
Package: randomizationInference (via
r-universe)

August 27, 2024
Version 1.0.4

Date 2022-05-17

Title Flexible Randomization-Based Inference

Author Joseph J. Lee and Tirthankar Dasgupta

Maintainer Joseph J. Lee <joseph.j.lee@post.harvard.edu>

Imports permute (>= 0.7-8), matrixStats, graphics, stats

Description Allows the user to conduct randomization-based inference
for a wide variety of experimental scenarios. The package
leverages a potential outcomes framework to output
randomization-based p-values and null intervals for test
statistics geared toward any estimands of interest, according
to the specified null and alternative hypotheses. Users can
define custom randomization schemes so that the randomization
distributions are accurate for their experimental settings. The
package also creates visualizations of randomization
distributions and can test multiple test statistics
simultaneously.

License GPL-2

NeedsCompilation no

Repository CRAN

Date/Publication 2022-05-17 20:00:02 UTC

Contents
anovaF . 2
blockRand . 3
completeRand . 4
constEffect . 5
diffMeans . 6
diffMeansVector . 7
latinRand . 8

1

2 anovaF

randInterval . 9
randomizationInference . 11
randPlot . 14
randTest . 16
reading . 21
withinBlockEffects . 22
zeroEffect . 23

Index 25

anovaF Analysis of Variance F statistic

Description

Calculates the analysis of variance F statistic.

Usage

anovaF(y, w, calcOptions = NULL)

Arguments

y a vector or matrix of outcomes.

w a vector or matrix of assignments.

calcOptions a list of options for calculating the analysis of variance (ANOVA) F statistic (if
necessary). calcOptions$block can denote a block variable to be accounted
for. calcOptions$row and calcOptions$col can denote rows and columns to
be accounted for in a Latin square design.

Details

Returns the F statistic calculated in an analysis of variance of a linear model with no interaction
terms.

Value

An analysis of variance F statistic.

Author(s)

Joseph J. Lee and Tirthankar Dasgupta

blockRand 3

Examples

1 treatment factor with 3 levels
Assignments and outcomes
w <- c(1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3)
y <- c(4, 6, 5, 7, 4, 7, 11, 9, 8, 12, 9, 9)
anovaF(y, w)

1 treatment factor with 3 levels, with block
Assignments, blocks, and outcomes
w <- c(1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3)
x <- c(1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2)
y <- c(4, 6, 5, 7, 4, 7, 11, 9, 8, 12, 9, 9)
anovaF(y, w, calcOptions = list(block = x))

blockRand Random Treatment Assignments for Randomized Block Designs

Description

Randomly draws a specified number of assignment vectors or matrices according to a randomized
block design.

Usage

blockRand(w, nrand, block)

Arguments

w a vector or matrix of assignments.

nrand a number specifying the desired number of random assignments.

block a vector of block designations.

Details

Assignments are randomly permuted within each block.

If w is a matrix, the permutations occur by row.

Value

A list of random assignment vectors or matrices.

Author(s)

Joseph J. Lee and Tirthankar Dasgupta

See Also

completeRand, latinRand

4 completeRand

Examples

w1 <- c(0, 1, 0, 1, 0, 1, 0, 1)
block <- c(0, 0, 0, 0, 1, 1, 1, 1)
blockRand(w1, nrand = 5, block)

w2 <- c(0, 0, 1, 1, 0, 0, 1, 1)
blockRand(w = cbind(w1, w2), nrand = 5, block)

completeRand Random Treatment Assignments for Completely Randomized Designs

Description

Randomly draws a specified number of assignment vectors or matrices according to a completely
randomized design.

Usage

completeRand(w, nrand)

Arguments

w a vector or matrix of assignments.

nrand a number specifying the desired number of random assignments.

Details

If w is a matrix, the permutations occur by row.

Value

A list of random assignment vectors or matrices.

Author(s)

Joseph J. Lee and Tirthankar Dasgupta

See Also

blockRand, latinRand

Examples

w1 <- c(0, 0, 0, 0, 1, 1, 1, 1)
completeRand(w1, nrand = 5)

w2 <- c(0, 1, 0, 1, 0, 1, 0, 1)
completeRand(w = cbind(w1, w2), nrand = 5)

constEffect 5

constEffect Potential Outcomes With Constant Treatment Effects

Description

Calculates potential outcomes under modified assignments, according to the specified constant treat-
ment effect(s).

