
Package: ravetools (via r-universe)
October 4, 2024

Type Package

Title Signal and Image Processing Toolbox for Analyzing Intracranial
Electroencephalography Data

Version 0.1.8

Language en-US

Description Implemented fast and memory-efficient Notch-filter,
Welch-periodogram, discrete wavelet spectrogram for minutes of
high-resolution signals, fast 3D convolution, image
registration, 3D mesh manipulation; providing fundamental
toolbox for intracranial Electroencephalography (iEEG)
pipelines. Documentation and examples about 'RAVE' project are
provided at <https://openwetware.org/wiki/RAVE>, and the paper
by John F. Magnotti, Zhengjia Wang, Michael S. Beauchamp (2020)
<doi:10.1016/j.neuroimage.2020.117341>; see
'citation(``ravetools'')' for details.

BugReports https://github.com/dipterix/ravetools/issues

URL https://dipterix.org/ravetools/

License GPL (>= 2)

Encoding UTF-8

RoxygenNote 7.3.2

Depends R (>= 4.0.0)

SystemRequirements fftw3 (libfftw3-dev (deb), or fftw-devel (rpm)),
pkg-config

Copyright Karim Rahim (author of R package 'fftwtools', licensed under
'GPL-2' or later) is the original author of 'src/ffts.h' and
'src/ffts.cpp'. Prerau's Lab wrote the original
'R/multitaper.R', licensed under 'MIT'. Marcus Geelnard wrote
the source code of 'TinyThread' library ('MIT' license) located
at 'inst/include/tthread'. Stefan Schlager wrote the original
code that converts R objects to 'vcg' (see 'src/vcgCommon.h',
licensed under 'GPL-2' or later). Visual Computing Lab is the
copyright holder of 'vcglib' source code (see 'src/vcglib',
licensed under GPL-2 or later).

1

https://openwetware.org/wiki/RAVE
https://doi.org/10.1016/j.neuroimage.2020.117341
https://github.com/dipterix/ravetools/issues
https://dipterix.org/ravetools/


2 Contents

Imports graphics, stats, filearray (>= 0.1.3), Rcpp, waveslim (>=
1.8.2), pracma, digest (>= 0.6.29), splines, RNiftyReg (>=
2.7.1), R6 (>= 2.5.1), gsignal (>= 0.3.5)

LinkingTo Rcpp, RcppEigen

Suggests fftwtools, bit64, grDevices, microbenchmark,
freesurferformats, testthat

LazyData true

NeedsCompilation yes

Author Zhengjia Wang [aut, cre], John Magnotti [aut], Michael
Beauchamp [aut], Trustees of the University of Pennsylvania
[cph] (All files in this package unless explicitly stated in
the file or listed in the 'Copyright' section below.), Karim
Rahim [cph, ctb] (Contributed to src/ffts.h and stc/ffts.cpp),
Thomas Possidente [cph, ctb] (Contributed to R/multitaper.R),
Michael Prerau [cph, ctb] (Contributed to R/multitaper.R),
Marcus Geelnard [ctb, cph] (TinyThread library,
tinythreadpp.bitsnbites.eu, located at inst/include/tthread/),
Stefan Schlager [ctb, cph] (R-vcg interface, located at
src/vcgCommon.h), Visual Computing Lab, ISTI [ctb, cph]
(Copyright holder of vcglib, located at src/vcglib/)

Maintainer Zhengjia Wang <dipterix.wang@gmail.com>

Repository CRAN

Date/Publication 2024-09-03 20:40:01 UTC

Contents
band_pass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
baseline_array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
butter_max_order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
check_filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
collapse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
convolve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
decimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
design_filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
design_filter_fir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
design_filter_iir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
detrend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
diagnose_channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
diagnose_filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
dijkstras-path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
fast_cov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
fast_quantile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
fill_surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
filter-window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
filter_signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35



band_pass 3

filtfilt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
fir1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
firls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
freqz2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
grow_volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
internal_rave_function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
interpolate_stimulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
left_hippocampus_mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
matlab_palette . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
mesh_from_volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
multitaper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
new_matrix4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
new_quaternion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
new_vector3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
notch_filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
parallel-options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
plot_signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
pwelch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
raw-to-sexp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
rcond_filter_ar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
register_volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
rgl-call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
shift_array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
vcg_isosurface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
vcg_mesh_volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
vcg_smooth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
vcg_sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
vcg_uniform_remesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
vcg_update_normals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
wavelet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Index 72

band_pass Band-pass signals

Description

Band-pass signals

Usage

band_pass1(x, sample_rate, lb, ub, domain = 1, ...)

band_pass2(
x,
sample_rate,
lb,



4 band_pass

ub,
order,
method = c("fir", "butter"),
direction = c("both", "forward", "backward"),
window = "hamming",
...

)

Arguments

x input signals, numeric vector or matrix. x must be row-major if input is a matrix:
each row is a channel, and each column is a time-point.

sample_rate sampling frequency

lb lower frequency bound of the band-passing filter, must be positive

ub upper frequency bound of the band-passing filter, must be greater than the lower
bound and smaller than the half of sampling frequency

domain 1 if x is in time-domain, or 0 if x is in frequency domain

... ignored

order the order of the filter, must be positive integer and be less than one-third of the
sample rate

method filter type, choices are 'fir' and 'butter'

direction filter direction, choices are 'forward', 'backward', and 'both' directions

window window type, can be a character, a function, or a vector. For character, window is
a function name in the signal package, for example, 'hanning'; for a function,
window takes one integer argument and returns a numeric vector with length of
that input; for vectors, window is a numeric vector o length order+1.

Value

Filtered signals, vector if x is a vector, or matrix of the same dimension as x

Examples

t <- seq(0, 1, by = 0.0005)
x <- sin(t * 0.4 * pi) + sin(t * 4 * pi) + 2 * sin(t * 120 * pi)

oldpar <- par(mfrow = c(2, 2), mar = c(3.1, 2.1, 3.1, 0.1))
# ---- Using band_pass1 ------------------------------------------------

y1 <- band_pass1(x, 2000, 0.1, 1)
y2 <- band_pass1(x, 2000, 1, 5)
y3 <- band_pass1(x, 2000, 10, 80)

plot(t, x, type = 'l', xlab = "Time", ylab = "",
main = "Mixture of 0.2, 2, and 60Hz")

lines(t, y1, col = 'red')
lines(t, y2, col = 'blue')



baseline_array 5

lines(t, y3, col = 'green')
legend(

"topleft", c("Input", "Pass: 0.1-1Hz", "Pass 1-5Hz", "Pass 10-80Hz"),
col = c(par("fg"), "red", "blue", "green"), lty = 1,
cex = 0.6

)

# plot pwelch
pwelch(x, fs = 2000, window = 4000, noverlap = 2000, plot = 1)
pwelch(y1, fs = 2000, window = 4000, noverlap = 2000,

plot = 2, col = "red")
pwelch(y2, fs = 2000, window = 4000, noverlap = 2000,

plot = 2, col = "blue")
pwelch(y3, fs = 2000, window = 4000, noverlap = 2000,

plot = 2, col = "green")

# ---- Using band_pass2 with FIR filters --------------------------------

order <- floor(2000 / 3)
z1 <- band_pass2(x, 2000, 0.1, 1, method = "fir", order = order)
z2 <- band_pass2(x, 2000, 1, 5, method = "fir", order = order)
z3 <- band_pass2(x, 2000, 10, 80, method = "fir", order = order)

plot(t, x, type = 'l', xlab = "Time", ylab = "",
main = "Mixture of 0.2, 2, and 60Hz")

lines(t, z1, col = 'red')
lines(t, z2, col = 'blue')
lines(t, z3, col = 'green')
legend(

"topleft", c("Input", "Pass: 0.1-1Hz", "Pass 1-5Hz", "Pass 10-80Hz"),
col = c(par("fg"), "red", "blue", "green"), lty = 1,
cex = 0.6

)

# plot pwelch
pwelch(x, fs = 2000, window = 4000, noverlap = 2000, plot = 1)
pwelch(z1, fs = 2000, window = 4000, noverlap = 2000,

plot = 2, col = "red")
pwelch(z2, fs = 2000, window = 4000, noverlap = 2000,

plot = 2, col = "blue")
pwelch(z3, fs = 2000, window = 4000, noverlap = 2000,

plot = 2, col = "green")

# ---- Clean this demo --------------------------------------------------
par(oldpar)

baseline_array Calculate Contrasts of Arrays in Different Methods



6 baseline_array

Description

Provides five methods to baseline an array and calculate contrast.

Usage

baseline_array(x, along_dim, unit_dims = seq_along(dim(x))[-along_dim], ...)

## S3 method for class 'array'
baseline_array(
x,
along_dim,
unit_dims = seq_along(dim(x))[-along_dim],
method = c("percentage", "sqrt_percentage", "decibel", "zscore", "sqrt_zscore",

"subtract_mean"),
baseline_indexpoints = NULL,
baseline_subarray = NULL,
...

)

Arguments

x array (tensor) to calculate contrast

along_dim integer range from 1 to the maximum dimension of x. baseline along this di-
mension, this is usually the time dimension.

unit_dims integer vector, baseline unit: see Details.

... passed to other methods

method character, baseline method options are: "percentage", "sqrt_percentage",
"decibel", "zscore", and "sqrt_zscore"

baseline_indexpoints

integer vector, which index points are counted into baseline window? Each
index ranges from 1 to dim(x)[[along_dim]]. See Details.

baseline_subarray

sub-arrays that should be used to calculate baseline; default is NULL (automati-
cally determined by baseline_indexpoints).

Details

Consider a scenario where we want to baseline a bunch of signals recorded from different locations.
For each location, we record n sessions. For each session, the signal is further decomposed into
frequency-time domain. In this case, we have the input x in the following form:

sessionxfrequencyxtimexlocation

Now we want to calibrate signals for each session, frequency and location using the first 100 time
points as baseline points, then the code will be

baselinearray(x, alongdim = 3, baselinewindow = 1 : 100, unitdims = c(1, 2, 4))



baseline_array 7

along_dim=3 is dimension of time, in this case, it’s the third dimension of x. baseline_indexpoints=1:100,
meaning the first 100 time points are used to calculate baseline. unit_dims defines the unit signal.
Its value c(1,2,4) means the unit signal is per session (first dimension), per frequency (second)
and per location (fourth).

In some other cases, we might want to calculate baseline across frequencies then the unit signal is
frequencyxtime, i.e. signals that share the same session and location also share the same baseline.
In this case, we assign unit_dims=c(1,4).

There are five baseline methods. They fit for different types of data. Denote z is an unit signal, z0
is its baseline slice. Then these baseline methods are:

"percentage"
z − z̄0
z̄0

× 100%

"sqrt_percentage" √
z − √̄

z0√̄
z0

× 100%

"decibel"
10× (log10(z)− ¯log10(z0))

"zscore"
z − z̄0
sd(z0)

"sqrt_zscore" √
z − √̄

z0
sd(

√
z0)

Value

Contrast array with the same dimension as x.

