Title: | Fast Unified Random Forests for Survival, Regression, and Classification (RF-SRC) |
---|---|
Description: | Fast OpenMP parallel computing of Breiman's random forests for univariate, multivariate, unsupervised, survival, competing risks, class imbalanced classification and quantile regression. New Mahalanobis splitting for correlated outcomes. Extreme random forests and randomized splitting. Suite of imputation methods for missing data. Fast random forests using subsampling. Confidence regions and standard errors for variable importance. New improved holdout importance. Case-specific importance. Minimal depth variable importance. Visualize trees on your Safari or Google Chrome browser. Anonymous random forests for data privacy. |
Authors: | Hemant Ishwaran <[email protected]>, Udaya B. Kogalur <[email protected]> |
Maintainer: | Udaya B. Kogalur <[email protected]> |
License: | GPL (>= 3) |
Version: | 3.3.1 |
Built: | 2024-10-24 06:58:41 UTC |
Source: | CRAN |
Fast OpenMP parallel computing of Breiman random forests (Breiman
2001) for regression, classification, survival analysis (Ishwaran
2008), competing risks (Ishwaran 2012), multivariate (Segal and Xiao
2011), unsupervised (Mantero and Ishwaran 2020), quantile regression
(Meinhausen 2006, Zhang et al. 2019, Greenwald-Khanna 2001), and class
imbalanced q-classification (O'Brien and Ishwaran 2019). Different
splitting rules invoked under deterministic or random splitting
(Geurts et al. 2006, Ishwaran 2015) are available for all families.
Variable importance (VIMP), and holdout VIMP, as well as confidence
regions (Ishwaran and Lu 2019) can be calculated for single and
grouped variables. Minimal depth variable selection (Ishwaran et
al. 2010, 2011). Fast interface for missing data imputation using a
variety of different random forest methods (Tang and Ishwaran 2017).
Visualize trees on your Safari or Google Chrome browser (works for all
families, see get.tree
).
This package contains many useful functions and users should read the help file in its entirety for details. However, we briefly mention several key functions that may make it easier to navigate and understand the layout of the package.
This is the main entry point to the package. It grows a random forest
using user supplied training data. We refer to the resulting object
as a RF-SRC grow object. Formally, the resulting object has class
(rfsrc, grow)
.
A fast implementation of rfsrc
using subsampling.
Univariate and multivariate quantile regression forest for training and testing. Different methods available including the Greenwald-Khanna (2001) algorithm, which is especially suitable for big data due to its high memory efficiency.
predict.rfsrc
, predict
Used for prediction. Predicted values are obtained by dropping the
user supplied test data down the grow forest. The resulting object
has class (rfsrc, predict)
.
sidClustering.rfsrc
, sidClustering
Clustering of unsupervised data using SID (Staggered Interaction Data). Also implements the artificial two-class approach of Breiman (2003).
Used for variable selection:
vimp
calculates variable imporance (VIMP) from a
RF-SRC grow/predict object by noising up the variable (for example
by permutation). Note that grow/predict calls can always directly
request VIMP.
subsample
calculates VIMP confidence itervals via
subsampling.
holdout.vimp
measures the importance of a variable
when it is removed from the model.
q-classification and G-mean VIMP for class imbalanced data.
Fast imputation mode for RF-SRC. Both rfsrc
and
predict.rfsrc
are capable of imputing missing data.
However, for users whose only interest is imputing data, this function
provides an efficient and fast interface for doing so.
Used to extract the partial effects of a variable or variables on the ensembles.
The home page for the package, containing vignettes, manuals, links to GitHub and other useful information is found at https://www.randomforestsrc.org/index.html
Questions, comments, and non-bug related issues may be sent via https://github.com/kogalur/randomForestSRC/discussions/.
Bugs may be reported via https://github.com/kogalur/randomForestSRC/issues/. This is for bugs only. Please provide the accompanying information with any reports:
sessionInfo()
A minimal reproducible example consisting of the following items:
a minimal dataset, necessary to reproduce the error
the minimal runnable code necessary to reproduce the error, which can be run on the given dataset
the necessary information on the used packages, R version and system it is run on
in the case of random processes, a seed (set by
set.seed()
) for reproducibility
Regular stable releases of this package are available on CRAN at https://cran.r-project.org/package=randomForestSRC/
Interim unstable development builds with bug fixes and sometimes additional functionality are available at https://github.com/kogalur/randomForestSRC/
This package implements OpenMP shared-memory parallel programming if the target architecture and operating system support it. This is the default mode of execution.
Additional instructions for configuring OpenMP parallel processing are available at https://www.randomforestsrc.org/articles/installation.html.
An understanding of resource utilization (CPU and RAM) is necessary when running the package using OpenMP and Open MPI parallel execution. Memory usage is greater when running with OpenMP enabled. Diligence should be used not to overtax the hardware available.
With respect to reproducibility, a model is defined by a seed, the topology of the trees in the forest, and terminal node membership of the training data. This allows the user to restore a model and, in particular, its terminal node statistics. On the other hand, VIMP and many other statistics are dependent on additional randomization, which we do not consider part of the model. These statistics are susceptible to Monte Carlo effects.
Hemant Ishwaran and Udaya B. Kogalur
Breiman L. (2001). Random forests, Machine Learning, 45:5-32.
Geurts, P., Ernst, D. and Wehenkel, L., (2006). Extremely randomized trees. Machine learning, 63(1):3-42.
Greenwald M. and Khanna S. (2001). Space-efficient online computation of quantile summaries. Proceedings of ACM SIGMOD, 30(2):58-66.
Ishwaran H. and Kogalur U.B. (2007). Random survival forests for R, Rnews, 7(2):25-31.
Ishwaran H. (2007). Variable importance in binary regression trees and forests, Electronic J. Statist., 1:519-537.
Ishwaran H., Kogalur U.B., Blackstone E.H. and Lauer M.S. (2008). Random survival forests, Ann. App. Statist., 2:841-860.
Ishwaran H., Kogalur U.B., Gorodeski E.Z, Minn A.J. and Lauer M.S. (2010). High-dimensional variable selection for survival data. J. Amer. Statist. Assoc., 105:205-217.
Ishwaran H., Kogalur U.B., Chen X. and Minn A.J. (2011). Random survival forests for high-dimensional data. Stat. Anal. Data Mining, 4:115-132
Ishwaran H., Gerds T.A., Kogalur U.B., Moore R.D., Gange S.J. and Lau B.M. (2014). Random survival forests for competing risks. Biostatistics, 15(4):757-773.
Ishwaran H. and Malley J.D. (2014). Synthetic learning machines. BioData Mining, 7:28.
Ishwaran H. (2015). The effect of splitting on random forests. Machine Learning, 99:75-118.
Ishwaran H. and Lu M. (2019). Standard errors and confidence intervals for variable importance in random forest regression, classification, and survival. Statistics in Medicine, 38, 558-582.
Lu M., Sadiq S., Feaster D.J. and Ishwaran H. (2018). Estimating individual treatment effect in observational data using random forest methods. J. Comp. Graph. Statist, 27(1), 209-219
Mantero A. and Ishwaran H. (2021). Unsupervised random forests. Statistical Analysis and Data Mining, 14(2):144-167.
Meinshausen N. (2006) Quantile regression forests, Journal of Machine Learning Research, 7:983-999.
O'Brien R. and Ishwaran H. (2019). A random forests quantile classifier for class imbalanced data. Pattern Recognition, 90, 232-249
Segal M.R. and Xiao Y. Multivariate random forests. (2011). Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 1(1):80-87.
Tang F. and Ishwaran H. (2017). Random forest missing data algorithms. Statistical Analysis and Data Mining, 10:363-377.
Zhang H., Zimmerman J., Nettleton D. and Nordman D.J. (2019). Random forest prediction intervals. The American Statistician. 4:1-5.
imbalanced.rfsrc
,
impute.rfsrc
,
partial.rfsrc
,
plot.competing.risk.rfsrc
,
plot.rfsrc
,
plot.survival.rfsrc
,
plot.variable.rfsrc
,
predict.rfsrc
,
print.rfsrc
,
rfsrc
,
rfsrc.cart
,
rfsrc.fast
,
stat.split.rfsrc
,
subsample.rfsrc
,
synthetic.rfsrc
,
Recurrence of breast cancer from 198 breast cancer patients, all of which exhibited no evidence of distant metastases at the time of diagnosis. The first 30 features of the data describe characteristics of the cell nuclei present in the digitized image of a fine needle aspirate (FNA) of the breast mass.
The data were obtained from the UCI machine learning repository, see http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Prognostic).
## ------------------------------------------------------------ ## Standard analysis ## ------------------------------------------------------------ data(breast, package = "randomForestSRC") breast <- na.omit(breast) o <- rfsrc(status ~ ., data = breast, nsplit = 10) print(o)
## ------------------------------------------------------------ ## Standard analysis ## ------------------------------------------------------------ data(breast, package = "randomForestSRC") breast <- na.omit(breast) o <- rfsrc(status ~ ., data = breast, nsplit = 10) print(o)
Find pairwise interactions between variables.
## S3 method for class 'rfsrc' find.interaction(object, xvar.names, cause, m.target, importance = c("permute", "random", "anti", "permute.ensemble", "random.ensemble", "anti.ensemble"), method = c("maxsubtree", "vimp"), sorted = TRUE, nvar, nrep = 1, na.action = c("na.omit", "na.impute", "na.random"), seed = NULL, do.trace = FALSE, verbose = TRUE, ...)
## S3 method for class 'rfsrc' find.interaction(object, xvar.names, cause, m.target, importance = c("permute", "random", "anti", "permute.ensemble", "random.ensemble", "anti.ensemble"), method = c("maxsubtree", "vimp"), sorted = TRUE, nvar, nrep = 1, na.action = c("na.omit", "na.impute", "na.random"), seed = NULL, do.trace = FALSE, verbose = TRUE, ...)
object |
An object of class |
xvar.names |
Character vector of names of target x-variables. Default is to use all variables. |
cause |
For competing risk families, integer value between 1
and |
m.target |
Character value for multivariate families specifying the target outcome to be used. If left unspecified, the algorithm will choose a default target. |
importance |
Type of variable importance (VIMP). See
|
method |
Method of analysis: maximal subtree or VIMP. See details below. |
sorted |
Should variables be sorted by VIMP? Does not apply for competing risks. |
nvar |
Number of variables to be used. |
nrep |
Number of Monte Carlo replicates when method="vimp". |
na.action |
Action to be taken if the data contains |
seed |
Seed for random number generator. Must be a negative integer. |
do.trace |
Number of seconds between updates to the user on approximate time to completion. |
verbose |
Set to |
... |
Further arguments passed to or from other methods. |
Using a previously grown forest, identify pairwise interactions for all pairs of variables from a specified list. There are two distinct approaches specified by the option method.
method="maxsubtree"
This invokes a maximal subtree analysis. In this case, a matrix is returned where entries [i][i] are the normalized minimal depth of variable [i] relative to the root node (normalized wrt the size of the tree) and entries [i][j] indicate the normalized minimal depth of a variable [j] wrt the maximal subtree for variable [i] (normalized wrt the size of [i]'s maximal subtree). Smaller [i][i] entries indicate predictive variables. Small [i][j] entries having small [i][i] entries are a sign of an interaction between variable i and j (note: the user should scan rows, not columns, for small entries). See Ishwaran et al. (2010, 2011) for more details.
method="vimp"
This invokes a joint-VIMP approach. Two variables are paired and their paired VIMP calculated (refered to as 'Paired' importance). The VIMP for each separate variable is also calculated. The sum of these two values is refered to as 'Additive' importance. A large positive or negative difference between 'Paired' and 'Additive' indicates an association worth pursuing if the univariate VIMP for each of the paired-variables is reasonably large. See Ishwaran (2007) for more details.
Computations might be slow depending upon the size of the data and the forest. In such cases, consider setting nvar to a smaller number. If method="maxsubtree", consider using a smaller number of trees in the original grow call.
If nrep is greater than 1, the analysis is repeated
nrep
times and results averaged over the replications
(applies only when method="vimp").
Invisibly, the interaction table (a list for competing risk data) or the maximal subtree matrix.
Hemant Ishwaran and Udaya B. Kogalur
Ishwaran H. (2007). Variable importance in binary regression trees and forests, Electronic J. Statist., 1:519-537.
