zealand: AD 1850-950. Radiocarbon 44: 633-640.
[7] Hogg, A., Palmer, J., Boswijk, G., Reimer, P., and Brown, D. (2009). Investigating the interhemispheric C-14 offset in the 1st millennium AD and assessment of laboratory bias and calibration errors. Radiocarbon 51, 1177-1186.
[8] de Jong, A. F. M., Becker, B., and Mook, W. G. (1986). High-precision calibration of the radiocarbon time scale, 3930-3230 cal BC. Radiocarbon 28: 939-941.
[9] de Jong, AFM, Becker, B, Mook, WG, 1989. Corrected calibration of the radiocarbon time scale. Radiocarbon 31:201-210.
[10] Kuitems, M, Plicht, Jvd, Jansma, E, Wood from the Netherlands around the time of the Santorini eruption dated by dendrochronology and Radiocarbon. Radiocarbon this issue.
[11] Kaiser, K. F., M. Friedrich, C. Miramont, B. Kromer, M. Sgier, M. Schaub, I. Boeren, S. Remmele, S. Talamo, F. Guibal and O. Sivan (2012). 'Challenging process to make the Lateglacial tree-ring chronologies from Europe absolute-an inventory.' Quaternary Science Reviews 36: 78-90.
[12] Kromer, B., and Spurk, M. (1998). Revision and tentative extension of the tree-ring based C-14 calibration, 9200-11,855 cal BP. Radiocarbon 40: 1117-1125.
[13] Kromer, B., Manning, S.W., Kuniholm, P.I., Newton, M.W., Spurk, M. & Levin, I. 2001. Regional 14CO2 offsets in the troposphere: magnitude, mechanisms, and consequences. Science 294: 2529-2532.
[14] Kromer, B., S. W. Manning, M. Friedrich, S. Talamo and N. Trano (2010). 14C Calibration in the 2nd and 1st Millennia BC Eastern Mediterranean Radiocarbon Comparison Project (EMRCP). Radiocarbon 52(3): 875-886.
[15] Hua, Q., Barbetti, M., Fink, D., Kaiser, K. F., Friedrich, M., Kromer, B., Levchenko, V. A., Zoppi, U., Smith, A. M., and Bertuch, F. (2009). Atmospheric 14C variations derived from tree rings during the early Younger Dryas. Quaternary Science Reviews 28, 2982-2990.
[16] Vogel, J. C., and van der Plicht, J. (1993). Calibration Curve for Short-Lived Samples, 1900-3900 BC. Radiocarbon 35: 87-91.
[17] Taylor, R.E. and Southon, J., (2013). Reviewing the Mid-First Millennium BC 14C 'warp' using 14C/bristlecone pine data. NIMB Research Section B: Beam Interactions with Materials and Atoms, 294, pp.440-443
[18] Hogg, A., Southon, J., Turney, C., Palmer, J., Ramsey, C.B., Fenwick, P., Boswijk, G., Buentgen, U., Friedrich, M., and Helle, G., 2016. Decadally resolved lateglacial radiocarbon evidence from New Zealand kauri: Radiocarbon, v. 58, p. 709
[19] Park, J., Southon, J., Fahrni, S., Creasman, P., & Mewaldt, R. (2017). Relationship between solar activity and D14C peaks in AD 775, AD 994, and 660 BC. Radiocarbon, 59(4), 1147-1156. doi:10.1017/RDC.2017.59
[20] Simon M. Fahrni, John Southon, Benjamin T. Fuller, Junghun Park, Michael Friedrich, Raimund Muscheler, Lukas Wacker, R. E. Taylor;Single-year German oak and Californian bristlecone pine 14C data at the beginning of the Hallstatt plateau from 856 BC to 626 BC; Radiocarbon
[21] Galimberti, M, Bronk Ramsey, C, and Manning, S W, 2004 Wiggle-match dating of tree-ring sequences, Radiocarbon, 46, 917-24
[22] Friedrich, R, Kromer, B, Wacker, L, Olsen, J, Remmele, S, Lindauer, S, Land, A, Pearson, C. A new annual 14C dataset for calibrating the Thera eruption. Radiocarbon this issue
[23] Sookdeo A, Kromer B, Buentgen U, Friedrich M, Friedrich R, Helle G, Pauly M, Nievergelt D, Reinig F, Treydte K, Synal HA, Wacker, L 2019a. Quality Dating: A well-defined protocol implemented at ETH for high-precision 14C dates tested on Late Glacial wood. Radiocarbon.