Examples

# Set ncores = 2 to comply to CRAN policy. Please don't run this line
ravetools_threads(n_threads = 2L)

library(ravetools)
set.seed(1)

# Generate sample data
dims = c(10,20,30,2)
x = array(rnorm(prod(dims))^2, dims)

# Set baseline window to be arbitrary 10 timepoints
baseline_window = sample(30, 10)

# ----- baseline percentage change ------

# Using base functions



8 butter_max_order

re1 <- aperm(apply(x, c(1,2,4), function(y){
m <- mean(y[baseline_window])
(y/m - 1) * 100

}), c(2,3,1,4))

# Using ravetools
re2 <- baseline_array(x, 3, c(1,2,4),

baseline_indexpoints = baseline_window,
method = 'percentage')

# Check different, should be very tiny (double precisions)
range(re2 - re1)

# Check speed for large dataset, might take a while to profile

ravetools_threads(n_threads = -1)

dims <- c(200,20,300,2)
x <- array(rnorm(prod(dims))^2, dims)
# Set baseline window to be arbitrary 10 timepoints
baseline_window <- seq_len(100)
f1 <- function(){

aperm(apply(x, c(1,2,4), function(y){
m <- mean(y[baseline_window])
(y/m - 1) * 100

}), c(2,3,1,4))
}
f2 <- function(){

# equivalent as bl = x[,,baseline_window, ]
#
baseline_array(x, along_dim = 3,

baseline_indexpoints = baseline_window,
unit_dims = c(1,2,4), method = 'percentage')

}
range(f1() - f2())
microbenchmark::microbenchmark(f1(), f2(), times = 10L)

butter_max_order ’Butterworth’ filter with maximum order

Description

Large filter order might not be optimal, but at lease this function provides a feasible upper bound
for the order such that the filter has a stable AR component.



check_filter 9

Usage

butter_max_order(
w,
type = c("low", "high", "pass", "stop"),
r = 10 * log10(2),
tol = .Machine$double.eps

)

Arguments

w scaled frequency ranging from 0 to 1, where 1 is ’Nyquist’ frequency

type filter type

r decibel attenuation at frequency w, default is around 3 dB (half power)

tol tolerance of reciprocal condition number, default is .Machine$double.eps.

Value

’Butterworth’ filter in ’Arma’ form.

Examples

# Find highest order (sharpest transition) of a band-pass filter
sample_rate <- 500
nyquist <- sample_rate / 2

type <- "pass"
w <- c(1, 50) / nyquist
Rs <- 6 # power attenuation at w

# max order filter
filter <- butter_max_order(w, "pass", Rs)

# -6 dB cutoff should be around 1 ~ 50 Hz
diagnose_filter(filter$b, filter$a, fs = sample_rate)

check_filter Check ’Arma’ filter

Description

Check ’Arma’ filter

Usage

check_filter(b, a, w = NULL, r_expected = NULL, fs = NULL)



10 check_filter

Arguments

b moving average (MA) polynomial coefficients.

a auto-regressive (AR) polynomial coefficients.

w normalized frequency, ranging from 0 to 1, where 1 is ’Nyquist’

r_expected attenuation in decibel of each w

fs sample rate, used to infer the frequencies and formatting print message, not used
in calculation; leave it blank by default

Value

A list of power estimation and the reciprocal condition number of the AR coefficients.

Examples

# create a butterworth filter with -3dB (half-power) at [1, 5] Hz
# and -60dB stop-band attenuation at [0.5, 6] Hz

sample_rate <- 20
nyquist <- sample_rate / 2

specs <- buttord(
Wp = c(1, 5) / nyquist,
Ws = c(0.5, 6) / nyquist,
Rp = 3,
Rs = 60

)
filter <- butter(specs)

# filter quality is poor because the AR-coefficients
# creates singular matrix with unstable inverse,
# this will cause `filtfilt` to fail
check_filter(

b = filter$b, a = filter$a,

# frequencies (normalized) where power is evaluated
w = c(1, 5, 0.5, 6) / nyquist,

# expected power
r_expected = c(3, 3, 60, 60)

)



collapse 11

collapse Collapse array

Description

Collapse array

Usage

collapse(x, keep, ...)

## S3 method for class 'array'
collapse(
x,
keep,
average = TRUE,
transform = c("asis", "10log10", "square", "sqrt"),
...

)

Arguments

x A numeric multi-mode tensor (array), without NA

keep Which dimension to keep

... passed to other methods

average collapse to sum or mean

transform transform on the data before applying collapsing; choices are 'asis' (no change),
'10log10' (used to calculate decibel), 'square' (sum-squared), 'sqrt' (square-
root and collapse)

Value

a collapsed array with values to be mean or summation along collapsing dimensions

Examples

# Set ncores = 2 to comply to CRAN policy. Please don't run this line
ravetools_threads(n_threads = 2L)

# Example 1
x = matrix(1:16, 4)

# Keep the first dimension and calculate sums along the rest
collapse(x, keep = 1)
rowMeans(x) # Should yield the same result

# Example 2



12 convolve

x = array(1:120, dim = c(2,3,4,5))
result = collapse(x, keep = c(3,2))
compare = apply(x, c(3,2), mean)
sum(abs(result - compare)) # The same, yield 0 or very small number (1e-10)

ravetools_threads(n_threads = -1)

# Example 3 (performance)

# Small data, no big difference
x = array(rnorm(240), dim = c(4,5,6,2))
microbenchmark::microbenchmark(

result = collapse(x, keep = c(3,2)),
compare = apply(x, c(3,2), mean),
times = 1L, check = function(v){
max(abs(range(do.call('-', v)))) < 1e-10

}
)

# large data big difference
x = array(rnorm(prod(300,200,105)), c(300,200,105,1))
microbenchmark::microbenchmark(

result = collapse(x, keep = c(3,2)),
compare = apply(x, c(3,2), mean),
times = 1L , check = function(v){
max(abs(range(do.call('-', v)))) < 1e-10

})

convolve Convolution of 1D, 2D, 3D data via FFT

Description

Use the ’Fast-Fourier’ transform to compute the convolutions of two data with zero padding. This
function is mainly designed for image convolution. For forward and backward convolution/filter,
see filtfilt.

Usage

convolve_signal(x, filter)

convolve_image(x, filter)

convolve_volume(x, filter)



convolve 13

Arguments

x one-dimensional signal vector, two-dimensional image, or three-dimensional
volume; numeric or complex

filter kernel with the same number of dimensions as x

Details

This implementation uses ’Fast-Fourier’ transform to perform 1D, 2D, or 3D convolution. Compared
to implementations using original mathematical definition of convolution, this approach is much
faster, especially for image and volume convolutions.

The input x is zero-padded beyond edges. This is most common in image or volume convolution,
but less optimal for periodic one-dimensional signals. Please use other implementations if non-zero
padding is needed.

The convolution results might be different to the ground truth by a precision error, usually at 1e-13
level, depending on the 'FFTW3' library precision and implementation.

Value

Convolution results with the same length and dimensions as x. If x is complex, results will be
complex, otherwise results will be real numbers.

Examples

# ---- 1D convolution ------------------------------------
x <- cumsum(rnorm(100))
filter <- dnorm(-2:2)
# normalize
filter <- filter / sum(filter)
smoothed <- convolve_signal(x, filter)

plot(x, pch = 20)
lines(smoothed, col = 'red')

# ---- 2D convolution ------------------------------------
x <- array(0, c(100, 100))
x[

floor(runif(10, min = 1, max = 100)),
floor(runif(10, min = 1, max = 100))

] <- 1

# smooth
kernel <- outer(dnorm(-2:2), dnorm(-2:2), FUN = "*")
kernel <- kernel / sum(kernel)

y <- convolve_image(x, kernel)

oldpar <- par(mfrow = c(1,2))
image(x, asp = 1, axes = FALSE, main = "Origin")
image(y, asp = 1, axes = FALSE, main = "Smoothed")



14 decimate

par(oldpar)

decimate Decimate with ’FIR’ or ’IIR’ filter

Description

Decimate with ’FIR’ or ’IIR’ filter

Usage

decimate(x, q, n = if (ftype == "iir") 8 else 30, ftype = "fir")

Arguments

x signal to be decimated

q integer factor to down-sample by

n filter order used in the down-sampling; default is 30 if ftype='fir', or 8 if
ftype='iir'

ftype filter type, choices are 'fir' (default) and 'iir'

Details

This function is migrated from gsignal package, but with padding and indexing fixed. The results
agree with ’Matlab’.

Value

Decimated signal

Examples

x <- 1:100
y <- decimate(x, 2, ftype = "fir")
y

# compare with signal package
z <- gsignal::decimate(x, 2, ftype = "fir")

# Compare decimated results
plot(x, type = 'l')
points(seq(1,100, 2), y, col = "green")
points(seq(1,100, 2), z, col = "red")



design_filter 15

design_filter Design a digital filter

Description

Provides ’FIR’ and ’IIR’ filter options; default is ’FIR’, see also design_filter_fir; for ’IIR’
filters, see design_filter_iir.

Usage

design_filter(
sample_rate,
data = NULL,
method = c("fir_kaiser", "firls", "fir_remez", "butter", "cheby1", "cheby2", "ellip"),
high_pass_freq = NA,
high_pass_trans_freq = NA,
low_pass_freq = NA,
low_pass_trans_freq = NA,
passband_ripple = 0.1,
stopband_attenuation = 40,
filter_order = NA,
...,
data_size = length(data)

)

Arguments

sample_rate data sample rate

data data to be filtered, can be optional (NULL)

method filter method, options are "fir" (default), "butter", "cheby1", "cheby2", and
"ellip"

high_pass_freq, low_pass_freq
high-pass or low-pass frequency, see design_filter_fir or design_filter_iir

high_pass_trans_freq, low_pass_trans_freq
transition bandwidths, see design_filter_fir or design_filter_iir

passband_ripple

allowable pass-band ripple in decibel; default is 0.1
stopband_attenuation

minimum stop-band attenuation (in decibel) at transition frequency; default is
40 dB.

filter_order suggested filter order; ’RAVE’ may or may not adopt this suggestion depending
on the data and numerical feasibility

... passed to filter generator functions

data_size used by ’FIR’ filter design to determine maximum order, ignored in ’IIR’ filters;
automatically derived from data



16 design_filter

Value

If data is specified and non-empty, this function returns filtered data via forward and backward
filtfilt; if data is NULL, then returns the generator function.

Examples

sample_rate <- 200
t <- seq(0, 10, by = 1 / sample_rate)
x <- sin(t * 4 * pi) + sin(t * 20 * pi) +

2 * sin(t * 120 * pi) + rnorm(length(t), sd = 0.4)

# ---- Using FIR ------------------------------------------------

# Low-pass filter
y1 <- design_filter(

data = x,
sample_rate = sample_rate,
low_pass_freq = 3, low_pass_trans_freq = 0.5

)

# Band-pass cheby1 filter 8-12 Hz with custom transition
y2 <- design_filter(

data = x,
method = "cheby1",
sample_rate = sample_rate,
low_pass_freq = 12, low_pass_trans_freq = .25,
high_pass_freq = 8, high_pass_trans_freq = .25

)

y3 <- design_filter(
data = x,
sample_rate = sample_rate,
low_pass_freq = 80,
high_pass_freq = 30

)

oldpar <- par(mfrow = c(2, 1),
mar = c(3.1, 2.1, 3.1, 0.1))

plot(t, x, type = 'l', xlab = "Time", ylab = "",
main = "Mixture of 2, 10, and 60Hz", xlim = c(0,1))

# lines(t, y, col = 'red')
lines(t, y3, col = 'green')
lines(t, y2, col = 'blue')
lines(t, y1, col = 'red')
legend(

"topleft", c("Input", "Low: 3Hz", "Pass 8-12Hz", "Pass 30-80Hz"),
col = c(par("fg"), "red", "blue", "green"), lty = 1,
cex = 0.6

)

# plot pwelch



design_filter_fir 17

pwelch(x, fs = sample_rate, window = sample_rate * 2,
noverlap = sample_rate, plot = 1, ylim = c(-100, 10))

pwelch(y1, fs = sample_rate, window = sample_rate * 2,
noverlap = sample_rate, plot = 2, col = "red")

pwelch(y2, fs = sample_rate, window = sample_rate * 2,
noverlap = sample_rate, plot = 2, col = "blue")

pwelch(y3, fs = sample_rate, window = sample_rate * 2,
noverlap = sample_rate, plot = 2, col = "green")

# ---- Clean this demo --------------------------------------------------
par(oldpar)

design_filter_fir Design ’FIR’ filter using firls

Description

Design 'FIR' filter using firls

Usage

design_filter_fir(
sample_rate,
filter_order = NA,
data_size = NA,
high_pass_freq = NA,
high_pass_trans_freq = NA,
low_pass_freq = NA,
low_pass_trans_freq = NA,
stopband_attenuation = 40,
scale = TRUE,
method = c("kaiser", "firls", "remez")

)

Arguments

sample_rate sampling frequency

filter_order filter order, leave NA (default) if undecided

data_size minimum length of data to apply the filter, used to decide the maximum filter
order. For ’FIR’ filter, data length must be greater than 3xfilter_order

high_pass_freq high-pass frequency; default is NA (no high-pass filter will be applied)
high_pass_trans_freq

high-pass frequency band-width; default is automatically inferred from data
size. Frequency high_pass_freq - high_pass_trans_freq is the corner of
the stop-band



18 design_filter_fir

low_pass_freq low-pass frequency; default is NA (no low-pass filter will be applied)
low_pass_trans_freq

low-pass frequency band-width; default is automatically inferred from data size.
Frequency low_pass_freq + low_pass_trans_freq is the corner of the stop-
band

stopband_attenuation

allowable power attenuation (in decibel) at transition frequency; default is 40
dB.

scale whether to scale the filter for unity gain

method method to generate ’FIR’ filter, default is using kaiser estimate, other choices
are firls (with hamming window) and remez design.

