
Package: regRSM (via r-universe)
August 20, 2024

Type Package

Title Random Subspace Method (RSM) for Linear Regression

Version 0.5

Date 2015-09-11

Author Pawel Teisseyre, Robert A. Klopotek

Maintainer Pawel Teisseyre <teisseyrep@ipipan.waw.pl>

Description Performs Random Subspace Method (RSM) for high-dimensional
linear regression to obtain variable importance measures. The
final model is chosen based on validation set or Generalized
Information Criterion.

License LGPL-2 | LGPL-3 | GPL-2 | GPL-3

Depends R (>= 3.0.0)

Imports Rmpi, doParallel, parallel, foreach

URL http://www.ipipan.eu/~teisseyrep/SOFTWARE/

Archs x64

NeedsCompilation no

Repository CRAN

Date/Publication 2015-09-11 16:38:15

Contents
ImpPlot.regRSM . 2
plot.regRSM . 3
predict.regRSM . 4
print.regRSM . 5
regRSM . 6
roc.regRSM . 10
summary.regRSM . 11
validate.regRSM . 12

Index 14

1

http://www.ipipan.eu/~teisseyrep/SOFTWARE/

2 ImpPlot.regRSM

ImpPlot.regRSM Variable importance plot from ’regRSM’ object.

Description

This function produces a dot plot showing final scores from RSM procedure.

Usage

S3 method for class 'regRSM'
ImpPlot(object)

Arguments

object Fitted ’regRSM’ model object.

Details

This function produces a dot plot showing final scores from RSM procedure. Final scores describe
importances of explanatory variables.

Author(s)

Pawel Teisseyre, Robert A. Klopotek.

Examples

p=100
n=100
beta1 = numeric(p)
beta1[c(1,5,10)]=c(1,1,1)
x = matrix(0,ncol=p,nrow=n)
for(j in 1:p){

x[,j]=rnorm(n,0,1)
}
y = x %*% beta1 + rnorm(n)

p1=regRSM(x,y)
ImpPlot(p1)

plot.regRSM 3

plot.regRSM Plot from ’regRSM’ object.

Description

This function produces a plot showing prediction errors on validation set (or the value of General-
ized Information Criterion) with respect to the number of variables included in the model.

Usage

S3 method for class 'regRSM'
plot(x,...)

Arguments

x Fitted ’regRSM’ model object.

... Other arguments to plot.

Details

If Generalized Information Criterion (GIC) was used in the second step of RSM procedure (useGIC=TRUE)
then the function produces a plot showing the value of GIC with respect to the number of variables
included in the model. Model corresponding to the minimal value of GIC is chosen as a final one.
If GIC was not used (useGIC=FALSE) and the validation set is supplied then the function produces
a plot showing prediction errors on validation set with respect to the number of variables included
in the model. Model corresponding to the minimal value of the prediction error is chosen as a final
one.

Author(s)

Pawel Teisseyre, Robert A. Klopotek.

Examples

p=500
n=50
beta1 = numeric(p)
beta1[c(1,5,10)]=c(1,1,1)
x = matrix(0,ncol=p,nrow=n)
xval = matrix(0,ncol=p,nrow=n)
xtest = matrix(0,ncol=p,nrow=n)
for(j in 1:p){

x[,j]=rnorm(n,0,1)
xval[,j]=rnorm(n,0,1)

}
y = x %*% beta1 + rnorm(n)
yval = xval %*% beta1 + rnorm(n)

4 predict.regRSM

p1=regRSM(x,y)
plot(p1)

p2 = regRSM(x,y,yval,xval,useGIC=FALSE)
plot(p2)

predict.regRSM Predictions from a ’regRSM’ object.

Description

This function makes predictions from a ’regRSM’ object.

Usage

S3 method for class 'regRSM'
predict(object, xnew,...)

Arguments

object Fitted ’regRSM’ model object

xnew Matrix of new values for x at which predictions are to be made.

... Additional arguments not used.