Ishwaran H., Kogalur U.B., Gorodeski E.Z, Minn A.J. and Lauer M.S. (2010). High-dimensional variable selection for survival data. J. Amer. Statist. Assoc., 105:205-217.
Ishwaran H., Kogalur U.B., Chen X. and Minn A.J. (2011). Random survival forests for high-dimensional data. Statist. Anal. Data Mining, 4:115-132.
holdout.vimp.rfsrc
,
max.subtree.rfsrc
,
var.select.rfsrc
,
vimp.rfsrc
## ------------------------------------------------------------ ## find interactions, survival setting ## ------------------------------------------------------------ data(pbc, package = "randomForestSRC") pbc.obj <- rfsrc(Surv(days,status) ~ ., pbc, importance = TRUE) find.interaction(pbc.obj, method = "vimp", nvar = 8) ## ------------------------------------------------------------ ## find interactions, competing risks ## ------------------------------------------------------------ data(wihs, package = "randomForestSRC") wihs.obj <- rfsrc(Surv(time, status) ~ ., wihs, nsplit = 3, ntree = 100, importance = TRUE) find.interaction(wihs.obj) find.interaction(wihs.obj, method = "vimp") ## ------------------------------------------------------------ ## find interactions, regression setting ## ------------------------------------------------------------ airq.obj <- rfsrc(Ozone ~ ., data = airquality, importance = TRUE) find.interaction(airq.obj, method = "vimp", nrep = 3) find.interaction(airq.obj) ## ------------------------------------------------------------ ## find interactions, classification setting ## ------------------------------------------------------------ iris.obj <- rfsrc(Species ~., data = iris, importance = TRUE) find.interaction(iris.obj, method = "vimp", nrep = 3) find.interaction(iris.obj) ## ------------------------------------------------------------ ## interactions for multivariate mixed forests ## ------------------------------------------------------------ mtcars2 <- mtcars mtcars2$cyl <- factor(mtcars2$cyl) mtcars2$carb <- factor(mtcars2$carb, ordered = TRUE) mv.obj <- rfsrc(cbind(carb, mpg, cyl) ~., data = mtcars2, importance = TRUE) find.interaction(mv.obj, method = "vimp", outcome.target = "carb") find.interaction(mv.obj, method = "vimp", outcome.target = "mpg") find.interaction(mv.obj, method = "vimp", outcome.target = "cyl")
## ------------------------------------------------------------ ## find interactions, survival setting ## ------------------------------------------------------------ data(pbc, package = "randomForestSRC") pbc.obj <- rfsrc(Surv(days,status) ~ ., pbc, importance = TRUE) find.interaction(pbc.obj, method = "vimp", nvar = 8) ## ------------------------------------------------------------ ## find interactions, competing risks ## ------------------------------------------------------------ data(wihs, package = "randomForestSRC") wihs.obj <- rfsrc(Surv(time, status) ~ ., wihs, nsplit = 3, ntree = 100, importance = TRUE) find.interaction(wihs.obj) find.interaction(wihs.obj, method = "vimp") ## ------------------------------------------------------------ ## find interactions, regression setting ## ------------------------------------------------------------ airq.obj <- rfsrc(Ozone ~ ., data = airquality, importance = TRUE) find.interaction(airq.obj, method = "vimp", nrep = 3) find.interaction(airq.obj) ## ------------------------------------------------------------ ## find interactions, classification setting ## ------------------------------------------------------------ iris.obj <- rfsrc(Species ~., data = iris, importance = TRUE) find.interaction(iris.obj, method = "vimp", nrep = 3) find.interaction(iris.obj) ## ------------------------------------------------------------ ## interactions for multivariate mixed forests ## ------------------------------------------------------------ mtcars2 <- mtcars mtcars2$cyl <- factor(mtcars2$cyl) mtcars2$carb <- factor(mtcars2$carb, ordered = TRUE) mv.obj <- rfsrc(cbind(carb, mpg, cyl) ~., data = mtcars2, importance = TRUE) find.interaction(mv.obj, method = "vimp", outcome.target = "carb") find.interaction(mv.obj, method = "vimp", outcome.target = "mpg") find.interaction(mv.obj, method = "vimp", outcome.target = "cyl")
Competing risk data set involving follicular cell lymphoma.
A data frame containing:
age | age |
hgb | hemoglobin (g/l) |
clinstg | clinical stage: 1=stage I, 2=stage II |
ch | chemotherapy |
rt | radiotherapy |
time | first failure time |
status | censoring status: 0=censored, 1=relapse, 2=death |
Table 1.4b, Competing Risks: A Practical Perspective.
Pintilie M., (2006) Competing Risks: A Practical Perspective. West Sussex: John Wiley and Sons.
data(follic, package = "randomForestSRC") follic.obj <- rfsrc(Surv(time, status) ~ ., follic, nsplit = 3, ntree = 100)
data(follic, package = "randomForestSRC") follic.obj <- rfsrc(Surv(time, status) ~ ., follic, nsplit = 3, ntree = 100)
Extracts a single tree from a forest which can then be plotted on the users browser. Works for all families. Missing data not permitted.
## S3 method for class 'rfsrc' get.tree(object, tree.id, target, m.target = NULL, time, surv.type = c("mort", "rel.freq", "surv", "years.lost", "cif", "chf"), class.type = c("bayes", "rfq", "prob"), ensemble = FALSE, oob = TRUE, show.plots = TRUE, do.trace = FALSE)
## S3 method for class 'rfsrc' get.tree(object, tree.id, target, m.target = NULL, time, surv.type = c("mort", "rel.freq", "surv", "years.lost", "cif", "chf"), class.type = c("bayes", "rfq", "prob"), ensemble = FALSE, oob = TRUE, show.plots = TRUE, do.trace = FALSE)
object |
An object of class |
tree.id |
Integer value specifying the tree to be extracted. |
target |
For classification, an integer or
character value specifying the class to focus on (defaults to the
first class). For competing risks, an integer value between
1 and |
m.target |
Character value for multivariate families specifying the target outcome to be used. If left unspecified, the algorithm will choose a default target. |
time |
For survival, the time at which the predicted
survival value is evaluated at (depends on |
surv.type |
For survival, specifies the predicted value. See details below. |
class.type |
For classification, specifies the predicted value. See details below. |
ensemble |
Use the ensemble (of all trees) for prediction, or use the requested tree for prediction (this is the default). |
oob |
OOB (TRUE) or in-bag (FALSE) predicted values. Only
applies when |
show.plots |
Should plots be displayed? |
do.trace |
Number of seconds between updates to the user on approximate time to completion. |
Extracts a specified tree from a forest and converts the tree to a hierarchical structure suitable for use with the "data.tree" package. Plotting the object will conveniently render the tree on the users browser. Left tree splits are displayed. For continuous values, left split is displayed as an inequality with right split equal to the reversed inequality. For factors, split values are described in terms of the levels of the factor. In this case, the left daughter split is a set consisting of all levels that are assigned to the left daughter node. The right daughter split is the complement of this set.
Terminal nodes are highlighted by color and display the sample size
and predicted value. By default, predicted value equals the tree
predicted value and sample size are terminal node inbag sample sizes.
If ensemble=TRUE
, then the predicted value equals the forest
ensemble value which could be useful as it allows one to visualize the
ensemble predictor over a given tree and therefore for a given
partition of the feature space. In this case, sample sizes are for
all cases and not the tree specific inbag cases.
The predicted value displayed is as follows:
For regression, the mean of the response.
For classification, for the target class specified by
target, either the class with most votes if
class.type="bayes"
; or in a two-class problem the classifier
using the RFQ quantile threshold if class.type="bayes"
(see imbalanced for more details); or the relative class
frequency when class.type="prob"
.
For multivariate families, the predicted value of the outcome specified by m.target. This being the value for regression or classification described above, depending on whether the outcome is real valued or a factor.
For survival, the choices are:
Mortality (mort
).
Relative frequency of mortality (rel.freq
).
Predicted survival (surv
), where the predicted
survival is for the time point specified using
time
(the default is the median follow up time).
For competing risks, the choices are:
The expected number of life years lost (years.lost
).
The cumulative incidence function (cif
).
The cumulative hazard function (chf
).
In all three cases, the predicted value is for the event type
specified by target. For cif
and
chf
the quantity is evaluated at the time point specified
by time
.
Invisibly, returns an object with hierarchical structure formatted for use with the data.tree package.
Hemant Ishwaran and Udaya B. Kogalur
Many thanks to @dbarg1 on GitHub for the initial prototype of this function
## ------------------------------------------------------------ ## survival/competing risk ## ------------------------------------------------------------ ## survival - veteran data set but with factors ## note that diagtime has many levels data(veteran, package = "randomForestSRC") vd <- veteran vd$celltype=factor(vd$celltype) vd$diagtime=factor(vd$diagtime) vd.obj <- rfsrc(Surv(time,status)~., vd, ntree = 100, nodesize = 5) plot(get.tree(vd.obj, 3)) ## competing risks data(follic, package = "randomForestSRC") follic.obj <- rfsrc(Surv(time, status) ~ ., follic, nsplit = 3, ntree = 100) plot(get.tree(follic.obj, 2)) ## ------------------------------------------------------------ ## regression ## ------------------------------------------------------------ airq.obj <- rfsrc(Ozone ~ ., data = airquality) plot(get.tree(airq.obj, 10)) ## ------------------------------------------------------------ ## two-class imbalanced data (see imbalanced function) ## ------------------------------------------------------------ data(breast, package = "randomForestSRC") breast <- na.omit(breast) f <- as.formula(status ~ .) breast.obj <- imbalanced(f, breast) ## compare RFQ to Bayes Rule plot(get.tree(breast.obj, 1, class.type = "rfq", ensemble = TRUE)) plot(get.tree(breast.obj, 1, class.type = "bayes", ensemble = TRUE)) ## ------------------------------------------------------------ ## classification ## ------------------------------------------------------------ iris.obj <- rfsrc(Species ~., data = iris, nodesize = 10) ## equivalent plot(get.tree(iris.obj, 25)) plot(get.tree(iris.obj, 25, class.type = "bayes")) ## predicted probability displayed for terminal nodes plot(get.tree(iris.obj, 25, class.type = "prob", target = "setosa")) plot(get.tree(iris.obj, 25, class.type = "prob", target = "versicolor")) plot(get.tree(iris.obj, 25, class.type = "prob", target = "virginica")) ## ------------------------------------------------------------ ## multivariate regression ## ------------------------------------------------------------ mtcars.mreg <- rfsrc(Multivar(mpg, cyl) ~., data = mtcars) plot(get.tree(mtcars.mreg, 10, m.target = "mpg")) plot(get.tree(mtcars.mreg, 10, m.target = "cyl")) ## ------------------------------------------------------------ ## multivariate mixed outcomes ## ------------------------------------------------------------ mtcars2 <- mtcars mtcars2$carb <- factor(mtcars2$carb) mtcars2$cyl <- factor(mtcars2$cyl) mtcars.mix <- rfsrc(Multivar(carb, mpg, cyl) ~ ., data = mtcars2) plot(get.tree(mtcars.mix, 5, m.target = "cyl")) plot(get.tree(mtcars.mix, 5, m.target = "carb")) ## ------------------------------------------------------------ ## unsupervised analysis ## ------------------------------------------------------------ mtcars.unspv <- rfsrc(data = mtcars) plot(get.tree(mtcars.unspv, 5))
## ------------------------------------------------------------ ## survival/competing risk ## ------------------------------------------------------------ ## survival - veteran data set but with factors ## note that diagtime has many levels data(veteran, package = "randomForestSRC") vd <- veteran vd$celltype=factor(vd$celltype) vd$diagtime=factor(vd$diagtime) vd.obj <- rfsrc(Surv(time,status)~., vd, ntree = 100, nodesize = 5) plot(get.tree(vd.obj, 3)) ## competing risks data(follic, package = "randomForestSRC") follic.obj <- rfsrc(Surv(time, status) ~ ., follic, nsplit = 3, ntree = 100) plot(get.tree(follic.obj, 2)) ## ------------------------------------------------------------ ## regression ## ------------------------------------------------------------ airq.obj <- rfsrc(Ozone ~ ., data = airquality) plot(get.tree(airq.obj, 10)) ## ------------------------------------------------------------ ## two-class imbalanced data (see imbalanced function) ## ------------------------------------------------------------ data(breast, package = "randomForestSRC") breast <- na.omit(breast) f <- as.formula(status ~ .) breast.obj <- imbalanced(f, breast) ## compare RFQ to Bayes Rule plot(get.tree(breast.obj, 1, class.type = "rfq", ensemble = TRUE)) plot(get.tree(breast.obj, 1, class.type = "bayes", ensemble = TRUE)) ## ------------------------------------------------------------ ## classification ## ------------------------------------------------------------ iris.obj <- rfsrc(Species ~., data = iris, nodesize = 10) ## equivalent plot(get.tree(iris.obj, 25)) plot(get.tree(iris.obj, 25, class.type = "bayes")) ## predicted probability displayed for terminal nodes plot(get.tree(iris.obj, 25, class.type = "prob", target = "setosa")) plot(get.tree(iris.obj, 25, class.type = "prob", target = "versicolor")) plot(get.tree(iris.obj, 25, class.type = "prob", target = "virginica")) ## ------------------------------------------------------------ ## multivariate regression ## ------------------------------------------------------------ mtcars.mreg <- rfsrc(Multivar(mpg, cyl) ~., data = mtcars) plot(get.tree(mtcars.mreg, 10, m.target = "mpg")) plot(get.tree(mtcars.mreg, 10, m.target = "cyl")) ## ------------------------------------------------------------ ## multivariate mixed outcomes ## ------------------------------------------------------------ mtcars2 <- mtcars mtcars2$carb <- factor(mtcars2$carb) mtcars2$cyl <- factor(mtcars2$cyl) mtcars.mix <- rfsrc(Multivar(carb, mpg, cyl) ~ ., data = mtcars2) plot(get.tree(mtcars.mix, 5, m.target = "cyl")) plot(get.tree(mtcars.mix, 5, m.target = "carb")) ## ------------------------------------------------------------ ## unsupervised analysis ## ------------------------------------------------------------ mtcars.unspv <- rfsrc(data = mtcars) plot(get.tree(mtcars.unspv, 5))
Competing risk data set involving Hodgkin's disease.