Details

Filter type is determined from high_pass_freq and low_pass_freq. High-pass frequency is ig-
nored if high_pass_freq is NA, hence the filter is low-pass filter. When low_pass_freq is NA, then
the filter is high-pass filter. When both high_pass_freq and low_pass_freq are valid (positive,
less than ’Nyquist’), then the filter is a band-pass filter if band-pass is less than low-pass frequency,
otherwise the filter is band-stop.

Although the peak amplitudes are set at 1 by low_pass_freq and high_pass_freq, the transition
from peak amplitude to zero require a transition, which is tricky but also important to set. When
’FIR’ filters have too steep transition boundaries, the filter tends to have ripples in peak amplitude,
introducing artifacts to the final signals. When the filter is too flat, components from unwanted
frequencies may also get aliased into the filtered signals. Ideally, the transition bandwidth cannot
be too steep nor too flat. In this function, users may control the transition frequency bandwidths via
low_pass_trans_freq and high_pass_trans_freq. The power at the end of transition is defined
by stopband_attenuation, with default value of 40 (i.e. -40 dB, this number is automatically
negated during the calculation). By design, a low-pass 5 Hz filter with 1 Hz transition bandwidth
results in around -40 dB power at 6 Hz.

Value

’FIR’ filter in ’Arma’ form.

Examples

# ---- Basic -----------------------------

sample_rate <- 500
data_size <- 1000

# low-pass at 5 Hz, with auto transition bandwidth
# from kaiser's method, with default stopband attenuation = 40 dB
filter <- design_filter_fir(

low_pass_freq = 5,
sample_rate = sample_rate,
data_size = data_size

)



design_filter_iir 19

# Passband ripple is around 0.08 dB
# stopband attenuation is around 40 dB
print(filter)

diagnose_filter(
filter$b, filter$a,
fs = sample_rate,
n = data_size,
cutoffs = c(-3, -6, -40),
vlines = 5

)

# ---- Advanced ---------------------------------------------

sample_rate <- 500
data_size <- 1000

# Rejecting 3-8 Hz, with transition bandwidth 0.5 Hz at both ends
# Using least-square (firls) to generate FIR filter
# Suggesting the filter order n=160
filter <- design_filter_fir(

low_pass_freq = 3, low_pass_trans_freq = 0.5,
high_pass_freq = 8, high_pass_trans_freq = 0.5,
filter_order = 160,
sample_rate = sample_rate,
data_size = data_size,
method = "firls"

)

#
print(filter)

diagnose_filter(
filter$b, filter$a,
fs = sample_rate,
n = data_size,
cutoffs = c(-1, -40),
vlines = c(3, 8)

)

design_filter_iir Design an ’IIR’ filter

Description

Design an ’IIR’ filter



20 design_filter_iir

Usage

design_filter_iir(
method = c("butter", "cheby1", "cheby2", "ellip"),
sample_rate,
filter_order = NA,
high_pass_freq = NA,
high_pass_trans_freq = NA,
low_pass_freq = NA,
low_pass_trans_freq = NA,
passband_ripple = 0.1,
stopband_attenuation = 40

)

Arguments

method filter method name, choices are "butter", "cheby1", "cheby2", and "ellip"

sample_rate sampling frequency

filter_order suggested filter order. Notice filters with higher orders may become numerically
unstable, hence this number is only a suggested number. If the filter is unstable,
this function will choose a lower order; leave this input NA (default) if undecided.

high_pass_freq high-pass frequency; default is NA (no high-pass filter will be applied)
high_pass_trans_freq

high-pass frequency band-width; default is automatically inferred from filter
type.

low_pass_freq low-pass frequency; default is NA (no low-pass filter will be applied)
low_pass_trans_freq

low-pass frequency band-width; default is automatically inferred from filter
type.

passband_ripple

allowable pass-band ripple in decibel; default is 0.1
stopband_attenuation

minimum stop-band attenuation (in decibel) at transition frequency; default is
40 dB.

Value

A filter in ’Arma’ form.

Examples

sample_rate <- 500

my_diagnose <- function(
filter, vlines = c(8, 12), cutoffs = c(-3, -6)) {

diagnose_filter(
b = filter$b,
a = filter$a,



design_filter_iir 21

fs = sample_rate,
vlines = vlines,
cutoffs = cutoffs

)
}

# ---- Default using butterworth to generate 8-12 bandpass filter ----

# Butterworth filter with cut-off frequency
# 7 ~ 13 (default transition bandwidth is 1Hz) at -3 dB
filter <- design_filter_iir(

method = "butter",
low_pass_freq = 12,
high_pass_freq = 8,
sample_rate = 500

)

filter

my_diagnose(filter)

## explicit bandwidths and attenuation (sharper transition)

# Butterworth filter with cut-off frequency
# passband ripple is 0.5 dB (8-12 Hz)
# stopband attenuation is 40 dB (5-18 Hz)
filter <- design_filter_iir(

method = "butter",
low_pass_freq = 12, low_pass_trans_freq = 6,
high_pass_freq = 8, high_pass_trans_freq = 3,
sample_rate = 500,
passband_ripple = 0.5,
stopband_attenuation = 40

)

filter

my_diagnose(filter)

# ---- cheby1 --------------------------------

filter <- design_filter_iir(
method = "cheby1",
low_pass_freq = 12,
high_pass_freq = 8,
sample_rate = 500

)

my_diagnose(filter)

# ---- cheby2 --------------------------------

filter <- design_filter_iir(



22 detrend

method = "cheby2",
low_pass_freq = 12,
high_pass_freq = 8,
sample_rate = 500

)

my_diagnose(filter)

# ----- ellip ---------------------------------

filter <- design_filter_iir(
method = "ellip",
low_pass_freq = 12,
high_pass_freq = 8,
sample_rate = 500

)

my_diagnose(filter)

detrend Remove the trend for one or more signals

Description

’Detrending’ is often used before the signal power calculation.

Usage

detrend(x, trend = c("constant", "linear"), break_points = NULL)

Arguments

x numerical or complex, a vector or a matrix

trend the trend of the signal; choices are 'constant' and 'linear'

break_points integer vector, or NULL; only used when trend is 'linear' to remove piecewise
linear trend; will throw warnings if trend is 'constant'

Value

The signals with trend removed in matrix form; the number of columns is the number of signals,
and number of rows is length of the signals



diagnose_channel 23

Examples

x <- rnorm(100, mean = 1) + c(
seq(0, 5, length.out = 50),
seq(5, 3, length.out = 50))

plot(x)

plot(detrend(x, 'constant'))
plot(detrend(x, 'linear'))
plot(detrend(x, 'linear', 50))

diagnose_channel Show channel signals with diagnostic plots

Description

The diagnostic plots include ’Welch Periodogram’ (pwelch) and histogram (hist)

Usage

diagnose_channel(
s1,
s2 = NULL,
sc = NULL,
srate,
name = "",
try_compress = TRUE,
max_freq = 300,
window = ceiling(srate * 2),
noverlap = window/2,
std = 3,
which = NULL,
main = "Channel Inspection",
col = c("black", "red"),
cex = 1.2,
cex.lab = 1,
lwd = 0.5,
plim = NULL,
nclass = 100,
start_time = 0,
boundary = NULL,
mar = c(3.1, 4.1, 2.1, 0.8) * (0.25 + cex * 0.75) + 0.1,
mgp = cex * c(2, 0.5, 0),
xaxs = "i",
yaxs = "i",
xline = 1.66 * cex,
yline = 2.66 * cex,



24 diagnose_channel

tck = -0.005 * (3 + cex),
...

)

Arguments

s1 the main signal to draw

s2 the comparing signal to draw; usually s1 after some filters; must be in the same
sampling rate with s1; can be NULL

sc decimated s1 to show if srate is too high; will be automatically generated if
NULL

srate sampling rate

name name of s1, or a vector of two names of s1 and s2 if s2 is provided

try_compress whether try to compress (decimate) s1 if srate is too high for performance
concerns

max_freq the maximum frequency to display in ’Welch Periodograms’
window, noverlap

see pwelch

std the standard deviation of the channel signals used to determine boundary; de-
fault is plus-minus 3 standard deviation

which NULL or integer from 1 to 4; if NULL, all plots will be displayed; otherwise only
the subplot will be displayed

main the title of the signal plot

col colors of s1 and s2
cex, lwd, mar, cex.lab, mgp, xaxs, yaxs, tck, ...

graphical parameters; see par

plim the y-axis limit to draw in ’Welch Periodograms’

nclass number of classes to show in histogram (hist)

start_time the starting time of channel (will only be used to draw signals)

boundary a red boundary to show in channel plot; default is to be automatically determined
by std

xline, yline distance of axis labels towards ticks

Value

A list of boundary and y-axis limit used to draw the channel

Examples

library(ravetools)

# Generate 20 second data at 2000 Hz
time <- seq(0, 20, by = 1 / 2000)
signal <- sin( 120 * pi * time) +

sin(time * 20*pi) +



diagnose_filter 25

exp(-time^2) *
cos(time * 10*pi) +
rnorm(length(time))

signal2 <- notch_filter(signal, 2000)

diagnose_channel(signal, signal2, srate = 2000,
name = c("Raw", "Filtered"), cex = 1)

diagnose_filter Diagnose digital filter

Description

Generate frequency response plot with sample-data simulation

Usage

diagnose_filter(
b,
a,
fs,
n = 512,
whole = FALSE,
sample = stats::rnorm(n, mean = sample_signal(n), sd = 0.2),
vlines = NULL,
xlim = "auto",
cutoffs = c(-3, -6, -12)

)

Arguments

b the moving-average coefficients of an ARMA model

a the auto-regressive coefficients of an ARMA filter; default is 1

fs sampling frequency in Hz

n number of points at which to evaluate the frequency response; default is 512

whole whether to evaluate beyond Nyquist frequency; default is false

sample sample signal of length n for simulation

vlines additional vertical lines (frequencies) to plot

xlim frequency limit of frequency response plot; default is "auto", can be "full" or
a numeric of length 2

cutoffs cutoff decibel powers to draw on the frequency plot, also used to calculate the
frequency limit when xlim is "auto"



26 dijkstras-path

Value

Nothing

Examples

library(ravetools)

# sample rate
srate <- 500

# signal length
npts <- 1000

# band-pass
bpass <- c(1, 50)

# Nyquist
fn <- srate / 2
w <- bpass / fn

# ---- FIR filter ------------------------------------------------
order <- 160

# FIR1 is MA filter, a = 1
filter <- fir1(order, w, "pass")

diagnose_filter(
b = filter$b, a = filter$a, n = npts,
fs = srate, vlines = bpass

)

# ---- Butter filter --------------------------------------------
filter <- butter(3, w, "pass")

diagnose_filter(
b = filter$b, a = filter$a, n = npts,
fs = srate, vlines = bpass

)

dijkstras-path Calculate distances along a surface

Description

Calculate surface distances of graph or mesh using ’Dijkstra’ method.



dijkstras-path 27

Usage

dijkstras_surface_distance(
positions,
faces,
start_node,
face_index_start = NA,
max_search_distance = NA,
...

