reportRmd Package

Overview

reportRmd is a package designed to facilitate the reporting of common statistical outputs easily in RMarkdown documents. The package supports pdf, html and word output without any changes to the body of the report. The main features are Table 1 style summaries, combining multiple univariate regression models into a single table, tidy multivariable model output and combining univariate and multivariable regressions into a single table. Single table summaries of median survival times and survival probabilities are also provided. A highly customisable survival curve function, based on ggplot2 can be used to create publication-quality plots. Visualisation plots are also available for bivariate relationships and logistic regression models.

A word of caution:

The reportRmd package is designed to facilitate statistical reporting and does not provide any checks regarding the suitability of the models fit.

Summary statistics

Basic summary statistics

data("pembrolizumab")
rm_covsum(data=pembrolizumab, 
covs=c('age','sex'))
n=94
age
Mean (sd) 57.9 (12.8)
Median (Min,Max) 59.1 (21.1, 81.8)
sex
Female 58 (62)
Male 36 (38)

Set IQR = T for interquartile range instead of Min/Max

rm_covsum(data=pembrolizumab, 
covs=c('age','sex'),IQR=TRUE)
n=94
age
Mean (sd) 57.9 (12.8)
Median (Q1,Q3) 59.1 (49.5, 68.7)
sex
Female 58 (62)
Male 36 (38)

Or all.stats=T for both

rm_covsum(data=pembrolizumab, 
covs=c('age','sex'),all.stats = TRUE)
n=94
age
Mean (sd) 57.9 (12.8)
Median (Q1,Q3) 59.1 (49.5, 68.7)
Range (min, max) (21.1, 81.8)
sex
Female 58 (62)
Male 36 (38)

This will produce summary statistics by Sex

rm_covsum(data=pembrolizumab, maincov = 'sex',
covs=c('age','pdl1','change_ctdna_group'))
Full Sample (n=94) Female (n=58) Male (n=36) p-value
age 0.30
Mean (sd) 57.9 (12.8) 56.9 (12.6) 59.3 (13.1)
Median (Min,Max) 59.1 (21.1, 81.8) 56.6 (34.1, 78.2) 61.2 (21.1, 81.8)
pdl1 0.76
Mean (sd) 13.9 (29.2) 15.0 (30.5) 12.1 (27.3)
Median (Min,Max) 0 (0, 100) 0.5 (0.0, 100.0) 0 (0, 100)
Missing 1 0 1
change ctdna group 0.84
Decrease from baseline 33 (45) 19 (48) 14 (42)
Increase from baseline 40 (55) 21 (52) 19 (58)
Missing 21 18 3

To indicate which statistical test was used use show.tests=TRUE

rm_covsum(data=pembrolizumab, maincov = 'sex',
covs=c('age','pdl1','change_ctdna_group'),
show.tests=TRUE)
Full Sample (n=94) Female (n=58) Male (n=36) p-value StatTest
age 0.30 Wilcoxon Rank Sum
Mean (sd) 57.9 (12.8) 56.9 (12.6) 59.3 (13.1)
Median (Min,Max) 59.1 (21.1, 81.8) 56.6 (34.1, 78.2) 61.2 (21.1, 81.8)
pdl1 0.76 Wilcoxon Rank Sum
Mean (sd) 13.9 (29.2) 15.0 (30.5) 12.1 (27.3)
Median (Min,Max) 0 (0, 100) 0.5 (0.0, 100.0) 0 (0, 100)
Missing 1 0 1
change ctdna group 0.84 Chi Sq
Decrease from baseline 33 (45) 19 (48) 14 (42)
Increase from baseline 40 (55) 21 (52) 19 (58)
Missing 21 18 3

Effect sizes can be added with effSize = TRUE. Effect size measures include the Wilcoxon r for Wilcoxon rank-sum test, Cohen’s d for t-test, Eta squared for Kruskal Wallis test and ANOVA, and Cramer’s V for categorical variables.