Usage

constEffect(y, w, w_new, poOptions)

Arguments

y a vector or matrix of outcomes.

w a vector or matrix of assignments.

w_new a vector or matrix of modified assignments.

poOptions a list of options for calculating potential outcomes. poOptions$tau is a number
or numeric vector denoting the constant treatment effect(s).

Value

A vector of potential outcomes under the modified assignments.

Author(s)

Joseph J. Lee and Tirthankar Dasgupta

See Also

zeroEffect

Examples

1 treatment factor with 2 levels
Assignments
w <- c(0, 0, 0, 0, 0, 1, 1, 1, 1, 1)
Modified Assignments
w_new <- c(1, 1, 1, 1, 1, 0, 0, 0, 0, 0)
Outcomes
y <- c(4, 6, 5, 7, 4, 7, 11, 9, 8, 12)
constEffect(y, w, w_new, poOptions = list(tau = 2))

2 treatment factors, each with 2 levels
Assignments
w1 <- c(0, 0, 0, 0, 0, 1, 1, 1, 1, 1)
w2 <- c(0, 1, 0, 1, 0, 1, 0, 1, 0, 1)
w <- cbind(w1, w2)

6 diffMeans

Modified assignments
w1_new <- c(1, 1, 1, 1, 1, 0, 0, 0, 0, 0)
w2_new <- c(1, 0, 1, 0, 1, 0, 1, 0, 1, 0)
w_new <- cbind(w1_new, w2_new)
Outcomes
y <- c(4, 6, 5, 7, 4, 7, 11, 9, 8, 12)
constEffect(y, w, w_new, poOptions = list(tau = c(2, -1)))

diffMeans Single Pairwise Difference of Mean Outcomes

Description

Calculates the difference of mean observed outcomes for a specified treatment factor and specified
pair of comparison levels.

Usage

diffMeans(y, w, calcOptions = NULL)

Arguments

y a vector or matrix of outcomes.

w a vector or matrix of assignments.

calcOptions a list of options for calculating the difference of mean outcomes (if necessary).
calcOptions$factor is a number denoting the treatment factor of interest (de-
faults to 1). calcOptions$pair is a vector (of length 2) denoting the pair
of levels for comparison (defaults to c(0,1)). If calcOptions is NULL, then
calcOptions$factor and calcOptions$pair take on their default values.

Value

The difference of mean observed outcomes.

Author(s)

Joseph J. Lee and Tirthankar Dasgupta

See Also

diffMeansVector

diffMeansVector 7

Examples

1 treatment factor with 2 levels
Assignments and outcomes
w <- c(0, 0, 0, 0, 0, 1, 1, 1, 1, 1)
y <- c(4, 6, 5, 6, 4, 11, 11, 9, 10, 9)
diffMeans(y, w) # Equals 5

2 treatment factors, each with 3 levels
Assignments and outcomes
w1 <- c(1, 2, 3, 1, 2, 3, 1, 2, 3)
w2 <- c(1, 2, 3, 2, 3, 1, 3, 1, 2)
w <- cbind(w1, w2)
y <- c(4, 6, 5, 7, 4, 7, 11, 9, 10)
diffMeans(

y,
w,
calcOptions = list(factor = 2, pair = c(1, 3))

) # Equals 0

diffMeansVector Vector of Pairwise Differences of Mean Outcomes

Description

Calculates the differences of mean observed outcomes for multiple specified treatment factors and
specified pairs of comparison levels.

Usage

diffMeansVector(y, w, calcOptions)

Arguments

y a vector or matrix of outcomes.

w a vector or matrix of assignments.

calcOptions a list of options for calculating the vector of differences of mean outcomes.
calcOptions$factors is a numeric vector denoting the treatment factors of
interest. calcOptions$pairs is a matrix of pairs (specified by row) of levels
for comparison.

Details

If unspecified, calcOptions$pairs defaults to c(0,1).

