Title: | Restricted Bridge Estimation |
---|---|
Description: | Bridge Regression estimation with linear restrictions defined in Yuzbasi et al. (2019) <arXiv:1910.03660>. Special cases of this approach fit the restricted LASSO, restricted RIDGE and restricted Elastic Net estimators. |
Authors: | Bahadir Yuzbasi, Mohammad Arashi and Fikri Akdeniz |
Maintainer: | Bahadir Yuzbasi <[email protected]> |
License: | GPL-3 |
Version: | 1.0.2 |
Built: | 2024-12-22 06:48:39 UTC |
Source: | CRAN |
Fit a bridge penalized maximum likelihood.
It is computed the regularization path which is consisted of lasso
or ridge
penalty
at the a grid values for lambda
bridge(X, y, q = 1, lambda.min = ifelse(n > p, 0.001, 0.05), nlambda = 100, lambda, eta = 1e-07, converge = 10^10)
bridge(X, y, q = 1, lambda.min = ifelse(n > p, 0.001, 0.05), nlambda = 100, lambda, eta = 1e-07, converge = 10^10)
X |
Design matrix. |
y |
Response vector. |
q |
is the degree of norm which includes ridge regression with |
lambda.min |
The smallest value for lambda if |
nlambda |
The number of lambda values - default is |
lambda |
A user supplied lambda sequence. By default, the program compute a squence of values the length of nlambda. |
eta |
is a preselected small positive threshold value. It is deleted |
converge |
is the value of converge. Defaults is |
Computes bridge estimation
An object of class rbridge, a list with entries
betas |
Coefficients computed over the path of lambda |
lambda |
The lambda values which is given at the function |
Bahadir Yuzbasi, Mohammad Arashi and Fikri Akdeniz
Maintainer: Bahadir Yuzbasi [email protected]
set.seed(2019) beta <- c(3, 1.5, 0, 0, 2, 0, 0, 0) p <- length(beta) beta <- matrix(beta, nrow = p, ncol = 1) n = 100 X = matrix(rnorm(n*p),n,p) y = X%*%beta + rnorm(n) model1 <- bridge(X, y, q = 1) print(model1) model2 <- bridge(X, y, q = 2) print(model2)
set.seed(2019) beta <- c(3, 1.5, 0, 0, 2, 0, 0, 0) p <- length(beta) beta <- matrix(beta, nrow = p, ncol = 1) n = 100 X = matrix(rnorm(n*p),n,p) y = X%*%beta + rnorm(n) model1 <- bridge(X, y, q = 1) print(model1) model2 <- bridge(X, y, q = 2) print(model2)
Extract coefficients from a 'bridge' object.
## S3 method for class 'bridge' coef(object, s = c("lambda.1se", "lambda.min"), ...)
## S3 method for class 'bridge' coef(object, s = c("lambda.1se", "lambda.min"), ...)
object |
A 'bridge' object. |
s |
Value(s) of the penalty parameter lambda at which predictions are required. |
... |
Additional arguments for compatibility. |
A vector of coefficients
Bahadir Yuzbasi, Mohammad Arashi and Fikri Akdeniz
Maintainer: Bahadir Yuzbasi [email protected]
set.seed(2019) beta <- c(3, 1.5, 0, 0, 2, 0, 0, 0) p <- length(beta) beta <- matrix(beta, nrow = p, ncol = 1) n = 100 X = matrix(rnorm(n*p),n,p) y = X%*%beta + rnorm(n) model1 <- bridge(X, y, q = 1) coef(model1,s='lambda.min')
set.seed(2019) beta <- c(3, 1.5, 0, 0, 2, 0, 0, 0) p <- length(beta) beta <- matrix(beta, nrow = p, ncol = 1) n = 100 X = matrix(rnorm(n*p),n,p) y = X%*%beta + rnorm(n) model1 <- bridge(X, y, q = 1) coef(model1,s='lambda.min')
Extract coefficients from a 'cv.bridge' object.