rm_covsum(data=pembrolizumab, maincov = 'sex',
covs=c('age','pdl1','change_ctdna_group'),
show.tests=TRUE, effSize=TRUE)
Full Sample (n=94) Female (n=58) Male (n=36) p-value Effect Size StatTest
age 0.30 0.11 Wilcoxon Rank Sum, Wilcoxon r
Mean (sd) 57.9 (12.8) 56.9 (12.6) 59.3 (13.1)
Median (Min,Max) 59.1 (21.1, 81.8) 56.6 (34.1, 78.2) 61.2 (21.1, 81.8)
pdl1 0.76 0.031 Wilcoxon Rank Sum, Wilcoxon r
Mean (sd) 13.9 (29.2) 15.0 (30.5) 12.1 (27.3)
Median (Min,Max) 0 (0, 100) 0.5 (0.0, 100.0) 0 (0, 100)
Missing 1 0 1
change ctdna group 0.84 0.020 Chi Sq, Cramer’s V
Decrease from baseline 33 (45) 19 (48) 14 (42)
Increase from baseline 40 (55) 21 (52) 19 (58)
Missing 21 18 3

Group comparisons are non-parametric by default, specify testcont='ANOVA' for t-tests/ANOVA

rm_covsum(data=pembrolizumab, maincov = 'sex',
covs=c('age','pdl1'),
testcont='ANOVA',
show.tests=TRUE, effSize=TRUE)
Full Sample (n=94) Female (n=58) Male (n=36) p-value Effect Size StatTest
age 0.39 0.18 t-test, Cohen’s d
Mean (sd) 57.9 (12.8) 56.9 (12.6) 59.3 (13.1)
Median (Min,Max) 59.1 (21.1, 81.8) 56.6 (34.1, 78.2) 61.2 (21.1, 81.8)
pdl1 0.63 0.100 t-test, Cohen’s d
Mean (sd) 13.9 (29.2) 15.0 (30.5) 12.1 (27.3)
Median (Min,Max) 0 (0, 100) 0.5 (0.0, 100.0) 0 (0, 100)
Missing 1 0 1

The default is to indicate percentages by columns (ie percentages within columns add to 100)

rm_covsum(data=pembrolizumab, maincov = 'sex',
covs=c('cohort'),
pvalue = FALSE)
Full Sample (n=94) Female (n=58) Male (n=36)
cohort
A 16 (17) 3 (5) 13 (36)
B 18 (19) 18 (31) 0 (0)
C 18 (19) 18 (31) 0 (0)
D 12 (13) 7 (12) 5 (14)
E 30 (32) 12 (21) 18 (50)

But you can also specify to show by row instead

rm_covsum(data=pembrolizumab, maincov = 'sex',
covs=c('cohort'),
pvalue = FALSE,
percentage='row')
Full Sample (n=94) Female (n=58) Male (n=36)
cohort
A 16 3 (19) 13 (81)
B 18 18 (100) 0 (0)
C 18 18 (100) 0 (0)
D 12 7 (58) 5 (42)
E 30 12 (40) 18 (60)

Univariate regression

Combining multiple univariate regression analyses into a single table

rm_uvsum(data=pembrolizumab, response='orr',
covs=c('age','pdl1','change_ctdna_group'),p.adjust = 'holm')
OR(95%CI) p-value N Event
age 0.96 (0.91, 1.00) 0.089 94 78
pdl1 0.97 (0.95, 0.98) <0.001 93 77
change ctdna group 0.003 73 58
Decrease from baseline Reference 33 19
Increase from baseline 28.74 (5.20, 540.18) 40 39

If the response is continuous linear regression is the default

rm_uvsum(data=pembrolizumab, response='l_size',
covs=c('age','cohort'))
Estimate(95%CI) p-value N
age -0.58 (-1.54, 0.38) 0.23 94
cohort <0.001 94
A Reference 16
B -38.04 (-74.95, -1.13) 0.044 18
C 20.35 (-16.56, 57.26) 0.28 18
D -24.79 (-65.82, 16.23) 0.23 12
E 31.69 (-1.56, 64.95) 0.062 30

…unless two variables are specified and then survival analysis is run

rm_uvsum(data=pembrolizumab, response=c('os_time','os_status'),
covs=c('age','pdl1','change_ctdna_group'))
HR(95%CI) p-value N
age 0.99 (0.97, 1.01) 0.16 94
pdl1 0.99 (0.98, 1.00) 0.026 93
change ctdna group <0.001 73
Decrease from baseline Reference 33
Increase from baseline 3.06 (1.62, 5.77) 40

Correlated observations can be handled using GEE

data("ctDNA")
 rm_uvsum(response = 'size_change',
 covs=c('time','ctdna_status'),
 gee=TRUE,
 id='id', corstr="exchangeable",
 family=gaussian("identity"),
 data=ctDNA,showN=TRUE)
Estimate(95%CI) p-value N
time -0.12 (-0.44, 0.19) 0.44 262
ctdna status <0.001 262
Clearance Reference 134
No clearance, decrease from baseline 61.29 (37.38, 85.20) <0.001 42
No clearance, increase from baseline 82.52 (64.67, 100.37) <0.001 86