Details

Prediction is made based on a final model which is chosen using validation set or Generalized
Information Criterion (GIC).

Value

predict.regRSM produces a vector of predictions.

Author(s)

Pawel Teisseyre, Robert A. Klopotek.

Examples

p = 100
n = 100
beta1 = numeric(p)
beta1[c(1,5,10)] = c(1,1,1)
x = matrix(0,ncol=p,nrow=n)
xtest = matrix(0,ncol=p,nrow=n)
for(j in 1:p){

x[,j] = rnorm(n,0,1)
xtest[,j] = rnorm(n,0,1)

}

print.regRSM 5

y = x %*% beta1 + rnorm(n)
p1 = regRSM(x,y)
predict(p1,xtest)

print.regRSM Print ’regRSM’ object.

Description

This function print the summary of the RSM procedure.

Usage

S3 method for class 'regRSM'
print(x,...)

Arguments

x Fitted ’regRSM’ model object.

... Additional arguments not used.

Details

The function prints out information about the selection method, screening, initial weights, version
(sequential or parallel), size of the random subpace, number of simulations.

Author(s)

Pawel Teisseyre, Robert A. Klopotek.

Examples

p=100
n=100
beta1 = numeric(p)
beta1[c(1,5,10)]=c(1,1,1)
x = matrix(0,ncol=p,nrow=n)
xval = matrix(0,ncol=p,nrow=n)
xtest = matrix(0,ncol=p,nrow=n)
for(j in 1:p){

x[,j]=rnorm(n,0,1)
}
y = x %*% beta1 + rnorm(n)

p1=regRSM(x,y)
print(p1)

6 regRSM

regRSM Random Subspace Method (RSM) for linear regression.

Description

Performs Random Subspace Method (RSM) for high-dimensional linear regression to obtain vari-
able importance measures. The final model is chosen based on validation set or Generalized Infor-
mation Criterion.

Usage

S3 method for class 'formula'
regRSM(formula, data=NULL, ...)
Default S3 method:
regRSM(x, y, yval, xval, m, B, parallel, nslaves, store_data, screening,
init_weights, useGIC, thrs, penalty,...)

Arguments

formula Formula describing the model to be fitted.
data Data frame containing the variables in the model
y Quatitative response vector of length n, where n is a number of observations.
x Input matrix with n rows and p columns, where p is a number of variables. Each

row is an observation vector.
yval Optional quatitative response vector from validation set. Default is NULL.
xval Optional input matrix from validation set. Default is NULL.
m The size of the random subspace. Default is min(n − 1, p)/2. Parameter m

cannot be larger than the number of observations minus two.
B Number of repetitions in RSM procedure. Default is 1000.
parallel This argument indicates which version should be used. Default is NO, which

indicates that sequential version isused. See also in details.
nslaves Number of slaves. Default is 4.
store_data Logical argument indicating whether matrix x and vector y should be stored.

Default is FALSE. This argument must be TRUE when function validate.regRSM
is used.

screening If the screeing argument is in (0, 1), the initial screening of variables is per-
formed and ’screening %’ of variables least correlated with the response are
discarded. Then the RSM procedure is performaed on the remaining variables.
Default is NULL, which indicates that no screening is used.

init_weights This argument indicates whether weighted version of the procedure should be
used. If the init_weights argument is TRUE, weighted version of the RSM
procedure is used (called WRSM). In WRSM, variables are drawn to random
subspaces with probabilities proportional to their correlations with the response
y. Default is FALSE, which indicates that variables are drawn to subspaces with
equal probabilities.

regRSM 7

useGIC Logical argument indicating whether Generalized Information Criterion (GIC)
should be used in the second step of the procedure. Default is TRUE.

thrs Cut off threshold. The hierarchical list of models given by the ordering of
variables is cut off at level thrs in order to avoid fitting linear models which
are close to saturated model. Default is thrs=p if p < n/2 and thrs=n/2 if
p > n/2.

penalty Penalty in Generalized Information Criterion (GIC). Default is log(n) which
corresponds to Bayesian Information Criterion (BIC).