If calcOptions$factors is specified, its length must equal the number of rows specified in calcOptions$pairs.
If unspecified, calcOptions$factors defaults to an appropriately-sized vector of 1’s.

8 latinRand

Value

A vector of differences of mean observed outcomes.

Author(s)

Joseph J. Lee and Tirthankar Dasgupta

See Also

diffMeans

Examples

2 treatment factors, each with 3 levels
Assignments, outcomes, and desired pairs
w1 <- c(1, 2, 3, 1, 2, 3, 1, 2, 3)
w2 <- c(1, 2, 3, 2, 3, 1, 3, 1, 2)
w <- cbind(w1, w2)
y <- c(4, 6, 5, 7, 4, 7, 11, 9, 10)
diffMeansVector(

y,
w,
calcOptions = list(
factors = c(1, 1, 2),
pairs = rbind(c(1, 2), c(2, 3), c(1, 3))

)
) # Equals c(-1, 1, 0)

latinRand Random Treatment Assignments for Isomorphic Latin Square Designs

Description

Randomly draws an assignment vector or matrix according to the isomorphic Latin square design,
for a specified number of permutations.

Usage

latinRand(w, nrand, row, col)

Arguments

w a vector or matrix of assignments.

nrand a number specifying the desired number of random assignments.

row a vector of row designations.

col a vector of column designations.

randInterval 9

Details

Assignments are randomly permuted along rows and columns such that the Latin square design is
preserved.

If w is a matrix, the permutations occur by row.

Value

A list of random isomorphic assignment vectors or matrices.

Author(s)

Joseph J. Lee and Tirthankar Dasgupta

See Also

completeRand, blockRand

Examples

w <- c(
"C", "D", "B", "A", "A", "B", "D", "C",
"D", "C", "A", "B", "B", "A", "C", "D"

)
row <- rep(1:4, 4)
col <- c(rep(1, 4), rep(2, 4), rep(3, 4), rep(4, 4))
latinRand(w, nrand = 5, row, col)

randInterval Randomization-Based Null Interval

Description

Calculates randomization-based intervals under the null hypothesis for the specified test statistics
and coverage levels.

Usage

randInterval(results, coverage = 0.95)

Arguments

results a resultant object of the randTest function.

coverage a number specifying the desired coverage level (defaults to 0.95).

Details

If multiple tests are conducted simultaneously, users should be wary of multiple comparisons and
make adjustments accordingly (e.g., Bonferroni corrections).

10 randInterval

Value

A randomization-based interval (or multiple intervals) for the test statistic(s) under the null hypoth-
esis with the specified coverage level.

Author(s)

Joseph J. Lee and Tirthankar Dasgupta

See Also

randTest, randPlot

Examples

Completely randomized design example
with one treatment factor at two levels
w <- c(rep(0, 5), rep(1, 5))
y <- rnorm(10, mean = 0, sd = 1)
Two-sided test
twoSidedTest <- randTest(y, w, nrand = 50, calcTestStat = diffMeans)
randInterval(twoSidedTest)

Reading comprehension pre- and post-test example
data(reading)
Testing within-block pairwise effects
readingTest <- randTest(

y = reading$Diff1,
w = reading$Group,
nrand = 50,
calcTestStat = withinBlockEffects,
calcOptions = list(
block = reading$Block,
pairs = rbind(

c("Basal", "DRTA"),
c("Basal", "Strat"),
c("DRTA", "Strat"),
c("Basal", "DRTA"),
c("Basal", "Strat"),
c("DRTA", "Strat")

),
blockindex = c(rep(1, 3), rep(2, 3))

),
randOptions = list(type = "block", block = reading$Block)

)
randInterval(readingTest)

randomizationInference 11

randomizationInference

Flexible Randomization-Based Inference

Description

Randomization-based p-values and null intervals for a wide variety of experimental scenarios, with
corresponding visualizations.