If you want to check the underlying models, set returnModels = TRUE

rm_uvsum(response = 'orr',
 covs=c('age','sex'),
 data=pembrolizumab,returnModels = TRUE)
## $age
## 
## Call:  glm(formula = orr ~ age, family = binomial, data = data)
## 
## Coefficients:
## (Intercept)          age  
##     4.12269     -0.04231  
## 
## Degrees of Freedom: 93 Total (i.e. Null);  92 Residual
## Null Deviance:       85.77 
## Residual Deviance: 82.53     AIC: 86.53
## 
## $sex
## 
## Call:  glm(formula = orr ~ sex, family = binomial, data = data)
## 
## Coefficients:
## (Intercept)      sexMale  
##      1.9859      -0.8873  
## 
## Degrees of Freedom: 93 Total (i.e. Null);  92 Residual
## Null Deviance:       85.77 
## Residual Deviance: 83.21     AIC: 87.21

Multivariable analysis

To create a nice display for multivariable models the model needs to first be fit. By default, the variance inflation factor will be shown to check for multicollinearity. To suppress this column set vif=FALSE. Note: variance inflation factors are not computed (yet) for multilevel or GEE models.

glm_fit <- glm(orr~change_ctdna_group+pdl1+age,
               family='binomial',
               data = pembrolizumab)
rm_mvsum(glm_fit,p.adjust = 'holm')
OR(95%CI) p-value N Event VIF
change ctdna group 0.018 73 58 1.03
Decrease from baseline Reference 33 19
Increase from baseline 23.92 (2.49, 229.77) 40 39
pdl1 0.97 (0.95, 0.99) 0.022 73 58 1.24
age 0.94 (0.87, 1.01) 0.078 73 58 1.23

p-values can be adjusted for multiple comparisons using any of the options available in the p.adjust function. This argument is also available for univariate models run with rm_uvsum.

rm_mvsum(glm_fit, showN = TRUE, vif=TRUE,p.adjust = 'holm')
OR(95%CI) p-value N Event VIF
change ctdna group 0.018 73 58 1.03
Decrease from baseline Reference 33 19
Increase from baseline 23.92 (2.49, 229.77) 40 39
pdl1 0.97 (0.95, 0.99) 0.022 73 58 1.24
age 0.94 (0.87, 1.01) 0.078 73 58 1.23

Combining univariate and multivariable models

To display both models in a single table run the rm_uvsum and rm_mvsum functions with tableOnly=TRUE and combine.

uvsumTable <- rm_uvsum(data=pembrolizumab, response='orr',
covs=c('age','sex','pdl1','change_ctdna_group'),tableOnly = TRUE)

glm_fit <- glm(orr~change_ctdna_group+pdl1,
               family='binomial',
               data = pembrolizumab)
mvsumTable <- rm_mvsum(glm_fit, showN = TRUE,tableOnly = TRUE)

rm_uv_mv(uvsumTable,mvsumTable)
Unadjusted OR(95%CI) p Adjusted OR(95%CI) p (adj)
age 0.96 (0.91, 1.00) 0.089
sex 0.11
Female Reference
Male 0.41 (0.13, 1.22)
pdl1 0.97 (0.95, 0.98) <0.001 0.98 (0.96, 1.00) 0.024
change ctdna group 0.002 0.004
Decrease from baseline Reference Reference
Increase from baseline 28.74 (5.20, 540.18) 24.71 (2.87, 212.70)

This can also be done with adjusted p-values, but when combined the raw p-values are dropped

uvsumTable <- rm_uvsum(data=pembrolizumab, response='orr',
covs=c('age','sex','pdl1','change_ctdna_group'),tableOnly = TRUE,p.adjust='holm')

glm_fit <- glm(orr~change_ctdna_group+pdl1,
               family='binomial',
               data = pembrolizumab)
mvsumTable <- rm_mvsum(glm_fit,tableOnly = TRUE,p.adjust='holm')

rm_uv_mv(uvsumTable,mvsumTable)
Unadjusted OR(95%CI) p Adjusted OR(95%CI) p (adj)
age 0.96 (0.91, 1.00) 0.18
sex 0.18
Female Reference
Male 0.41 (0.13, 1.22)
pdl1 0.97 (0.95, 0.98) <0.001 0.98 (0.96, 1.00) 0.024
change ctdna group 0.005 0.007
Decrease from baseline Reference Reference
Increase from baseline 28.74 (5.20, 540.18) 24.71 (2.87, 212.70)