A data frame containing:
age | age |
sex | gender |
trtgiven | treatment: RT=radition, CMT=Chemotherapy and radiation |
medwidsi | mediastinum involvement: N=no, S=small, L=Large |
extranod | extranodal disease: Y=extranodal disease, N=nodal disease |
clinstg | clinical stage: 1=stage I, 2=stage II |
time | first failure time |
status | censoring status: 0=censored, 1=relapse, 2=death |
Table 1.6b, Competing Risks: A Practical Perspective.
Pintilie M., (2006) Competing Risks: A Practical Perspective. West Sussex: John Wiley and Sons.
data(hd, package = "randomForestSRC")
data(hd, package = "randomForestSRC")
Hold out VIMP is calculated from the error rate of mini ensembles of trees (blocks of trees) grown with and without a variable. Applies to all families.
## S3 method for class 'rfsrc' holdout.vimp(formula, data, ntree = function(p, vtry){1000 * p / vtry}, nsplit = 10, ntime = 50, sampsize = function(x){x * .632}, samptype = "swor", block.size = 10, vtry = 1, ...)
## S3 method for class 'rfsrc' holdout.vimp(formula, data, ntree = function(p, vtry){1000 * p / vtry}, nsplit = 10, ntime = 50, sampsize = function(x){x * .632}, samptype = "swor", block.size = 10, vtry = 1, ...)
formula |
A symbolic description of the model to be fit. |
data |
Data frame containing the y-outcome and x-variables. |
ntree |
Function specifying requested number of trees used for growing the forest. Inputs are dimension and number of holdout variables. The requested number of trees can also be a number. |
nsplit |
Non-negative integer value specifying number of random split points used to split a node (deterministic splitting corresponds to the value zero and is much slower). |
ntime |
Integer value used for survival to
constrain ensemble calculations to a grid of |
sampsize |
Function specifying size of subsampled data. Can also be a number. |
samptype |
Type of bootstrap used. |
vtry |
Number of variables randomly selected to be held out when growing a tree. This can also be set to a list for a targeted hold out VIMP analysis. See details below for more information. |
block.size |
Specifies number of trees in a block when calculating holdout variable importance. |
... |
Further arguments to be passed to |
Holdout variable importance (holdout VIMP) is based on comparing error
performance of two mini forests of trees (blocks of trees): the first in
which a random set of vtry
features are held out (the holdout
forest), and the second in which no features are held out (the
baseline forest).
To summarize, holdout VIMP measures the importance of a variable when that variable is truly removed from the tree growing process.
Specifically, if a feature is held out in a block of trees, we refer
to this as the (feature, block) pair. The bootstrap for the trees in
a (feature, block) pair are identical in both forests. That is, the
holdout block is grown by holding out the feature, and the baseline
block is grown over the same trees, with the same bootstrap, but
without holding out any features. vtry
controls how many
features are held out in every tree. If set to one (default), only one
variable is held out in every tree. Once a (feature, block) of trees
has been grown, holdout VIMP for a given variable v is calculated as
follows. Gather the block of trees where the feature was held out
(from the holdout forest) and calculate OOB prediction error. Next
gather the corresponding block of trees where v was not held out (from
the baseline forest) and calculate OOB prediction error. Holdout VIMP
for the (feature, block) pair is the difference between these two
values. The final holdout VIMP estimate for a feature v is obtained
by averaging holdout VIMP for (feature=v, block) over all blocks.
Accuracy of hold out VIMP depends critically on total number of trees.
If total number of trees is too small, then number of times a variable
is held out will be small and OOB error can suffer from high variance.
Therefore, ntree
should be set fairly high—we recommend using
1000 times the number of features. Increasing vtry
is another
way to increase number of times a variable is held out and therefore
reduces the burden of growing a large number of trees. In particular,
total number of trees needed decreases linearly with vtry
. The
default ntree
equals 1000 trees for each feature divided by
vtry
. Keep in mind intrepretation of holdout VIMP is altered
when vtry
is different than one. Thus this option should be
used with caution.
Accuracy also depends on the value of block.size
. Smaller
values generally produce better results but are more computationally
demanding. The most computationally demanding, but most accurate, is
block.size=1
. This is similar to how block.size
is used
for usual variable importance: see the help file for rfsrc
for details. Note the value of block.size
should not exceed
ntree
divided by number of features, otherwise there may not be
enough trees to satisify the target block size for a feature and
missing values will result.
A targeted hold out VIMP analysis can be requested by setting
vtry
to a list with two entries. The first entry is a vector
of integer values specifying the variables of interest. The second
entry is a boolean logical flag indicating whether individual or joint
VIMP should be calculated. For example, suppose variables 1, 4 and 5
are our variables of interest. To calculate holdout VIMP for these
variables, and these variables only, vtry
would be specified by
vtry = list(xvar = c(1, 4, 5), joint = FALSE)
On the other hand, if we are interested in the joint effect when we remove the three variables simultaneously, then
vtry = list(xvar = c(1, 4, 5), joint = TRUE)
The benefits of a targeted analysis is that the user may have a pre-conceived idea of which variables are interesting. Only VIMP for these variables will be calculated which greatly reduces computational time. Another benefit is that when joint VIMP is requested, this provides the user with a way to assess importance of specific groups of variables. See the iris example below for illustration.
Invisibly a list with the following components (which themselves can be lists):
importance |
Holdout VIMP. |
baseline |
Prediction error for the baseline forest. |
holdout |
Prediction error for the holdout forest. |
Hemant Ishwaran and Udaya B. Kogalur
Lu M. and Ishwaran H. (2018). Expert Opinion: A prediction-based alternative to p-values in regression models. J. Thoracic and Cardiovascular Surgery, 155(3), 1130–1136.
## ------------------------------------------------------------ ## regression analysis ## ------------------------------------------------------------ ## new York air quality measurements airq.obj <- holdout.vimp(Ozone ~ ., data = airquality, na.action = "na.impute") print(airq.obj$importance) ## ------------------------------------------------------------ ## classification analysis ## ------------------------------------------------------------ ## iris data iris.obj <- holdout.vimp(Species ~., data = iris) print(iris.obj$importance) ## iris data using brier prediction error iris.obj <- holdout.vimp(Species ~., data = iris, perf.type = "brier") print(iris.obj$importance) ## ------------------------------------------------------------ ## illustration of targeted holdout vimp analysis ## ------------------------------------------------------------ ## iris data - only interested in variables 3 and 4 vtry <- list(xvar = c(3, 4), joint = FALSE) print(holdout.vimp(Species ~., data = iris, vtry = vtry)$impor) ## iris data - joint importance of variables 3 and 4 vtry <- list(xvar = c(3, 4), joint = TRUE) print(holdout.vimp(Species ~., data = iris, vtry = vtry)$impor) ## iris data - joint importance of variables 1 and 2 vtry <- list(xvar = c(1, 2), joint = TRUE) print(holdout.vimp(Species ~., data = iris, vtry = vtry)$impor) ## ------------------------------------------------------------ ## imbalanced classification (using RFQ) ## ------------------------------------------------------------ if (library("caret", logical.return = TRUE)) { ## experimental settings n <- 400 q <- 20 ir <- 6 f <- as.formula(Class ~ .) ## simulate the data, create minority class data d <- twoClassSim(n, linearVars = 15, noiseVars = q) d$Class <- factor(as.numeric(d$Class) - 1) idx.0 <- which(d$Class == 0) idx.1 <- sample(which(d$Class == 1), sum(d$Class == 1) / ir , replace = FALSE) d <- d[c(idx.0,idx.1),, drop = FALSE] ## VIMP for RFQ with and without blocking vmp1 <- imbalanced(f, d, importance = TRUE, block.size = 1)$importance[, 1] vmp10 <- imbalanced(f, d, importance = TRUE, block.size = 10)$importance[, 1] ## holdout VIMP for RFQ with and without blocking hvmp1 <- holdout.vimp(f, d, rfq = TRUE, perf.type = "g.mean", block.size = 1)$importance[, 1] hvmp10 <- holdout.vimp(f, d, rfq = TRUE, perf.type = "g.mean", block.size = 10)$importance[, 1] ## compare VIMP values imp <- 100 * cbind(vmp1, vmp10, hvmp1, hvmp10) legn <- c("vimp-1", "vimp-10","hvimp-1", "hvimp-10") colr <- rep(4,20+q) colr[1:20] <- 2 ylim <- range(c(imp)) nms <- 1:(20+q) par(mfrow=c(2,2)) barplot(imp[,1],col=colr,las=2,main=legn[1],ylim=ylim,names.arg=nms) barplot(imp[,2],col=colr,las=2,main=legn[2],ylim=ylim,names.arg=nms) barplot(imp[,3],col=colr,las=2,main=legn[3],ylim=ylim,names.arg=nms) barplot(imp[,4],col=colr,las=2,main=legn[4],ylim=ylim,names.arg=nms) } ## ------------------------------------------------------------ ## multivariate regression analysis ## ------------------------------------------------------------ mtcars.mreg <- holdout.vimp(Multivar(mpg, cyl) ~., data = mtcars, vtry = 3, block.size = 1, samptype = "swr", sampsize = dim(mtcars)[1]) print(mtcars.mreg$importance) ## ------------------------------------------------------------ ## mixed outcomes analysis ## ------------------------------------------------------------ mtcars.new <- mtcars mtcars.new$cyl <- factor(mtcars.new$cyl) mtcars.new$carb <- factor(mtcars.new$carb, ordered = TRUE) mtcars.mix <- holdout.vimp(cbind(carb, mpg, cyl) ~., data = mtcars.new, ntree = 100, block.size = 2, vtry = 1) print(mtcars.mix$importance) ##------------------------------------------------------------ ## survival analysis ##------------------------------------------------------------ ## Primary biliary cirrhosis (PBC) of the liver data(pbc, package = "randomForestSRC") pbc.obj <- holdout.vimp(Surv(days, status) ~ ., pbc, nsplit = 10, ntree = 1000, na.action = "na.impute") print(pbc.obj$importance) ##------------------------------------------------------------ ## competing risks ##------------------------------------------------------------ ## WIHS analysis ## cumulative incidence function (CIF) for HAART and AIDS stratified by IDU data(wihs, package = "randomForestSRC") wihs.obj <- holdout.vimp(Surv(time, status) ~ ., wihs, nsplit = 3, ntree = 100) print(wihs.obj$importance)
## ------------------------------------------------------------ ## regression analysis ## ------------------------------------------------------------ ## new York air quality measurements airq.obj <- holdout.vimp(Ozone ~ ., data = airquality, na.action = "na.impute") print(airq.obj$importance) ## ------------------------------------------------------------ ## classification analysis ## ------------------------------------------------------------ ## iris data iris.obj <- holdout.vimp(Species ~., data = iris) print(iris.obj$importance) ## iris data using brier prediction error iris.obj <- holdout.vimp(Species ~., data = iris, perf.type = "brier") print(iris.obj$importance) ## ------------------------------------------------------------ ## illustration of targeted holdout vimp analysis ## ------------------------------------------------------------ ## iris data - only interested in variables 3 and 4 vtry <- list(xvar = c(3, 4), joint = FALSE) print(holdout.vimp(Species ~., data = iris, vtry = vtry)$impor) ## iris data - joint importance of variables 3 and 4 vtry <- list(xvar = c(3, 4), joint = TRUE) print(holdout.vimp(Species ~., data = iris, vtry = vtry)$impor) ## iris data - joint importance of variables 1 and 2 vtry <- list(xvar = c(1, 2), joint = TRUE) print(holdout.vimp(Species ~., data = iris, vtry = vtry)$impor) ## ------------------------------------------------------------ ## imbalanced classification (using RFQ) ## ------------------------------------------------------------ if (library("caret", logical.return = TRUE)) { ## experimental settings n <- 400 q <- 20 ir <- 6 f <- as.formula(Class ~ .) ## simulate the data, create minority class data d <- twoClassSim(n, linearVars = 15, noiseVars = q) d$Class <- factor(as.numeric(d$Class) - 1) idx.0 <- which(d$Class == 0) idx.1 <- sample(which(d$Class == 1), sum(d$Class == 1) / ir , replace = FALSE) d <- d[c(idx.0,idx.1),, drop = FALSE] ## VIMP for RFQ with and without blocking vmp1 <- imbalanced(f, d, importance = TRUE, block.size = 1)$importance[, 1] vmp10 <- imbalanced(f, d, importance = TRUE, block.size = 10)$importance[, 1] ## holdout VIMP for RFQ with and without blocking hvmp1 <- holdout.vimp(f, d, rfq = TRUE, perf.type = "g.mean", block.size = 1)$importance[, 1] hvmp10 <- holdout.vimp(f, d, rfq = TRUE, perf.type = "g.mean", block.size = 10)$importance[, 1] ## compare VIMP values imp <- 100 * cbind(vmp1, vmp10, hvmp1, hvmp10) legn <- c("vimp-1", "vimp-10","hvimp-1", "hvimp-10") colr <- rep(4,20+q) colr[1:20] <- 2 ylim <- range(c(imp)) nms <- 1:(20+q) par(mfrow=c(2,2)) barplot(imp[,1],col=colr,las=2,main=legn[1],ylim=ylim,names.arg=nms) barplot(imp[,2],col=colr,las=2,main=legn[2],ylim=ylim,names.arg=nms) barplot(imp[,3],col=colr,las=2,main=legn[3],ylim=ylim,names.arg=nms) barplot(imp[,4],col=colr,las=2,main=legn[4],ylim=ylim,names.arg=nms) } ## ------------------------------------------------------------ ## multivariate regression analysis ## ------------------------------------------------------------ mtcars.mreg <- holdout.vimp(Multivar(mpg, cyl) ~., data = mtcars, vtry = 3, block.size = 1, samptype = "swr", sampsize = dim(mtcars)[1]) print(mtcars.mreg$importance) ## ------------------------------------------------------------ ## mixed outcomes analysis ## ------------------------------------------------------------ mtcars.new <- mtcars mtcars.new$cyl <- factor(mtcars.new$cyl) mtcars.new$carb <- factor(mtcars.new$carb, ordered = TRUE) mtcars.mix <- holdout.vimp(cbind(carb, mpg, cyl) ~., data = mtcars.new, ntree = 100, block.size = 2, vtry = 1) print(mtcars.mix$importance) ##------------------------------------------------------------ ## survival analysis ##------------------------------------------------------------ ## Primary biliary cirrhosis (PBC) of the liver data(pbc, package = "randomForestSRC") pbc.obj <- holdout.vimp(Surv(days, status) ~ ., pbc, nsplit = 10, ntree = 1000, na.action = "na.impute") print(pbc.obj$importance) ##------------------------------------------------------------ ## competing risks ##------------------------------------------------------------ ## WIHS analysis ## cumulative incidence function (CIF) for HAART and AIDS stratified by IDU data(wihs, package = "randomForestSRC") wihs.obj <- holdout.vimp(Surv(time, status) ~ ., wihs, nsplit = 3, ntree = 100) print(wihs.obj$importance)
Data from the Ames Assessor's Office used in assessing values of individual residential properties sold in Ames, Iowa from 2006 to 2010. This is a regression problem and the goal is to predict "SalePrice" which records the price of a home in thousands of dollars.
De Cock, D., (2011). Ames, Iowa: Alternative to the Boston housing data as an end of semester regression project. Journal of Statistics Education, 19(3), 1–14.
## load the data data(housing, package = "randomForestSRC") ## the original data contains lots of missing data, so impute it ## use missForest, can be slow so grow trees with small training sizes housing2 <- impute(data = housing, mf.q = 1, sampsize = function(x){x * .1}) ## same idea ... but directly use rfsrc.fast and multivariate missForest housing3 <- impute(data = housing, mf.q = .5, fast = TRUE) ## even faster, but potentially less acurate housing4 <- impute(SalePrice~., housing, splitrule = "random", nimpute = 1)
## load the data data(housing, package = "randomForestSRC") ## the original data contains lots of missing data, so impute it ## use missForest, can be slow so grow trees with small training sizes housing2 <- impute(data = housing, mf.q = 1, sampsize = function(x){x * .1}) ## same idea ... but directly use rfsrc.fast and multivariate missForest housing3 <- impute(data = housing, mf.q = .5, fast = TRUE) ## even faster, but potentially less acurate housing4 <- impute(SalePrice~., housing, splitrule = "random", nimpute = 1)
Implements various solutions to the two-class imbalanced problem, including the newly proposed quantile-classifier approach of O'Brien and Ishwaran (2017). Also includes Breiman's balanced random forests undersampling of the majority class. Performance is assesssed using the G-mean, but misclassification error can be requested.
## S3 method for class 'rfsrc' imbalanced(formula, data, ntree = 3000, method = c("rfq", "brf", "standard"), splitrule = "auc", perf.type = NULL, block.size = NULL, fast = FALSE, ratio = NULL, ...)
## S3 method for class 'rfsrc' imbalanced(formula, data, ntree = 3000, method = c("rfq", "brf", "standard"), splitrule = "auc", perf.type = NULL, block.size = NULL, fast = FALSE, ratio = NULL, ...)
formula |
A symbolic description of the model to be fit. |
data |
Data frame containing the two-class y-outcome and x-variables. |
ntree |
Number of trees. |
method |
Method used for fitting the classifier. The default is
|
splitrule |
Default is AUC splitting which maximizes gmean performance. Other choices are "gini" and "entropy". |
perf.type |
Measure used for assessing performance (and all
downstream calculations based on it such as variable importance).
The default for |
block.size |
Should the cumulative error rate be calculated on
every tree? When |
fast |
Use fast random forests, |
ratio |
This is an optional parameter for expert users and included only for experimental purposes. Used to specify the ratio (between 0 and 1) for undersampling the majority class. Sampling is without replacement. Option is ignored for BRF. |
... |
Further arguments to be passed to the |
Imbalanced data, or the so-called imbalanced minority class problem, refers to classification settings involving two-classes where the ratio of the majority class to the minority class is much larger than one. Two solutions to the two-class imbalanced problem are provided here, including the newly proposed random forests quantile-classifier (RFQ) of O'Brien and Ishwaran (2017), and the balanced random forests (BRF) undersampling approach of Chen et al. (2004). The default performance metric is the G-mean (Kubat et al., 1997).
Currently, missing values cannot be handled for BRF or when the
ratio
option is used; in these cases, missing data is removed
prior to the analysis.
Permutation VIMP is used by default and not anti-VIMP which is the default for all other families and settings. Our experiments indicate the former performs better in imbalanced settings, especially when imbalanced ratio is high.
We recommend setting ntree
to a relatively large value when
dealing with imbalanced data to ensure convergence of the performance
value – this is especially true for the G-mean. Consider using 5 times
the usual number of trees.
A new helper function get.imbalanced.performance
has been added
for extracting performance metrics. Metrics are self-titled and their
meaning should generally be clear. Metrics that may be less familiar
include: F1, the F-score or the F-measure which measures balance
between the precision and the recall. F1mod, the harmonic mean of
sensitivity, specificity, precision and the negative predictive value.
F1gmean, the average of F1 and the G-mean. F1modgmean, the average of
F1mod and the G-mean.
A two-class random forest fit under the requested method and performance value.
Hemant Ishwaran and Udaya B. Kogalur
Chen, C., Liaw, A. and Breiman, L. (2004). Using random forest to learn imbalanced data. University of California, Berkeley, Technical Report 110.
Kubat, M., Holte, R. and Matwin, S. (1997). Learning when negative examples abound. Machine Learning, ECML-97: 146-153.