## S3 method for class 'cv.bridge' coef(object, s = c("lambda.1se", "lambda.min"), ...)
## S3 method for class 'cv.bridge' coef(object, s = c("lambda.1se", "lambda.min"), ...)
object |
A 'cv.bridge' object. |
s |
Value(s) of the penalty parameter lambda at which predictions are required. |
... |
Additional arguments for compatibility. |
A vector of coefficients
Bahadir Yuzbasi, Mohammad Arashi and Fikri Akdeniz
Maintainer: Bahadir Yuzbasi [email protected]
set.seed(2019) beta <- c(3, 1.5, 0, 0, 2, 0, 0, 0) p <- length(beta) beta <- matrix(beta, nrow = p, ncol = 1) n = 100 X = matrix(rnorm(n*p),n,p) y = X%*%beta + rnorm(n) model1 <- cv.bridge(X, y, q = 1) coef(model1,s='lambda.min')
set.seed(2019) beta <- c(3, 1.5, 0, 0, 2, 0, 0, 0) p <- length(beta) beta <- matrix(beta, nrow = p, ncol = 1) n = 100 X = matrix(rnorm(n*p),n,p) y = X%*%beta + rnorm(n) model1 <- cv.bridge(X, y, q = 1) coef(model1,s='lambda.min')
Extract coefficients from a 'cv.rbridge' object.
## S3 method for class 'cv.rbridge' coef(object, s = c("lambda.1se", "lambda.min"), ...)
## S3 method for class 'cv.rbridge' coef(object, s = c("lambda.1se", "lambda.min"), ...)
object |
A 'cv.rbridge' object. |
s |
Value(s) of the penalty parameter lambda at which predictions are required. |
... |
Additional arguments for compatibility. |
A vector of coefficients
Bahadir Yuzbasi, Mohammad Arashi and Fikri Akdeniz
Maintainer: Bahadir Yuzbasi [email protected]
set.seed(2019) beta <- c(3, 1.5, 0, 0, 2, 0, 0, 0) p <- length(beta) beta <- matrix(beta, nrow = p, ncol = 1) ### Restricted Matrix and vector c1 <- c(1,1,0,0,1,0,0,0) R1.mat <- matrix(c1,nrow = 1, ncol = p) r1.vec <- as.matrix(c(6.5),1,1) n = 100 X = matrix(rnorm(n*p),n,p) y = X%*%beta + rnorm(n) ######## Model 1 based on first restrictions model1 <- cv.rbridge(X, y, q = 1, R1.mat, r1.vec) coef(model1,s='lambda.min')
set.seed(2019) beta <- c(3, 1.5, 0, 0, 2, 0, 0, 0) p <- length(beta) beta <- matrix(beta, nrow = p, ncol = 1) ### Restricted Matrix and vector c1 <- c(1,1,0,0,1,0,0,0) R1.mat <- matrix(c1,nrow = 1, ncol = p) r1.vec <- as.matrix(c(6.5),1,1) n = 100 X = matrix(rnorm(n*p),n,p) y = X%*%beta + rnorm(n) ######## Model 1 based on first restrictions model1 <- cv.rbridge(X, y, q = 1, R1.mat, r1.vec) coef(model1,s='lambda.min')