[24] Friedrich, R, Kromer, B, Sirocko, F, Esper, J, Lindauer, S, Nievergelt, D, Heussner, K, Westphal, T. Annual 14C tree-ring data around 400AD: mid and high-latitude records. Radiocarbon: in press
[25] Usoskin, I. G., B. Kromer, F. Ludlow, J. Beer, M. Friedrich, G. A. Kovaltsov, S. K. Solanki and L. Wacker (2013). 'The AD775 cosmic event revisited: the Sun is to blame.' Astronomy & Astrophysics 552(L3): 1-4.
[26] Capano, M, Miramont, C, Guibal, F, Kromer, B, Tuna, T, Fagault, Y, Bard, E, 2018. Wood 14C Dating with AixMICADAS: Methods and Application to Tree-Ring Sequences from the Younger Dryas Event in the Southern French Alps. Radiocarbon 60, 51-74.
[27]C apano M, Miramont C, Shindo, L, Guibal F, Marschal, C, Kromer B, Tuna T, Bard E. Onset of the Younger Dryas recorded with 14C at annual resolution in French subfossil trees. Radiocarbon, 2020.
[28] Fogtmann-Schulz, A, Kudsk, SGK, Trant, PLK, Baittinger, C, Karoff, C, Olsen, J, Knudsen, MF, 2019. Variations in Solar Activity Across the Spoerer Minimum Based on Radiocarbon in Danish Oak. Geophysical Research Letters 46, 8617-8623.
[29] Fogtmann-Schulz, A, Ostbo, SM, Nielsen, SGB, Olsen, J, Karoff, C, Knudsen, MF, 2017. Cosmic ray event in 994 C.E. recorded in radiocarbon from Danish oak. Geophysical Research Letters 44, 8621-8628.
[30] Kudsk, S., B. Philippsen, C. Baittinger, A. Fogtmann-Schulz, M. Knudsen, C. Karoff, J. Olsen, 'New single-year radiocarbon measurements based on Danish oak covering the periods AD 692-790 and 966-1057 AD', (in press), Radiocarbon.
[31] Manning, S. W. and B. Kromer (2012). 'Considerations of the Scale of Radiocarbon Offsets in the East Mediterranean, and Considering a Case for the Latest (Most Recent) Likely Date for the Santorini Eruption.' Radiocarbon 54(3-4): 449-474.
[32] Manning, S.W., Griggs, C., Lorentzen, B., Bronk Ramsey, C., Chivall, D., Jull, A.J.T., Lange, T.E. 2018. Fluctuating Radiocarbon Offsets Observed in the Southern Levant and Implications for Archaeological Chronology Debates. Proceedings of the National Academy of Sciences of the United States of America 115:6141-6146.
[33] Dellinger, F, Kutschera, W, Nicolussi, K, Schiessling, P, Steier, P, and Wild, E M, 2004 A 14C calibration with AMS from 3500 to 3000 BC, derived from a new high-elevation stone-pine tree-ring chronology, Radiocarbon, 46, 969-83
[34] Steier, P, Dellinger, F, Kutschera, W, Priller, A, Rom, W, and Wild, E M, 2004 Pushing the precision limit of 14C AMS, Radiocarbon, 46, 5-17
[35] Ozaki, H, Imamura, M, Matsuzaki, H, Mitsutani, T, 2007. Radiocarbon in 9th to 5th century BC tree-ring samples from the Ouban 1 archaeological site, Hiroshima, Japan. Radiocarbon 49, 473-479.