O'Brien R. and Ishwaran H. (2019). A random forests quantile classifier for class imbalanced data. Pattern Recognition, 90, 232-249
## ------------------------------------------------------------ ## use the breast data for illustration ## ------------------------------------------------------------ data(breast, package = "randomForestSRC") breast <- na.omit(breast) f <- as.formula(status ~ .) ##---------------------------------------------------------------- ## default RFQ call ##---------------------------------------------------------------- o.rfq <- imbalanced(f, breast) print(o.rfq) ## equivalent to: ## rfsrc(f, breast, rfq = TRUE, ntree = 3000, ## perf.type = "gmean", splitrule = "auc") ##---------------------------------------------------------------- ## detailed output using customized performance function ##---------------------------------------------------------------- print(get.imbalanced.performance(o.rfq)) ##----------------------------------------------------------------- ## RF using misclassification error with gini splitting ## ------------------------------------------------------------ o.std <- imbalanced(f, breast, method = "stand", splitrule = "gini") ##----------------------------------------------------------------- ## RF using G-mean performance with AUC splitting ## ------------------------------------------------------------ o.std <- imbalanced(f, breast, method = "stand", perf.type = "gmean") ## equivalent to: ## rfsrc(f, breast, ntree = 3000, perf.type = "gmean", splitrule = "auc") ##---------------------------------------------------------------- ## default BRF call ##---------------------------------------------------------------- o.brf <- imbalanced(f, breast, method = "brf") ## equivalent to: ## imbalanced(f, breast, method = "brf", perf.type = "gmean") ##---------------------------------------------------------------- ## BRF call with misclassification performance ##---------------------------------------------------------------- o.brf <- imbalanced(f, breast, method = "brf", perf.type = "misclass") ##---------------------------------------------------------------- ## train/test example ##---------------------------------------------------------------- trn <- sample(1:nrow(breast), size = nrow(breast) / 2) o.trn <- imbalanced(f, breast[trn,], importance = TRUE) o.tst <- predict(o.trn, breast[-trn,], importance = TRUE) print(o.trn) print(o.tst) print(100 * cbind(o.trn$impo[, 1], o.tst$impo[, 1])) ##---------------------------------------------------------------- ## ## illustrates how to optimize threshold on training data ## improves Gmean for RFQ in many situations ## ##---------------------------------------------------------------- if (library("caret", logical.return = TRUE)) { ## experimental settings n <- 2 * 5000 q <- 20 ir <- 6 f <- as.formula(Class ~ .) ## simulate the data, create minority class data d <- twoClassSim(n, linearVars = 15, noiseVars = q) d$Class <- factor(as.numeric(d$Class) - 1) idx.0 <- which(d$Class == 0) idx.1 <- sample(which(d$Class == 1), sum(d$Class == 1) / ir , replace = FALSE) d <- d[c(idx.0,idx.1),, drop = FALSE] ## split data into train and test trn.pt <- sample(1:nrow(d), size = nrow(d) / 2) trn <- d[trn.pt, ] tst <- d[setdiff(1:nrow(d), trn.pt), ] ## run rfq on training data o <- imbalanced(f, trn) ## (1) default threshold (2) directly optimized gmean threshold th.1 <- get.imbalanced.performance(o)["threshold"] th.2 <- get.imbalanced.optimize(o)["threshold"] ## training performance cat("-------- train performance ---------\n") print(get.imbalanced.performance(o, thresh=th.1)) print(get.imbalanced.performance(o, thresh=th.2)) ## test performance cat("-------- test performance ---------\n") pred.o <- predict(o, tst) print(get.imbalanced.performance(pred.o, thresh=th.1)) print(get.imbalanced.performance(pred.o, thresh=th.2)) } ##---------------------------------------------------------------- ## illustrates RFQ with and without SMOTE ## ## - simulation example using the caret R-package ## - creates imbalanced data by randomly sampling the class 1 data ## - use SMOTE from "imbalance" package to oversample the minority ## ##---------------------------------------------------------------- if (library("caret", logical.return = TRUE) & library("imbalance", logical.return = TRUE)) { ## experimental settings n <- 5000 q <- 20 ir <- 6 f <- as.formula(Class ~ .) ## simulate the data, create minority class data d <- twoClassSim(n, linearVars = 15, noiseVars = q) d$Class <- factor(as.numeric(d$Class) - 1) idx.0 <- which(d$Class == 0) idx.1 <- sample(which(d$Class == 1), sum(d$Class == 1) / ir , replace = FALSE) d <- d[c(idx.0,idx.1),, drop = FALSE] d <- d[sample(1:nrow(d)), ] ## define train/test split trn <- sample(1:nrow(d), size = nrow(d) / 2, replace = FALSE) ## now make SMOTE training data newd.50 <- mwmote(d[trn, ], numInstances = 50, classAttr = "Class") newd.500 <- mwmote(d[trn, ], numInstances = 500, classAttr = "Class") ## fit RFQ with and without SMOTE o.with.50 <- imbalanced(f, rbind(d[trn, ], newd.50)) o.with.500 <- imbalanced(f, rbind(d[trn, ], newd.500)) o.without <- imbalanced(f, d[trn, ]) ## compare performance on test data print(predict(o.with.50, d[-trn, ])) print(predict(o.with.500, d[-trn, ])) print(predict(o.without, d[-trn, ])) } ##---------------------------------------------------------------- ## ## illustrates effectiveness of blocked VIMP ## ##---------------------------------------------------------------- if (library("caret", logical.return = TRUE)) { ## experimental settings n <- 1000 q <- 20 ir <- 6 f <- as.formula(Class ~ .) ## simulate the data, create minority class data d <- twoClassSim(n, linearVars = 15, noiseVars = q) d$Class <- factor(as.numeric(d$Class) - 1) idx.0 <- which(d$Class == 0) idx.1 <- sample(which(d$Class == 1), sum(d$Class == 1) / ir , replace = FALSE) d <- d[c(idx.0,idx.1),, drop = FALSE] ## permutation VIMP for BRF with and without blocking ## blocked VIMP is a hybrid of Breiman-Cutler/Ishwaran-Kogalur VIMP brf <- imbalanced(f, d, method = "brf", importance = "permute", block.size = 1) brfB <- imbalanced(f, d, method = "brf", importance = "permute", block.size = 10) ## permutation VIMP for RFQ with and without blocking rfq <- imbalanced(f, d, importance = "permute", block.size = 1) rfqB <- imbalanced(f, d, importance = "permute", block.size = 10) ## compare VIMP values imp <- 100 * cbind(brf$importance[, 1], brfB$importance[, 1], rfq$importance[, 1], rfqB$importance[, 1]) legn <- c("BRF", "BRF-block", "RFQ", "RFQ-block") colr <- rep(4,20+q) colr[1:20] <- 2 ylim <- range(c(imp)) nms <- 1:(20+q) par(mfrow=c(2,2)) barplot(imp[,1],col=colr,las=2,main=legn[1],ylim=ylim,names.arg=nms) barplot(imp[,2],col=colr,las=2,main=legn[2],ylim=ylim,names.arg=nms) barplot(imp[,3],col=colr,las=2,main=legn[3],ylim=ylim,names.arg=nms) barplot(imp[,4],col=colr,las=2,main=legn[4],ylim=ylim,names.arg=nms) } ##---------------------------------------------------------------- ## ## confidence intervals for G-mean permutation VIMP using subsampling ## ##---------------------------------------------------------------- if (library("caret", logical.return = TRUE)) { ## experimental settings n <- 1000 q <- 20 ir <- 6 f <- as.formula(Class ~ .) ## simulate the data, create minority class data d <- twoClassSim(n, linearVars = 15, noiseVars = q) d$Class <- factor(as.numeric(d$Class) - 1) idx.0 <- which(d$Class == 0) idx.1 <- sample(which(d$Class == 1), sum(d$Class == 1) / ir , replace = FALSE) d <- d[c(idx.0,idx.1),, drop = FALSE] ## RFQ o <- imbalanced(Class ~ ., d, importance = "permute", block.size = 10) ## subsample RFQ smp.o <- subsample(o, B = 100) plot(smp.o, cex.axis = .7) }
## ------------------------------------------------------------ ## use the breast data for illustration ## ------------------------------------------------------------ data(breast, package = "randomForestSRC") breast <- na.omit(breast) f <- as.formula(status ~ .) ##---------------------------------------------------------------- ## default RFQ call ##---------------------------------------------------------------- o.rfq <- imbalanced(f, breast) print(o.rfq) ## equivalent to: ## rfsrc(f, breast, rfq = TRUE, ntree = 3000, ## perf.type = "gmean", splitrule = "auc") ##---------------------------------------------------------------- ## detailed output using customized performance function ##---------------------------------------------------------------- print(get.imbalanced.performance(o.rfq)) ##----------------------------------------------------------------- ## RF using misclassification error with gini splitting ## ------------------------------------------------------------ o.std <- imbalanced(f, breast, method = "stand", splitrule = "gini") ##----------------------------------------------------------------- ## RF using G-mean performance with AUC splitting ## ------------------------------------------------------------ o.std <- imbalanced(f, breast, method = "stand", perf.type = "gmean") ## equivalent to: ## rfsrc(f, breast, ntree = 3000, perf.type = "gmean", splitrule = "auc") ##---------------------------------------------------------------- ## default BRF call ##---------------------------------------------------------------- o.brf <- imbalanced(f, breast, method = "brf") ## equivalent to: ## imbalanced(f, breast, method = "brf", perf.type = "gmean") ##---------------------------------------------------------------- ## BRF call with misclassification performance ##---------------------------------------------------------------- o.brf <- imbalanced(f, breast, method = "brf", perf.type = "misclass") ##---------------------------------------------------------------- ## train/test example ##---------------------------------------------------------------- trn <- sample(1:nrow(breast), size = nrow(breast) / 2) o.trn <- imbalanced(f, breast[trn,], importance = TRUE) o.tst <- predict(o.trn, breast[-trn,], importance = TRUE) print(o.trn) print(o.tst) print(100 * cbind(o.trn$impo[, 1], o.tst$impo[, 1])) ##---------------------------------------------------------------- ## ## illustrates how to optimize threshold on training data ## improves Gmean for RFQ in many situations ## ##---------------------------------------------------------------- if (library("caret", logical.return = TRUE)) { ## experimental settings n <- 2 * 5000 q <- 20 ir <- 6 f <- as.formula(Class ~ .) ## simulate the data, create minority class data d <- twoClassSim(n, linearVars = 15, noiseVars = q) d$Class <- factor(as.numeric(d$Class) - 1) idx.0 <- which(d$Class == 0) idx.1 <- sample(which(d$Class == 1), sum(d$Class == 1) / ir , replace = FALSE) d <- d[c(idx.0,idx.1),, drop = FALSE] ## split data into train and test trn.pt <- sample(1:nrow(d), size = nrow(d) / 2) trn <- d[trn.pt, ] tst <- d[setdiff(1:nrow(d), trn.pt), ] ## run rfq on training data o <- imbalanced(f, trn) ## (1) default threshold (2) directly optimized gmean threshold th.1 <- get.imbalanced.performance(o)["threshold"] th.2 <- get.imbalanced.optimize(o)["threshold"] ## training performance cat("-------- train performance ---------\n") print(get.imbalanced.performance(o, thresh=th.1)) print(get.imbalanced.performance(o, thresh=th.2)) ## test performance cat("-------- test performance ---------\n") pred.o <- predict(o, tst) print(get.imbalanced.performance(pred.o, thresh=th.1)) print(get.imbalanced.performance(pred.o, thresh=th.2)) } ##---------------------------------------------------------------- ## illustrates RFQ with and without SMOTE ## ## - simulation example using the caret R-package ## - creates imbalanced data by randomly sampling the class 1 data ## - use SMOTE from "imbalance" package to oversample the minority ## ##---------------------------------------------------------------- if (library("caret", logical.return = TRUE) & library("imbalance", logical.return = TRUE)) { ## experimental settings n <- 5000 q <- 20 ir <- 6 f <- as.formula(Class ~ .) ## simulate the data, create minority class data d <- twoClassSim(n, linearVars = 15, noiseVars = q) d$Class <- factor(as.numeric(d$Class) - 1) idx.0 <- which(d$Class == 0) idx.1 <- sample(which(d$Class == 1), sum(d$Class == 1) / ir , replace = FALSE) d <- d[c(idx.0,idx.1),, drop = FALSE] d <- d[sample(1:nrow(d)), ] ## define train/test split trn <- sample(1:nrow(d), size = nrow(d) / 2, replace = FALSE) ## now make SMOTE training data newd.50 <- mwmote(d[trn, ], numInstances = 50, classAttr = "Class") newd.500 <- mwmote(d[trn, ], numInstances = 500, classAttr = "Class") ## fit RFQ with and without SMOTE o.with.50 <- imbalanced(f, rbind(d[trn, ], newd.50)) o.with.500 <- imbalanced(f, rbind(d[trn, ], newd.500)) o.without <- imbalanced(f, d[trn, ]) ## compare performance on test data print(predict(o.with.50, d[-trn, ])) print(predict(o.with.500, d[-trn, ])) print(predict(o.without, d[-trn, ])) } ##---------------------------------------------------------------- ## ## illustrates effectiveness of blocked VIMP ## ##---------------------------------------------------------------- if (library("caret", logical.return = TRUE)) { ## experimental settings n <- 1000 q <- 20 ir <- 6 f <- as.formula(Class ~ .) ## simulate the data, create minority class data d <- twoClassSim(n, linearVars = 15, noiseVars = q) d$Class <- factor(as.numeric(d$Class) - 1) idx.0 <- which(d$Class == 0) idx.1 <- sample(which(d$Class == 1), sum(d$Class == 1) / ir , replace = FALSE) d <- d[c(idx.0,idx.1),, drop = FALSE] ## permutation VIMP for BRF with and without blocking ## blocked VIMP is a hybrid of Breiman-Cutler/Ishwaran-Kogalur VIMP brf <- imbalanced(f, d, method = "brf", importance = "permute", block.size = 1) brfB <- imbalanced(f, d, method = "brf", importance = "permute", block.size = 10) ## permutation VIMP for RFQ with and without blocking rfq <- imbalanced(f, d, importance = "permute", block.size = 1) rfqB <- imbalanced(f, d, importance = "permute", block.size = 10) ## compare VIMP values imp <- 100 * cbind(brf$importance[, 1], brfB$importance[, 1], rfq$importance[, 1], rfqB$importance[, 1]) legn <- c("BRF", "BRF-block", "RFQ", "RFQ-block") colr <- rep(4,20+q) colr[1:20] <- 2 ylim <- range(c(imp)) nms <- 1:(20+q) par(mfrow=c(2,2)) barplot(imp[,1],col=colr,las=2,main=legn[1],ylim=ylim,names.arg=nms) barplot(imp[,2],col=colr,las=2,main=legn[2],ylim=ylim,names.arg=nms) barplot(imp[,3],col=colr,las=2,main=legn[3],ylim=ylim,names.arg=nms) barplot(imp[,4],col=colr,las=2,main=legn[4],ylim=ylim,names.arg=nms) } ##---------------------------------------------------------------- ## ## confidence intervals for G-mean permutation VIMP using subsampling ## ##---------------------------------------------------------------- if (library("caret", logical.return = TRUE)) { ## experimental settings n <- 1000 q <- 20 ir <- 6 f <- as.formula(Class ~ .) ## simulate the data, create minority class data d <- twoClassSim(n, linearVars = 15, noiseVars = q) d$Class <- factor(as.numeric(d$Class) - 1) idx.0 <- which(d$Class == 0) idx.1 <- sample(which(d$Class == 1), sum(d$Class == 1) / ir , replace = FALSE) d <- d[c(idx.0,idx.1),, drop = FALSE] ## RFQ o <- imbalanced(Class ~ ., d, importance = "permute", block.size = 10) ## subsample RFQ smp.o <- subsample(o, B = 100) plot(smp.o, cex.axis = .7) }
Fast imputation mode. A random forest is grown and used to impute missing data. No ensemble estimates or error rates are calculated.