Makes predictions from a cross-validated 'rbridge' model
## S3 method for class 'rbridge' coef(object, s = c("lambda.1se", "lambda.min"), ...)
## S3 method for class 'rbridge' coef(object, s = c("lambda.1se", "lambda.min"), ...)
object |
A 'rbridge' object. |
s |
Value(s) of the penalty parameter lambda at which predictions are required. |
... |
Additional arguments for compatibility. |
Among a matrix with predictions, a vector non-zero indexing or a vector of coefficients
Bahadir Yuzbasi, Mohammad Arashi and Fikri Akdeniz
Maintainer: Bahadir Yuzbasi [email protected]
set.seed(2019) beta <- c(3, 1.5, 0, 0, 2, 0, 0, 0) p <- length(beta) beta <- matrix(beta, nrow = p, ncol = 1) ### Restricted Matrix and vector c1 <- c(1,1,0,0,1,0,0,0) R1.mat <- matrix(c1,nrow = 1, ncol = p) r1.vec <- as.matrix(c(6.5),1,1) n = 100 X = matrix(rnorm(n*p),n,p) y = X%*%beta + rnorm(n) ######## Model 1 based on first restrictions model1 <- rbridge(X, y, q = 1, R1.mat, r1.vec) coef(model1,s='lambda.min')
set.seed(2019) beta <- c(3, 1.5, 0, 0, 2, 0, 0, 0) p <- length(beta) beta <- matrix(beta, nrow = p, ncol = 1) ### Restricted Matrix and vector c1 <- c(1,1,0,0,1,0,0,0) R1.mat <- matrix(c1,nrow = 1, ncol = p) r1.vec <- as.matrix(c(6.5),1,1) n = 100 X = matrix(rnorm(n*p),n,p) y = X%*%beta + rnorm(n) ######## Model 1 based on first restrictions model1 <- rbridge(X, y, q = 1, R1.mat, r1.vec) coef(model1,s='lambda.min')
Does k-fold cross-validation for bridge, produces a plot, and returns a value for lambda
cv.bridge(X, y, q, lambda, nfolds = 10, lambda.min = ifelse(n > p, 0.001, 0.05), nlambda = 100, eta = 1e-07, converge = 10^10, num_threads = 10)
cv.bridge(X, y, q, lambda, nfolds = 10, lambda.min = ifelse(n > p, 0.001, 0.05), nlambda = 100, eta = 1e-07, converge = 10^10, num_threads = 10)
X |
|
y |
response |
q |
is the degree of norm which includes ridge regression with |
lambda |
lambda sequence; default is NULL. It is given by user or |
nfolds |
number of folds - default is 10. |
lambda.min |
The smallest value for lambda if |
nlambda |
The number of lambda values - default is |
eta |
is a preselected small positive threshold value. It is deleted |
converge |
is the value of converge. Defaults is |
num_threads |
Number of threads used for parallel computation over the folds, |
Computes bridge
An object of class rbridge, a list with entries
cve |
the mean cross-validated error. |
cvse |
estimate of standard error of |
cvup |
upper curve = |
cvlo |
lower curve = |
lambda |
the values of |
nz |
number of non-zero coefficients at each |
betas |
estimated coefficient at each |
lambda.min |
value of lambda that gives minimum |
lambda.1se |
largest value of |
Bahadir Yuzbasi, Mohammad Arashi and Fikri Akdeniz
Maintainer: Bahadir Yuzbasi [email protected]
set.seed(2019) beta <- c(3, 1.5, 0, 0, 2, 0, 0, 0) p <- length(beta) beta <- matrix(beta, nrow = p, ncol = 1) n = 100 X = matrix(rnorm(n*p),n,p) y = X%*%beta + rnorm(n) ######## Model 1 model1 <- cv.bridge(X, y, q = 1) print(model1) coef(model1,s='lambda.min') predict(model1,newx=X[1:5,], s="lambda.min", type="response") predict(model1, s="lambda.min",type="coefficient") ######## Model 2 model2 <- cv.bridge(X, y, q = 2) print(model2) coef(model2,s='lambda.min') predict(model2,newx=X[1:5,], s="lambda.min", type="response") predict(model2, s="lambda.min",type="coefficient")
