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1 Introduction

Cost control is nowadays one of health services major concerns. They put
a stake on hospitalization management. Indeed, they are interested in the
conditions of patients stays, in order to create a new hospitalization policy.
Moreover, physicians take an interest in the occupancy of hospital beds be-
cause its study could help to prevent patients from side effects such as venous
thrombosis, nosocomial infections, etc. A risk process can be observed and
quantified. This risk estimation is at stake in our work.

Such a study is to be seen in the context of modelling concrete issues
that involve random events. We use an actuary approach in the collective
risk theory in order to submit an evaluation of risk during hospitalizations.
We also deliver an R package of risk estimation during hospitalization.

In section 2, we model the stay of a patient in hospital defining the proba-
bility that a patient reports a side effect and the duration of an healthy stay.
Moreover, we assume that the fact that a side effect arises depends on the
duration of the stay. This is the model with conditioned side effects. Then,
we put forward the hypothesis that a side effect arises at a random instant :
this builds up the second model named model with random side effects. In
both models, we get some explicit results in particular cases. Thus, using
risk theory and renewal findings, we are able to express a risk constant R
that ensures the knowledge of a survival function of patients at infinity.

However, in most cases, we are not able to write an explicit expression
of the risk constant R. That is why we subsequently study in section 3 dif-
ferent methods in order to get an estimator of R or the survival function
and to quantify and value his quality. The De Vielder’s approximation and
the Kaplan-Meier’s method are the most known ones. Then, we study the
parameter inference of the risk constant using the likelihood function or the
Bayes’ formula. These methods seem to be suitable ones.

Finally, in section 4, we present an R package named rhosp dealing
with risk during hospitalization. rhosp contains functions to evaluate and
simulate the risk constant.
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2 Methods and techniques to get the risk con-

stant

In this section, we study two models and distributions in order to bring out
theoretical results about risks during hospitalization.

Evaluating risk during hospitalization, it seems logical to include as a
parameter the durations of the patient stays in the model. Indeed, each Xi

stands for the time spent in hospital. We suppose that Xi is exponentially
distributed with a parameter λ so that 1/λ expresses the mean length of a
patient hospitalization. Assuming that a patient stays at least one day in
hospital, we will choose λ in (0, 1).

Moreover, it seems reasonable to suggest that the fact that a side effect
arises depends on the duration of the stay. Actually, the longer patients
stay in hospital, the less combative against side effects they are. This is our
first model : the model with conditioned side effects, clarified in figure 1.
Nevertheless, we could put forward that reporting a side effect is simply bad
luck. Thus, a side effect arises at a random instant. This is then our second
model : the model with random side effects, clarified in figure 2. In both
models, we need to give the probability that a patient reports a side effect
given the duration of the treatment. That is why we introduce an element p
that expresses this probability and that is named side effect probability.

2.1 Model with conditioned side effects

We focus on the duration of a patient stay in hospital. We look at one
hospital bed and we observe the successive times of stay. These data are in-
dependently and identically distributed variables, which make up a renewal
process. In the model with conditioned side effects, we assume the fact that
a side effect arises depends on the duration of the stay.

The figure 1 represents the model with conditioned side effects.

In this first model, we consider :
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� a sequence of (Xi)i of independant and identically distributed random
variables, having the common distribution function F , with F (0) = 0.
The (Xi)i variables stand for the successive durations of the treatment
for a patient and make up a renewal process.

� a sequence of (Zi)i of independant and identically distributed random
variables, having the Bernoulli distribution with success probability
p(x). p is a probability and is worth 1− q, id est p(x) = 1− q(x). p(x)
is named side effect probability. It is the probability that a patient
reports a side effect given that the treatment lasts x.

� the random variable N associated with the number of patients between
two full-blown side effects.

The time of the first event, id est the first time when Zi is worth 1, is
defined by:

T =
N∑
i=1

Xi

Its distribution function is FT (t) over the interval (0,+∞). For convenience,
we use:

A(t) = P (T > t) = 1− FT (t)

A(t) is the survival function. Its limit when the time is infinite is studied.
The risk constants R and CR are defined so that A(t) has an exponential tail
written CRe

−Rt and named the tail survival function.

Several studied cases follow.

2.1.1 A constant side effect probability

We study a sequence of (Xi)i that has an exponential distribution with pa-
rameter λ and a sequence of (Zi)i that has a Bernoulli distribution with a
constant side effect probability p. We focus on the model with conditioned
side effects and with a constant side effect probability.