## S3 method for class 'rfsrc' impute(formula, data, ntree = 100, nodesize = 1, nsplit = 10, nimpute = 2, fast = FALSE, blocks, mf.q, max.iter = 10, eps = 0.01, ytry = NULL, always.use = NULL, verbose = TRUE, ...)
## S3 method for class 'rfsrc' impute(formula, data, ntree = 100, nodesize = 1, nsplit = 10, nimpute = 2, fast = FALSE, blocks, mf.q, max.iter = 10, eps = 0.01, ytry = NULL, always.use = NULL, verbose = TRUE, ...)
formula |
A symbolic description of the model to be fit. Can be left unspecified if there are no outcomes or we don't care to distinguish between y-outcomes and x-variables in the imputation. Ignored when using multivariate missForest imputation. |
data |
Data frame containing the data to be imputed. |
ntree |
Number of trees to grow. |
nodesize |
Forest average terminal node size. |
nsplit |
Non-negative integer value used to specify random splitting. |
nimpute |
Number of iterations of the missing data algorithm.
Ignored for multivariate missForest; in which case the algorithm
iterates until a convergence criteria is achieved (users can
however enforce a maximum number of iterations with the option
|
fast |
Use fast random forests, |
blocks |
Integer value specifying the number of blocks the data should be broken up into (by rows). This can improve computational efficiency when the sample size is large but imputation efficiency decreases. By default, no action is taken if left unspecified. |
mf.q |
Use this to turn on missForest (which is off by default). Specifies fraction of variables (between 0 and 1) used as responses in multivariate missForest imputation. When set to 1 this corresponds to missForest, otherwise multivariate missForest is used. Can also be an integer, in which case this equals the number of multivariate responses. |
max.iter |
Maximum number of iterations used when implementing multivariate missForest imputation. |
eps |
Tolerance value used to determine convergence of multivariate missForest imputation. |
ytry |
Number of variables used as pseudo-responses in unsupervised forests. See details below. |
always.use |
Character vector of variable names to always be included as a response in multivariate missForest imputation. Does not apply for other imputation methods. |
verbose |
Send verbose output to terminal (only applies to multivariate missForest imputation). |
... |
Further arguments passed to or from other methods. |
Grow a forest and use this to impute data. All external calculations such as ensemble calculations, error rates, etc. are turned off. Use this function if your only interest is imputing the data.
Split statistics are calculated using non-misssing data only. If a node splits on a variable with missing data, the variable's missing data is imputed by randomly drawing values from non-missing in-bag data. The purpose of this is to make it possible to assign cases to daughter nodes based on the split.
If no formula is specified, unsupervised splitting is
implemented using a ytry
value of sqrt(p
) where
p
equals the number of variables. More precisely,
mtry
variables are selected at random, and for each of these
a random subset of ytry
variables are selected and defined as
the multivariate pseudo-responses. A multivariate composite
splitting rule of dimension ytry
is then applied to each of
the mtry
multivariate regression problems and the node split
on the variable leading to the best split (Tang and Ishwaran, 2017).
If mf.q
is specified, a multivariate version of
missForest imputation (Stekhoven and Buhlmann, 2012) is applied.
Specifically, a fraction mf.q
of variables are used as
multivariate responses and split by the remaining variables using
multivariate composite splitting (Tang and Ishwaran, 2017). Missing
data for responses are imputed by prediction. The process is
repeated using a new set of variables for responses (mutually
exclusive to the previous fit), until all variables have been
imputed. This is one iteration. The entire process is repeated,
and the algorithm iterated until a convergence criteria is met
(specified using options max.iter
and eps
). Integer
values for mf.q
are allowed and interpreted as a request that
mf.q
variables be selected for the multivariate response. If
mf.q=1
, the algorithm reverts to the original missForest
procedure. This is generally the most accurate of all the
imputation procedures, but also the most computationally demanding.
See examples below for strategies to increase speed.
Prior to imputation, the data is processed and records with all values missing are removed, as are variables having all missing values.
If there is no missing data, either before or after processing of the data, the algorithm returns the processed data and no imputation is performed.
All options are the same as rfsrc
and the user should
consult the rfsrc
help file for details.
Invisibly, the data frame containing the orginal data with imputed data overlaid.
Hemant Ishwaran and Udaya B. Kogalur
Ishwaran H., Kogalur U.B., Blackstone E.H. and Lauer M.S. (2008). Random survival forests, Ann. App. Statist., 2:841-860.
Stekhoven D.J. and Buhlmann P. (2012). MissForest–non-parametric missing value imputation for mixed-type data. Bioinformatics, 28(1):112-118.
Tang F. and Ishwaran H. (2017). Random forest missing data algorithms. Statistical Analysis and Data Mining, 10:363-377.
## ------------------------------------------------------------ ## example of survival imputation ## ------------------------------------------------------------ ## default everything - unsupervised splitting data(pbc, package = "randomForestSRC") pbc1.d <- impute(data = pbc) ## imputation using outcome splitting f <- as.formula(Surv(days, status) ~ .) pbc2.d <- impute(f, data = pbc, nsplit = 3) ## random splitting can be reasonably good pbc3.d <- impute(f, data = pbc, splitrule = "random", nimpute = 5) ## ------------------------------------------------------------ ## example of regression imputation ## ------------------------------------------------------------ air1.d <- impute(data = airquality, nimpute = 5) air2.d <- impute(Ozone ~ ., data = airquality, nimpute = 5) air3.d <- impute(Ozone ~ ., data = airquality, fast = TRUE) ## ------------------------------------------------------------ ## multivariate missForest imputation ## ------------------------------------------------------------ data(pbc, package = "randomForestSRC") ## missForest algorithm - uses 1 variable at a time for the response pbc.d <- impute(data = pbc, mf.q = 1) ## multivariate missForest - use 10 percent of variables as responses ## i.e. multivariate missForest pbc.d <- impute(data = pbc, mf.q = .01) ## missForest but faster by using random splitting pbc.d <- impute(data = pbc, mf.q = 1, splitrule = "random") ## missForest but faster by increasing nodesize pbc.d <- impute(data = pbc, mf.q = 1, nodesize = 20, splitrule = "random") ## missForest but faster by using rfsrcFast pbc.d <- impute(data = pbc, mf.q = 1, fast = TRUE) ## ------------------------------------------------------------ ## another example of multivariate missForest imputation ## (suggested by John Sheffield) ## ------------------------------------------------------------ test_rows <- 1000 set.seed(1234) a <- rpois(test_rows, 500) b <- a + rnorm(test_rows, 50, 50) c <- b + rnorm(test_rows, 50, 50) d <- c + rnorm(test_rows, 50, 50) e <- d + rnorm(test_rows, 50, 50) f <- e + rnorm(test_rows, 50, 50) g <- f + rnorm(test_rows, 50, 50) h <- g + rnorm(test_rows, 50, 50) i <- h + rnorm(test_rows, 50, 50) fake_data <- data.frame(a, b, c, d, e, f, g, h, i) fake_data_missing <- data.frame(lapply(fake_data, function(x) { x[runif(test_rows) <= 0.4] <- NA x })) imputed_data <- impute( data = fake_data_missing, mf.q = 0.2, ntree = 100, fast = TRUE, verbose = TRUE ) par(mfrow=c(3,3)) o=lapply(1:ncol(imputed_data), function(j) { pt <- is.na(fake_data_missing[, j]) x <- fake_data[pt, j] y <- imputed_data[pt, j] plot(x, y, pch = 16, cex = 0.8, xlab = "raw data", ylab = "imputed data", col = 2) points(x, y, pch = 1, cex = 0.8, col = gray(.9)) lines(supsmu(x, y, span = .25), lty = 1, col = 4, lwd = 4) mtext(colnames(imputed_data)[j]) NULL })
## ------------------------------------------------------------ ## example of survival imputation ## ------------------------------------------------------------ ## default everything - unsupervised splitting data(pbc, package = "randomForestSRC") pbc1.d <- impute(data = pbc) ## imputation using outcome splitting f <- as.formula(Surv(days, status) ~ .) pbc2.d <- impute(f, data = pbc, nsplit = 3) ## random splitting can be reasonably good pbc3.d <- impute(f, data = pbc, splitrule = "random", nimpute = 5) ## ------------------------------------------------------------ ## example of regression imputation ## ------------------------------------------------------------ air1.d <- impute(data = airquality, nimpute = 5) air2.d <- impute(Ozone ~ ., data = airquality, nimpute = 5) air3.d <- impute(Ozone ~ ., data = airquality, fast = TRUE) ## ------------------------------------------------------------ ## multivariate missForest imputation ## ------------------------------------------------------------ data(pbc, package = "randomForestSRC") ## missForest algorithm - uses 1 variable at a time for the response pbc.d <- impute(data = pbc, mf.q = 1) ## multivariate missForest - use 10 percent of variables as responses ## i.e. multivariate missForest pbc.d <- impute(data = pbc, mf.q = .01) ## missForest but faster by using random splitting pbc.d <- impute(data = pbc, mf.q = 1, splitrule = "random") ## missForest but faster by increasing nodesize pbc.d <- impute(data = pbc, mf.q = 1, nodesize = 20, splitrule = "random") ## missForest but faster by using rfsrcFast pbc.d <- impute(data = pbc, mf.q = 1, fast = TRUE) ## ------------------------------------------------------------ ## another example of multivariate missForest imputation ## (suggested by John Sheffield) ## ------------------------------------------------------------ test_rows <- 1000 set.seed(1234) a <- rpois(test_rows, 500) b <- a + rnorm(test_rows, 50, 50) c <- b + rnorm(test_rows, 50, 50) d <- c + rnorm(test_rows, 50, 50) e <- d + rnorm(test_rows, 50, 50) f <- e + rnorm(test_rows, 50, 50) g <- f + rnorm(test_rows, 50, 50) h <- g + rnorm(test_rows, 50, 50) i <- h + rnorm(test_rows, 50, 50) fake_data <- data.frame(a, b, c, d, e, f, g, h, i) fake_data_missing <- data.frame(lapply(fake_data, function(x) { x[runif(test_rows) <= 0.4] <- NA x })) imputed_data <- impute( data = fake_data_missing, mf.q = 0.2, ntree = 100, fast = TRUE, verbose = TRUE ) par(mfrow=c(3,3)) o=lapply(1:ncol(imputed_data), function(j) { pt <- is.na(fake_data_missing[, j]) x <- fake_data[pt, j] y <- imputed_data[pt, j] plot(x, y, pch = 16, cex = 0.8, xlab = "raw data", ylab = "imputed data", col = 2) points(x, y, pch = 1, cex = 0.8, col = gray(.9)) lines(supsmu(x, y, span = .25), lty = 1, col = 4, lwd = 4) mtext(colnames(imputed_data)[j]) NULL })
Extract maximal subtree information from a RF-SRC object. Used for variable selection and identifying interactions between variables.
## S3 method for class 'rfsrc' max.subtree(object, max.order = 2, sub.order = FALSE, conservative = FALSE, ...)
## S3 method for class 'rfsrc' max.subtree(object, max.order = 2, sub.order = FALSE, conservative = FALSE, ...)
object |
An object of class |
max.order |
Non-negative integer specifying the target number
of order depths. Default is to return the first and second order
depths. Used to identify predictive variables. Setting
max.order=0 returns the first order depth for each
variable by tree. A side effect is that conservative is
automatically set to |
sub.order |
Set this value to |
conservative |
If |
... |
Further arguments passed to or from other methods. |
The maximal subtree for a variable x is the largest subtree whose root node splits on x. Thus, all parent nodes of x's maximal subtree have nodes that split on variables other than x. The largest maximal subtree possible is the root node. In general, however, there can be more than one maximal subtree for a variable. A maximal subtree may also not exist if there are no splits on the variable. See Ishwaran et al. (2010, 2011) for details.