Details

Package: randomizationInference
Type: Package
Version: 1.0.4
Date: 2022-05-17
License: GPL-2
Main functions: randTest, randPlot, randInterval

The randomizationInference package conducts randomization-based inference for a wide vari-
ety of experimental scenarios. The package leverages a potential outcomes framework to output
randomization-based p-values and null intervals for test statistics geared toward any estimands of
interest, according to the specified null and alternative hypotheses. Users can define custom ran-
domization schemes so that the randomization distributions are accurate for their experimental set-
tings. The package also creates visualizations of randomization distributions and can test multiple
test statistics simultaneously.

Author(s)

Joseph J. Lee and Tirthankar Dasgupta

Maintainer: Joseph J. Lee <joseph.j.lee@post.harvard.edu>

References

Wu, C. F. J. and Hamada, M. (2009) Experiments, Planning, Analysis and Optimization (2nd ed),
Wiley.

Moore, David S., and George P. McCabe (1989). Introduction to the Practice of Statistics.

Examples

Completely randomized design example
with one treatment factor at two levels
w <- c(rep(0, 5), rep(1, 5))
y <- rnorm(10, mean = 0, sd = 1)
Two-sided test
twoSidedTest <- randTest(y, w, nrand = 50, calcTestStat = diffMeans)

12 randomizationInference

randInterval(twoSidedTest)
randPlot(twoSidedTest)
One-sided test
oneSidedTest <- randTest(

y, w,
nrand = 50,
calcTestStat = diffMeans,
alternative = "greater"

)
Two=sided test with non-zero null hypothesis
nonZeroTest <- randTest(

y,
w,
nrand = 50,
calcTestStat = diffMeans,
calcPO = constEffect,
poOptions = list(tau = 2),
null = 2

)

Randomized block design example
with one treatment factor at three levels
x <- rep(1:3, 4)
w_block <- rep(1:4, 3)
y_block <- rnorm(12, mean = x, sd = 1)
blockTest <- randTest(

y_block,
w_block,
nrand = 50,
calcTestStat = anovaF,
calcOptions = list(block = x),
randOptions = list(type = "block", block = x)

)
randInterval(blockTest)
randPlot(blockTest)

4x4 Latin square example (from the Wu/Hamada reference)
row <- rep(1:4, 4)
col <- c(rep(1, 4), rep(2, 4), rep(3, 4), rep(4, 4))
w_latin <- c(

"C", "D", "B", "A", "A", "B", "D", "C",
"D", "C", "A", "B", "B", "A", "C", "D"

)
y_latin <- c(

235, 236, 218, 268, 251, 241, 227, 229,
234, 273, 274, 226, 195, 270, 230, 225

)
latinTest <- randTest(

y_latin,
w_latin,
nrand = 50,
calcTestStat = anovaF,
calcOptions = list(row = row, col = col),

randomizationInference 13

randOptions = list(type = "Latin", row = row, col = col)
)
randInterval(latinTest)
randPlot(latinTest)

User-defined randomization example
Partial randomization: first four assignments are fixed
Due to physical limitations
User-defined randomization function
Input: number of random assignments, function options
Output: list of random assignments
myRand <- function(nrand, userOptions = NULL){

w_fixed = c(0, 0, 1, 1)
lapply(1:nrand, function(i) c(w_fixed, sample(rep(0:1, 5))))

}
w_user <- c(c(0, 0, 1, 1), c(0, 1, 1, 0, 0, 0, 1, 1, 0, 1)) # observed assignment
y_user <- rnorm(14, mean = 0, sd = 1)
userTest <- randTest(

y_user,
w_user,
nrand = 50,
calcTestStat = diffMeans,
randOptions = list(type = "user.defined"),
userRand = myRand

)
randInterval(userTest)
randPlot(userTest)

2^3 factorial design example
three treatment factors (OT, CP, and ST) at two levels each
OT <- c(-1, -1, -1, -1, 1, 1, 1, 1)
CP <- c(-1, -1, 1, 1, -1, -1, 1, 1)
ST <- rep(c(-1, 1), 4)
w_fac <- cbind(OT, CP, ST)
y_fac <- c(67, 79, 61, 75, 59, 90, 52, 87)
Testing the main effect of factor "OT"
facTest1 <- randTest(

y_fac,
w_fac,
nrand = 50,
calcTestStat = diffMeans,
calcOptions = list(factor = 1, pair = c(-1, 1))