set.seed(2019) beta <- c(3, 1.5, 0, 0, 2, 0, 0, 0) p <- length(beta) beta <- matrix(beta, nrow = p, ncol = 1) n = 100 X = matrix(rnorm(n*p),n,p) y = X%*%beta + rnorm(n) ######## Model 1 model1 <- cv.bridge(X, y, q = 1) print(model1) coef(model1,s='lambda.min') predict(model1,newx=X[1:5,], s="lambda.min", type="response") predict(model1, s="lambda.min",type="coefficient") ######## Model 2 model2 <- cv.bridge(X, y, q = 2) print(model2) coef(model2,s='lambda.min') predict(model2,newx=X[1:5,], s="lambda.min", type="response") predict(model2, s="lambda.min",type="coefficient")
Does k-fold cross-validation for rbridge, produces a plot, and returns a value for lambda
cv.rbridge(X, y, q, R, r, lambda, nfolds = 10, lambda.min = ifelse(n > p, 0.001, 0.05), nlambda = 100, eta = 1e-07, converge = 10^10, num_threads = 10)
cv.rbridge(X, y, q, R, r, lambda, nfolds = 10, lambda.min = ifelse(n > p, 0.001, 0.05), nlambda = 100, eta = 1e-07, converge = 10^10, num_threads = 10)
X |
|
y |
response |
q |
is the degree of norm which includes ridge regression with |
R |
is |
r |
is a
Values for |
lambda |
lambda sequence; default is NULL. It is given by user or |
nfolds |
number of folds - default is 10. |
lambda.min |
The smallest value for lambda if |
nlambda |
The number of lambda values - default is |
eta |
is a preselected small positive threshold value. It is deleted |
converge |
is the value of converge. Defaults is |
num_threads |
Number of threads used for parallel computation over the folds, |
Computes cv.rbridge
An object of class rbridge, a list with entries
cve |
the mean cross-validated error. |
cvse |
estimate of standard error of |
cvup |
upper curve = |
cvlo |
lower curve = |
lambda |
the values of |
nz |
number of non-zero coefficients at each |
betas |
estimated coefficient at each |
lambda.min |
value of lambda that gives minimum |
lambda.1se |
largest value of |
Bahadir Yuzbasi, Mohammad Arashi and Fikri Akdeniz
Maintainer: Bahadir Yuzbasi [email protected]
set.seed(2019) beta <- c(3, 1.5, 0, 0, 2, 0, 0, 0) p <- length(beta) beta <- matrix(beta, nrow = p, ncol = 1) p.active <- which(beta != 0) ### Restricted Matrix and vector ### Res 1 c1 <- c(1,1,0,0,1,0,0,0) R1.mat <- matrix(c1,nrow = 1, ncol = p) r1.vec <- as.matrix(c(6.5),1,1) ### Res 2 c2 <- c(-1,1,0,0,1,0,0,0) R2.mat <- matrix(c2,nrow = 1, ncol = p) r2.vec <- matrix(c(0.5),nrow = 1, ncol = 1) ### Res 3 R3.mat <- t(matrix(c(c1,c2),nrow = p, ncol = 2)) r3.vec <- matrix(c(6.5,0.5),nrow = 2, ncol = 1) ### Res 4 R4.mat = diag(1,p,p)[-p.active,] r4.vec <- matrix(rep(0,p-length(p.active)),nrow = p-length(p.active), ncol = 1) n = 100 X = matrix(rnorm(n*p),n,p) y = X%*%beta + rnorm(n) ######## Model 1 based on first restrictions model1 <- cv.rbridge(X, y, q = 1, R1.mat, r1.vec) print(model1) coef(model1,s='lambda.min') coef(model1,s='lambda.1se') predict(model1,newx=X[1:5,], s="lambda.min", type="response") predict(model1, s="lambda.min",type="coefficient") predict(model1, s="lambda.1se",type="coefficient") ######## Model 2 based on second restrictions model2 <- cv.rbridge(X, y, q = 1, R2.mat, r2.vec) print(model2) coef(model2,s='lambda.min') coef(model2,s='lambda.1se') predict(model2,newx=X[1:5,], s="lambda.min", type="response") predict(model2, s="lambda.min",type="coefficient") predict(model2, s="lambda.1se",type="coefficient") ######## Model 3 based on third restrictions model3 <- cv.rbridge(X, y, q = 1, R3.mat, r3.vec) print(model3) coef(model3,s='lambda.min') coef(model3,s='lambda.1se') predict(model3,newx=X[1:5,], s="lambda.min", type="response") predict(model3, s="lambda.min",type="coefficient") predict(model3, s="lambda.1se",type="coefficient") ######## Model 4 based on fourth restrictions model4 <- cv.rbridge(X, y, q = 1, R4.mat, r4.vec) print(model4) coef(model4,s='lambda.min') coef(model4,s='lambda.1se') predict(model4,newx=X[1:5,], s="lambda.min", type="response") predict(model4, s="lambda.min",type="coefficient") predict(model4, s="lambda.1se",type="coefficient")