)

surface_path(x, target_node)

Arguments

positions numeric matrix with no NA values. The number of row is the total count of nodes
(vertices), and the number of columns represent the node dimension. Each row
represents a node.

faces integer matrix with each row containing indices of nodes. For graphs, faces is
a matrix with two columns defining the connecting edges; for ’3D’ mesh, faces
is a three-column matrix defining the face index of mesh triangles.

start_node integer, row index of positions on where to start calculating the distances. This
integer must be 1-indexed and cannot exceed the total number of positions
rows

face_index_start

integer, the start of the nodes in faces; please specify this input explicitly if the
first node is not contained in faces. Default is NA (determined by the minimal
number in faces). The reason to set this input is because some programs use 1
to represent the first node, some start from 0.

max_search_distance

numeric, maximum distance to iterate; default is NA, that is to iterate and search
the whole mesh

... reserved for backward compatibility

x distance calculation results returned by dijkstras_surface_distance func-
tion

target_node the target node number to reach (from the starting node); target_node is always
1-indexed.

Value

dijkstras_surface_distance returns a list distance table with the meta configurations. surface_path
returns a data frame of the node ID (from start_node to target_node) and cumulative distance
along the shortest path.

Examples

# ---- Toy example --------------------



28 dijkstras-path

# Position is 2D, total 6 points
positions <- matrix(runif(6 * 2), ncol = 2)

# edges defines connected nodes
edges <- matrix(ncol = 2, byrow = TRUE, data = c(

1,2,
2,3,
1,3,
2,4,
3,4,
2,5,
4,5,
2,5,
4,6,
5,6

))

# calculate distances
ret <- dijkstras_surface_distance(

start_node = 1,
positions = positions,
faces = edges,
face_index_start = 1

)

# get shortest path from the first node to the last
path <- surface_path(ret, target_node = 6)

# plot the results
from_node <- path$path[-nrow(path)]
to_node <- path$path[-1]
plot(positions, pch = 16, axes = FALSE,

xlab = "X", ylab = "Y", main = "Dijkstra's shortest path")
segments(

x0 = positions[edges[,1],1], y0 = positions[edges[,1],2],
x1 = positions[edges[,2],1], y1 = positions[edges[,2],2]

)

points(positions[path$path,], col = "steelblue", pch = 16)
arrows(

x0 = positions[from_node,1], y0 = positions[from_node,2],
x1 = positions[to_node,1], y1 = positions[to_node,2],
col = "steelblue", lwd = 2, length = 0.1, lty = 2

)

points(positions[1,,drop=FALSE], pch = 16, col = "orangered")
points(positions[6,,drop=FALSE], pch = 16, col = "purple3")

# ---- Example with mesh ------------------------------------

## Not run:

# Please install the down-stream package `threeBrain`



dijkstras-path 29

# and call library(threeBrain)
# the following code set up the files

read.fs.surface <- internal_rave_function(
"read.fs.surface", "threeBrain")

default_template_directory <- internal_rave_function(
"default_template_directory", "threeBrain")

surface_path <- file.path(default_template_directory(),
"N27", "surf", "lh.pial")

if(!file.exists(surface_path)) {
internal_rave_function(

"download_N27", "threeBrain")()
}

# Example starts from here --->
# Load the mesh
mesh <- read.fs.surface(surface_path)

# Calculate the path with maximum radius 100
ret <- dijkstras_surface_distance(

start_node = 1,
positions = mesh$vertices,
faces = mesh$faces,
max_search_distance = 100,
verbose = TRUE

)

# get shortest path from the first node to node 43144
path <- surface_path(ret, target_node = 43144)

# plot
from_nodes <- path$path[-nrow(path)]
to_nodes <- path$path[-1]
# calculate colors
pal <- colorRampPalette(

colors = c("red", "orange", "orange3", "purple3", "purple4")
)(1001)
col <- pal[ceiling(

path$distance / max(path$distance, na.rm = TRUE) * 1000
) + 1]
oldpar <- par(mfrow = c(2, 2), mar = c(0, 0, 0, 0))
for(xdim in c(1, 2, 3)) {

if( xdim < 3 ) {
ydim <- xdim + 1

} else {
ydim <- 3
xdim <- 1

}
plot(

mesh$vertices[, xdim], mesh$vertices[, ydim],
pch = ".", col = "#BEBEBE33", axes = FALSE,
xlab = "P - A", ylab = "S - I", asp = 1

)



30 fast_cov

segments(
x0 = mesh$vertices[from_nodes, xdim],
y0 = mesh$vertices[from_nodes, ydim],
x1 = mesh$vertices[to_nodes, xdim],
y1 = mesh$vertices[to_nodes, ydim],
col = col

)
}

# plot distance map
distances <- ret$paths$distance
col <- pal[ceiling(distances / max(distances, na.rm = TRUE) * 1000) + 1]
selection <- !is.na(distances)

plot(
mesh$vertices[, 2], mesh$vertices[, 3],
pch = ".", col = "#BEBEBE33", axes = FALSE,
xlab = "P - A", ylab = "S - I", asp = 1

)
points(

mesh$vertices[selection, c(2, 3)],
col = col[selection],
pch = "."

)

# reset graphic state
par(oldpar)

## End(Not run)

fast_cov Calculate massive covariance matrix in parallel

Description

Speed up covariance calculation for large matrices. The default behavior is the same as cov
('pearson', no NA handling).

Usage

fast_cov(x, y = NULL, col_x = NULL, col_y = NULL, df = NA)



fast_cov 31

Arguments

x a numeric vector, matrix or data frame; a matrix is highly recommended to max-
imize the performance

y NULL (default) or a vector, matrix or data frame with compatible dimensions to
x; the default is equivalent to y = x

col_x integers indicating the subset indices (columns) of x to calculate the covariance,
or NULL to include all the columns; default is NULL

col_y integers indicating the subset indices (columns) of y to calculate the covariance,
or NULL to include all the columns; default is NULL

df a scalar indicating the degrees of freedom; default is nrow(x)-1

Value

A covariance matrix of x and y. Note that there is no NA handling. Any missing values will lead to
NA in the resulting covariance matrices.

Examples

# Set ncores = 2 to comply to CRAN policy. Please don't run this line
ravetools_threads(n_threads = 2L)

x <- matrix(rnorm(400), nrow = 100)

# Call `cov(x)` to compare
fast_cov(x)

# Calculate covariance of subsets
fast_cov(x, col_x = 1, col_y = 1:2)

# Speed comparison, better to use multiple cores (4, 8, or more)
# to show the differences.

ravetools_threads(n_threads = -1)
x <- matrix(rnorm(100000), nrow = 1000)
microbenchmark::microbenchmark(

fast_cov = {
fast_cov(x, col_x = 1:50, col_y = 51:100)

},
cov = {

cov(x[,1:50], x[,51:100])
},
unit = 'ms', times = 10

)



32 fast_quantile

fast_quantile Compute quantiles

Description

Compute quantiles

Usage

fast_quantile(x, prob = 0.5, na.rm = FALSE, ...)

fast_median(x, na.rm = FALSE, ...)

fast_mvquantile(x, prob = 0.5, na.rm = FALSE, ...)

fast_mvmedian(x, na.rm = FALSE, ...)

Arguments

x numerical-value vector for fast_quantile and fast_median, and column-major
matrix for fast_mvquantile and fast_mvmedian

prob a probability with value from 0 to 1

na.rm logical; if true, any NA are removed from x before the quantiles are computed

... reserved for future use

Value

fast_quantile and fast_median calculate univariate quantiles (single-value return); fast_mvquantile
and fast_mvmedian calculate multivariate quantiles (for each column, result lengths equal to the
number of columns).

Examples

fast_quantile(runif(1000), 0.1)
fast_median(1:100)

x <- matrix(rnorm(100), ncol = 2)
fast_mvquantile(x, 0.2)
fast_mvmedian(x)

# Compare speed for vectors (usually 30% faster)
x <- rnorm(10000)
microbenchmark::microbenchmark(

fast_median = fast_median(x),
base_median = median(x),
# bioc_median = Biobase::rowMedians(matrix(x, nrow = 1)),
times = 100, unit = "milliseconds"

)



fill_surface 33

# Multivariate cases
# (5~7x faster than base R)
# (3~5x faster than Biobase rowMedians)
x <- matrix(rnorm(100000), ncol = 20)
microbenchmark::microbenchmark(

fast_median = fast_mvmedian(x),
base_median = apply(x, 2, median),
# bioc_median = Biobase::rowMedians(t(x)),
times = 10, unit = "milliseconds"

)

fill_surface Fill a volume cube based on water-tight surface

Description

Create a cube volume (256 ’voxels’ on each margin), fill in the ’voxels’ that are inside of the surface.

Usage

fill_surface(
surface,
inflate = 0,
IJK2RAS = NULL,
preview = FALSE,
preview_frame = 128

)

Arguments

surface a surface mesh, can be mesh objects from rgl or freesurferformats packages

inflate amount of ’voxels’ to inflate on the final result; must be a non-negative integer.
A zero inflate value means the resulting volume is tightly close to the surface

IJK2RAS volume ’IJK’ (zero-indexed coordinate index) to 'tkrRAS' transform, default is
automatically determined leave it ‘NULL‘ if you don’t know how to set it

preview whether to preview the results; default is false

preview_frame integer from 1 to 256 the depth frame used to generate preview.

Details

This function creates a volume (256 on each margin) and fill in the volume from a surface mesh. The
surface vertex points will be embedded into the volume first. These points may not be connected
together, hence for each ’voxel’, a cube patch will be applied to grow the volume. Then, the volume
will be bucket-filled from a corner, forming a negated mask of "outside-of-surface" area. The
inverted bucket-filled volume is then shrunk so the mask boundary tightly fits the surface



34 filter-window

Value

A list containing the filled volume and parameters used to generate the volume

Author(s)

Zhengjia Wang

Examples

# takes > 5s to run example

# Generate a sphere
surface <- vcg_sphere()
surface$vb[1:3, ] <- surface$vb[1:3, ] * 50

fill_surface(surface, preview = TRUE)

filter-window Filter window functions

Description

Filter window functions

Usage

hanning(n)

hamming(n)

blackman(n)

blackmannuttall(n)

blackmanharris(n)

flattopwin(n)

bohmanwin(n)

Arguments

n number of time-points in window



filter_signal 35

Value

A numeric vector of window with length n

Examples

hanning(10)
hamming(11)
blackmanharris(21)

filter_signal Filter one-dimensional signal

Description

The function is written from the scratch. The result has been compared against the ’Matlab’ filter
function with one-dimensional real inputs. Other situations such as matrix b or multi-dimensional
x are not implemented. For double filters (forward-backward), see filtfilt.