Changing the output

If you need to make changes to the tables, setting tableOnly=TRUE will return a data frame for any of the rm_ functions. Changes can be made, and the table output using outTable()

mvsumTable <- rm_mvsum(glm_fit, showN = TRUE,tableOnly = TRUE)
names(mvsumTable)[1] <-'Predictor'
outTable(mvsumTable)
Predictor OR(95%CI) p-value N Event VIF
change ctdna group 0.004 73 58 1.01
Decrease from baseline Reference 33 19
Increase from baseline 24.71 (2.87, 212.70) 40 39
pdl1 0.98 (0.96, 1.00) 0.024 73 58 1.01

Combining tables

Tables can be nested with the nestTable() function

cohortA <- rm_uvsum(data=subset(pembrolizumab,cohort=='A'), 
                     response = 'pdl1',
                     covs=c('age','sex'),
                     tableOnly = T)
cohortA$Cohort <- 'Cohort A'
cohortE <- rm_uvsum(data=subset(pembrolizumab,cohort=='E'), 
                     response = 'pdl1',
                     covs=c('age','sex'),
                     tableOnly = T)
cohortE$Cohort <- 'Cohort E'
nestTable(rbind(cohortA,cohortE),head_col = 'Cohort',to_col = 'Covariate')
Estimate(95%CI) p-value N
Cohort A
age 2.94 (-0.70, 6.58) 0.10 15
sex 0.14 15
Female Reference 3
Male -40.25 (-96.25, 15.75) 12
Cohort E
age -0.44 (-1.02, 0.15) 0.14 30
sex 0.097 30
Female Reference 12
Male -14.86 (-32.57, 2.85) 18

Simple Survival Summaries

Displaying survival probabilities at different times by sex using Kaplan Meier estimates

rm_survsum(data=pembrolizumab,time='os_time',status='os_status',
 group="sex",survtimes=seq(12,36,12),survtimeunit='months')
Group Events/Total Median (95%CI) 12months (95% CI) 24months (95% CI) 36months (95% CI)
Female 39/58 14.29 (9.69, 23.82) 0.55 (0.44, 0.69) 0.34 (0.24, 0.50) 0.29 (0.18, 0.45)
Male 25/36 11.24 (6.14, 25.33) 0.50 (0.36, 0.69) 0.31 (0.18, 0.52) 0.27 (0.15, 0.48)
Log Rank Test ChiSq 0.5 on 1 df
p-value 0.46

Survival Times in Long Format

Displaying survival probabilities at different times by sex using Cox PH estimates

rm_survtime(data=pembrolizumab,time='os_time',status='os_status',
 strata="sex",survtimes=c(12,24),survtimeunit='mo',type='PH')
Time (mo) At Risk Events Censored Survival Rate (95% CI)
Overall 94
12 48 44 2 0.53 (0.44, 0.64)
24 24 17 7 0.33 (0.25, 0.45)
Female 58
12 31 26 1 0.55 (0.44, 0.70)
24 16 11 4 0.35 (0.24, 0.50)
Male 36
12 17 18 1 0.51 (0.37, 0.70)
24 8 6 3 0.32 (0.19, 0.52)

Displaying survival probabilities at different times by sex, adjusting for age using Cox PH estimates

rm_survtime(data=pembrolizumab,time='os_time',status='os_status', covs='age',
 strata="sex",survtimes=c(12,24),survtimeunit='mo',type='PH')
Time (mo) At Risk Events Censored Survival Rate (95% CI)
Overall 94
12 48 44 2 0.54 (0.44, 0.65)
24 24 17 7 0.33 (0.25, 0.45)
Female 58
12 31 26 1 0.56 (0.44, 0.70)
24 16 11 4 0.35 (0.24, 0.50)
Male 36
12 17 18 1 0.51 (0.37, 0.70)
24 8 6 3 0.31 (0.19, 0.53)