In this case, we can conclude that T has an exponential distribution with
parameter λp (as shown in appendix A page 30), thanks to the Laplace trans-
form of a random variable. Thus, the survival function is worth A(t) = e−λpt.
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Figure 1: The (Xi)i are the successive durations of treatment for five patients
on the same hospital bed. At the end of each treatment, the (Zi)i are worth
0 or 1 : the patient does not report any side effect or he has a full-blown one.

Moreover, N has a geometric distribution with parameter p.

We have a theoretical expression of the risk constants R and CR :

R = λp and CR = 1 (1)

See the figure 3 in section 3 for the simulation of this model.

2.1.2 An exponential side effect probability

We study a sequence of (Xi)i that has an exponential distribution with pa-
rameter λ and a sequence of (Zi)i that has a Bernoulli distribution with a
side effect probability p(x) = 1− e−µx having µ < λ. We take an interest in
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the studyof the model with conditioned side effects and with an exponential
side effect probability.

As shown in appendix B page 30, we are still able to express the survival
function:

A(t) =
1

λ− µ
(λe−µt − µe−λt) (2)

The mean and the second-order moment can be inferred from this equality.

E[T ] =
λ+ µ

λµ

E[T 2] =
1

λ2
+

1

λµ
+

1

µ2

That leads to a theoretical expression of the risk constants R and CR :

R = µ and CR =
λ

µ
(1− λ

µ− λ
) (3)

See the figure 3 in section 3 for the simulation of this model.

2.1.3 An exponentially mixed side effect probability

We study a sequence of (Xi)i that has an exponential distribution with pa-
rameter λ and a sequence of (Zi)i that has a Bernoulli distribution with a
side effect probability p(x) = 1− p1e

−µ1x − p2e
−µ2x. We focus on the model

with conditioned side effects and with an exponentially mixed side effect
probability.

We use the Laplace transform L and we look for R so that R is the
smallest root of (⋆) :

λLq(λ−R) = 1 (⋆)

Thus, we look for R such as

2∑
i=1

pi
µi + λ−R

= 1

Then we have :

R =
µ1 + µ2 + 2λ− 1±∆

2
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with

∆ = (µ1+µ2+2λ)2−2(µ1+µ2+2λ)+1+4(p1(µ2+λ)+p2(µ1+λ)+(µ1+λ)(µ2+λ))

The resolution can also be done with p(x) = 1 −
∑n

i=1 pie
−mix provided

that we can solve a polynomial n-degree equation.

See the figure 4 in section 3 for the simulation of this model.

2.1.4 Any side effect probability

We study a sequence of (Xi)i that has an exponential distribution with pa-
rameter λ and a sequence of (Zi) that has a Bernoulli distribution with any
side effect probability p(x). We focus on the model with conditioned side
effects and with any side effect probability.

We look for R so that R is the smallest root of:

λLq(λ−R) = 1 (⋆)

We suppose that B(t) is such as :

B(t) = A(t)eRt

As shown in appendix C page 31, B(t) verifies a renewal equation :

B(t) = b(t) +

∫ t

0

B(t− x)dG(x) (4)

with b(t) = eRt(1− FT (t)) and dG(x) = g(x)dx = λq(x)e−x(λ−R)dx

When t → +∞, A(t) ∼ CRe
−Rt

CR =
λ

R
(1− λ

R− λ
) (5)

2.1.5 General case

We study a sequence of (Xi)i that has any density fX1 and a sequence of (Zi)
that has a Bernoulli distribution with any side effect probability p(x).
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We can write the following equalities :

A(t) = 1− FX1(t) +

∫ +∞

0

A(t− x)q(x)fX1(x)dx

fT (t) = fX1(t)−
∂

∂t
(

∫ +∞

0

A(t− x)q(x)fX1(x)dx)

LT (s) = LX1(s)−
∫ +∞

0

(
∂

∂t
(

∫ +∞

0

A(t− x)q(x)fX1(x)dx)e
−st)dt

Here, in this subsection, the longer patients stay in a bed, the weaker
they are in their fight against possible side effects. That was our model with
conditioned side effects. Nevertheless, we could put forward that reporting
a side effect is simply bad luck and happens at a random instant.

2.2 Model with random side effects

Like in the model with conditioned side effects, we focus on the duration of
the stay of a patient in an hospital.

2.2.1 Censored stay durations

We look at one hospital bed and we observe the successive times of stay.
These data are independently and identically distributed variables, which
make up a renewal process. In this model with random side effects, we as-
sume that a side effect arises at a random instant. This is depicted in figure 2.