set.seed(2019) beta <- c(3, 1.5, 0, 0, 2, 0, 0, 0) p <- length(beta) beta <- matrix(beta, nrow = p, ncol = 1) p.active <- which(beta != 0) ### Restricted Matrix and vector ### Res 1 c1 <- c(1,1,0,0,1,0,0,0) R1.mat <- matrix(c1,nrow = 1, ncol = p) r1.vec <- as.matrix(c(6.5),1,1) ### Res 2 c2 <- c(-1,1,0,0,1,0,0,0) R2.mat <- matrix(c2,nrow = 1, ncol = p) r2.vec <- matrix(c(0.5),nrow = 1, ncol = 1) ### Res 3 R3.mat <- t(matrix(c(c1,c2),nrow = p, ncol = 2)) r3.vec <- matrix(c(6.5,0.5),nrow = 2, ncol = 1) ### Res 4 R4.mat = diag(1,p,p)[-p.active,] r4.vec <- matrix(rep(0,p-length(p.active)),nrow = p-length(p.active), ncol = 1) n = 100 X = matrix(rnorm(n*p),n,p) y = X%*%beta + rnorm(n) ######## Model 1 based on first restrictions model1 <- cv.rbridge(X, y, q = 1, R1.mat, r1.vec) print(model1) coef(model1,s='lambda.min') coef(model1,s='lambda.1se') predict(model1,newx=X[1:5,], s="lambda.min", type="response") predict(model1, s="lambda.min",type="coefficient") predict(model1, s="lambda.1se",type="coefficient") ######## Model 2 based on second restrictions model2 <- cv.rbridge(X, y, q = 1, R2.mat, r2.vec) print(model2) coef(model2,s='lambda.min') coef(model2,s='lambda.1se') predict(model2,newx=X[1:5,], s="lambda.min", type="response") predict(model2, s="lambda.min",type="coefficient") predict(model2, s="lambda.1se",type="coefficient") ######## Model 3 based on third restrictions model3 <- cv.rbridge(X, y, q = 1, R3.mat, r3.vec) print(model3) coef(model3,s='lambda.min') coef(model3,s='lambda.1se') predict(model3,newx=X[1:5,], s="lambda.min", type="response") predict(model3, s="lambda.min",type="coefficient") predict(model3, s="lambda.1se",type="coefficient") ######## Model 4 based on fourth restrictions model4 <- cv.rbridge(X, y, q = 1, R4.mat, r4.vec) print(model4) coef(model4,s='lambda.min') coef(model4,s='lambda.1se') predict(model4,newx=X[1:5,], s="lambda.min", type="response") predict(model4, s="lambda.min",type="coefficient") predict(model4, s="lambda.1se",type="coefficient")
Plots the cross-validation curve, and upper and lower standard deviation curves, as a function of the lambda values used.
## S3 method for class 'cv.bridge' plot(x, sign.lambda = 1, ...)
## S3 method for class 'cv.bridge' plot(x, sign.lambda = 1, ...)
x |
Design matrix. |
sign.lambda |
Either plot against |
... |
Other graphical parameters to plot |
Bahadir Yuzbasi, Mohammad Arashi and Fikri Akdeniz
Maintainer: Bahadir Yuzbasi [email protected]
Plots the cross-validation curve, and upper and lower standard deviation curves, as a function of the lambda values used.
## S3 method for class 'cv.rbridge' plot(x, sign.lambda = 1, ...)
## S3 method for class 'cv.rbridge' plot(x, sign.lambda = 1, ...)
x |
Design matrix. |
sign.lambda |
Either plot against |
... |
Other graphical parameters to plot |
Bahadir Yuzbasi, Mohammad Arashi and Fikri Akdeniz
Maintainer: Bahadir Yuzbasi [email protected]
Makes predictions from a cross-validated 'bridge' model
## S3 method for class 'bridge' predict(object, newx, s = c("lambda.min", "lambda.1se"), type = c("response", "nonzero", "coefficients"), ...)
## S3 method for class 'bridge' predict(object, newx, s = c("lambda.min", "lambda.1se"), type = c("response", "nonzero", "coefficients"), ...)