Stratified Survival Summary

rm_survdiff(data=pembrolizumab,time='os_time',status='os_status', 
            covs='sex',strata='cohort',digits=1)
group N Observed Expected Median (95%CI)
Overall 94 64 14.0 (9.0, 20.1)
Female 58 39 43.0 14.3 (9.7, 23.8)
Male 36 25 21.0 11.2 (6.1, 25.3)
Log Rank Test ChiSq = 1.9 on 1 df
stratified by cohort p-value = 0.17

Working with Labels

Variable labels will be shown in the nicenames argument is set to TRUE (the default). Variable labels are set using the label attribute of individual variables (assigned using reportRmd or another package like haven).

reportRmd supports the addition, removal and export of labels using the following functions:

  • set_labels will set labels for a data frame from a lookup table
  • set_var_labels allows you to set individual variable labels to a data frame
  • clear_labels removes all labels from a data frame
  • export_labels extracts variable labels from a data frame and returns a data frame of variable names and variable labels

Worked Example

Get some descriptive stats for the ctDNA data that comes with the package. The nicenames argument is TRUE by default so underscores are replaced by spaces

data(ctDNA)
rm_covsum(data=ctDNA,
          covs=c('cohort','ctdna_status','size_change'))
n=270
cohort
A 50 (19)
B 14 (5)
C 18 (7)
D 88 (33)
E 100 (37)
ctdna status
Clearance 137 (51)
No clearance, decrease from baseline 44 (16)
No clearance, increase from baseline 89 (33)
size change
Mean (sd) -29.7 (52.8)
Median (Min,Max) -32.5 (-100.0, 197.1)
Missing 8

set_labels

If we have a lookup table of variable names and labels that we imported from a data dictionary we can set the variable labels for the data frame and these will be used in the rm_ functions

ctDNA_names <- data.frame(var=names(ctDNA),
                          label=c('Patient ID',
                                  'Study Cohort',
                                  'Change in ctDNA since baseline',
                                  'Number of weeks on treatment',
                                  'Percentage change in tumour measurement'))
ctDNA <- set_labels(ctDNA,ctDNA_names)

rm_covsum(data=ctDNA,
          covs=c('cohort','ctdna_status','size_change'))
n=270
Study Cohort
A 50 (19)
B 14 (5)
C 18 (7)
D 88 (33)
E 100 (37)
Change in ctDNA since baseline
Clearance 137 (51)
No clearance, decrease from baseline 44 (16)
No clearance, increase from baseline 89 (33)
Percentage change in tumour measurement
Mean (sd) -29.7 (52.8)
Median (Min,Max) -32.5 (-100.0, 197.1)
Missing 8

set_var_labels

Individual labels can be changed with with the set_var_labels command

ctDNA <- set_var_labels(ctDNA,
                        cohort="A new cohort label")
rm_covsum(data=ctDNA,
          covs=c('cohort','ctdna_status','size_change'))
n=270
A new cohort label
A 50 (19)
B 14 (5)
C 18 (7)
D 88 (33)
E 100 (37)
Change in ctDNA since baseline
Clearance 137 (51)
No clearance, decrease from baseline 44 (16)
No clearance, increase from baseline 89 (33)
Percentage change in tumour measurement
Mean (sd) -29.7 (52.8)
Median (Min,Max) -32.5 (-100.0, 197.1)
Missing 8

extract_labels

Extract the variable labels to a data frame

var_labels <- extract_labels(ctDNA)
var_labels
##       variable                                   label
## 1           id                              Patient ID
## 2       cohort                      A new cohort label
## 3 ctdna_status          Change in ctDNA since baseline
## 4         time            Number of weeks on treatment
## 5  size_change Percentage change in tumour measurement

clear_labels

Or clear them all

ctDNA <- clear_labels(ctDNA)

Plotting Functions

Plotting bivariate relationships

These plots are designed for quick inspection of many variables, not for publication. This is the plotting version of rm_uvsum

plotuv(data=pembrolizumab, response='orr',
covs=c('age','cohort','pdl1','change_ctdna_group'))

Plotting univariable odds ratios

This will default to linear scale, but can be set to log scale using logScale=TRUE

forestplotUV(data=pembrolizumab, response='orr',
covs=c('age','sex','pdl1','change_ctdna_group'))

Plotting multivariable odds ratios

require(ggplot2)
glm_fit <- glm(orr~change_ctdna_group+pdl1,
               family='binomial',
               data = pembrolizumab)
forestplotMV(glm_fit)

Plotting combined univariable and multivariable model odd ratios

To display odds ratios from univariate and multivariable models in a single forest plot, run the forestplotUV and forestplotMV functions and combine.