[36] The origin of the farming in the Yayoi Period and East Asia: Establishment of High-Precision Chronology by carbon 14 age analysis. National Museum of Japanese History Edited by Toyohiro Nishimoto, 524p, 2009. (in Japanese, final progress report of JSPS Grant-in-Aids (16GS0118))
[37] Sakamoto, M, Imamura, M, van der Plicht, J, Mitsutani, T, Sahara, M, 2003. Radiocarbon calibration for Japanese wood samples. Radiocarbon 45, 81-89.
[38] Okuno, M, Hakozaki, M, Miyake, F, Kimura, K, Masuda, K, Sakamoto, M, Hong, W, Yatsuzuka, S, Nakamura, T, 2018. Chronological significance of d14C spike and precise age determination of the B-Tm Tephra, China/ North Korea, 23rd International Radiocarbon Conference, Trondheim, Norway.
[39] Sakamoto, M, Hakozaki, M, Nakao, N, Nakatsuka, T, 2017. Fine structure and reproducibility of radiocarbon ages of middle to early modern Japanese tree rings. Radiocarbon 59, 1907-1917.
[40] Jull, AT, Panyushkina, I, Miyake, F, Masuda, K, Nakamura, T, Mitsutani, T, Lange, TE, Cruz, RJ, Baisan, C, Janovics, R, 2018. More Rapid 14 C Excursions in the Tree-Ring Record: A Record of Different Kind of Solar Activity at About 800 BC? Radiocarbon 60, 1237-1248.
[41] Miyake F., Jull A.J.T., Panyushkina I.P., Wacker L., Salzer M., Baisan C., Lange T., Cruz R., Masuda K., Nakamura T. 2017. Large 14C excursion in 5480 BC indicates an abnormal sun in the mid-Holocene. PNAS Physical Sciences - Earth, Atmospheric, and Planetary Sciences 114 (3), doi:10.1073/pnas.161314411
[42] Pearson, C.L., Brewer, P.W., Brown, D., Heaton, T.J., Hodgins, G.W., Jull, A.T., Lange, T. and Salzer, M.W., (2018). Annual radiocarbon record indicates 16th century BCE date for the Thera eruption. Science advances, 4(8), p.eaar8241.
[43] Pearson, CL, Wacker, L, Bayliss, A, Brown, DM, Salzer, M, Brewer, PW, Bollhalder, S, Boswijk, G, Hodgins, GWL, Annual variation in atmospheric 14C between 1700 BC and 1480 BC: Radiocarbon: this issue
[44] Jull A.J.T., Panyushkina I.P., Lange T.E., Kukarskih V.V., Clark K.J., Myglan V.S., Salzer M., Burr G.S., Leavitt S.L. Excursions in the 14C record at AD 774-775 from tree rings from Russia and America.2014. Geophysical Research Letters 41 (8): 3004-3010. 10.1002/2014GL059874
[45] Miyake F., Masuda K., Nakamura T., Kimura K., Hakozaki M., Jull A.T., Lange T., Cruz R., Panyushkina I.P., Baisan C., Salzer M. 2017. Search for annual 14C excursions in the past. Radiocarbon 59 (2): 315-320. DOI: 10.1017/RDC.2016.54
[46] Wacker et al. in prep
[47] Sookdeo, A, Kromer, B, Adolphi, F, Beer, J, Brehm, N, Buntgen, U, Christl, M, Eglinton, TI, Friedrich, M, Guidobaldi, G, Helle, G, Nievergelt, D, Pauly, M, Reinig, F, Tegel, W, Treydte, K, Synal, H-A, Wacker, L, submitted. There Goes the Sun: 14C in trees reveals reduced solar activity during the Younger Dryas. Nature Geoscience.