The minimal depth of a maximal subtree (the first order depth) measures predictiveness of a variable x. It equals the shortest distance (the depth) from the root node to the parent node of the maximal subtree (zero is the smallest value possible). The smaller the minimal depth, the more impact x has on prediction. The mean of the minimal depth distribution is used as the threshold value for deciding whether a variable's minimal depth value is small enough for the variable to be classified as strong.
The second order depth is the distance from the root node to the
second closest maximal subtree of x. To specify the target
order depth, use the max.order
option (e.g., setting
max.order=2 returns the first and second order depths).
Setting max.order=0 returns the first order depth for each
variable for each tree.
Set sub.order=TRUE to obtain the minimal depth of a
variable relative to another variable. This returns a
p
xp
matrix, where p
is the number of variables,
and entries (i,j) are the normalized relative minimal depth of a
variable j within the maximal subtree for variable i, where
normalization adjusts for the size of i's maximal subtree. Entry
(i,i) is the normalized minimal depth of i relative to the root
node. The matrix should be read by looking across rows (not down
columns) and identifies interrelationship between variables. Small
(i,j) entries indicate interactions. See
find.interaction
for related details.
For competing risk data, maximal subtree analyses are unconditional (i.e., they are non-event specific).
Invisibly, a list with the following components:
order |
Order depths for a given variable up to |
count |
Averaged number of maximal subtrees, normalized by the size of a tree, for each variable. |
nodes.at.depth |
Number of non-terminal nodes by depth for each tree. |
sub.order |
Average minimal depth of a variable relative to another
variable. Can be |
threshold |
Threshold value (the mean minimal depth) used to select variables. |
threshold.1se |
Mean minimal depth plus one standard error. |
topvars |
Character vector of names of the final selected variables. |
topvars.1se |
Character vector of names of the final selected variables using the 1se threshold rule. |
percentile |
Minimal depth percentile for each variable. |
density |
Estimated minimal depth density. |
second.order.threshold |
Threshold for second order depth. |
Hemant Ishwaran and Udaya B. Kogalur
Ishwaran H., Kogalur U.B., Gorodeski E.Z, Minn A.J. and Lauer M.S. (2010). High-dimensional variable selection for survival data. J. Amer. Statist. Assoc., 105:205-217.
Ishwaran H., Kogalur U.B., Chen X. and Minn A.J. (2011). Random survival forests for high-dimensional data. Statist. Anal. Data Mining, 4:115-132.
holdout.vimp.rfsrc
,
var.select.rfsrc
,
vimp.rfsrc
## ------------------------------------------------------------ ## survival analysis ## first and second order depths for all variables ## ------------------------------------------------------------ data(veteran, package = "randomForestSRC") v.obj <- rfsrc(Surv(time, status) ~ . , data = veteran) v.max <- max.subtree(v.obj) # first and second order depths print(round(v.max$order, 3)) # the minimal depth is the first order depth print(round(v.max$order[, 1], 3)) # strong variables have minimal depth less than or equal # to the following threshold print(v.max$threshold) # this corresponds to the set of variables print(v.max$topvars) ## ------------------------------------------------------------ ## regression analysis ## try different levels of conservativeness ## ------------------------------------------------------------ mtcars.obj <- rfsrc(mpg ~ ., data = mtcars) max.subtree(mtcars.obj)$topvars max.subtree(mtcars.obj, conservative = TRUE)$topvars
## ------------------------------------------------------------ ## survival analysis ## first and second order depths for all variables ## ------------------------------------------------------------ data(veteran, package = "randomForestSRC") v.obj <- rfsrc(Surv(time, status) ~ . , data = veteran) v.max <- max.subtree(v.obj) # first and second order depths print(round(v.max$order, 3)) # the minimal depth is the first order depth print(round(v.max$order[, 1], 3)) # strong variables have minimal depth less than or equal # to the following threshold print(v.max$threshold) # this corresponds to the set of variables print(v.max$topvars) ## ------------------------------------------------------------ ## regression analysis ## try different levels of conservativeness ## ------------------------------------------------------------ mtcars.obj <- rfsrc(mpg ~ ., data = mtcars) max.subtree(mtcars.obj)$topvars max.subtree(mtcars.obj, conservative = TRUE)$topvars
Study the effects of five diet treatments on 21 liver lipids and 120 hepatic gene expression in wild-type and PPAR-alpha deficient mice. We use a multivariate mixed random forest analysis by regressing gene expression, diet and genotype (the x-variables) on lipid expressions (the multivariate y-responses).
Martin P.G. et al. (2007). Novel aspects of PPAR-alpha-mediated regulation of lipid and xenobiotic metabolism revealed through a nutrigenomic study. Hepatology, 45(3), 767–777.
## ------------------------------------------------------------ ## multivariate regression forests using Mahalanobis splitting ## lipids (all real values) used as the multivariate y ## ------------------------------------------------------------ ## load the data data(nutrigenomic, package = "randomForestSRC") ## parse into y and x data ydta <- nutrigenomic$lipids xdta <- data.frame(nutrigenomic$genes, diet = nutrigenomic$diet, genotype = nutrigenomic$genotype) ## multivariate mixed forest call obj <- rfsrc(get.mv.formula(colnames(ydta)), data.frame(ydta, xdta), importance=TRUE, nsplit = 10, splitrule = "mahalanobis") print(obj) ## ------------------------------------------------------------ ## plot the standarized performance and VIMP values ## ------------------------------------------------------------ ## acquire the error rate for each of the 21-coordinates ## standardize to allow for comparison across coordinates serr <- get.mv.error(obj, standardize = TRUE) ## acquire standardized VIMP svimp <- get.mv.vimp(obj, standardize = TRUE) par(mfrow = c(1,2)) plot(serr, xlab = "Lipids", ylab = "Standardized Performance") matplot(svimp, xlab = "Genes/Diet/Genotype", ylab = "Standardized VIMP") ## ------------------------------------------------------------ ## plot some trees ## ------------------------------------------------------------ plot(get.tree(obj, 1)) plot(get.tree(obj, 2)) plot(get.tree(obj, 3)) ## ------------------------------------------------------------ ## ## Compare above to (1) user specified covariance matrix ## (2) default composite (independent) splitting ## ## ------------------------------------------------------------ ## user specified sigma matrix obj2 <- rfsrc(get.mv.formula(colnames(ydta)), data.frame(ydta, xdta), importance = TRUE, nsplit = 10, splitrule = "mahalanobis", sigma = cov(ydta)) print(obj2) ## default independence split rule obj3 <- rfsrc(get.mv.formula(colnames(ydta)), data.frame(ydta, xdta), importance=TRUE, nsplit = 10) print(obj3) ## compare vimp imp <- data.frame(mahalanobis = rowMeans(get.mv.vimp(obj, standardize = TRUE)), mahalanobis2 = rowMeans(get.mv.vimp(obj2, standardize = TRUE)), default = rowMeans(get.mv.vimp(obj3, standardize = TRUE))) print(head(100 * imp[order(imp$mahalanobis, decreasing = TRUE), ], 15))
## ------------------------------------------------------------ ## multivariate regression forests using Mahalanobis splitting ## lipids (all real values) used as the multivariate y ## ------------------------------------------------------------ ## load the data data(nutrigenomic, package = "randomForestSRC") ## parse into y and x data ydta <- nutrigenomic$lipids xdta <- data.frame(nutrigenomic$genes, diet = nutrigenomic$diet, genotype = nutrigenomic$genotype) ## multivariate mixed forest call obj <- rfsrc(get.mv.formula(colnames(ydta)), data.frame(ydta, xdta), importance=TRUE, nsplit = 10, splitrule = "mahalanobis") print(obj) ## ------------------------------------------------------------ ## plot the standarized performance and VIMP values ## ------------------------------------------------------------ ## acquire the error rate for each of the 21-coordinates ## standardize to allow for comparison across coordinates serr <- get.mv.error(obj, standardize = TRUE) ## acquire standardized VIMP svimp <- get.mv.vimp(obj, standardize = TRUE) par(mfrow = c(1,2)) plot(serr, xlab = "Lipids", ylab = "Standardized Performance") matplot(svimp, xlab = "Genes/Diet/Genotype", ylab = "Standardized VIMP") ## ------------------------------------------------------------ ## plot some trees ## ------------------------------------------------------------ plot(get.tree(obj, 1)) plot(get.tree(obj, 2)) plot(get.tree(obj, 3)) ## ------------------------------------------------------------ ## ## Compare above to (1) user specified covariance matrix ## (2) default composite (independent) splitting ## ## ------------------------------------------------------------ ## user specified sigma matrix obj2 <- rfsrc(get.mv.formula(colnames(ydta)), data.frame(ydta, xdta), importance = TRUE, nsplit = 10, splitrule = "mahalanobis", sigma = cov(ydta)) print(obj2) ## default independence split rule obj3 <- rfsrc(get.mv.formula(colnames(ydta)), data.frame(ydta, xdta), importance=TRUE, nsplit = 10) print(obj3) ## compare vimp imp <- data.frame(mahalanobis = rowMeans(get.mv.vimp(obj, standardize = TRUE)), mahalanobis2 = rowMeans(get.mv.vimp(obj2, standardize = TRUE)), default = rowMeans(get.mv.vimp(obj3, standardize = TRUE))) print(head(100 * imp[order(imp$mahalanobis, decreasing = TRUE), ], 15))
Direct, fast inferface for partial effect of a variable. Works for all families.
partial.rfsrc(object, oob = TRUE, partial.type = NULL, partial.xvar = NULL, partial.values = NULL, partial.xvar2 = NULL, partial.values2 = NULL, partial.time = NULL, get.tree = NULL, seed = NULL, do.trace = FALSE, ...)
partial.rfsrc(object, oob = TRUE, partial.type = NULL, partial.xvar = NULL, partial.values = NULL, partial.xvar2 = NULL, partial.values2 = NULL, partial.time = NULL, get.tree = NULL, seed = NULL, do.trace = FALSE, ...)
object |
An object of class |
oob |
By default out-of-bag values are returned, but inbag
values can be requested by setting this option to |
partial.type |
Character vector specifying type of predicted value requested. See details below. |
partial.xvar |
Character value specifying the single primary partial x-variable to be used. |
partial.values |
Vector of values that the primary partialy x-variable will assume. |
partial.xvar2 |
Vector of character values specifying the second order x-variables to be used. |
partial.values2 |
Vector of values that the second order
x-variables will assume. Each second order x-variable can only
assume a single value. This the length of |
partial.time |
For survival families, the time at which the predicted
survival value is evaluated at (depends on |
get.tree |
Vector of integer(s) identifying trees over which the partial values are calculated over. By default, uses all trees in the forest. |
seed |
Negative integer specifying seed for the random number generator. |
do.trace |
Number of seconds between updates to the user on approximate time to completion. |
... |
Further arguments passed to or from other methods. |
Used for direct, efficient call to obtain partial plot effects. This function is intended primarily for experts.
Out-of-bag (OOB) values are returned by default.
For factors, the partial value should be encoded as a positive integer reflecting the level number of the factor. The actual label of the factor should not be used.
The utility function get.partial.plot.data
is supplied for
processing returned raw partial effects in a format more convenient
for plotting. Options are specified as in plot.variable
. See
examples for illustration.
Raw partial plot effects data is returned either as an array or a list of length equal to the number of outcomes (length is one for univariate families) with entries depending on the underlying family:
For regression, partial plot data is returned as a list
in regrOutput
with dim [n] x [length(partial.values)]
.
For classification, partial plot data is returned as a list
in classOutput
of dim [n] x [1 + yvar.nlevels[.]] x
[length(partial.values)]
.
For mixed multivariate regression, values are returned in
list format both in regrOutput
and classOutput
For survival, values are returned as either a matrix or array
in survOutput
. Depending on partial type specified this can be:
For partial type surv
returns the survival function
of dim [n] x [length(partial.time)] x [length(partial.values)]
.
For partial type mort
returns mortality
of dim [n] x [length(partial.values)]
.