)
Testing all three main effects simultaneously
facTest2 <- randTest(

y_fac,
w_fac,
nrand = 50,
calcTestStat = diffMeansVector,
calcOptions = list(

factors = 1:3,
pairs = matrix(rep(c(-1, 1), 3), ncol = 2, byrow = TRUE)

)

14 randPlot

)
Testing all contrasts simultaneously
w_facNew <- cbind(OT, CP, ST, OT*CP, OT * ST, CP * ST, OT * CP * ST)
facTest3 <- randTest(

y_fac,
w_facNew,
nrand = 50,
calcTestStat = diffMeansVector,
calcOptions = list(
factors = 1:7,
pairs = matrix(rep(c(-1, 1), 7), ncol = 2, byrow = TRUE)

)
)
randInterval(facTest3)
randPlot(facTest3, plotDim = c(2, 4))

Reading comprehension pre- and post-test example
data(reading)
Ignoring blocks
readingTest1 <- randTest(

y = reading$Diff1,
w = reading$Group,
nrand = 50,
calcTestStat = anovaF

)
Testing within-block pairwise effects
readingTest2 <- randTest(

y = reading$Diff1,
w = reading$Group,
nrand = 50,
calcTestStat = withinBlockEffects,
calcOptions = list(

block = reading$Block,
pairs = rbind(

c("Basal", "DRTA"),
c("Basal", "Strat"),
c("DRTA", "Strat"),
c("Basal", "DRTA"),
c("Basal", "Strat"),
c("DRTA", "Strat")

),
blockindex = c(rep(1, 3), rep(2, 3))

),
randOptions = list(type = "block", block = reading$Block)

)
randInterval(readingTest2)
randPlot(readingTest2, plotDim = c(2, 3))

randPlot Randomization-Based Plot

randPlot 15

Description

Plots observed test statistics against their randomization distributions and against the randomization-
based intervals for their corresponding estimands.

Usage

randPlot(
results,
coverage = 0.95,
breaks = 10,
plotDim = c(length(results$obs_stat), 1)

)

Arguments

results a resultant object of the randTest function.

coverage a number specifying the desired coverage level (defaults to 0.95).

breaks a value specifying the histogram break pattern (defaults to 10).

plotDim a numeric vector (of length 2) specifying the desired plot dimensions (if neces-
sary, defaults to c(length(results$obs_stat), 1)).

Details

One plot will be displayed for each test statistic specified by results.

Observed test statistic values are demarcated by solid red lines. Comparison values under the null
hypothesis are demarcated by solid black lines. Randomization-based interval bounds for the spec-
ified coverage level are demarcated by dotted blue lines.

Setting plotDim = c(a, b) is equivalent to specifying par(mfrow=c(a, b)). Plot dimensions are
automatically reset to c(1, 1) afterward. If multiple test statistics are tested simultaneously, plotDim
may need to be specified suitably for the plots to be displayed.

If multiple tests are conducted simultaneously, users should be wary of multiple comparisons and
make adjustments accordingly (e.g., Bonferroni corrections).

Value

The plot(s) described in details will be displayed.

Author(s)

Joseph J. Lee and Tirthankar Dasgupta

See Also

randTest, randInterval

16 randTest

Examples

Completely randomized design example
with one treatment factor at two levels
w <- c(rep(0, 5), rep(1, 5))
y <- rnorm(10, mean = 0, sd = 1)
Two-sided test
twoSidedTest <- randTest(y, w, nrand = 50, calcTestStat = diffMeans)
randPlot(twoSidedTest)

Reading comprehension pre- and post-test example
data(reading)
Testing within-block pairwise effects
readingTest <- randTest(

y = reading$Diff1,
w = reading$Group,
nrand = 50,
calcTestStat = withinBlockEffects,
calcOptions = list(
block = reading$Block,
pairs = rbind(

c("Basal", "DRTA"),
c("Basal", "Strat"),
c("DRTA", "Strat"),
c("Basal", "DRTA"),
c("Basal", "Strat"),
c("DRTA", "Strat")

),
blockindex = c(rep(1, 3), rep(2, 3))

),
randOptions = list(type = "block", block = reading$Block)

)
randPlot(readingTest, breaks = 20, plotDim = c(2, 3))

randTest Randomization-Based Hypothesis Testing

Description

Conducts randomization-based hypothesis tests according to the specified test statistic(s), assign-
ment mechanism, and null and alternative hypotheses.