[48] Buntgen, Ulf, et al, (2018),'Tree rings reveal globally coherent signature of cosmogenic radiocarbon events in 774 and 993 CE'. Nature Communications 9, 3605
[49] Bayliss et al. in prep
[50] Adolphi, F., R. Muscheler, M. Friedrich, D. Guttler, L. Wacker, S. Talamo and B. Kromer (2017). 'Radiocarbon calibration uncertainties during the last deglaciation: Insights from new floating tree-ring chronologies.' Quaternary Science Reviews 170: 98-108.
[51] Turney CS, Palmer J, Ramsey CB, Adolphi F, Muscheler R, Hughen KA, Staff RA, Jones RT, Thomas ZA, Fogwill CJ. 2016. High-precision dating and correlation of ice, marine and terrestrial sequences spanning Heinrich Event 3: Testing mechanisms of interhemispheric change using New Zealand ancient kauri (Agathis australis). Quaternary Science Reviews 137:126-34.
[52] Turney, C.S.M., Fifield, L.K., Hogg, A.G., Palmer, J.G., K., H., Baillie, M.G.L., Galbraith, R., Ogden, J., Lorrey, A., Tims, S.G., Jones, R.T., 2010. Using New Zealand kauri (Agathis australis) to test the synchronicity of abrupt climate change during the Last Glacial Interval (60,000-11,700 years ago). Quaternary Science Reviews 29, 3677-3682.
[53] Bronk Ramsey, C, Staff, RA, Bryant, CL, Brock, F, Kitagawa, H, van der Plicht, J, Schlolaut, G, Marshall, MH, Brauer, A, Lamb, HF, Payne, RL, Tarasov, PE, Haraguchi, T, Gotanda, K, Yonenobu, H, Yokoyama, Y, Tada, R, Nakagawa, T, 2012. A Complete Terrestrial Radiocarbon Record for 11.2 to 52.8 kyr BP. Science 338, 370-374.
[54] Gordon Schlolaut, Richard A Staff, Michael H Marshall, Achim Brauer, Christopher Bronk Ramsey, Henry F Lamb, Takeshi Nakagawa, 2018, An extended and revised Lake Suigetsu varve chronology from ~50 to ~10 ka BP based on detailed sediment micro-facies analyses, Quaternary Science Reviews 200, 351-366
[55] Bard, E, Hamelin, B, Fairbanks, RG, Zindler, A. 1990. Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U-Th ages from Barbados corals. Nature 345: 405-410.
[56] Bard, E, Arnold, M, Hamelin, B, Tisnerat-Laborde, N, Cabioch, G, 1998. Radiocarbon calibration by means of mass spectrometric Th- 230/U-234 and C-14 ages of corals: An updated database including samples from Barbados, Mururoa and Tahiti. Radiocarbon 40, 1085-1092.
[57] Fairbanks, RG, Mortlock, RA, Chiu, TC, Cao, L, Kaplan, A, Guilderson, TP, Fairbanks, TW, Bloom, AL, Grootes, PM & Nadeau, MJ. 2005. Radiocarbon calibration curve spanning 0 to 50,000 years BP based on paired Th-230/U-234/U-238 and C-14 dates on pristine corals. Quaternary Science Reviews 24(16-17): 1781-96.
[58] Cutler, KB, Gray, SC, Burr, GS, Edwards, RL, Taylor, FW, Cabioch, G, Beck, JW, Cheng, H, and Moore, J. 2004. Radiocarbon calibration to 50 kyr BP with paired 14C and 230Th dating of corals from Vanuatu and Papua New Guinea. Radiocarbon 46: 1127-1160.
[59] Hughen, KA, Southon, JR, Lehman, SJ, Overpeck, JT, 2000. Synchronous radiocarbon and climate shifts during the last deglaciation. Science 290, 1951-1954.