In this section, we add a new sequence of random variables ((Yi)i) to the
first model. Thus, we consider :

� a sequence of (Xi)i of independant and identically distributed random
variables, having the common distribution function FX , with FX(0) =
0. The variables (Xi)i stand for the successive duration of the treatment
for a patient and form a renewal process.
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� a sequence of (Yi)i of independant and identically distributed random
variables, having the common distribution function FY , with FY (0) =
0. The variables (Yi)i stand for the successive duration of exposure for
a patient.

� a sequence of (Zi)i of independant and identically distributed random
variables, having the Bernoulli distribution with success probability p:

Zi =

{
1 if Xi > Yi

0 if Yi ≥ Xi
p is the probability that the exposure duration

Yi is shorter than the treatment exposure Xi for the ith patient.

� the random variable N associated with the number of patients between
two reported side effects.

In our modelling, we choose to consider that a patient moves from his
bed as soon as he has a full-blown side effect. That is to say that, if Yi < Xi

then Xi := Yi because Xi is censored and Zi = 1. Had we considered that,
if Yi < Xi then Xi does not change, it would have lead us to the study of
study of the model with conditioned side effects, with p(x) = FYi

(x).

2.2.2 Uncensored stay durations

As explained above, if we suppose that the sequence of (Xi)i are not censored
by the sequence of (Yi)i, we find again in the model with conditioned side
effects. Indeed, as shown in appendix E page 31, we obtain the following
equality for the side effect probability:

P (Xi > Yi) = E(FYi
(Xi))

Since the (Yi)i variables are identically and independently distributed, we
obtain pi(x) = FY1(x) = p(x). Hence, T verifies the renewal equation of the
first model.

In the very particular case where the (Yi)i variables are exponentially
distributed with the parameter µ, we have (as shown in appendix D page 31)
:

P (Xi > Yi) =
µ

λ+ µ
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Figure 2: The (Xi)i are the successive durations of treatment for seven pa-
tients on the same hospital bed. The (Yi)i are the exposure duration. At
the end of each treatment, the (Zi)i are worth 0 or 1 : the patient does not
report any side effect if Yi > Xi or he has a full-blown one if Yi < Xi (and
then Xi = Yi).

Hence, Zi follows a Bernoulli distribution with a side effect probability
of success µ/(λ+ µ). It follows from the model with conditioned side effects
that T is exponentially distributed of parameter µλ/(λ + µ), because with
these hypothesis, we find again in the model with conditioned side effects
where the side effect probability p is constant.

For all distribution of the sequence (Yi)i we consider, we find again the
result of the model with conditioned side effects. That is why we consider
the case of (Xi)i censored. Indeed, the study of the model with random side
effect is only interesting when we have censored stay durations.
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Conclusion

In both methods, we modelled the duration of the hospital stay and the prob-
ability that a patient reports a side effect given the length of the treatment.
The difference between them is that sides effects are dependent or indepen-
dent on the duration.

In the next section, we use these study to estimate the risk constant.
Then, we value the quality of the estimators.
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3 Estimation and quantification by simula-

tions of the risk constant R

In this section, our goal is to estimate the risk constant R and to quantify and
value his quality. But in most cases, we cannot write an explicit expression of
the risk constant R. However, we reach an approximation of these constants
thanks to different methods. Then, we suggest some estimators that we try
to value through the simulation. Hence, in the first part of this section, we
study the simulation of our problem. Then in the second part, we describe
the estimators of R we found.

3.1 Simulations to quantify an estimator

In this paragraph, we will explain how the simulation of our problem works
and is used to value and quantify the estimators for the model with condi-
tionned side effect. Furthermore, there is also a simulation of the model with
random side effect.

3.1.1 Two examples with exponentially distributed stay durations

Asymptotic functions and, in some cases, the theoretical function of T are
plotted with several side effect probabilities p(x) and both models. As shown
in the figures 3 and 3, the tail function is not far from the histogram. That
is to say the tail function overestimates quite precisely the real density of T .

We studied the influence of parameters on the equivalent function in three
by-models:

1. Case where the stay durations (Xi)i are exponentially distributed and
the side effect probability p is constant When the parameters p or λ
decrease, the equivalent function gets closer to the histogramm. That
is to say the risk is less overestimated when these parameters increases.
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Figure 3: The sequence of (Xi)i has an exponential distribution with param-
eter λ = 1

3
and the sequence of (Zi)i has a Bernoulli distribution with a side

effect probability p(x) = 1− e−
1
3
x (left) and p = 1

3
(right). The simulation is

made for 1000 beds with 1000 patients on each bed within the framework of
the model with conditioned side effects.

2. Case where the variables (Xi)i are exponentially distributed and the
side effect probability p(x) = 1− exp(−µx) When the parameter µ or
λ decrease, the equivalent function moves avawy from the histogramm.
That is to say the risk is more overestimated when these parameters
increases.