... other arguments not available now.

Details

The Random Subspace Method (RSM) is used to compute importance measures of explanatory
variables (RSM final scores). In the second step the variables are ordered with respect to the final
scores. From the nested list of models, given by the ordering, the final model is selected (the list is
truncated at the level thrs to avoid fitting models which are close to saturated model). By default
the final model that minimizes Generalized Information Criterion (GIC) is chosen. If the validation
set is supplied and useGIC=FALSE then the final model that minimizes prediction error on validation
set is selected.

When screening and weighted version are used together, in the first step screening is performed and
then the weighted version (WRSM) is used on the reamining variables.

When parallel=NO sequential code is used for computaion. Else in our implementation the most
costly operation (number of repetitions in RSM procedure) is parallelized. It is very inefficient to
use parallelisation on machine with only single processor with singe core.

regRSM function in parallel mode does not close created slaves, because creation of slaves is
usually very time consuming. Next parallel call will reuse existing slave processes. If you want
change the number of slaves please execute mpi.close.Rslaves() (if parallel=MPI) and then
call function regRSM with new parameter nslaves.

When parallel=POSIX then OpenMP like parallel implementation is used. This parallel execution
is handled by doParallel library. It uses parallelisation of loops. The optimal value of nslaves is
the number of prosessor cores in a machine.

When parallel=MPI then MPI parallel implementation is used. This parallel execution is handled
by Rmpi library. MPI (Message Passing Interface) uses messages to send job tasks from main
process (master) to other processes (slaves). These processes can be running not nessesery on
one machine. In our implementation the most costly operation (number of repetitions in RSM
procedure) is parallelized. The optimal value of nslaves is the number of computing cores of all
machines configured in MPI framework. If only one machine is used, the best value is number of
prosessor cores. If you don’t want to use this kind of parallel computations any more remember to
close MPI framework by calling mpi.close.Rslaves().

regRSM function in parallel mode does not close created slaves, because creation and destruction
of slaves is usually very time consuming. Next parallel call will reuse existing slave processes. If
you want change number of slaves please execute mpi.close.Rslaves() and then call function
regRSM with new parameter nslaves. If you don’t want to use parallel computations any more
remember to close MPI framework by calling mpi.close.Rslaves().

Installing MPI for multiple machines:

8 regRSM

In the following we give some guidelines how to install and configure MPI framework on multiple
machines. MPI configuration on multiple machines is straightforward. Each machine must be con-
nected to the main machine (master). While using Rmpi package we must remember that it works
a little bit different than typical C MPI application. Usually master process transfers through MPI
the whole application and replicates it on available slots (slaves). Rmpi uses existing R installation,
so on each machine all required packages must be installed. Only R source code and data are trans-
ferred. We present the required steps under Ubuntu operating system (we use Ubuntu 12.04 LTS
version). To install Open MPI on Ubuntu type:

sudo apt-get install libopenmpi-dev openmpi-bin

On Ubuntu with installed Open MPI and R one may just run R and type:

install.packages("Rmpi")

Consider a case when we have several (2 or more) machines with Ubuntu 12.04 LTS operating sys-
tem, R 3.0, Rmpi and regRSM installed and all machines are connected to the same network. More-
over let’s assume we have one network card which is mapped to eth0. With command ifconfig
we can check what ip addresses our machines have. For simplicity, to avoid changing the config-
uration, we assign a static address to each machine. In our network we have 4 PCs with 4 core
processor each. We give them the following names and ip addresses:

node09: 10.200.1.159

node08: 10.200.1.158

node07: 10.200.1.157

node06: 10.200.1.156

We create text file with ip and number of slots in each line. Slot is an instance of our application
working in a slave mode. For example if we have a line 127.0.0.1 slots=4 then on our machine
(localhost) MPI should run up to 4 slave processes. If we request more slaves than slots then there
will be oversubscription of the node and the performance can drop. We can limit the number of
slots to 4 by changing the line to 127.0.0.1 slots=4 max_slots=4. In this case request on more
than 4 processes on this node will result in an error. While setting hard limits one should remember
that the total number of processes created by Rmpi package is equal to the number of slaves plus
one (master process). For example if we want each computer to run 4 parallel tasks then we assign
4 slots to each machine. Example of our hostfile myhosts:

10.200.1.159 slots=4

10.200.1.157 slots=4

10.200.1.158 slots=4

10.200.1.156 slots=4

We run MPI application by executing:

mpiexec -n <no_of_program_copies> -hosts <file_with_hosts> <program_name>

Parameter -n can be misleading when working with Rmpi package. We want to start one R instance
on which we run our experiment. Thus this value should be set to 1. To give Rmpi our hostfile just
run command:

mpiexec -n 1 -hostfile myhosts R --no-save

which means we run one Rscript process with given hostfile for MPI configuration. In R terminal
we type:

regRSM 9

> library(Rmpi)

library(Rmpi)

> mpi.spawn.Rslaves()

mpi.spawn.Rslaves()

16 slaves are spawned successfully. 0 failed.

master (rank 0 , comm 1) of size 17 is running on: node09

slave1 (rank 1 , comm 1) of size 17 is running on: node09

slave2 (rank 2 , comm 1) of size 17 is running on: node09

slave3 (rank 3 , comm 1) of size 17 is running on: node09

...

slave15 (rank 15, comm 1) of size 17 is running on: node06

slave16 (rank 16, comm 1) of size 17 is running on: node09

The above lines indicate that all MPI processes are launched successfully.

Value

scores RSM final scores.

model The final model chosen from the list given by the ordering of variables according
to the RSM scores.

time Computational time.

data_transfer Data transfer time.

coefficients Coefficients in the selected linear model.

input_data Input data x and y. These objects are stored only if store_data=TRUE.

control List constining information about input parameters.
informationCriterion

Values of Generalized Information Criterion calculated for all models from the
nested list given by the ordering.

predError Prediction errors on validation set calculated for all models from the nested list
given by the ordering.

Author(s)

Pawel Teisseyre, Robert A. Klopotek.

References

Mielniczuk, J., Teisseyre, P., Using random subspace method for prediction and variable impor-
tance assessment in linear regression, Computational Statistics and Data Analysis, Vol. 71, 725-
742, 2014.

See Also

predict, plot, ImpPlot, validate, roc methods.

10 roc.regRSM

Examples

p = 500
n = 50
beta1 = numeric(p)
beta1[c(1,5,10)] = c(1,1,1)
x = matrix(0,ncol=p,nrow=n)
xtest = matrix(0,ncol=p,nrow=n)
for(j in 1:p){

x[,j] = rnorm(n,0,1)
xtest[,j] = rnorm(n,0,1)

}
y = x %*% beta1 + rnorm(n)
p1 = regRSM(x,y)

data1 = data.frame(y,x)
p2 = regRSM(y~.,data=data1)

roc.regRSM ROC curve and AUC parameter.

Description

This function produces ROC curve and computes AUC parameter.

Usage

S3 method for class 'regRSM'
roc(object, truemodel, plotit, ...)

Arguments

object Fitted ’regRSM’ model object.

truemodel User specified vector containing indexes of all significant variables.

plotit Logical argument indicating whether a plot should be produced. If the value is
FALSE, then the value of parameter AUC is returned. Default is TRUE.

... Other arguments to plot.

Details

Let i1, . . . , ip be the ordering of variables (e.g. given by the RSM final scores), p is the number of
all variables. ROC curve for ordering is defined as

ROC(s) := (FPR(s), TPR(s)), s ∈ {1, . . . , p},

where

FPR(s) :=
|SelectedModel(s) \ truemodel|

|truemodelC |
,

summary.regRSM 11

TPR(s) :=
|SelectedModel(s) ∩ truemodel|

|truemodel|
,

SelectedModel(s) := {i1, . . . , is},

|A| denotes cardinality of A and AC denotes a complement of A.

