Package: rasterKernelEstimates (via r-universe)

October 9, 2024

Contents

rasterLocalCategoric	alMod	es.	 															2
rasterLocalMoments			 	•	•				•						•		•	3
rasterLocalQuantiles			 	•	•		•			•		•			•			3
rasterLocalSums .			 	•	•				•				•	•				4
																		6

Index

rasterLocalCategoricalModes

Local categorical modes for an in memory raster image

Description

rasterLocalCategoricalModes finds the most popular category within the weighted neighborhood of W.

Usage

```
rasterLocalCategoricalModes(r, W)
```

Arguments

r	An in memory raster image. Pixels should be whole numbers or NA. Pixels with non-whole number values will be coerced into whole numbers.
W	A matrix of weights. The modal kernel will be applied to each pixel in r. Di- mensions must be non-zero and odd.

Details

A spatial neighborhood is calculated for each pixel in r. The spatial neighborhood for each pixel is defined by the weight matrix W, where the center of the odd dimensioned matrix W is identified with the target pixel. The target pixel value is replaced with the most popular value within the neighborhood weighted by W. Ties are handled by randomly by uniformly selecting a category amongst the tied categories. Only non-missing or neighbors with non-zero weights are used in the calculation.

Value

An in memory raster image by most popular categories.

Examples

```
r <- raster::raster( matrix(runif(81),9,9))
W <- matrix(1,3,3)
modeR <- rasterLocalCategoricalModes(r,W)</pre>
```

rasterLocalMoments Local moments for an in memory raster image

Description

rasterLocalMoments finds the local moments within the weighted neighborhood of W.

Usage

```
rasterLocalMoments(r, WMu, WVar = WMu, moments = 2)
```

Arguments

r	An in memory raster image.
WMu	A matrix of weights. The mean kernel will be applied to each pixel in r. Di- mensions must be non-zero and odd. Only non-missing neighbors are used in the mean.
WVar	A matrix of weights. The variance kernel will be applied at each centroid. Di- mensions must be non-zero and odd. Only non-missing neighbors are used in the variance. The dimensions of WVar must match WMu.
moments	The number of moments to calculate. The local spatial mean will be calculated when moments=1. The local spatial mean and variance wil be calculated when moments=2. Currently no higher moments are supported.

Value

A list of in memory raster images, one list element for each moment.

Examples

```
r <- raster::raster( matrix(rnorm(36),6,6))
W <- matrix(1,3,3)
rLocalMoments <- rasterLocalMoments(r,W)</pre>
```

rasterLocalQuantiles Local quantiles for an in memory raster image

Description

rasterLocalQuantiles finds the quantile within the positive valued neighborhood of W.

Usage

```
rasterLocalQuantiles(r, W, q = 50)
```

Arguments

r	An in memory raster image.
W	A matrix of weights used to specify a local neighborhood. The quantile kernel will be applied to each pixel in r. Dimensions must be non-zero and odd.
q	A quantile. This value is required to be in the inclusive interval from 0 to 100.

Details

A spatial neighborhood is calculated for each pixel in r. The spatial neighborhood for each pixel is defined by the weight matrix W, where the center of the odd dimensioned matrix W is identified with the target pixel. The target pixel value is replaced with the quantile of the neighborhood identified by W. Only non-missing or neighbors with non-zero weights are used in the calculation. Quantile calculation uses the inverse empirical CDF transform, equivalent to stats::quantile type=1.

Value

An in memory raster image of local quantiles.

Examples

```
r <- raster::raster( matrix(rnorm(36),6,6))
W <- matrix(1,3,3)
medianR <- rasterLocalQuantiles(r,W)</pre>
```

rasterLocalSums Local sums for an in memory raster image.

Description

rasterLocalSums finds the local sum within the weighted neighborhood of W.

Usage

rasterLocalSums(r, W)

Arguments

r	An in memory raster image.
W	A matrix of weights. The sums will be applied at each centroid. Dimensions must be non-zero and odd. Only non-missing neighbors are used in the sum.
	must be non-zero and odd. Only non-missing neighbors are used in the sum.

Details

A spatial neighborhood is calculated for each pixel in r. The spatial neighborhood for each pixel is defined by the weight matrix W, where the center of the odd dimensioned matrix W is identified with the target pixel. The target pixel value is replaced with the sum of all pixels within the neighborhood weighted by W. Only non-missing or neighbors with non-zero weights are used in the calculation.

rasterLocalSums

Value

An in memory raster image of local sums.

Examples

```
r <- raster::raster( matrix(rnorm(36),6,6))
W <- matrix(1,3,3)
sumR <- rasterLocalSums(r,W)</pre>
```

Index

rasterLocalCategoricalModes, 2
rasterLocalMoments, 3
rasterLocalQuantiles, 3
rasterLocalSums, 4