3. Case where the variables (Xi)i are exponentially distributed and the
side effect probability p(x) = 1−p1e

(−µ1x)−p2e
(−µ2x)−p3e

(−µ3x)
When the parameter (µi)i∈1,2,3 or λ decrease, the equivalent function
moves away from the histogramm. That is to say the risk is more
overestimated when these parameters increase.

3.1.2 Two examples not exponentially distributed stay durations:
lognormally or uniformly distributed

Let us consider other distributions for the duration variable Xi. For example,
Yi may follow an uniform distribution, but the uniform distribution does not
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Figure 4: The sequence of (Xi)i has an exponential distribution with param-
eter λ = 1

3
and the sequence of (Zi)i has a Bernoulli distribution with a side

effect probability p(x) = 1 − 1
3
e−

1
20

x − 1
2
e−

1
3
x − 1

5
e−

1
10

x (left) and p(x) is a
gamma G(3, 1/3) distribution function (right). The simulation is made for
1000 beds with 1000 patients on each bed within the framework of the model
with conditioned side effects.

have the same properties as the exponential has. Actually, the exponential
distribution is the only distribution of a positive random variable, where the
calculi are easy: that is to say that T =

∑N
i=1 Xi is not a known distribution.

Furthermore, equations that have been developped are no longer verified.
However, we make simulations in order to check that T is not too far from
an exponential distribution. We simulate two cases :

� The stay durations (Xi)i are uniformly distributed

� The stay durations (Xi)i are lognormally distributed

The figure 3.1.2 is a simulation of this model for 1000 beds with 1000 patients
on each bed. We can notice on the figure 3.1.2 that the distribution of T is not
far from an exponential distribution. In consequence, the theory developped
until here is not far-fetched.
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Figure 5: The distribution of the random variable T when the sequence of
(Xi) has an uniform distribution (left) or a lognormal distribution (right)

We plot a probability plot of those simulations in order to test the ade-
quacy of T to an exponential distribution with these distributions for the stay
durations. We can conclude from these probability plots that in the case of
a lognormal distribution, the variable T is nearly an exponential distribution

3.1.3 Simulation of the model with random side effect

Unitl here, we study the simulation of the model with conditionned side
effect, let us consider the simulation of the model with random side effect.

We simulate this model where the sequence of the random variables (Xi)i
are not censored the variable Yi. We plot the histogram of the random
variable T and the equivalent function (in this case, we can do it).
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Figure 6: The sequence of (Xi)i has an exponential distribution with param-
eter λ = 1/3 and the sequence of (Yi)i has an exponential distribution with
parameter µ = 1/5. The simulation is made for 1000 beds with 1000 patients
on each bed within the framework of the model with random side effects.

3.2 The De Vielder’s approximation

In 1978, De Vielder proposed an approximation based on the idea to re-
place an unknown risk process with a process with exponentially distributed
claims. His idea was to identify the three first moments.

In our study, the ”De Vielder’s model” is the one where the sequence of
(Xi)i has an exponential distribution with parameter λ and the sequence of
(Zi)i has a Bernoulli distribution with a side effect probability p(x) = 1−e−µx.

Indeed, in that case, we are able to express the distribution function, the
moments and the risk constants. We know :

A(t) =
1

λ− µ
(λe−µt − µe−λt)

E[T ] = m1 =
λ+ µ

λµ
and E[T 2] = m2 =

1

λ2
+

1

λµ
+

1

µ2
(6)
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R = µ and CR =
λ

µ
(1− λ

µ− λ
) (7)

In our work, in order to apply the De Vielder’s approximation, we identify
the two first moments m1 and m2 of the ”De Vielder’s model” with the two
first moments ξ1 and ξ2 of the random variable T , calculated from the data.

As a result, we look for µ and λ such as :

{
ξ1 = m1

ξ2 = m2
⇔

{
ξ1 =

λ+µ
λµ

ξ2 =
1
λ2 +

1
λµ

+ 1
µ2

We are able to solve this system of two equations with two unknowns. As
shown in appendix F page 32, the discriminant of the second-order equation
could be negative. Furthermore, in the case of a positive discriminant, we
choose the smallest positive root for µ. Then the value of λ is known. Let

us denote by
∼
λ and

∼
µ the ”De Vielder” values of λ and µ.

We compute
∼
λ and

∼
µ in several cases and it appears that the discriminant

is negative when p(x) is a gamma, lognormal and a uniform distribution

function. However, in other cases,
∼
λ and

∼
µ can be calculated.