Usage

randTest(
y,
w,
nrand,
calcTestStat,
calcOptions = NULL,

randTest 17

calcPO = zeroEffect,
poOptions = NULL,
randOptions = list(
type = c("complete", "block", "Latin", "user.defined"),
block = NULL,
row = NULL,
col = NULL

),
userRand = NULL,
userOptions = NULL,
null = NULL,
alternative = c("two.sided", "greater", "less")

)

Arguments

y a vector or matrix of outcomes.

w a vector (or matrix, when multiple treatment factors are present) of assignments.

nrand a number specifying the desired number of random hypothetical assignments.

calcTestStat a function to calculate the specified test statistic(s).

calcOptions a list of options for calculating the test statistic(s) (if necessary).

calcPO a function to calculate potential outcomes (defaults to zeroEffect).

poOptions a list of options for calculating potential outcomes (if necessary).

randOptions a list of options governing the random assignment mechanism.

userRand a function to generate random assignments (if necessary).

userOptions a list of options governing the user-defined random assignment mechanism (if
necessary).

null a number or numeric vector specifying the comparison value(s) under the null
hypothesis.

alternative a character string specifying the alternative hypothesis, must be one of the fol-
lowing: "two.sided" (default), "greater", or "less".

Details

The inputs to calcTestStat are y, w, and calcOptions (if necessary). The output of calcTestStat
is a number or numeric vector representing the test statistic value(s). Several common test statistics
(diffMeans, anovaF, diffMeansVector) are built-in for convenience. calcTestStat can also be
a custom function, as long as the inputs and output are as described above. If multiple test statis-
tics are tested simultaneously, users should be wary of multiple comparisons and make appropriate
adjustments (e.g., Bonferroni corrections).

The inputs to calcPO are y, w, w_new (a vector or matrix of modified assignments), and poOptions
(if necessary). The output of calcPO is a vector of potential outcomes under the modified assign-
ments. Two common potential outcome calculations (zeroEffect (default) and constEffect) are
built-in for convenience. calcPO can also be a custom function, as long as the inputs and output are
as described above.

18 randTest

If unspecified, randOptions$type defaults to "complete". If randOptions$type equals "block",
then randOptions$block must be specified. If randOptions$type equals "Latin", then randOptions$row
and randOptions$col must be specified. If randOptions$type equals "user.defined", then
userRand must be specified.

The inputs to userRand are nrand and userOptions (if necessary).

If null is specified, its length must equal the length of the output of calcTestStat. If unspecified,
null defaults to 0 or an appropriately sized vector of 0’s.

alternative = "greater" is the alternative that the test statistic is greater than the comparison
value.

Value

A list containing the following elements:

perm_stats a vector or matrix of hypothetical test statistic values.

obs_stat the observed test statistic value(s).

null a number or numeric vector specifying the comparison value(s) under the null
hypothesis.

alternative a character string specifying the alternative hypothesis.

pvalue the randomization-based p-value(s).

Author(s)

Joseph J. Lee and Tirthankar Dasgupta

References

Wu, C. F. J. and Hamada, M. (2009) Experiments, Planning, Analysis and Optimization (2nd ed),
Wiley.

Moore, David S., and George P. McCabe (1989). Introduction to the Practice of Statistics. Original
source: study conducted by Jim Baumann and Leah Jones of the Purdue University Education
Department.