[60] Hughen, KA, Southon, JR, Bertrand, CJH, Frantz, B, Zermeno, P. 2004. Cariaco Basin calibration update: revisions to calendar and 14C chronologies for core PL07-58PC. Radiocarbon 46: 1161-1187.
[61] Durand, N, Deschamps, P, Bard, E, Hamelin, B, Camoin, G, Thomas, AL, Henderson, GM, Yokoyama, Y, Matsuzaki, H. 2013. Comparison of 14C and U-Th in corals from IODP #310 cores offshore Tahiti. Radiocarbon 55 (4), 1947-1974.
[62] Hughen, K, Southon, J, Lehman, S, Bertrand, C, Turnbull, J, 2006. Marine-derived 14C calibration and activity record for the past 50,000 years updated from the Cariaco Basin. Quaternary Science Reviews 25, 3216-3227.
[63] Hughen, K, Heaton, TJ. Updated Cariaco Basin 14C Calibration Dataset from 0-60k BP, in prep
[64] Bard, E, Rostek, F, Menot-Combes, G, 2004. Radiocarbon calibration beyond 20,000 14C yr B.P. by means of planktonic foraminifera of the Iberian Margin. Quaternary Research 61, 204-214.
[65] Edouard Bard, Guillemette Menot, Frauke Rostek, Laetitia Licari, Philipp Boening,R Lawrence Edwards, Hai Cheng, Yongjin Wang, Timothy J Heaton, (2013) 'Radiocarbon calibration/comparison records based on marine sediments from the Pakistan and Iberian margins', Radiocarbon, Vol 55, Nr 4, 2013, p 1999-2019
[66] Southon J, Noronha AL, Cheng H, Edwards RL, Wang YJ. (2012). A high-resolution record of atmospheric C-14 based on Hulu Cave speleothem H82. Quaternary Science Reviews 33:32-41
[67] Cheng H, Edwards RL, Southon J, Matsumoto K, Feinberg JM, Sinha A, Zhou W, Li H, Li X, Xu Y. 2018. Atmospheric 14C/12C changes during the last glacial period from Hulu Cave. Science 362(6420):1293-7
[68] Dirk L. Hoffmann, J. Warren Beck, David A. Richards, Peter L. Smart, Joy S. Singarayer, Tricia Ketchmark, Chris J. Hawkesworth. 2010. Towards radiocarbon calibration beyond 28 ka using speleothems from the Bahamas,Earth and Planetary Science Letters,289:1-10.
[69] J. Warren Beck, David A. Richards, R. Lawrence Edwards, Bernard W. Silverman, Peter L. Smart, Douglas J. Donahue, Sofia Hererra-Osterheld, George. S. Burr, Leal Calsoyas, A. J. Timothy Jull, Dana Biddulph. 2001. Extremely Large Variations of Atmospheric 14C Concentration During the Last Glacial Period Science 292:2453
[70] Vogel et al. 1993. Pretoria calibration curve for short-lived samples, 1930-3350 BC. Radiocarbon 35: 73-85.
[71] Stuiver, Braziunas 1998. Anthropogenic and solar components of hemispheric 14C. Geophysical Research Letters 25: 329-332.
[72] Hogg et al. 2002 High-precision radiocarbon measurements of contemporaneous tree-ring dated wood from the British Isles and New Zealand: AD 1850-950. Radiocarbon 44: 633-640.
[73] McCormac et al. 1998. Temporal variation in the interhemispheric C-14 offset. Geophysical Research Letters 25: 1321-1324.
[74] Hogg et al. 2011 High-precision radiocarbon measurements of tree-ring dated wood from New Zealand: 195 BC-AD 995. Radiocarbon 53, 3: 529-542.
[75] Hogg et al. 2013 Is there any evidence for regional 14C offsets in the Southern Hemisphere? doi:10.2458/azu_js_rc.v55i2.16104
[76] Hogg et al. 2002 High-precision radiocarbon measurements of contemporaneous tree-ring dated wood from the British Isles and New Zealand: AD 1850-950. Radiocarbon 44: 633-640.