3.3 An inference of the risk constant R

In this paragraph, we study two methods to estimate the risk constant R :

� The first approach is a parametric estimate of R, when we suppose
the sequence of (Xi)i is exponentially distributed and the side effect
probability p(x) is 1− e−µx

� In the second method, we don’t make any hypothesis on the side effect
probability, but we solve the equation (⋆) with the help of the Bayes
formula

3.3.1 A parametric method

We assume that the sequence of (Xi)i is exponentially distributed with pa-
rameter λ.The parameter inference consists in solving the equation (⋆) ,
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assuming that q(x) = exp(−µx). In consequence, we can express the dis-
tribution of T : FT (t) = 1 − 1

λ−µ
(λe−µt − µe−λt) that is to say A(t) =

1
λ−µ

(λe−µt−µe−λt). The likelihood function L for the sequence (Zi/Xi = xi)i
is worth :

L(µ, x1, . . . , xn, z1, . . . , zn) =
n∏

i=1

(e−µxi)1−zi(1− e−µxi)zi

ln(L)(µ, x1, . . . , xn, z1, . . . , zn) =
n∑

i=1

(−µxi)(1− zi) +
n∑

i=1

(zi)ln(1− e−µxi)

Thanks to the log-likelihood, we are able to compute the estimator of the
maximum of likelihood of µ. Hence, the parametric estimator of R is the
estimator of the maximum of likelihood of µ (see the De Vielder approxima-
tion). Furthermore, we can also compute the survival function from the data
in addition to the asymptotic function.

3.3.2 A non parametric method

We assume that the sequence of (Xi)i is exponentially distributed of pa-
rameter λ.The non parametric inference consists in solving the equation (⋆)
without making any hypothesis on the probability q(x). We recall that (⋆)
⇔ λLq(λ−R) = 1 where Lq(r) =

∫∞
0

e−rxq(x)dx. We obtain :

P (Z = 0)E(e−rX/Z = 0) = 1

Replacing P (Z = 0) by 1
n

∑n
i=1 11{0}(zi), and E(e−rX/Z = 0) by 1

n

∑n
i=1 e

rxi11{0}(zi)
leads to the equation (appendix G page 32):

1

n

n∑
i=1

11{0}(zi)
1

n

n∑
i=1

erxi11{0}(zi) = 1

Solving this equation numerically thanks to the R function optimize
we find an estimate of the risk constant R. Unlike the previous method, we
do not make any hypothesis on the side effect probability p. In consequence,
we expect better results when q(x) is not an exponential distribution func-
tion (general case) with this method than the previous one. But this is the
opposite when q(x) is not far from an exponential distribution function.
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We numerically estimate the bias, the variance, R and CR for the non
parametric estimator, the parametric estimator and the De Vielder estimator
in six different side effect probability cases :

1. p(x) is a exponential distribution function

2. p(x) is a constant function

3. p(x) is a mix of exponential distribution function

4. p(x) is a gamma distribution function

5. p(x) is a lognormal distribution function

6. p(x) is a uniform distribution function

7. p(x) is a weibull distribution function

To make this simulation comparable, we simulate the model with conditioned
side effects with (Xi)i ∼ ε(1/3) and the side effect probability p(x) has a mean
of 20 for each case or the closest mean to 20. Furthermore, we estimate the
risk constant on 100 samples in each case with 1000 patients for each sample.

1.
nonpar par

bias 4.407856e-02 -3.503516e-06
var 6.001352e-05 1.972828e-05
R 9.405885e-02 4.997679e-02
CR 8.492920e+00 1.455619e+01

2.
nonpar par

bias 1.575410e-02 4.573187e-04
var 1.714712e-05 5.675577e-06
R 3.242554e-02 1.712875e-02
CR 2.197198e+01 4.066553e+01

3.
nonpar par

bias 3.247060e-02 -5.558817e-05
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var 4.621880e-05 1.006148e-05
R 6.880894e-02 3.628275e-02
CR 1.101930e+01 1.967524e+01

4.
nonpar par

bias 1.832645e-02 -7.552530e-04
var 2.267637e-05 7.363311e-06
R 3.778277e-02 1.870107e-02
CR 1.911443e+01 3.773611e+01

5.
nonpar par

bias 4.556463e-02 1.017082e-03
var 7.013414e-05 3.104221e-05
R 1.005464e-01 5.599889e-02
CR 8.101552e+00 1.318976e+01

6.
nonpar par

bias 2.514426e-02 2.598740e-04
var 3.878331e-05 1.073282e-05
R 5.236710e-02 2.748271e-02
CR 1.408411e+01 2.580822e+01