Usage

filter_signal(b, a, x, z)

Arguments

b one-dimensional real numerical vector, the moving-average coefficients of an
ARMA filter

a the auto-regressive (recursive) coefficients of an ARMA filter

x numerical vector input (real value)

z initial condition, must have length of n-1, where n is the maximum of lengths
of a and b; default is all zeros

Value

A list of two vectors: the first vector is the filtered signal; the second vector is the final state of z

Examples

t <- seq(0, 1, by = 0.01)
x <- sin(2 * pi * t * 2.3)
bf <- gsignal::butter(2, c(0.15, 0.3))

res <- filter_signal(bf$b, bf$a, x)
y <- res[[1]]
z <- res[[2]]



36 filtfilt

## Matlab (2022a) equivalent:
# t = [0:0.01:1];
# x = sin(2 * pi * t * 2.3);
# [b,a] = butter(2,[.15,.3]);
# [y,z] = filter(b, a, x)

filtfilt Forward and reverse filter a one-dimensional signal

Description

The result has been tested against ’Matlab’ filtfilt function. Currently this function only sup-
ports one filter at a time.

Usage

filtfilt(b, a, x)

Arguments

b one-dimensional real numerical vector, the moving-average coefficients of an
ARMA filter

a the auto-regressive (recursive) coefficients of an ARMA filter

x numerical vector input (real value)

Value

The filtered signal, normally the same length as the input signal x.

Examples

t <- seq(0, 1, by = 0.01)
x <- sin(2 * pi * t * 2.3)
bf <- gsignal::butter(2, c(0.15, 0.3))

res <- filtfilt(bf$b, bf$a, x)

## Matlab (2022a) equivalent:
# t = [0:0.01:1];
# x = sin(2 * pi * t * 2.3);
# [b,a] = butter(2,[.15,.3]);
# res = filtfilt(b, a, x)



fir1 37

fir1 Window-based FIR filter design

Description

Generate a fir1 filter that is checked against Matlab fir1 function.

Usage

fir1(
n,
w,
type = c("low", "high", "stop", "pass", "DC-0", "DC-1"),
window = hamming,
scale = TRUE,
hilbert = FALSE

)

Arguments

n filter order

w band edges, non-decreasing vector in the range 0 to 1, where 1 is the Nyquist
frequency. A scalar for high-pass or low-pass filters, a vector pair for band-pass
or band-stop, or a vector for an alternating pass/stop filter.

type type of the filter, one of "low" for a low-pass filter, "high" for a high-pass filter,
"stop" for a stop-band (band-reject) filter, "pass" for a pass-band filter, "DC-0"
for a band-pass as the first band of a multi-band filter, or "DC-1" for a band-stop
as the first band of a multi-band filter; default "low"

window smoothing window function or a numerical vector. The filter is the same shape
as the smoothing window. When window is a function, window(n+1) will be
called, otherwise the length of the window vector needs to have length of n+1;
default: hamming

scale whether to scale the filter; default is true

hilbert whether to use ’Hilbert’ transformer; default is false

Value

The FIR filter coefficients with class 'Arma'. The moving average coefficient is a vector of length
n+1.



38 freqz2

firls Least-squares linear-phase FIR filter design

Description

Produce a linear phase filter from the weighted mean squared such that error in the specified bands
is minimized.

Usage

firls(N, freq, A, W = NULL, ftype = "")

Arguments

N filter order, must be even (if odd, then will be increased by one)

freq vector of frequency points in the range from 0 to 1, where 1 corresponds to the
Nyquist frequency.

A vector of the same length as freq containing the desired amplitude at each of
the points specified in freq.

W weighting function that contains one value for each band that weights the mean
squared error in that band. W must be half the length of freq.

ftype transformer type; default is ""; alternatively, 'h' or 'hilbert' for ’Hilbert’
transformer.

Value

The FIR filter coefficients with class 'Arma'. The moving average coefficient is a vector of length
n+1.

freqz2 Frequency response of digital filter

Description

Compute the z-plane frequency response of an ARMA model.

Usage

freqz2(b, a = 1, fs = 2 * pi, n = 512, whole = FALSE, ...)



grow_volume 39

Arguments

b the moving-average coefficients of an ARMA model

a the auto-regressive coefficients of an ARMA filter; default is 1

fs sampling frequency in Hz

n number of points at which to evaluate the frequency response; default is 512

whole whether to evaluate beyond Nyquist frequency; default is false

... ignored

Value

A list of frequencies and corresponding responses in complex vector

grow_volume Grow volume mask

Description

Grow volume mask

Usage

grow_volume(volume, x, y = x, z = x, threshold = 0.5)

Arguments

volume volume mask array, must be 3-dimensional array

x, y, z size of grow along each direction

threshold threshold after convolution

Value

A binary volume mask

Examples

oldpar <- par(mfrow = c(2,3), mar = c(0.1,0.1,3.1,0.1))

mask <- array(0, c(21,21,21))
mask[11,11,11] <- 1
image(mask[11,,], asp = 1,

main = "Original mask", axes = FALSE)
image(grow_volume(mask, 2)[11,,], asp = 1,

main = "Dilated (size=2) mask", axes = FALSE)
image(grow_volume(mask, 5)[11,,], asp = 1,

main = "Dilated (size=5) mask", axes = FALSE)



40 internal_rave_function

mask[11, sample(11,2), sample(11,2)] <- 1
image(mask[11,,], asp = 1,

main = "Original mask", axes = FALSE)
image(grow_volume(mask, 2)[11,,], asp = 1,

main = "Dilated (size=2) mask", axes = FALSE)
image(grow_volume(mask, 5)[11,,], asp = 1,

main = "Dilated (size=5) mask", axes = FALSE)

par(oldpar)

internal_rave_function

Get external function from ’RAVE’

Description

Internal function used for examples relative to ’RAVE’ project and should not be used directly.

Usage

internal_rave_function(name, pkg, inherit = TRUE, on_missing = NULL)

Arguments

name function or variable name

pkg ’RAVE’ package name

inherit passed to get0

on_missing default value to return of no function is found

Value

Function object if found, otherwise on_missing.



interpolate_stimulation 41

interpolate_stimulation

Find and interpolate stimulation signals

Description

Find and interpolate stimulation signals

Usage

interpolate_stimulation(
x,
sample_rate,
duration = 40/sample_rate,
ord = 4L,
nknots = 100,
nsd = 1,
nstim = NULL,
regularization = 0.5

)

Arguments

x numerical vector representing a analog signal

sample_rate sampling frequency

duration time in second: duration of interpolation

ord spline order, default is 4

nknots a rough number of knots to use, default is 100

nsd number of standard deviation to detect stimulation signals, default is 1

nstim number of stimulation pulses, default is to auto-detect

regularization regularization parameter in case of inverting singular matrices, default is 0.5

Value

Interpolated signal with an attribute of which sample points are interpolated

Examples

x0 <- rnorm(1000) / 5 + sin(1:1000 / 300)

# Simulates pulase signals
x <- x0
x[400:410] <- -100
x[420:430] <- 100

fitted <- interpolate_stimulation(x, 100, duration = 0.3, nknots = 10, nsd = 2)



42 matlab_palette

oldpar <- par(mfrow = c(2, 1))

plot(fitted, type = 'l', col = 'blue', lwd = 2)
lines(x, col = 'red')
lines(x0, col = 'black')
legend("topleft", c("Interpolated", "Observed", "Underlying"),

lty = 1, col = c("blue", "red", "black"))

pwelch(x0, 100, 200, 100, plot = 1, col = 'black', ylim = c(-50, 50))
pwelch(x, 100, 200, 100, plot = 2, col = 'red')
pwelch(fitted, 100, 200, 100, plot = 2, col = 'blue')

par(oldpar)

left_hippocampus_mask Left ’Hippocampus’ of ’N27-Collin’ brain

Description

Left ’Hippocampus’ of ’N27-Collin’ brain

Usage

left_hippocampus_mask

Format

A three-mode integer mask array with values of 1 (’Hippocampus’) and 0 (other brain tissues)

matlab_palette ’Matlab’ heat-map plot palette

Description

’Matlab’ heat-map plot palette

Usage

matlab_palette()

Value

vector of 64 colors



mesh_from_volume 43

mesh_from_volume Generate 3D mesh surface from volume data

Description

This function is soft-deprecated. Please use vcg_mesh_volume, vcg_uniform_remesh, and vcg_smooth_explicit
or vcg_smooth_implicit.

Usage

mesh_from_volume(
volume,
output_format = c("rgl", "freesurfer"),
IJK2RAS = NULL,
threshold = 0,
verbose = TRUE,
remesh = TRUE,
remesh_voxel_size = 1,
remesh_multisample = TRUE,
remesh_automerge = TRUE,
smooth = FALSE,
smooth_lambda = 10,
smooth_delta = 20,
smooth_method = "surfPreserveLaplace"

)

Arguments

volume 3-dimensional volume array

output_format resulting data format, choices are 'rgl' and 'freesurfer'

IJK2RAS volume ’IJK’ (zero-indexed coordinate index) to 'tkrRAS' transform, default is
automatically determined

threshold threshold used to create volume mask; the surface will be created to fit the mask
boundaries

verbose whether to verbose the progress

remesh whether to re-sample the mesh using vcg_uniform_remesh

remesh_voxel_size, remesh_multisample, remesh_automerge
see arguments in vcg_uniform_remesh

smooth whether to smooth the mesh via vcg_smooth_explicit

smooth_lambda, smooth_delta, smooth_method
see vcg_smooth_explicit

Value

A 'mesh3d' surface if output_format is ’rgl’, or 'fs.surface' surface otherwise.



44 multitaper

Examples

volume <- array(0, dim = c(8,8,8))
volume[4:5, 4:5, 4:5] <- 1

graphics::image(x = volume[4,,])

# you can use rgl::wire3d(mesh) to visualize the mesh
mesh <- mesh_from_volume(volume, verbose = FALSE)

multitaper Compute ’multitaper’ spectral densities of time-series data

Description

Compute ’multitaper’ spectral densities of time-series data

Usage

multitaper_config(
data_length,
fs,
frequency_range = NULL,
time_bandwidth = 5,
num_tapers = NULL,
window_params = c(5, 1),
nfft = NA,
detrend_opt = "linear"

)

multitaper(
data,
fs,
frequency_range = NULL,
time_bandwidth = 5,
num_tapers = NULL,
window_params = c(5, 1),
nfft = NA,
detrend_opt = "linear"

)

Arguments

data_length length of data

fs sampling frequency in ’Hz’



multitaper 45

frequency_range

frequency range to look at; length of two

time_bandwidth a number indicating time-half bandwidth product; i.e. the window duration
times the half bandwidth of main lobe; default is 5

num_tapers number of ’DPSS’ tapers to use; default is NULL and will be automatically com-
puted from floor(2*time_bandwidth - 1)

window_params vector of two numbers; the first number is the window size in seconds; the
second number if the step size; default is c(5, 1)

nfft ’NFFT’ size, positive; see ’Details’

detrend_opt how you want to remove the trend from data window; options are 'linear'
(default), 'constant', and 'off'

data numerical vector, signal traces

Details

The original source code comes from ’Prerau’ Lab (see ’Github’ repository 'multitaper_toolbox'
under user 'preraulab'). The results tend to agree with their ’Python’ implementation with
precision on the order of at 1E-7 with standard deviation at most 1E-5. The original copy was
licensed under a Creative Commons Attribution ’NC’-’SA’ 4.0 International License (https://
creativecommons.org/licenses/by-nc-sa/4.0/).

This package ('ravetools') redistributes the multitaper function under minor modifications on
nfft. In the original copy there is no parameter to control the exact numbers of nfft, and the nfft
is always the power of 2. While choosing nfft to be the power of 2 is always recommended, the
modified code allows other choices.

Value

multitaper_config returns a list of configuration parameters for the filters; multitaper also
returns the time, frequency and corresponding spectral power.