object |
A 'bridge' object. |
newx |
Matrix of new values for x at which predictions are to be made. |
s |
Value(s) of the penalty parameter lambda at which predictions are required. |
type |
It should one of "response", "nonzero" or "coefficients". The "response" is for predicted values, the "nonzero" is for exacting non-zero coefficients and the "coefficients" is for the estimated coefficients. |
... |
Additional arguments for compatibility. |
Among a matrix with predictions, a vector non-zero indexing or a vector of coefficients
Bahadir Yuzbasi, Mohammad Arashi and Fikri Akdeniz
Maintainer: Bahadir Yuzbasi [email protected]
set.seed(2019) beta <- c(3, 1.5, 0, 0, 2, 0, 0, 0) p <- length(beta) beta <- matrix(beta, nrow = p, ncol = 1) n = 100 X = matrix(rnorm(n*p),n,p) y = X%*%beta + rnorm(n) model1 <- bridge(X, y, q = 1) predict(model1,newx=X[1:5,], s="lambda.min", type="response") predict(model1, s="lambda.min",type="coefficient")
set.seed(2019) beta <- c(3, 1.5, 0, 0, 2, 0, 0, 0) p <- length(beta) beta <- matrix(beta, nrow = p, ncol = 1) n = 100 X = matrix(rnorm(n*p),n,p) y = X%*%beta + rnorm(n) model1 <- bridge(X, y, q = 1) predict(model1,newx=X[1:5,], s="lambda.min", type="response") predict(model1, s="lambda.min",type="coefficient")
Makes predictions from a cross-validated 'cv.bridge' model
## S3 method for class 'cv.bridge' predict(object, newx, s = c("lambda.min", "lambda.1se"), type = c("response", "nonzero", "coefficients"), ...)
## S3 method for class 'cv.bridge' predict(object, newx, s = c("lambda.min", "lambda.1se"), type = c("response", "nonzero", "coefficients"), ...)
object |
A 'cv.bridge' object. |
newx |
Matrix of new values for x at which predictions are to be made. |
s |
Value(s) of the penalty parameter lambda at which predictions are required. |
type |
It should one of "response", "nonzero" or "coefficients". The "response" is for predicted values, the "nonzero" is for exacting non-zero coefficients and the "coefficients" is for the estimated coefficients. |
... |
Additional arguments for compatibility. |
Among a matrix with predictions, a vector non-zero indexing or a vector of coefficients
Bahadir Yuzbasi, Mohammad Arashi and Fikri Akdeniz
Maintainer: Bahadir Yuzbasi [email protected]
set.seed(2019) beta <- c(3, 1.5, 0, 0, 2, 0, 0, 0) p <- length(beta) beta <- matrix(beta, nrow = p, ncol = 1) n = 100 X = matrix(rnorm(n*p),n,p) y = X%*%beta + rnorm(n) model1 <- cv.bridge(X, y, q = 1) coef(model1,s='lambda.min') predict(model1,newx=X[1:5,], s="lambda.min", type="response") predict(model1, s="lambda.min",type="coefficient")
set.seed(2019) beta <- c(3, 1.5, 0, 0, 2, 0, 0, 0) p <- length(beta) beta <- matrix(beta, nrow = p, ncol = 1) n = 100 X = matrix(rnorm(n*p),n,p) y = X%*%beta + rnorm(n) model1 <- cv.bridge(X, y, q = 1) coef(model1,s='lambda.min') predict(model1,newx=X[1:5,], s="lambda.min", type="response") predict(model1, s="lambda.min",type="coefficient")
Makes predictions from a cross-validated 'cv.rbridge' model
## S3 method for class 'cv.rbridge' predict(object, newx, s = c("lambda.min", "lambda.1se"), type = c("response", "nonzero", "coefficients"), ...)
## S3 method for class 'cv.rbridge' predict(object, newx, s = c("lambda.min", "lambda.1se"), type = c("response", "nonzero", "coefficients"), ...)