7.
nonpar par

bias 4.588473e-03 1.540856e-04
var 5.405285e-06 1.589171e-06
R 9.367470e-03 4.933083e-03
CR 7.709814e+01 1.468196e+02

The most suprising result is that the parametric estimation has the small-
est bias in each cases. From this simulation, we can conclude that the para-
metric estimation is better than the non parametric one in terms of bias and
variance with those parameters. Other tests with other distributions or pa-
rameter values would be very wise to conclude that the parametric estimation
is better than the non-parametric one.
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3.4 A variant of the Kaplan-Me?er estimate

In this subsection, we explain how we adapt the Kaplan-Me?er method in
order to plot the survival function A(t).

We propose a variant of Kaplan-Me?er estimate that offers a way of build-
ing the curve of the survival function from data about duration stays in
hospitals. One principle lies at the very heart of this approximation : the
survival function remains constant between two successive distincts moments
with side effects.

A plot of the approximated survival function Â is a serie of horizontal
steps of declining magnitude which, when a large enough sample of patients
is taken, approaches the true survival function for that population. An im-
portant advantage of the Kaplan-Me?er curve is that the method can take
into account censored data. Indeed, only the patients without full-blown side
effects are still being observed.

Let us consider for i in {0, .., n}, assuming that i stands for the ith time
observed:

� D vector such as D(i) is the number of patients with side effets arisen
before the time i

� N vector such as N(i) is the number of patients that have not had side
effets arisen before the time i

� Â vector such as Â(i) is the survival function at the time i

Then, in order to plot the survival function, we work out the instanta-
neous risk h(t). It is worth :

h(t) = limdt→0
P (T < t+ dt)/T ≥ t

dt
(8)

As a result, we have ĥ(i) = D(i)
N(i)

Let us build the survival function assuming that the survival function
between successive distinct sampled observations is constant.
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1. When t = 0, Â(0) = 1

2. For i in {0, .., n}, between t = i and t = i+ 1,

� If no side effect has arisen, Â(i+ 1) = Â(i)

� If a side effect has arisen, Â(i + 1) = (1 − ĥ(i + 1))A(i) with

ĥ(i+ 1) = D(i+1)
N(i+1)

that is to say that :

Â(i) =
i∏

j=0

(1− ĥ(i))

It is difficult to get a feel for the reliability of the curve, especially towards
the end. However, we can notice a quite good approximation at the beginning
of the approximation. That is interesting because we are especially interested
in the value of the survival function at small times. Indeed, we can suppose
that most of the patients stay in hospital less than about ten days.
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Figure 7: The Kaplan-Meier’s variant estimation with 100 and 1000 patients,
and (Xi) ∼ ε(λ) and p ∼ ε(µ). The green plot is the survival function got
thanks to our study ; the red one is the theoretical one.
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4 The rhosp package

In this section, we will describe the implementation of the R functions in
order to simulate our problem and estimate the risk constant of our models.

We made an R package to let our functions available through Comprehen-
sive R Archive Network. Here is a brief description of our main functions.
Actually, we have two files simul.R and estim.R.

4.1 A simulation file : simul.R

The main goal of the file simul.R is obviously to simulate our 2 models
: model with conditioned side effects and model with random side effects.
In order to guarantee a multi-purpose functions, we do our best to have
the most general arguments for our functions. That is why the following
functions have a list in argument to describe the distribution of the variable
Xi and the pseudo-distribution of the side effect probability p.

� histo<-function(X,disXi=NULL,disP=NULL,plotDV=FALSE)

The function histo plots the histogram of the object X whose compo-
nents are the variable T , the estimates R, CR, λ and µ estimated with
De Vielder approximation. The argument disXi is a three-elements list
: rangen (a random positive variable generator), nbparam (number of
parameter of this distribution) and param (a list of its parameters).
disP is also a three-element list to describe the side effect probability.

� mainSimul<-function(nbBed,nbPatient,disXi,disP,toplot=FALSE,calc=TRUE)

The function mainSimul simulates nbBed times the model with con-
ditioned side effects with our function simul and calculates the risk
constant R and CR by solving the renewal equation (⋆). This renewal
equation is only valid if the Xi forms a poisson process.

� makeSample<-function(file, nbPatient,disXi,disP)

The function makeSample write a simulation in a given file. This file
can be used by the estimation functions.

� mainSimul2 and makeSample2
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These two functions concerning the model with random side effects
plays the same role as mainSimul and makeSample did in the model
with conditioned side effects.