Examples

# Takes long to run

time <- seq(0, 3, by = 0.001)
x <- sin(time * 20*pi) + exp(-time^2) * cos(time * 10*pi)

res <- multitaper(
x, 1000, frequency_range = c(0,15),
time_bandwidth=1.5,
window_params=c(2,0.01)

)

image(
x = res$time,
y = res$frequency,

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/


46 new_matrix4

z = 10 * log10(res$spec),
xlab = "Time (s)",
ylab = 'Frequency (Hz)',
col = matlab_palette()

)

new_matrix4 Create a Matrix4 instance for ’Affine’ transform

Description

Create a Matrix4 instance for 'Affine' transform

Usage

new_matrix4()

as_matrix4(m)

Arguments

m a matrix or a vector to be converted to the Matrix4 instance; m must be one of
the followings: for matrices, the dimension must be 4x4, 3x4 (the last row will
be 0 0 0 1), or 3x3 (linear transform); for vectors, the length must be 16, 12 (will
append 0 0 0 1 internally), 3 (translation), or 1 (scale).

Value

A Matrix4 instance

See Also

new_vector3, new_quaternion



new_quaternion 47

new_quaternion Create a Quaternion instance to store ’3D’ rotation

Description

Create instances that mimic the 'three.js' syntax.

Usage

new_quaternion(x = 0, y = 0, z = 0, w = 1)

as_quaternion(q)

Arguments

x, y, z, w numeric of length one

q R object to be converted to Quaternion

Value

A Quaternion instance

See Also

new_vector3, new_matrix4

new_vector3 Create a Vector3 instance to store ’3D’ points

Description

Create instances that mimic the 'three.js' syntax.

Usage

new_vector3(x = 0, y = 0, z = 0)

as_vector3(v)

Arguments

x, y, z numeric, must have the same length, 'xyz' positions

v R object to be converted to Vector3 instance



48 notch_filter

Value

A Vector3 instance

See Also

new_matrix4, new_quaternion

Examples

vec3 <- new_vector3(
x = 1:9,
y = 9:1,
z = rep(c(1,2,3), 3)

)

vec3[]

# transform
m <- new_matrix4()

# rotation xy plane by 30 degrees
m$make_rotation_z(pi / 6)

vec3$apply_matrix4(m)

vec3[]

as_vector3(c(1,2,3))

notch_filter Apply ’Notch’ filter

Description

Apply ’Notch’ filter

Usage

notch_filter(
s,
sample_rate,
lb = c(59, 118, 178),
ub = c(61, 122, 182),
domain = 1

)



parallel-options 49

Arguments

s numerical vector if domain=1 (voltage signals), or complex vector if domain=0

sample_rate sample rate

lb filter lower bound of the frequencies to remove

ub filter upper bound of the frequencies to remove; shares the same length as lb

domain 1 if the input signal is in the time domain, 0 if it is in the frequency domain

Details

Mainly used to remove electrical line frequencies at 60, 120, and 180 Hz.

Value

filtered signal in time domain (real numerical vector)

Examples

time <- seq(0, 3, 0.005)
s <- sin(120 * pi * time) + rnorm(length(time))

# Welch periodogram shows a peak at 60Hz
pwelch(s, 200, plot = 1, log = "y")

# notch filter to remove 60Hz
s1 <- notch_filter(s, 200, lb = 59, ub = 61)
pwelch(s1, 200, plot = 2, log = "y", col = "red")

parallel-options Set or get thread options

Description

Set or get thread options

Usage

detect_threads()

ravetools_threads(n_threads = "auto", stack_size = "auto")

Arguments

n_threads number of threads to set

stack_size Stack size (in bytes) to use for worker threads. The default used for "auto" is
2MB on 32-bit systems and 4MB on 64-bit systems.



50 plot_signals

Value

detect_threads returns an integer of default threads that is determined by the number of CPU
cores; ravetools_threads returns nothing.

Examples

detect_threads()

ravetools_threads(n_threads = 2)

plot_signals Plot one or more signal traces in the same figure

Description

Plot one or more signal traces in the same figure

Usage

plot_signals(
signals,
sample_rate = 1,
col = graphics::par("fg"),
space = 0.995,
space_mode = c("quantile", "absolute"),
start_time = 0,
duration = NULL,
compress = TRUE,
channel_names = NULL,
time_shift = 0,
xlab = "Time (s)",
ylab = "Electrode",
lwd = 0.5,
new_plot = TRUE,
xlim = NULL,
cex = 1,
cex.lab = 1,
mar = c(3.1, 2.1, 2.1, 0.8) * (0.25 + cex * 0.75) + 0.1,
mgp = cex * c(2, 0.5, 0),
xaxs = "r",
yaxs = "i",
xline = 1.5 * cex,
yline = 1 * cex,
tck = -0.005 * (3 + cex),
...

)



pwelch 51

Arguments

signals numerical matrix with each row to be a signal trace and each column contains
the signal values at a time point

sample_rate sampling frequency

col signal color, can be vector of one or more

space vertical spacing among the traces; for values greater than 1, the spacing is abso-
lute; default is 0.995; for values less equal to 1, this is the percentile of the whole
data. However, the quantile mode can be manually turned off is "absolute" is
required; see space_mode

space_mode mode of spacing, only used when space is less equal to one; default is quantile

start_time the time to start drawing relative to the first column

duration duration of the signal to draw

compress whether to compress signals if the data is too large

channel_names NULL or a character vector of channel names

time_shift the actual start time of the signal. Unlike start_time, this should be the actual
physical time represented by the first column

xlab, ylab, lwd, xlim, cex, cex.lab, mar, mgp, xaxs, yaxs, tck, ...
plot parameters; see plot and par

new_plot whether to draw a new plot; default is true

xline, yline the gap between axis and label

Examples

n <- 1000
base_signal <- c(rep(0, n/2), sin(seq(0,10,length.out = n/2))) * 10
signals <- rbind(rnorm(n) + base_signal,

rbinom(n, 10, 0.3) + base_signal,
rt(n, 5) + base_signal)

plot_signals(signals, sample_rate = 100)
plot_signals(signals, sample_rate = 100, start_time = 5)
plot_signals(signals, sample_rate = 100,

start_time = 5, time_shift = 100)

pwelch Calculate ’Welch Periodogram’

Description

pwelch is for single signal trace only; mv_pwelch is for multiple traces. Currently mv_pwelch is
experimental and should not be called directly.



52 pwelch

Usage

pwelch(
x,
fs,
window = 64,
noverlap = window/2,
nfft = "auto",
window_family = hamming,
col = "black",
xlim = NULL,
ylim = NULL,
main = "Welch periodogram",
plot = 0,
log = c("xy", "", "x", "y"),
...

)

## S3 method for class '`ravetools-pwelch`'
print(x, ...)

## S3 method for class '`ravetools-pwelch`'
plot(
x,
log = c("xy", "x", "y", ""),
se = FALSE,
xticks,
type = "l",
add = FALSE,
col = graphics::par("fg"),
col.se = "orange",
alpha.se = 0.5,
lty = 1,
lwd = 1,
cex = 1,
las = 1,
main = "Welch periodogram",
xlab,
ylab,
xlim = NULL,
ylim = NULL,
xaxs = "i",
yaxs = "i",
xline = 1.2 * cex,
yline = 2 * cex,
mar = c(2.6, 3.8, 2.1, 0.6) * (0.5 + cex/2),
mgp = cex * c(2, 0.5, 0),
tck = -0.02 * cex,
grid = TRUE,



pwelch 53

...
)

mv_pwelch(
x,
margin,
fs,
window = 64,
noverlap = window/2,
nfft = "auto",
window_family = hamming

)

Arguments

x numerical vector or a row-major vector, signals. If x is a matrix, then each row
is a channel. For plot function, x is the instance returned by pwelch function.

fs sample rate, average number of time points per second

window window length in time points, default size is 64

noverlap overlap between two adjacent windows, measured in time points; default is half
of the window

nfft number of points in window function; default is automatically determined from
input data and window, scaled up to the nearest power of 2

window_family function generator for generating filter windows, default is hamming. This can be
any window function listed in the filter window family, or any window genera-
tor function from package gsignal. Default is hamming. For ’iEEG’ users, both
hamming and blackmanharris are offered by ’EEG-lab’; while blackmanharris
offers better attenuation than Hamming windows, it also has lower spectral res-
olution. hamming has a 42.5 dB side-lobe attenuation. This may mask spectral
content below this value (relative to the peak spectral content). Choosing dif-
ferent windows enables you to make trade-off between resolution (e.g., using a
rectangular window) and side-lobe attenuation (e.g., using a hanning window)

col, xlim, ylim, main, type, cex, las, xlab, ylab, lty, lwd, xaxs, yaxs, mar,
mgp, tck

parameters passed to plot.default

plot integer, whether to plot the result or not; choices are 0, no plot; 1 plot on a new
canvas; 2 add to existing canvas

log indicates which axis should be log10-transformed, used by the plot function.
For 'x' axis, it’s log10-transform; for 'y' axis, it’s 10log10-transform (decibel
unit). Choices are "xy", "x", "y", and "".

... will be passed to plot.pwelch or ignored

se logical or a positive number indicating whether to plot standard error of mean;
default is false. If provided with a number, then a multiple of standard error will
be drawn. This option is only available when power is in log-scale (decibel unit)

xticks ticks to show on frequency axis



54 raw-to-sexp

add logical, whether the plot should be added to existing canvas
col.se, alpha.se

controls the color and opacity of the standard error

xline, yline controls how close the axis labels to the corresponding axes

grid whether to draw rectangular grid lines to the plot; only respected when add=FALSE;
default is true

margin the margin in which pwelch should be applied to

Value

A list with class 'ravetools-pwelch' that contains the following items:

freq frequencies used to calculate the ’periodogram’

spec resulting spectral power for each frequency

window window function (in numerical vector) used

noverlap number of overlapping time-points between two adjacent windows

nfft number of basis functions

fs sample rate

x_len input signal length

method a character string 'Welch'

Examples

x <- rnorm(1000)
pwel <- pwelch(x, 100)
pwel

plot(pwel, log = "xy")

raw-to-sexp Convert raw vectors to R vectors

Description

Convert raw vectors to R vectors

Usage

raw_to_uint8(x)

raw_to_uint16(x)

raw_to_uint32(x)



raw-to-sexp 55

raw_to_int8(x)

raw_to_int16(x)

raw_to_int32(x)

raw_to_int64(x)

raw_to_float(x)

raw_to_string(x)

Arguments

x raw vector of bytes

Details

For numeric conversions, the function names are straightforward. For example, raw_to_uintN
converts raw vectors to unsigned integers, and raw_to_intN converts raw vectors to signed integers.
The number 'N' stands for the number of bits used to store the integer. For example raw_to_uint8
uses 8 bits (1 byte) to store an integer, hence the value range is 0-255.

The input data length must be multiple of the element size represented by the underlying data. For
example uint16 integer uses 16 bites, and one raw number uses 8 bits, hence two raw vectors can
form one unsigned integer-16. That is, raw_to_uint16 requires the length of input to be multiple
of two. An easy calculation is: the length of x times 8, must be divided by 'N' (see last paragraph
for definition).

The returned data uses the closest available R native data type that can fully represent the data.
For example, R does not have single float type, hence raw_to_float returns double type, which
can represent all possible values in float. For raw_to_uint32, the potential value range is 0 -
(2^32-1). This exceeds the limit of R integer type (-2^31) - (2^31-1). Therefore, the returned
values will be real (double float) data type.

There is no native data type that can store integer-64 data in R, package bit64 provides integer64
type, which will be used by raw_to_int64. Currently there is no solution to convert raw to unsigned
integer-64 type.

raw_to_string converts raw to character string. This function respects null character, hence is
slightly different than the native rawToChar, which translates raw byte-by-byte. If each raw byte
represents a valid character, then the above two functions returns the same result. However, when
the characters represented by raw bytes are invalid, raw_to_string will stop parsing and returns
only the valid characters, while rawToChar will still try to parse, and most likely to result in errors.
Please see Examples for comparisons.