See Also

diffMeans, anovaF, diffMeansVector, zeroEffect, constEffect, completeRand, blockRand,
latinRand, randInterval, randPlot

Examples

Completely randomized design example
with one treatment factor at two levels
w <- c(rep(0, 5), rep(1, 5))
y <- rnorm(10, mean = 0, sd = 1)
Two-sided test
twoSidedTest <- randTest(y, w, nrand = 50, calcTestStat = diffMeans)
One-sided test
oneSidedTest <- randTest(

randTest 19

y,
w,
nrand = 50,
calcTestStat = diffMeans,
alternative = "greater"

)
Two=sided test with non-zero null hypothesis
nonZeroTest <- randTest(

y,
w,
nrand = 50,
calcTestStat = diffMeans,
calcPO = constEffect,
poOptions = list(tau = 2),
null = 2

)

Randomized block design example
with one treatment factor at three levels
x <- rep(1:3, 4)
w_block <- rep(1:4, 3)
y_block <- rnorm(12, mean = x, sd = 1)
blockTest <- randTest(

y_block,
w_block,
nrand = 50,
calcTestStat = anovaF,
calcOptions = list(block = x),
randOptions = list(type = "block", block = x)

)

4x4 Latin square example (from the Wu/Hamada reference)
row <- rep(1:4, 4)
col <- c(rep(1, 4), rep(2, 4), rep(3, 4), rep(4, 4))
w_latin <- c(

"C", "D", "B", "A", "A", "B", "D", "C",
"D", "C", "A", "B", "B", "A", "C", "D"

)
y_latin <- c(

235, 236, 218, 268, 251, 241, 227, 229,
234, 273, 274, 226, 195, 270, 230, 225

)
latinTest <- randTest(

y_latin,
w_latin,
nrand = 50,
calcTestStat = anovaF,
calcOptions = list(row = row, col = col),
randOptions = list(type = "Latin", row = row, col = col)

)

2^3 factorial design example
three treatment factors (OT, CP, and ST) at two levels each

20 randTest

OT <- c(-1, -1, -1, -1, 1, 1, 1, 1)
CP <- c(-1, -1, 1, 1, -1, -1, 1, 1)
ST <- rep(c(-1, 1), 4)
w_fac <- cbind(OT, CP, ST)
y_fac <- c(67, 79, 61, 75, 59, 90, 52, 87)
Testing the main effect of factor "OT"
facTest1 <- randTest(

y_fac,
w_fac,
nrand = 50,
calcTestStat = diffMeans,
calcOptions = list(factor = 1, pair = c(-1, 1))

)
Testing all three main effects simultaneously
facTest2 <- randTest(

y_fac,
w_fac,
nrand = 50,
calcTestStat = diffMeansVector,
calcOptions = list(
factors = 1:3,
pairs = matrix(rep(c(-1, 1), 3), ncol = 2, byrow = TRUE)

)
)
Testing all contrasts simultaneously
w_facNew <- cbind(OT, CP, ST, OT * CP, OT * ST, CP * ST, OT * CP * ST)
facTest3 <- randTest(

y_fac,
w_facNew,
nrand = 50,
calcTestStat = diffMeansVector,
calcOptions = list(

factors = 1:7,
pairs = matrix(rep(c(-1, 1), 7), ncol = 2, byrow = TRUE)

)
)

Reading comprehension pre- and post-test example
data(reading)
Ignoring blocks
readingTest1 <- randTest(

y = reading$Diff1,
w = reading$Group,
nrand = 50,
calcTestStat = anovaF

)
Testing within-block pairwise effects
readingTest2 <- randTest(

y = reading$Diff1,
w = reading$Group,
nrand = 50,
calcTestStat = withinBlockEffects,
calcOptions = list(

reading 21

block = reading$Block,
pairs = rbind(

c("Basal", "DRTA"),
c("Basal", "Strat"),
c("DRTA", "Strat"),
c("Basal", "DRTA"),
c("Basal", "Strat"),
c("DRTA", "Strat")

),
blockindex = c(rep(1, 3), rep(2, 3))

),
randOptions = list(type = "block", block = reading$Block)

)

reading Reading Data

Description

Pre- and post-treatment reading comprehension test scores for 66 students randomly assigned to
one of three methods for teaching reading comprehension.

Usage

data(reading)

Format

A data set of 66 students with 6 variables:

Subject student ID numbers

Block block designations

Group treatment group assignments

Pre1 pre-treatment reading comprehension test scores

Post1 post-treatment reading comprehension test scores

Diff1 changes in test score (improvement if positive)

Source

Moore, David S., and George P. McCabe (1989). Introduction to the Practice of Statistics. Original
source: study conducted by Jim Baumann and Leah Jones of the Purdue University Education
Department.