[77] McCormac et al. 1998. Temporal variation in the interhemispheric C-14 offset. Geophysical Research Letters 25: 1321-1324.
[78] Hua et al. 2009 Atmospheric 14C variations derived from tree rings during the early Younger Dryas. Quaternary Science Reviews, v. 28, 25-26: 2982-2990.
[79] Hua et al. 2004 Radiocarbon in tropical tree rings during the Little Ice Age. Nuclear Instruments and Methods in Physics Research B 223-224:489-94.
[80] Hogg et al. 2013 SHCal13 Southern Hemisphere calibration, 0-50,000 cal yr BP. Radiocarbon 55, 2
[81] Zimmerman et al. 2010 Extension of the Southern Hemisphere atmospheric radiocarbon curve, 2120-850 years BP: results from Tasmanian huon pine. Radiocarbon 52, 203: 887-94.
[82] Boentgen et al. 2018 Tree rings reveal globally coherent signature of cosmogenic radiocarbon events in 774 and 993 CE. Nature Communications, 9: 3605. doi:10.1038/s41467-018-06036-0. [83] Sookdeo et al. 2020 Quality Dating: A well-defined protocol implemented at ETH Zurich for high-precision 14C dates tested on Late Glacial wood. Radiocarbon. doi:10.1017/RDC.2019.132
intcal.data(100, 200) intcal.data(40e3, 55e3, ka=TRUE) # plot Suigetsu and Cariaco data only dat <- intcal.data(20e3, 25e3) unique(dat$set) # ordered against their appearance in the plot's legend dat <- intcal.data(20e3, 25e3, select.sets=c(109, 120), data.cols=c(1,2))
intcal.data(100, 200) intcal.data(40e3, 55e3, ka=TRUE) # plot Suigetsu and Cariaco data only dat <- intcal.data(20e3, 25e3) unique(dat$set) # ordered against their appearance in the plot's legend dat <- intcal.data(20e3, 25e3, select.sets=c(109, 120), data.cols=c(1,2))
Extract items from the intcal json file.
intcal.data.frames(obj, ...)
intcal.data.frames(obj, ...)
obj |
Name of the object |
... |
Additional options can be provided, see examples |
intcal <- intcal.read.data() # all datasets from the Southern Hemisphere: sh.data <- intcal.data.frames(intcal, intcal_set_type='SH') head(sh.data) Irish.oaks <- intcal.data.frames(intcal, intcal_set=3) head(Irish.oaks[[2]]$data)
intcal <- intcal.read.data() # all datasets from the Southern Hemisphere: sh.data <- intcal.data.frames(intcal, intcal_set_type='SH') head(sh.data) Irish.oaks <- intcal.data.frames(intcal, intcal_set=3) head(Irish.oaks[[2]]$data)
Download the json file that contains the IntCal20 radiocarbon calibration curves and the contributing data series.
intcal.read.data(from.intchron.org = FALSE, from.jsonfile = FALSE)
intcal.read.data(from.intchron.org = FALSE, from.jsonfile = FALSE)
from.intchron.org |
Download the IntCal20 json file the inchron.org server. Defaults to FALSE, and then the data will be loaded from within the rintcal package |
from.jsonfile |
The name and location of the json file (if used). Defaults to FALSE, and then the data will be loaded from within the rintcal package |
The intcal curves consist of the IntCal20, SHCal20 and Marine20 calibration curves. The details of these curves can be loaded, as well as the underlying data such as tree-ring records.
intcal <- intcal.read.data()
intcal <- intcal.read.data()
Write the intcal.json file that comes with the rintcal packages to somewhere local. This can be useful if you want to avoid repeatedly downloading the json file from intchron.org.