Value

Numeric vectors, except for raw_to_string, which returns a string.



56 raw-to-sexp

Examples

# 0x00, 0x7f, 0x80, 0xFF
x <- as.raw(c(0, 127, 128, 255))

raw_to_uint8(x)

# The first bit becomes the integer sign
# 128 -> -128, 255 -> -1
raw_to_int8(x)

## Comments based on little endian system

# 0x7f00 (32512), 0xFF80 (65408 unsigned, or -128 signed)
raw_to_uint16(x)
raw_to_int16(x)

# 0xFF807F00 (4286611200 unsigned, -8356096 signed)
raw_to_uint32(x)
raw_to_int32(x)

# ---------------------------- String ---------------------------

# ASCII case: all valid
x <- charToRaw("This is an ASCII string")

raw_to_string(x)
rawToChar(x)

x <- c(charToRaw("This is the end."),
as.raw(0),
charToRaw("*** is invalid"))

# rawToChar will raise error
raw_to_string(x)

# ---------------------------- Integer64 ------------------------
# Runs on little endian system
x <- as.raw(c(0x80, 0x00, 0x7f, 0x80, 0xFF, 0x50, 0x7f, 0x00))

# Calculate bitstring, which concaternates the followings
# 10000000 (0x80), 00000000 (0x00), 01111111 (0x7f), 10000000 (0x80),
# 11111111 (0xFF), 01010000 (0x50), 01111111 (0x7f), 00000000 (0x00)

if(.Platform$endian == "little") {
bitstring <- paste0(
"00000000011111110101000011111111",
"10000000011111110000000010000000"

)
} else {

bitstring <- paste0(
"00000001000000001111111000000001",
"11111111000010101111111000000000"



rcond_filter_ar 57

)
}

# This is expected value
bit64::as.integer64(structure(

bitstring,
class = "bitstring"

))

# This is actual value
raw_to_int64(x)

rcond_filter_ar Computer reciprocal condition number of an ’Arma’ filter

Description

Test whether the filter is numerically stable for filtfilt.

Usage

rcond_filter_ar(a)

Arguments

a auto-regression coefficient, numerical vector; the first element must not be zero

Value

Reciprocal condition number of matrix z1, used in filtfilt. If the number is less than .Machine$double.eps,
then filtfilt will fail.

See Also

check_filter

Examples

# Butterworth filter with low-pass at 0.1 Hz (order = 4)
filter <- butter(4, 0.1, "low")

# TRUE
rcond_filter_ar(filter$a) > .Machine$double.eps

diagnose_filter(filter$b, filter$a, 500)

# Bad filter (order is too high)



58 register_volume

filter <- butter(50, 0.1, "low")

rcond_filter_ar(filter$a) > .Machine$double.eps

# filtfilt needs to inverse a singular matrix
diagnose_filter(filter$b, filter$a, 500)

register_volume Imaging registration using ’NiftyReg’

Description

Registers ’CT’ to ’MRI’, or ’MRI’ to another ’MRI’

Usage

register_volume(
source,
target,
method = c("rigid", "affine", "nonlinear"),
interpolation = c("cubic", "trilinear", "nearest"),
threads = detect_threads(),
symmetric = TRUE,
verbose = TRUE,
...

)

Arguments

source source imaging data, or a 'nifti' file path; for example, ’CT’

target target imaging data to align to; for example, ’MRI’

method method of transformation, choices are 'rigid', 'affine', or 'nonlinear'

interpolation how volumes should be interpolated, choices are 'cubic', 'trilinear', or
'nearest'

threads, symmetric, verbose, ...
see niftyreg

Value

See niftyreg



rgl-call 59

Examples

source <- system.file("extdata", "epi_t2.nii.gz", package="RNiftyReg")
target <- system.file("extdata", "flash_t1.nii.gz", package="RNiftyReg")
aligned <- register_volume(source, target, verbose = FALSE)

source_img <- aligned$source[[1]]
target_img <- aligned$target
aligned_img <- aligned$image

oldpar <- par(mfrow = c(2, 2), mar = c(0.1, 0.1, 3.1, 0.1))

pal <- grDevices::grey.colors(256, alpha = 1)
image(source_img[,,30], asp = 1, axes = FALSE,

col = pal, main = "Source image")
image(target_img[,,64], asp = 1, axes = FALSE,

col = pal, main = "Target image")
image(aligned_img[,,64], asp = 1, axes = FALSE,

col = pal, main = "Aligned image")

# bucket fill and calculate differences
aligned_img[is.nan(aligned_img) | aligned_img <= 1] <- 1
target_img[is.nan(target_img) | aligned_img <= 1] <- 1
diff <- abs(aligned_img / target_img - 1)
image(diff[,,64], asp = 1, axes = FALSE,

col = pal, main = "Percentage Difference")

par(oldpar)

rgl-call Safe ways to call package ’rgl’ without requiring ’x11’

Description

Internally used for example show-cases. Please install package 'rgl' manually to use these func-
tions.

Usage

rgl_call(FUN, ...)

rgl_view(expr, quoted = FALSE, env = parent.frame())

rgl_plot_normals(x, length = 1, lwd = 1, col = 1, ...)



60 shift_array

Arguments

FUN 'rgl' function name
... passed to 'rgl' function
expr expression within which 'rgl' functions are called
quoted whether expr is quoted
env environment in which expr is evaluated
x triangular 'mesh3d' object
length, lwd, col normal vector length, size, and color

Examples

# Make sure the example does not run when compiling
# or check the package
if(FALSE) {

volume <- array(0, dim = c(8,8,8))
volume[4:5, 4:5, 4:5] <- 1
mesh <- mesh_from_volume(volume, verbose = FALSE)

rgl_view({

rgl_call("shade3d", mesh, col = 3)
rgl_plot_normals(mesh)

})

}

shift_array Shift array by index

Description

Re-arrange arrays in parallel

Usage

shift_array(x, along_margin, unit_margin, shift_amount)

Arguments

x array, must have at least matrix
along_margin which index is to be shifted
unit_margin which dimension decides shift_amount
shift_amount shift amount along along_margin



shift_array 61

Details

A simple use-case for this function is to think of a matrix where each row is a signal and columns
stand for time. The objective is to align (time-lock) each signal according to certain events. For
each signal, we want to shift the time points by certain amount.

In this case, the shift amount is defined by shift_amount, whose length equals to number of signals.
along_margin=2 as we want to shift time points (column, the second dimension) for each signal.
unit_margin=1 because the shift amount is depend on the signal number.

Value

An array with same dimensions as the input x, but with index shifted. The missing elements will be
filled with NA.

Examples

# Set ncores = 2 to comply to CRAN policy. Please don't run this line
ravetools_threads(n_threads = 2L)

x <- matrix(1:10, nrow = 2, byrow = TRUE)
z <- shift_array(x, 2, 1, c(1,2))

y <- NA * x
y[1,1:4] = x[1,2:5]
y[2,1:3] = x[2,3:5]

# Check if z ang y are the same
z - y

# array case
# x is Trial x Frequency x Time
x <- array(1:27, c(3,3,3))

# Shift time for each trial, amount is 1, -1, 0
shift_amount <- c(1,-1,0)
z <- shift_array(x, 3, 1, shift_amount)

oldpar <- par(mfrow = c(3, 2), mai = c(0.8, 0.6, 0.4, 0.1))
for( ii in 1:3 ){

image(t(x[ii, ,]), ylab = 'Frequency', xlab = 'Time',
main = paste('Trial', ii))

image(t(z[ii, ,]), ylab = 'Frequency', xlab = 'Time',
main = paste('Shifted amount:', shift_amount[ii]))

}
par(oldpar)



62 vcg_isosurface

vcg_isosurface Create surface mesh from 3D-array

Description

Create surface from 3D-array using marching cubes algorithm

Usage

vcg_isosurface(
volume,
threshold_lb = 0,
threshold_ub = NA,
vox_to_ras = diag(c(-1, -1, 1, 1))

)

Arguments

volume a volume or a mask volume

threshold_lb lower-bound threshold for creating the surface; default is 0

threshold_ub upper-bound threshold for creating the surface; default is NA (no upper-bound)

vox_to_ras a 4x4 'affine' transform matrix indicating the ’voxel’-to-world transform.

Value

A triangular mesh of class 'mesh3d'

Examples

if(is_not_cran()) {

library(ravetools)
data("left_hippocampus_mask")

mesh <- vcg_isosurface(left_hippocampus_mask)

rgl_view({

rgl_call("mfrow3d", 1, 2)

rgl_call("title3d", "Direct ISOSurface")
rgl_call("shade3d", mesh, col = 2)

rgl_call("next3d")
rgl_call("title3d", "ISOSurface + Implicit Smooth")



vcg_mesh_volume 63

rgl_call("shade3d",
vcg_smooth_implicit(mesh, degree = 2),
col = 3)

})

}

vcg_mesh_volume Compute volume for manifold meshes

Description

Compute volume for manifold meshes

Usage

vcg_mesh_volume(mesh)

Arguments

mesh triangular mesh of class 'mesh3d'

Value

The numeric volume of the mesh

Examples

# Initial mesh
mesh <- vcg_sphere()

vcg_mesh_volume(mesh)

vcg_smooth Implicitly smooth a triangular mesh

Description

Applies smoothing algorithms on a triangular mesh.



64 vcg_smooth

Usage

vcg_smooth_implicit(
mesh,
lambda = 0.2,
use_mass_matrix = TRUE,
fix_border = FALSE,
use_cot_weight = FALSE,
degree = 1L,
laplacian_weight = 1

)

vcg_smooth_explicit(
mesh,
type = c("taubin", "laplace", "HClaplace", "fujiLaplace", "angWeight",
"surfPreserveLaplace"),

iteration = 10,
lambda = 0.5,
mu = -0.53,
delta = 0.1

)

Arguments

mesh triangular mesh stored as object of class ’mesh3d’.

lambda In vcg_smooth_implicit, the amount of smoothness, useful only if use_mass_matrix
is TRUE; default is 0.2. In vcg_smooth_explicit, parameter for 'taubin'
smoothing.

use_mass_matrix

logical: whether to use mass matrix to keep the mesh close to its original position
(weighted per area distributed on vertices); default is TRUE

fix_border logical: whether to fix the border vertices of the mesh; default is FALSE

use_cot_weight logical: whether to use cotangent weight; default is FALSE (using uniform ’Lapla-
cian’)

degree integer: degrees of ’Laplacian’; default is 1
laplacian_weight

numeric: weight when use_cot_weight is FALSE; default is 1.0

type method name of explicit smooth, choices are 'taubin', 'laplace', 'HClaplace',
'fujiLaplace', 'angWeight', 'surfPreserveLaplace'.

iteration number of iterations

mu parameter for 'taubin' explicit smoothing.

delta parameter for scale-dependent ’Laplacian’ smoothing or maximum allowed an-
gle (in ’Radian’) for deviation between surface preserving ’Laplacian’.