4.2 An estimation file : estim.R

The main purpose of the file estim.R is to compute the estimators described
in the previous section and quantify their quality. Each estimation function
takes in an argument a file of data, and have some optional arguments. We
suppose that the data are sorted in three columns, one for the cumulated
number of the patient, one for the stay duration of a patient and another for
a side effect report.

� DV<-function(T)

The function DV computes the De Vielder’s approximation on a vector
T, which is the vector of the observations of the variable T . This
auxiliary function is used in the following functions.

� estimParam<-function(file,toplot=TRUE,header=TRUE)

The function estimParam computes the parametric estimation over
the data given in the file filename. There are also the functions
estimNonParam and estimDV which compute the non parametric
estimation and the De Vielder estimation respectively.

� calcBiasParam<-function(file,nb=10,disXi=arg1Exp,disP=arg2Exp)

The function calcErrorParam calculate the bias and the variance of
the parametric estimator. There are also the functions calcErrorNonParam
and calcErrorDV which compute the same things with the non para-
metric estimator and the De Vielder estimator respectively.

� Table<-function(file,nb=10,mod)

The function Table makes arrays of bias, variance, R and CR for
the different estimators in different cases in order to compare these
estimators.
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5 Conclusion

First, we studied two models : the model with conditioned side effects and
the model with random side effects. We focused on the duration of a patient
stay in hospital. We look at one hospital bed and we observe the successive
times of stay in order to get the risk constant R. Since we did not always
manage to obtain an explicit expression of R, we took an interest in estimat-
ing the risk constant and in quantifying and valuing his quality. We made
this thanks an R package we create. We can notice that we found a good
method – the parametric one – to approximate R.

Of course, it is easy to make the models more complex. Most of the time,
we will not be able to study them if they have new amendments. However,
some more complex models are easy to study. For instance, the risk constant
R can vary according to seasons. For example, we can sense that patients
stays are longer during the winter. Thus, we should solve an unclassical is-
sue, i.e. with a sequence of stay durations (Xi)i exponentially distributed
with parameter λ(t). The renewal process described by the sequence of stay
durations is a non homogeneous Poisson process. However, we can find again
the classical model by applying a change in variables. Then, the model reacts
as if the time were accelerated. Actually, this time dilatation can stand for
periodic variations in the risk factor.

Finally, we could think that we could apply in reality our study. Indeed,
given that even if the stay durations are not exponentially distributed, T
is not far from an exponential tail, we could use our work to find the risk
constant during hospitalization. One thing to do would be to apply our work
on real hospital data in order to verify its accuracy. This could help health
services to control hospital costs and physicians to prenvent patients from
hospital side effects such as nosocomial infections and venous thrombosis.
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7 Appendix

A Distribution of T in the first model with

Xi ∼ ϵ(λ) and Zi ∼ B(p) with a constant side

effect probability p

It is easy to see N is a geometric distribution.

LT (z) = E(e−zT ) = E(E(e−z
∑N

i=1 Xi/N)) (9)

Moreover E(e−z
∑N

i=1 Xi/N = n) = E(e−z
∑N

i=1 Xi) is the Laplace tranform of a gamma dis-
tribution of parameter n and λ. Since the Laplace tranform of a sum of random variables is

the product of the Laplace tranforms of the random variables, we have E(e−z
∑N

i=1 Xi/N =

n) = λ
λ+z

n
. It follows then from A that LT (z) = E( λ

λ+z

N
) = GN ( λ

λ+z ) where GN is the
generator function of N (GN (z) = pz

1−(1−p)z ). Hence,

LT (z) =
λp

λp+ z

This proves that T is an exponential distribution of parameter λp.

B Distribution of T with an expression of the

survival function

P (T > t/X1 = x) = P (T > t/X1 = x, T > X1)P (T > X1)+P (T > t/X1 = x, T = X1)P (T = X1)

= P (T > t/X1 = x, T > X1)q(x) + P (T > t/X1 = x, T = X1)(1− q(x))

= P (T > t− x+ x/T > x)q(x) + 11{x>t}(1− q(x))

Because of the lack of memory of the exponential distribution of(Xi)i, we have P (T >
t/X1 = x) = P (T > t− x)q(x) + 11{x>t}(1− q(x))

A(t) =

∫
R
P (T > t/X1 = x)fX1(x)dx =

∫ ∞

0

[P (T > t−x)q(x)+11{x>t}(1−q(x))]λe−λxdx

A(t) =

∫ t

0

A(t− x)q(x)λe−λxdx+

∫ ∞

t

[A(t− x)q(x) + 1− q(x)]λe−λxdx

A(t) =

∫ t

0

A(t− x)q(x)λe−λxdx+

∫ ∞

t

[1]λe−λxdx = 1− F (t) +

∫ t

0

A(t− x)q(x)λe−λxdx
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Let h(x) = q(x)λe−λx. We can apply the Laplace transform to the previous equation:

LA(s) =
1

s
− (

1

s
− 1

λ+ s
) + LA(s).Lh(s)

Thus we have LA(s) = 1
λ+s .