object |
A 'cv.rbridge' object. |
newx |
Matrix of new values for x at which predictions are to be made. |
s |
Value(s) of the penalty parameter lambda at which predictions are required. |
type |
It should one of "response", "nonzero" or "coefficients". The "response" is for predicted values, the "nonzero" is for exacting non-zero coefficients and the "coefficients" is for the estimated coefficients. |
... |
Additional arguments for compatibility. |
Among a matrix with predictions, a vector non-zero indexing or a vector of coefficients
Bahadir Yuzbasi, Mohammad Arashi and Fikri Akdeniz
Maintainer: Bahadir Yuzbasi [email protected]
Bahadir Yuzbasi maintainer Baha
set.seed(2019) beta <- c(3, 1.5, 0, 0, 2, 0, 0, 0) p <- length(beta) beta <- matrix(beta, nrow = p, ncol = 1) ### Restricted Matrix and vector c1 <- c(1,1,0,0,1,0,0,0) R1.mat <- matrix(c1,nrow = 1, ncol = p) r1.vec <- as.matrix(c(6.5),1,1) n = 100 X = matrix(rnorm(n*p),n,p) y = X%*%beta + rnorm(n) ######## Model 1 based on first restrictions model1 <- cv.rbridge(X, y, q = 1, R1.mat, r1.vec) coef(model1,s='lambda.min') predict(model1,newx=X[1:5,], s="lambda.min", type="response") predict(model1, s="lambda.min",type="coefficient")
set.seed(2019) beta <- c(3, 1.5, 0, 0, 2, 0, 0, 0) p <- length(beta) beta <- matrix(beta, nrow = p, ncol = 1) ### Restricted Matrix and vector c1 <- c(1,1,0,0,1,0,0,0) R1.mat <- matrix(c1,nrow = 1, ncol = p) r1.vec <- as.matrix(c(6.5),1,1) n = 100 X = matrix(rnorm(n*p),n,p) y = X%*%beta + rnorm(n) ######## Model 1 based on first restrictions model1 <- cv.rbridge(X, y, q = 1, R1.mat, r1.vec) coef(model1,s='lambda.min') predict(model1,newx=X[1:5,], s="lambda.min", type="response") predict(model1, s="lambda.min",type="coefficient")
Makes predictions from a cross-validated 'rbridge' model
## S3 method for class 'rbridge' predict(object, newx, s = c("lambda.min", "lambda.1se"), type = c("response", "nonzero", "coefficients"), ...)
## S3 method for class 'rbridge' predict(object, newx, s = c("lambda.min", "lambda.1se"), type = c("response", "nonzero", "coefficients"), ...)
object |
A 'rbridge' object. |
newx |
Matrix of new values for x at which predictions are to be made. |
s |
Value(s) of the penalty parameter lambda at which predictions are required. |
type |
It should one of "response", "nonzero" or "coefficients". The "response" is for predicted values, the "nonzero" is for exacting non-zero coefficients and the "coefficients" is for the estimated coefficients. |
... |
Additional arguments for compatibility. |
Among a matrix with predictions, a vector non-zero indexing or a vector of coefficients
Bahadir Yuzbasi, Mohammad Arashi and Fikri Akdeniz
Maintainer: Bahadir Yuzbasi [email protected]
set.seed(2019) beta <- c(3, 1.5, 0, 0, 2, 0, 0, 0) p <- length(beta) beta <- matrix(beta, nrow = p, ncol = 1) ### Restricted Matrix and vector c1 <- c(1,1,0,0,1,0,0,0) R1.mat <- matrix(c1,nrow = 1, ncol = p) r1.vec <- as.matrix(c(6.5),1,1) n = 100 X = matrix(rnorm(n*p),n,p) y = X%*%beta + rnorm(n) ######## Model 1 based on first restrictions model1 <- rbridge(X, y, q = 1, R1.mat, r1.vec) predict(model1,newx=X[1:5,], s="lambda.min", type="response") predict(model1, s="lambda.min",type="coefficient")
set.seed(2019) beta <- c(3, 1.5, 0, 0, 2, 0, 0, 0) p <- length(beta) beta <- matrix(beta, nrow = p, ncol = 1) ### Restricted Matrix and vector c1 <- c(1,1,0,0,1,0,0,0) R1.mat <- matrix(c1,nrow = 1, ncol = p) r1.vec <- as.matrix(c(6.5),1,1) n = 100 X = matrix(rnorm(n*p),n,p) y = X%*%beta + rnorm(n) ######## Model 1 based on first restrictions model1 <- rbridge(X, y, q = 1, R1.mat, r1.vec) predict(model1,newx=X[1:5,], s="lambda.min", type="response") predict(model1, s="lambda.min",type="coefficient")
Fit a restricted linear model via bridge penalized maximum likelihood.