Value

An object of class "mesh3d" with:



vcg_smooth 65

vb vertex coordinates

normals vertex normal vectors

it triangular face index

Examples

if(is_not_cran()) {

# Prepare mesh with no normals
data("left_hippocampus_mask")

# Grow 2mm on each direction to fill holes
volume <- grow_volume(left_hippocampus_mask, 2)

# Initial mesh
mesh <- vcg_isosurface(volume)

# Start: examples
rgl_view({

rgl_call("mfrow3d", 2, 4)
rgl_call("title3d", "Naive ISOSurface")
rgl_call("shade3d", mesh, col = 2)

rgl_call("next3d")
rgl_call("title3d", "Implicit Smooth")
rgl_call("shade3d", col = 2,

x = vcg_smooth_implicit(mesh, degree = 2))

rgl_call("next3d")
rgl_call("title3d", "Explicit Smooth - taubin")
rgl_call("shade3d", col = 2,

x = vcg_smooth_explicit(mesh, "taubin"))

rgl_call("next3d")
rgl_call("title3d", "Explicit Smooth - laplace")
rgl_call("shade3d", col = 2,

x = vcg_smooth_explicit(mesh, "laplace"))

rgl_call("next3d")
rgl_call("title3d", "Explicit Smooth - angWeight")
rgl_call("shade3d", col = 2,

x = vcg_smooth_explicit(mesh, "angWeight"))

rgl_call("next3d")
rgl_call("title3d", "Explicit Smooth - HClaplace")
rgl_call("shade3d", col = 2,

x = vcg_smooth_explicit(mesh, "HClaplace"))

rgl_call("next3d")
rgl_call("title3d", "Explicit Smooth - fujiLaplace")
rgl_call("shade3d", col = 2,

x = vcg_smooth_explicit(mesh, "fujiLaplace"))



66 vcg_uniform_remesh

rgl_call("next3d")
rgl_call("title3d", "Explicit Smooth - surfPreserveLaplace")
rgl_call("shade3d", col = 2,

x = vcg_smooth_explicit(mesh, "surfPreserveLaplace"))
})

}

vcg_sphere Simple 3-dimensional sphere mesh

Description

Simple 3-dimensional sphere mesh

Usage

vcg_sphere(sub_division = 3L, normals = TRUE)

Arguments

sub_division density of vertex in the resulting mesh

normals whether the normal vectors should be calculated

Value

A 'mesh3d' object

Examples

vcg_sphere()

vcg_uniform_remesh Sample a surface mesh uniformly

Description

Sample a surface mesh uniformly



vcg_uniform_remesh 67

Usage

vcg_uniform_remesh(
x,
voxel_size = NULL,
offset = 0,
discretize = FALSE,
multi_sample = FALSE,
absolute_distance = FALSE,
merge_clost = FALSE,
verbose = TRUE

)

Arguments

x surface

voxel_size ’voxel’ size for space ’discretization’

offset offset position shift of the new surface from the input

discretize whether to use step function (TRUE) instead of linear interpolation (FALSE) to
calculate the position of the intersected edge of the marching cube; default is
FALSE

multi_sample whether to calculate multiple samples for more accurate results (at the expense
of more computing time) to remove artifacts; default is FALSE

absolute_distance

whether an unsigned distance field should be computed. When set to TRUE, non-
zero offsets is to be set, and double-surfaces will be built around the original
surface, like a sandwich.

merge_clost whether to merge close vertices; default is TRUE

verbose whether to verbose the progress; default is TRUE

Value

A triangular mesh of class 'mesh3d'

Examples

sphere <- vcg_sphere()
mesh <- vcg_uniform_remesh(sphere, voxel_size = 0.45)

if(is_not_cran()) {

rgl_view({

rgl_call("mfrow3d", 1, 2)

rgl_call("title3d", "Input")
rgl_call("wire3d", sphere, col = 2)
rgl_call("next3d")



68 vcg_update_normals

rgl_call("title3d", "Re-meshed to 0.1mm edge distance")
rgl_call("wire3d", mesh, col = 3)

})

}

vcg_update_normals Update vertex normal

Description

Update vertex normal

Usage

vcg_update_normals(
mesh,
weight = c("area", "angle"),
pointcloud = c(10, 0),
verbose = FALSE

)

Arguments

mesh triangular mesh or a point-cloud (matrix of 3 columns)

weight method to compute per-vertex normal vectors: "area" weighted average of sur-
rounding face normal, or "angle" weighted vertex normal vectors.

pointcloud integer vector of length 2: containing optional parameters for normal calculation
of point clouds; the first entry specifies the number of neighboring points to
consider; the second entry specifies the amount of smoothing iterations to be
performed.

verbose whether to verbose the progress

Value

A 'mesh3d' object with normal vectors.

Examples

if(is_not_cran()) {

# Prepare mesh with no normal
data("left_hippocampus_mask")
mesh <- vcg_isosurface(left_hippocampus_mask)
mesh$normals <- NULL

# Start: examples



wavelet 69

new_mesh <- vcg_update_normals(mesh, weight = "angle",
pointcloud = c(10, 10))

rgl_view({
rgl_call("mfrow3d", 1, 2)
rgl_call("shade3d", mesh, col = 2)

rgl_call("next3d")
rgl_call("shade3d", new_mesh, col = 2)

})
}

wavelet ’Morlet’ wavelet transform (Discrete)

Description

Transform analog voltage signals with ’Morlet’ wavelets: complex wavelet kernels with π/2 phase
differences.

Usage

wavelet_kernels(freqs, srate, wave_num)

morlet_wavelet(
data,
freqs,
srate,
wave_num,
precision = c("float", "double"),
trend = c("constant", "linear", "none"),
signature = NULL,
...

)

wavelet_cycles_suggest(
freqs,
frequency_range = c(2, 200),
cycle_range = c(3, 20)

)

Arguments

freqs frequency in which data will be projected on

srate sample rate, number of time points per second



70 wavelet

wave_num desired number of cycles in wavelet kernels to balance the precision in time and
amplitude (control the smoothness); positive integers are strongly suggested

data numerical vector such as analog voltage signals

precision the precision of computation; choices are 'float' (default) and 'double'.

trend choices are 'constant': center the signal at zero; 'linear': remove the linear
trend; 'none' do nothing

signature signature to calculate kernel path to save, internally used

... further passed to detrend;
frequency_range

frequency range to calculate, default is 2 to 200

cycle_range number of cycles corresponding to frequency_range. For default frequency
range (2 - 200), the default cycle_range is 3 to 20. That is, 3 wavelet kernel
cycles at 2 Hertz, and 20 cycles at 200 Hertz.

Value

wavelet_kernels returns wavelet kernels to be used for wavelet function; morlet_wavelet returns
a file-based array if precision is 'float', or a list of real and imaginary arrays if precision is
'double'

Examples

# generate sine waves
time <- seq(0, 3, by = 0.01)
x <- sin(time * 20*pi) + exp(-time^2) * cos(time * 10*pi)

plot(time, x, type = 'l')

# freq from 1 - 15 Hz; wavelet using float precision
freq <- seq(1, 15, 0.2)
coef <- morlet_wavelet(x, freq, 100, c(2,3))

# to get coefficients in complex number from 1-10 time points
coef[1:10, ]

# power
power <- Mod(coef[])^2

# Power peaks at 5Hz and 10Hz at early stages
# After 1.0 second, 5Hz component fade away
image(power, x = time, y = freq, ylab = "frequency")

# wavelet using double precision
coef2 <- morlet_wavelet(x, freq, 100, c(2,3), precision = "double")
power2 <- (coef2$real[])^2 + (coef2$imag[])^2

image(power2, x = time, y = freq, ylab = "frequency")



wavelet 71

# The maximum relative change of power with different precisions
max(abs(power/power2 - 1))

# display kernels
freq <- seq(1, 15, 1)
kern <- wavelet_kernels(freq, 100, c(2,3))
print(kern)

plot(kern)



Index

∗ datasets
left_hippocampus_mask, 42

as_matrix4 (new_matrix4), 46
as_quaternion (new_quaternion), 47
as_vector3 (new_vector3), 47

band_pass, 3
band_pass1 (band_pass), 3
band_pass2 (band_pass), 3
baseline_array, 5
blackman (filter-window), 34
blackmanharris, 53
blackmanharris (filter-window), 34
blackmannuttall (filter-window), 34
bohmanwin (filter-window), 34
butter_max_order, 8

check_filter, 9, 57
collapse, 11
convolve, 12
convolve_image (convolve), 12
convolve_signal (convolve), 12
convolve_volume (convolve), 12
cov, 30

decimate, 14
design_filter, 15
design_filter_fir, 15, 17
design_filter_iir, 15, 19
detect_threads (parallel-options), 49
detrend, 22, 70
diagnose_channel, 23
diagnose_filter, 25
dijkstras-path, 26
dijkstras_surface_distance

(dijkstras-path), 26

fast_cov, 30
fast_median (fast_quantile), 32
fast_mvmedian (fast_quantile), 32

fast_mvquantile (fast_quantile), 32
fast_quantile, 32
fill_surface, 33
filter-window, 34
filter_signal, 35
filtfilt, 12, 35, 36, 57
fir1, 37
firls, 17, 18, 38
flattopwin (filter-window), 34
freqz2, 38

get0, 40
grow_volume, 39

hamming, 53
hamming (filter-window), 34
hanning, 53
hanning (filter-window), 34
hist, 23, 24

internal_rave_function, 40
interpolate_stimulation, 41

kaiser, 18

left_hippocampus_mask, 42

matlab_palette, 42
mesh_from_volume, 43
morlet_wavelet (wavelet), 69
multitaper, 44
multitaper_config (multitaper), 44
mv_pwelch (pwelch), 51

new_matrix4, 46, 47, 48
new_quaternion, 46, 47, 48
new_vector3, 46, 47, 47
niftyreg, 58
notch_filter, 48

par, 24, 51

72



INDEX 73

parallel-options, 49
plot, 51
plot.default, 53
plot.ravetools-pwelch (pwelch), 51
plot_signals, 50
print.ravetools-pwelch (pwelch), 51
pwelch, 23, 24, 51

ravetools_threads (parallel-options), 49
raw-to-sexp, 54
raw_to_float (raw-to-sexp), 54
raw_to_int16 (raw-to-sexp), 54
raw_to_int32 (raw-to-sexp), 54
raw_to_int64 (raw-to-sexp), 54
raw_to_int8 (raw-to-sexp), 54
raw_to_string (raw-to-sexp), 54
raw_to_uint16 (raw-to-sexp), 54
raw_to_uint32 (raw-to-sexp), 54
raw_to_uint8 (raw-to-sexp), 54
rawToChar, 55
rcond_filter_ar, 57
register_volume, 58
remez, 18
rgl-call, 59
rgl_call (rgl-call), 59
rgl_plot_normals (rgl-call), 59
rgl_view (rgl-call), 59

shift_array, 60
surface_path (dijkstras-path), 26

vcg_isosurface, 62
vcg_mesh_volume, 43, 63
vcg_smooth, 63
vcg_smooth_explicit, 43
vcg_smooth_explicit (vcg_smooth), 63
vcg_smooth_implicit, 43
vcg_smooth_implicit (vcg_smooth), 63
vcg_sphere, 66
vcg_uniform_remesh, 43, 66
vcg_update_normals, 68

wavelet, 69
wavelet_cycles_suggest (wavelet), 69
wavelet_kernels (wavelet), 69


	band_pass
	baseline_array
	butter_max_order
	check_filter
	collapse
	convolve
	decimate
	design_filter
	design_filter_fir
	design_filter_iir
	detrend
	diagnose_channel
	diagnose_filter
	dijkstras-path
	fast_cov
	fast_quantile
	fill_surface
	filter-window
	filter_signal
	filtfilt
	fir1
	firls
	freqz2
	grow_volume
	internal_rave_function
	interpolate_stimulation
	left_hippocampus_mask
	matlab_palette
	mesh_from_volume
	multitaper
	new_matrix4
	new_quaternion
	new_vector3
	notch_filter
	parallel-options
	plot_signals
	pwelch
	raw-to-sexp
	rcond_filter_ar
	register_volume
	rgl-call
	shift_array
	vcg_isosurface
	vcg_mesh_volume
	vcg_smooth
	vcg_sphere
	vcg_uniform_remesh
	vcg_update_normals
	wavelet
	Index