1
1−Lh(s) .

When q(x) = e−µx, we can verify that A(t) = 1
λ−µ (λe

−µt−µe−λt) because the function

t → 1
λ−µ (λe

−µt −µe−λt) has the same Laplace transform as A and the Laplace transform
is injective.

C The renewal equation for the survival func-

tion

Let B(t) = eRtA(t) where R is the positive solution of the equation λLq(λ− r) = 1 , for r

in (0, λ). Thus, B(t) = eRt(1− F (t)) +
∫ t

0
B(t− x)q(x)λe−(λ−R)xdx. Since R verifies the

previous, the function t → g(t) = q(t)λe−(λ−R)t is a density. Hence, B is solution of the
following renewal equation:

B(t) = eRt(1− F (t)) +

∫ t

0

B(t− x)dG where G′(t) = g(t)

Thanks to the renewal theorem, we obtain a limit ofB when t → +∞: B(t) = 1
µ

∫∞
0

eRt(1−
F (t))dt where µ =

∫∞
0

xg(x)dx = λL(x → xq(x))(λ−R) = λ(−1)L′q(λ−R) = −λ−1
λ2 = 1

λ .

Hence, B(t) = λ( 1
R (1− λ

R−λ )). Finally, we obtain an asymptotic of the function A:

A(t) =
λ

R
(1− λ

R− λ
)e−Rt

D Probability of success for Zi ∼ ε(µ)

The integration of the density function of the couple (Xi,Yi) over D = {(x, y) ∈ R+
2, y ≤

x} yields

P (Xi > Yi) =

∫
P (Xi > y)fYi(y)dy =

∫
P (Xi > y)µe−µydy =

∫
µe−(λ+µ)ydy =

µ

λ+ µ

E Probability of success for any Zi

The integration of the density function of the couple (Xi,Yi) over D = {(x, y) ∈ R+
2, y ≤

x} yields

P (Xi > Yi) =

∫ ∫
D

fXi,Yi
(x, y)dxdy =

∫ ∫
D

fXi
(x)fYi

(y)dxdy =

∫ ∞

0

∫ x

0

fXi
(x)fYi

dydx
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Thus we have

P (Xi > Yi) =

∫ ∞

0

fXi(x)FYi(x)dx = E(FYi(Xi))

F Solving the De Vielder system

We recall the ”De Vielder” system:{
ξ1 = λ+µ

λµ

ξ2 = 1
λ2 + 1

λµ + 1
µ2

↔

{
ξ1 = λ+µ

λµ

ξ2 = 2µ2+2µλ+2λ2

λ2µ2

↔
{

λ = µ
µξ1−1

ξ2µ
2( µ

µξ1−1 )
2 = 2µ2 + 2( µ

µξ1−1 )µ+ 2( µ
µξ1−1 )

2

↔
{

λ = µ
µξ1−1

ξ2µ
2( µ

µξ1−1 )
2 = 2µ2 + 2( µ

µξ1−1 )µ+ 2( µ
µξ1−1 )

2 ↔

{
λ = µ

µξ1−1
ξ2µ

2

2 = (µξ1 − 1)2 + µξ1 − 1 + 1

Thus we have a second-order equation of the unknown µ : µ2( ξ22 −ξ21)+µξ1−1 = 0 Hence,
we obtain δ = 2ξ2 − 3ξ21 .

µ =
−ξ1 ±

√
2ξ2 − 3ξ21

2( ξ22 − ξ21)
= f(ξ1, ξ2) when δ > 0 and λ =

f(ξ1, ξ2)

f(ξ1, ξ2)ξ1 − 1

G A new expression of (⋆)

We apply the Bayes formula to P (Z = 0/X = x), thus we have

Lq(r) =

∫ ∞

0

exp(−rx)P (Z = 0/X = x)dx =

∫ ∞

0

exp(−rx)
fZ=0
X (x)P (Z = 0)

fX(x)
dx

Lq(r) =
P (Z = 0)

λ

∫ ∞

0

exp(−(r− λ)x)fZ=0
X (x)dx =

P (Z = 0)

λ
E(exp(−(r− λ)X)/Z = 0)

Hence,
λLq(λ− r) = 1 ⇔ P (Z = 0)E(exp(−rX)/Z = 0) = 1