Examples

data(reading)

22 withinBlockEffects

withinBlockEffects Pairwise Differences of Mean Outcomes Within Blocks

Description

Calculates the differences of mean outcomes for multiple specified treatment factors and specified
pairs of comparison levels, within the specified blocks.

Usage

withinBlockEffects(y, w, calcOptions)

Arguments

y a vector or matrix of outcomes.

w a vector or matrix of assignments.

calcOptions a list of options for calculating the difference of mean outcomes within blocks.
calcOptions$block is a vector denoting the block designations. The numeric
vector calcOptions$factors denotes the treatment factors of interest. calcOptions$pairs
is a matrix of pairs (specified by row) of levels for comparison. calcOptions$blockindex
is a vector of indices denoting the blocks within which the pairs should be com-
pared.

Details

calcOptions$block should have the same length as y and w.

If unspecified, calcOptions$pairs defaults to c(0,1).

If calcOptions$factors is specified, its length must equal the number of rows specified in calcOptions$pairs.
If unspecified, calcOptions$factors defaults to an appropriately-sized vector of 1’s.

calcOptions$blockindex should have the same length as calcOptions$factors.

Value

A vector of differences of mean outcomes within blocks.

Author(s)

Joseph J. Lee and Tirthankar Dasgupta

References

Moore, David S., and George P. McCabe (1989). Introduction to the Practice of Statistics. Original
source: study conducted by Jim Baumann and Leah Jones of the Purdue University Education
Department.

zeroEffect 23

See Also

diffMeansVector

Examples

Reading comprehension pre- and post-test example
data(reading)
withinBlockEffects(

y = reading$Diff1,
w = reading$Group,
calcOptions = list(
block = reading$Block,
pairs = rbind(

c("Basal", "DRTA"),
c("Basal", "Strat"),
c("DRTA", "Strat"),
c("Basal", "DRTA"),
c("Basal", "Strat"),
c("DRTA", "Strat")

),
blockindex = c(rep(1, 3), rep(2, 3))

)
)

zeroEffect Potential Outcomes With Zero Treatment Effects

Description

Calculates potential outcomes under modified assignments, assuming zero treatment effect(s).

Usage

zeroEffect(y, w, w_new)

Arguments

y a vector or matrix of outcomes.

w a vector or matrix of assignments.

w_new a vector or matrix of modified assignments.

Value

A vector of potential outcomes under the modified assignments.

Author(s)

Joseph J. Lee and Tirthankar Dasgupta

24 zeroEffect

See Also

constEffect

Examples

Assignments
w <- c(0, 0, 0, 0, 0, 1, 1, 1, 1, 1)
Modified Assignments
w_new <- c(1, 1, 1, 1, 1, 0, 0, 0, 0, 0)
Outcomes
y <- c(4, 6, 5, 7, 4, 7, 11, 9, 8, 12)
zeroEffect(y, w, w_new) # Returns y as is

Index

∗ datasets
reading, 21

∗ methods
anovaF, 2
blockRand, 3
completeRand, 4
constEffect, 5
diffMeans, 6
diffMeansVector, 7
latinRand, 8
randInterval, 9
randPlot, 14
randTest, 16
withinBlockEffects, 22
zeroEffect, 23

∗ package
randomizationInference, 11

anovaF, 2, 17, 18

blockRand, 3, 4, 9, 18

completeRand, 3, 4, 9, 18
constEffect, 5, 17, 18, 24

diffMeans, 6, 8, 17, 18
diffMeansVector, 6, 7, 17, 18, 23

latinRand, 3, 4, 8, 18

randInterval, 9, 11, 15, 18
randomizationInference, 11
randomizationInference-package

(randomizationInference), 11
randPlot, 10, 11, 14, 18
randTest, 10, 11, 15, 16
reading, 21

withinBlockEffects, 22

zeroEffect, 5, 17, 18, 23

25

	anovaF
	blockRand
	completeRand
	constEffect
	diffMeans
	diffMeansVector
	latinRand
	randInterval
	randomizationInference
	randPlot
	randTest
	reading
	withinBlockEffects
	zeroEffect
	Index