intcal.write.data(data, fname)
intcal.write.data(data, fname)
data |
intcal variable as obtained from intcal.read.data() |
fname |
Name of the file to be written |
intcal <- intcal.read.data() myintcal <- tempfile() intcal.write.data(intcal, myintcal)
intcal <- intcal.read.data() myintcal <- tempfile() intcal.write.data(intcal, myintcal)
List the file names of the calibration curves available within the rintcal package.
list.ccurves()
list.ccurves()
A list of the available calibration curves
If two curves need to be ‘mixed’ to calibrate, e.g. for dates of mixed terrestrial and marine carbon sources, then this function can be used. The curve will be returned invisibly, or saved in a temporary directory together with the main calibration curves. This temporary directory then has to be specified in further commands, e.g. for rbacon: Bacon(, cc.dir=tmpdr)
(see examples). It is advisable to make your own curves folder and have cc.dir point to that folder.
mix.ccurves( proportion = 0.5, cc1 = "IntCal20", cc2 = "Marine20", postbomb1 = FALSE, postbomb2 = FALSE, name = "mixed.14C", cc.dir = c(), thiscurve1 = c(), thiscurve2 = c(), save = FALSE, offset = cbind(0, 0), round = c(), sep = " " )
mix.ccurves( proportion = 0.5, cc1 = "IntCal20", cc2 = "Marine20", postbomb1 = FALSE, postbomb2 = FALSE, name = "mixed.14C", cc.dir = c(), thiscurve1 = c(), thiscurve2 = c(), save = FALSE, offset = cbind(0, 0), round = c(), sep = " " )
proportion |
Proportion of the first calibration curve required. e.g., change to |
cc1 |
The first calibration curve to be mixed. Defaults to the northern hemisphere terrestrial curve IntCal20. |
cc2 |
The second calibration curve to be mixed. Defaults to the marine curve IntCal20. |
postbomb1 |
Option to provide a postbomb curve for the first curve (defaults to FALSE). |
postbomb2 |
Option to provide a postbomb curve for the second curve (defaults to FALSE). |
name |
Name of the new calibration curve. |
cc.dir |
Name of the directory where to save the file. Since R does not allow automatic saving of files, this points to a temporary directory by default. Adapt to your own folder, e.g., |
thiscurve1 |
As an alternative to using curves that come with the package, a tailor-made curve can be provided for the first curve (as three columns: cal BP, C14 age, error). |
thiscurve2 |
As an alternative to using curves that come with the package, a tailor-made curve can be provided for the second curve (as three columns: cal BP, C14 age, error). |
save |
Save the curve in the folder specified by dir. Defaults to FALSE. |
offset |
Any offset and error to be applied to |
round |
The entries can be rounded to a specified amount of decimals. Defaults to no rounding. |
sep |
Separator between fields (tab by default, "\t") |
The proportional contribution of each of both calibration curves has to be set.
A file containing the custom-made calibration curve, based on calibration curves cc1
and cc2
.
tmpdir <- tempdir() new.ccdir(tmpdir) mix.ccurves(cc.dir=tmpdir) # now assume the offset is constant but its uncertainty increases over time: cc <- ccurve() offset <- cbind(rep(100, nrow(cc)), seq(0, 1e3, length=nrow(cc))) # clean up: unlink(tmpdir)
tmpdir <- tempdir() new.ccdir(tmpdir) mix.ccurves(cc.dir=tmpdir) # now assume the offset is constant but its uncertainty increases over time: cc <- ccurve() offset <- cbind(rep(100, nrow(cc)), seq(0, 1e3, length=nrow(cc))) # clean up: unlink(tmpdir)
Make an alternative ‘curves’ directory and fill it with the calibration curves.
new.ccdir(cc.dir)
new.ccdir(cc.dir)
cc.dir |
Name and location of the new directory. For example, this could be a folder called 'ccurves', living within the current working directory, |
Copies all calibration curves within the ‘rintcal’ package to the new directory.
A message informing the user the name of the folder into which the calibration curves have been copied.
new.ccdir(tempdir())
new.ccdir(tempdir())