It is computed the regularization path which is consisted of lasso
or ridge
penalty
at the a grid values for lambda
rbridge(X, y, q = 1, R, r, lambda.min = ifelse(n > p, 0.001, 0.05), nlambda = 100, lambda, eta = 1e-07, converge = 10^10)
rbridge(X, y, q = 1, R, r, lambda.min = ifelse(n > p, 0.001, 0.05), nlambda = 100, lambda, eta = 1e-07, converge = 10^10)
X |
Design matrix. |
y |
Response vector. |
q |
is the degree of norm which includes ridge regression with |
R |
is |
r |
is a
Values for |
lambda.min |
The smallest value for lambda if |
nlambda |
The number of lambda values - default is |
lambda |
A user supplied lambda sequence. By default, the program compute a squence of values the length of nlambda. |
eta |
is a preselected small positive threshold value. It is deleted |
converge |
is the value of converge. Defaults is |
In order to couple the bridge estimator with the restriction R beta = r
,
we solve the following optimization problem
An object of class rbridge, a list with entries
betas |
Coefficients computed over the path of lambda |
lambda |
The lambda values which is given at the function |
Bahadir Yuzbasi, Mohammad Arashi and Fikri Akdeniz
Maintainer: Bahadir Yuzbasi [email protected]
set.seed(2019) beta <- c(3, 1.5, 0, 0, 2, 0, 0, 0) p <- length(beta) beta <- matrix(beta, nrow = p, ncol = 1) p.active <- which(beta != 0) ### Restricted Matrix and vector ### Res 1 c1 <- c(1,1,0,0,1,0,0,0) R1.mat <- matrix(c1,nrow = 1, ncol = p) r1.vec <- as.matrix(c(6.5),1,1) ### Res 2 c2 <- c(-1,1,0,0,1,0,0,0) R2.mat <- matrix(c2,nrow = 1, ncol = p) r2.vec <- matrix(c(0.5),nrow = 1, ncol = 1) ### Res 3 R3.mat <- t(matrix(c(c1,c2),nrow = p, ncol = 2)) r3.vec <- matrix(c(6.5,0.5),nrow = 2, ncol = 1) ### Res 4 R4.mat = diag(1,p,p)[-p.active,] r4.vec <- matrix(rep(0,p-length(p.active)),nrow = p-length(p.active), ncol = 1) n = 100 X = matrix(rnorm(n*p),n,p) y = X%*%beta + rnorm(n) ######## Model 1 based on first restrictions model1 <- rbridge(X, y, q = 1, R1.mat, r1.vec) print(model1) ######## Model 2 based on second restrictions model2 <- rbridge(X, y, q = 1, R2.mat, r2.vec) print(model2) ######## Model 3 based on third restrictions model3 <- rbridge(X, y, q = 1, R3.mat, r3.vec) print(model3) ######## Model 4 based on fourth restrictions model4 <- rbridge(X, y, q = 1, R4.mat, r4.vec) print(model4)
set.seed(2019) beta <- c(3, 1.5, 0, 0, 2, 0, 0, 0) p <- length(beta) beta <- matrix(beta, nrow = p, ncol = 1) p.active <- which(beta != 0) ### Restricted Matrix and vector ### Res 1 c1 <- c(1,1,0,0,1,0,0,0) R1.mat <- matrix(c1,nrow = 1, ncol = p) r1.vec <- as.matrix(c(6.5),1,1) ### Res 2 c2 <- c(-1,1,0,0,1,0,0,0) R2.mat <- matrix(c2,nrow = 1, ncol = p) r2.vec <- matrix(c(0.5),nrow = 1, ncol = 1) ### Res 3 R3.mat <- t(matrix(c(c1,c2),nrow = p, ncol = 2)) r3.vec <- matrix(c(6.5,0.5),nrow = 2, ncol = 1) ### Res 4 R4.mat = diag(1,p,p)[-p.active,] r4.vec <- matrix(rep(0,p-length(p.active)),nrow = p-length(p.active), ncol = 1) n = 100 X = matrix(rnorm(n*p),n,p) y = X%*%beta + rnorm(n) ######## Model 1 based on first restrictions model1 <- rbridge(X, y, q = 1, R1.mat, r1.vec) print(model1) ######## Model 2 based on second restrictions model2 <- rbridge(X, y, q = 1, R2.mat, r2.vec) print(model2) ######## Model 3 based on third restrictions model3 <- rbridge(X, y, q = 1, R3.mat, r3.vec) print(model3) ######## Model 4 based on fourth restrictions model4 <- rbridge(X, y, q = 1, R4.mat, r4.vec) print(model4)