simulate many times the first model and calculate the risk constant
Description
main simulates nbBed times the first model with the function simul
and calculates the risk constant R and CR by solving the renewal equation (star).
this renewal equation is only valid if the Xi forms a poisson process.
R and CR are defined such that the equivalent survival function is .
Usage
mainSimul(nbBed, nbPatient, disXi, disP, toplot = FALSE, calc = TRUE)
mainSimul(nbBed, nbPatient, disXi, disP, toplot = FALSE, calc = TRUE)
Arguments
nbBed |
the number of beds |
nbPatient |
the number of patient in each bed |
disXi |
the distribution of the variable Xi : disXi is a 3 elements list : rangen stands for a random positive variable generator ; nbparam for number of parameter of this distribution and param for a list of parameters |
disP |
the distribution of the success probability of Zi : p : disP is a 3 elements list : disfun stands for a distribution function ; nbparam for number of parameter of this distribution and param for a list of parameters |
toplot |
a logical variable to plot the variable Zi |
calc |
should the risk constants calculate? |
Details
make simulation and estimation on the sample
Value
Describe the value returned If it is a LIST, use
CR |
CR constant used in the exponential bound |
R |
the risk constant |
T |
the vector of durations between two declared side effects |
lambdaEmp |
estimate of lambda |
muEmp |
estimate of mu |
Author(s)
Christophe Dutang and Julie Barthes
Examples
arg1Exp <- list(rangen=rexp,nbparam=1,param=list(1/3)); arg1Bin <- list(rangen=rbinom,nbparam=2,param=list(1,1/20)); arg1Unif <- list(rangen=runif,nbparam=2,param=list(0,20)); arg1Lnorm <- list(rangen=rlnorm,nbparam=2,param=list(1/4,1)); arg2Exp <- list(disfun=pexp,nbparam=1,param=list(1/5)); arg2Cst <- list(disfun=pcst <- function(x,p) p ,nbparam=1,param=list(1/3)); arg2Comp <- list(disfun=pcomp <- function(x,mu1,mu2,mu3) {1-1/3*exp(-mu1* x)-1/2*exp(-mu2 *x)-1/6*exp(-mu3 *x)} ,nbparam=3,param=list(1/3,1/5,1/10)); arg2Gamma <- list(disfun=pgamma,nbparam=2,param=list(3,1/3)); arg2Lnorm <- list(disfun=plnorm,nbparam=2,param=list(1/20,2)); T <- mainSimul(100,100,arg1Exp,arg2Exp)
arg1Exp <- list(rangen=rexp,nbparam=1,param=list(1/3)); arg1Bin <- list(rangen=rbinom,nbparam=2,param=list(1,1/20)); arg1Unif <- list(rangen=runif,nbparam=2,param=list(0,20)); arg1Lnorm <- list(rangen=rlnorm,nbparam=2,param=list(1/4,1)); arg2Exp <- list(disfun=pexp,nbparam=1,param=list(1/5)); arg2Cst <- list(disfun=pcst <- function(x,p) p ,nbparam=1,param=list(1/3)); arg2Comp <- list(disfun=pcomp <- function(x,mu1,mu2,mu3) {1-1/3*exp(-mu1* x)-1/2*exp(-mu2 *x)-1/6*exp(-mu3 *x)} ,nbparam=3,param=list(1/3,1/5,1/10)); arg2Gamma <- list(disfun=pgamma,nbparam=2,param=list(3,1/3)); arg2Lnorm <- list(disfun=plnorm,nbparam=2,param=list(1/20,2)); T <- mainSimul(100,100,arg1Exp,arg2Exp)