This function is useful for the evaluation of the ranking produced by the RSM procedure, when the
set of significant variables is known (e.g. in the simulation experiments on artificial datasets). When
AUC is equal one it means that all significant variables, suplied by the user in argment truemodel,
are placed on the top of the ranking list.

Value

ROC curve is produced and the value of parameter AUC is returned.

Author(s)

Pawel Teisseyre, Robert A. Klopotek.

Examples

p=100
n=100
beta1 = numeric(p)
beta1[c(1,5,10)]=c(1,1,1)
x = matrix(0,ncol=p,nrow=n)
for(j in 1:p){

x[,j]=rnorm(n,0,1)
}
y = x %*% beta1 + rnorm(n)
p1 = regRSM(x,y,store_data=TRUE)
true = c(1,5,10)
roc(p1,true,plotit=TRUE)

summary.regRSM Print ’regRSM’ object.

Description

This function print the summary of the RSM procedure.

Usage

S3 method for class 'regRSM'
summary(object,...)

Arguments

object Fitted ’regRSM’ model object.

... Additional arguments not used.

12 validate.regRSM

Details

The function prints out information about the selection method, screening, initial weights, version
(sequential or parallel), size of the random subpace, number of simulations.

Author(s)

Pawel Teisseyre, Robert A. Klopotek.

Examples

p=100
n=100
beta1 = numeric(p)
beta1[c(1,5,10)]=c(1,1,1)
x = matrix(0,ncol=p,nrow=n)
xval = matrix(0,ncol=p,nrow=n)
xtest = matrix(0,ncol=p,nrow=n)
for(j in 1:p){

x[,j]=rnorm(n,0,1)
}
y = x %*% beta1 + rnorm(n)

p1=regRSM(x,y)
summary(p1)

validate.regRSM Selects the new final model from existing ’regRSM’ object.

Description

This function selects the new final model based on the previously computed final scores.

Usage

S3 method for class 'regRSM'
validate(object, yval, xval)

Arguments

object Fitted ’regRSM’ model object.
yval Quantitative response vector from validation set.
xval Input matrix from validation set.

Details

To use the function, the argument store_data in the ’regRSM’ object must be TRUE. The function
uses final scores from ’regRSM’ object to create a ranking of variables. Then the final model which
minimizes the prediction error on specified validation set is chosen. Object of class ’regRSM’ is
returned. The final scores in the original ’regRSM’ object and in the new one coincide. However
the final models can be different.

validate.regRSM 13

Value

Object of class ’regRSM’ is returned.

Author(s)

Pawel Teisseyre, Robert A. Klopotek.

Examples

p=100
n=100
beta1 = numeric(p)
beta1[c(1,5,10)]=c(1,1,1)
x = matrix(0,ncol=p,nrow=n)
xval = matrix(0,ncol=p,nrow=n)
for(j in 1:p){

x[,j]=rnorm(n,0,1)
xval[,j]=rnorm(n,0,1)

}
y = x %*% beta1 + rnorm(n)
yval = xval %*% beta1 + rnorm(n)

p1 = regRSM(x,y,store_data=TRUE)
p2 = validate(p1,yval,xval)

Index

∗ Model
ImpPlot.regRSM, 2
plot.regRSM, 3
predict.regRSM, 4
print.regRSM, 5
regRSM, 6
roc.regRSM, 10
summary.regRSM, 11
validate.regRSM, 12

ImpPlot (ImpPlot.regRSM), 2
ImpPlot.regRSM, 2

plot.regRSM, 3
predict.regRSM, 4
print.regRSM, 5

regRSM, 6
roc (roc.regRSM), 10
roc.regRSM, 10

summary.regRSM, 11

validate (validate.regRSM), 12
validate.regRSM, 12

14

	ImpPlot.regRSM
	plot.regRSM
	predict.regRSM
	print.regRSM
	regRSM
	roc.regRSM
	summary.regRSM
	validate.regRSM
	Index