uvFP <- forestplotUV(data=pembrolizumab, response='orr',
covs=c('age','sex','pdl1','change_ctdna_group'))

glm_fit <- glm(orr~change_ctdna_group+pdl1,
               family='binomial',
               data = pembrolizumab)
mvFP <- forestplotMV(glm_fit)

forestplotUVMV(uvFP,mvFP,showN=T,showEvent=T)

This can also be done with log scale odds ratios (default is linear scale). Number of subjects and/or number of events can also be turned off, as well as different colours used.

uvFP <- forestplotUV(data=pembrolizumab, response='orr',
covs=c('age','sex','pdl1','change_ctdna_group'))

glm_fit <- glm(orr~change_ctdna_group+pdl1,
               family='binomial',
               data = pembrolizumab)
mvFP <- forestplotMV(glm_fit)

forestplotUVMV(uvFP,mvFP,showN=F,showEvent=F,colours=c("orange","black","blue"),logScale=T)

Plotting survival curves

ggkmcif(response = c('os_time','os_status'),
cov='cohort',
data=pembrolizumab)

Options

The following options can be set:

  • reportRmd.digits, detault is 2. Sets the default number of digits in output functions. Does not affect p-values.
  • reportRmd.forceWald, default is FALSE. If set to TRUE then Wald CI, as opposed to likelihood profile CI will be used in the rm_uvsum function.
  • reportRmd.logScale, default is TRUE. The scale of the forest plots will default to log unless otherwise specified.

Example:

 rm_uvsum(response = 'baseline_ctdna',
 covs=c('age','sex','l_size','pdl1','tmb'),
 data=pembrolizumab)
Estimate(95%CI) p-value N
age 0.82 (-10.13, 11.76) 0.88 94
sex 0.69 94
Female Reference 58
Male 56.61 (-228.71, 341.93) 36
l size 1.21 (-1.12, 3.54) 0.31 94
pdl1 -3.50 (-8.27, 1.27) 0.15 93
tmb 18.78 (-125.18, 162.74) 0.80 94
 options('reportRmd.digits'=1) 
 
rm_uvsum(response = 'baseline_ctdna',
 covs=c('age','sex','l_size','pdl1','tmb'),
 data=pembrolizumab)
Estimate(95%CI) p-value N
age 0.8 (-10.1, 11.8) 0.88 94
sex 0.69 94
Female Reference 58
Male 56.6 (-228.7, 341.9) 36
l size 1.2 (-1.1, 3.5) 0.31 94
pdl1 -3.5 (-8.3, 1.3) 0.15 93
tmb 18.8 (-125.2, 162.7) 0.80 94

PDF Output

For pdf to be correctly generate when using survival curves it is recommended that the cairo format be used. This can be specified with the following command in the setup code chunk:

knitr::opts_chunk$set(message = FALSE, warning = FALSE,dev="cairo_pdf")

Data Sets

pembrolizumab

Survival status and ctDNA levels for patients receiving pembrolizumab

A data frame with 94 rows and 15 variables:

  • id Patient ID
  • age Age at study entry
  • sex Patient Sex
  • cohort Study Cohort: A = Squamous cell carcinoma of soft pallate, B = Triple negative breast cancer, C = Ovarian, high grade serous, D = Melanoma, E = Other Solid Tumor
  • l_size Target lesion size at baseline
  • pdl1 PD L1 percent
  • tmb log of TMB
  • baseline_ctdna Baseline ctDNA
  • change_ctdna_group Did ctDNA increase or decrease from baseline to cycle 3
  • orr Objective Response
  • cbr Clinical Beneficial Response
  • os_status Overall survival status, 0 = alive, 1 = deceased
  • os_time Overall survival time in months
  • pfs_status Progression free survival status, 0 = progression free, 1 = progressed
  • pfs_time Progression free survival time in months

ctDNA

Longitudinal changes in tumour size since baseline for patients by changes in ctDNA status (clearance, decrease or increase) since baseline.

A data frame with 270 rows and 5 variables:

  • id Patient ID
  • cohort Study Cohort: A = Squamous cell carcinoma of soft pallate, B = Triple negative breast cancer, C = Ovarian, high grade serous, D = Melanoma, E = Other Solid Tumor
  • ctdna_status Change in ctDNA since baseline
  • time Number of weeks on treatment
  • size_change Percentage change in tumour measurement
  • increase dichotomous variable indicating if size_change is negative/0 or positive