For partial type chf
returns the cumulative hazard function
of dim [n] x [length(partial.time)] x [length(partial.values)]
.
For competing risks, values are returned as either a matrix or
array in survOutput
. Depending on the options specified this
can be:
For partial type years.lost
returns the expected number of life years lost
of dim [n] x [length(event.info$event.type)] x
[length(partial.values)]
.
For partial type cif
returns the cumulative incidence function of dim
[n] x [length(partial.time)] x
[length(event.info$event.type)] x
[length(partial.values)]
.
For partial type chf
returns the cumulative hazard function of dim
[n] x [length(partial.time)] x [length(event.info$event.type)]
x [length(partial.values)]
.
Hemant Ishwaran and Udaya B. Kogalur
Ishwaran H., Kogalur U.B. (2007). Random survival forests for R, Rnews, 7(2):25-31.
Ishwaran H., Kogalur U.B., Blackstone E.H. and Lauer M.S. (2008). Random survival forests, Ann. App. Statist., 2:841-860.
## ------------------------------------------------------------ ## ## regression ## ## ------------------------------------------------------------ airq.obj <- rfsrc(Ozone ~ ., data = airquality) ## partial effect for wind partial.obj <- partial(airq.obj, partial.xvar = "Wind", partial.values = airq.obj$xvar$Wind) pdta <- get.partial.plot.data(partial.obj) ## plot partial values plot(pdta$x, pdta$yhat, type = "b", pch = 16, xlab = "wind", ylab = "partial effect of wind") ## example where we display all the partial effects ## instead of averaging - use the granule=TRUE option pdta <- get.partial.plot.data(partial.obj, granule = TRUE) boxplot(pdta$yhat ~ pdta$x, xlab = "Wind", ylab = "partial effect") ## ------------------------------------------------------------ ## ## regression: partial effects for two variables simultaneously ## ## ------------------------------------------------------------ airq.obj <- rfsrc(Ozone ~ ., data = airquality) ## specify wind and temperature values of interest wind <- sort(unique(airq.obj$xvar$Wind)) temp <- sort(unique(airq.obj$xvar$Temp)) ## partial effect for wind, for a given temp pdta <- do.call(rbind, lapply(temp, function(x2) { o <- partial(airq.obj, partial.xvar = "Wind", partial.xvar2 = "Temp", partial.values = wind, partial.values2 = x2) cbind(wind, x2, get.partial.plot.data(o)$yhat) })) pdta <- data.frame(pdta) colnames(pdta) <- c("wind", "temp", "effectSize") ## coplot of partial effect of wind and temp coplot(effectSize ~ wind|temp, pdta, pch = 16, overlap = 0) ## ------------------------------------------------------------ ## ## regression: partial effects for three variables simultaneously ## (can be slow, so modify accordingly) ## ## ------------------------------------------------------------ n <- 1000 x <- matrix(rnorm(n * 3), ncol = 3) y <- x[, 1] + x[, 1] * x[, 2] + x[, 1] * x[, 2] * x[, 3] o <- rfsrc(y ~ ., data = data.frame(y = y, x)) ## define target x values x1 <- seq(-3, 3, length = 40) x2 <- x3 <- seq(-3, 3, length = 10) ## extract second order partial effects pdta <- do.call(rbind, lapply(x3, function(x3v) { cat("outer loop x3 = ", x3v, "\n") do.call(rbind,lapply(x2, function(x2v) { o <- partial(o, partial.xvar = "X1", partial.values = x1, partial.xvar2 = c("X2", "X3"), partial.values2 = c(x2v, x3v)) cbind(x1, x2v, x3v, get.partial.plot.data(o)$yhat) })) })) pdta <- data.frame(pdta) colnames(pdta) <- c("x1", "x2", "x3", "effectSize") ## coplot of partial effects coplot(effectSize ~ x1|x2*x3, pdta, pch = 16, overlap = 0) ## ------------------------------------------------------------ ## ## classification ## ## ------------------------------------------------------------ iris.obj <- rfsrc(Species ~., data = iris) ## partial effect for sepal length partial.obj <- partial(iris.obj, partial.xvar = "Sepal.Length", partial.values = iris.obj$xvar$Sepal.Length) ## extract partial effects for each species outcome pdta1 <- get.partial.plot.data(partial.obj, target = "setosa") pdta2 <- get.partial.plot.data(partial.obj, target = "versicolor") pdta3 <- get.partial.plot.data(partial.obj, target = "virginica") ## plot the results par(mfrow=c(1,1)) plot(pdta1$x, pdta1$yhat, type="b", pch = 16, xlab = "sepal length", ylab = "adjusted probability", ylim = range(pdta1$yhat,pdta2$yhat,pdta3$yhat)) points(pdta2$x, pdta2$yhat, col = 2, type = "b", pch = 16) points(pdta3$x, pdta3$yhat, col = 4, type = "b", pch = 16) legend("topleft", legend=levels(iris.obj$yvar), fill = c(1, 2, 4)) ## ------------------------------------------------------------ ## ## survival ## ## ------------------------------------------------------------ data(veteran, package = "randomForestSRC") v.obj <- rfsrc(Surv(time,status)~., veteran, nsplit = 10, ntree = 100) ## partial effect of age on mortality partial.obj <- partial(v.obj, partial.type = "mort", partial.xvar = "age", partial.values = v.obj$xvar$age, partial.time = v.obj$time.interest) pdta <- get.partial.plot.data(partial.obj) plot(lowess(pdta$x, pdta$yhat, f = 1/3), type = "l", xlab = "age", ylab = "adjusted mortality") ## example where x is discrete - partial effect of age on mortality ## we use the granule=TRUE option partial.obj <- partial(v.obj, partial.type = "mort", partial.xvar = "trt", partial.values = v.obj$xvar$trt, partial.time = v.obj$time.interest) pdta <- get.partial.plot.data(partial.obj, granule = TRUE) boxplot(pdta$yhat ~ pdta$x, xlab = "treatment", ylab = "partial effect") ## partial effects of karnofsky score on survival karno <- quantile(v.obj$xvar$karno) partial.obj <- partial(v.obj, partial.type = "surv", partial.xvar = "karno", partial.values = karno, partial.time = v.obj$time.interest) pdta <- get.partial.plot.data(partial.obj) matplot(pdta$partial.time, t(pdta$yhat), type = "l", lty = 1, xlab = "time", ylab = "karnofsky adjusted survival") legend("topright", legend = paste0("karnofsky = ", karno), fill = 1:5) ## ------------------------------------------------------------ ## ## competing risk ## ## ------------------------------------------------------------ data(follic, package = "randomForestSRC") follic.obj <- rfsrc(Surv(time, status) ~ ., follic, nsplit = 3, ntree = 100) ## partial effect of age on years lost partial.obj <- partial(follic.obj, partial.type = "years.lost", partial.xvar = "age", partial.values = follic.obj$xvar$age, partial.time = follic.obj$time.interest) pdta1 <- get.partial.plot.data(partial.obj, target = 1) pdta2 <- get.partial.plot.data(partial.obj, target = 2) par(mfrow=c(2,2)) plot(lowess(pdta1$x, pdta1$yhat), type = "l", xlab = "age", ylab = "adjusted years lost relapse") plot(lowess(pdta2$x, pdta2$yhat), type = "l", xlab = "age", ylab = "adjusted years lost death") ## partial effect of age on cif partial.obj <- partial(follic.obj, partial.type = "cif", partial.xvar = "age", partial.values = quantile(follic.obj$xvar$age), partial.time = follic.obj$time.interest) pdta1 <- get.partial.plot.data(partial.obj, target = 1) pdta2 <- get.partial.plot.data(partial.obj, target = 2) matplot(pdta1$partial.time, t(pdta1$yhat), type = "l", lty = 1, xlab = "time", ylab = "age adjusted cif for relapse") matplot(pdta2$partial.time, t(pdta2$yhat), type = "l", lty = 1, xlab = "time", ylab = "age adjusted cif for death") ## ------------------------------------------------------------ ## ## multivariate mixed outcomes ## ## ------------------------------------------------------------ mtcars2 <- mtcars mtcars2$carb <- factor(mtcars2$carb) mtcars2$cyl <- factor(mtcars2$cyl) mtcars.mix <- rfsrc(Multivar(carb, mpg, cyl) ~ ., data = mtcars2) ## partial effect of displacement for each the three-outcomes partial.obj <- partial(mtcars.mix, partial.xvar = "disp", partial.values = mtcars.mix$xvar$disp) pdta1 <- get.partial.plot.data(partial.obj, m.target = "carb") pdta2 <- get.partial.plot.data(partial.obj, m.target = "mpg") pdta3 <- get.partial.plot.data(partial.obj, m.target = "cyl") par(mfrow=c(2,2)) plot(lowess(pdta1$x, pdta1$yhat), type = "l", xlab="displacement", ylab="carb") plot(lowess(pdta2$x, pdta2$yhat), type = "l", xlab="displacement", ylab="mpg") plot(lowess(pdta3$x, pdta3$yhat), type = "l", xlab="displacement", ylab="cyl")
## ------------------------------------------------------------ ## ## regression ## ## ------------------------------------------------------------ airq.obj <- rfsrc(Ozone ~ ., data = airquality) ## partial effect for wind partial.obj <- partial(airq.obj, partial.xvar = "Wind", partial.values = airq.obj$xvar$Wind) pdta <- get.partial.plot.data(partial.obj) ## plot partial values plot(pdta$x, pdta$yhat, type = "b", pch = 16, xlab = "wind", ylab = "partial effect of wind") ## example where we display all the partial effects ## instead of averaging - use the granule=TRUE option pdta <- get.partial.plot.data(partial.obj, granule = TRUE) boxplot(pdta$yhat ~ pdta$x, xlab = "Wind", ylab = "partial effect") ## ------------------------------------------------------------ ## ## regression: partial effects for two variables simultaneously ## ## ------------------------------------------------------------ airq.obj <- rfsrc(Ozone ~ ., data = airquality) ## specify wind and temperature values of interest wind <- sort(unique(airq.obj$xvar$Wind)) temp <- sort(unique(airq.obj$xvar$Temp)) ## partial effect for wind, for a given temp pdta <- do.call(rbind, lapply(temp, function(x2) { o <- partial(airq.obj, partial.xvar = "Wind", partial.xvar2 = "Temp", partial.values = wind, partial.values2 = x2) cbind(wind, x2, get.partial.plot.data(o)$yhat) })) pdta <- data.frame(pdta) colnames(pdta) <- c("wind", "temp", "effectSize") ## coplot of partial effect of wind and temp coplot(effectSize ~ wind|temp, pdta, pch = 16, overlap = 0) ## ------------------------------------------------------------ ## ## regression: partial effects for three variables simultaneously ## (can be slow, so modify accordingly) ## ## ------------------------------------------------------------ n <- 1000 x <- matrix(rnorm(n * 3), ncol = 3) y <- x[, 1] + x[, 1] * x[, 2] + x[, 1] * x[, 2] * x[, 3] o <- rfsrc(y ~ ., data = data.frame(y = y, x)) ## define target x values x1 <- seq(-3, 3, length = 40) x2 <- x3 <- seq(-3, 3, length = 10) ## extract second order partial effects pdta <- do.call(rbind, lapply(x3, function(x3v) { cat("outer loop x3 = ", x3v, "\n") do.call(rbind,lapply(x2, function(x2v) { o <- partial(o, partial.xvar = "X1", partial.values = x1, partial.xvar2 = c("X2", "X3"), partial.values2 = c(x2v, x3v)) cbind(x1, x2v, x3v, get.partial.plot.data(o)$yhat) })) })) pdta <- data.frame(pdta) colnames(pdta) <- c("x1", "x2", "x3", "effectSize") ## coplot of partial effects coplot(effectSize ~ x1|x2*x3, pdta, pch = 16, overlap = 0) ## ------------------------------------------------------------ ## ## classification ## ## ------------------------------------------------------------ iris.obj <- rfsrc(Species ~., data = iris) ## partial effect for sepal length partial.obj <- partial(iris.obj, partial.xvar = "Sepal.Length", partial.values = iris.obj$xvar$Sepal.Length) ## extract partial effects for each species outcome pdta1 <- get.partial.plot.data(partial.obj, target = "setosa") pdta2 <- get.partial.plot.data(partial.obj, target = "versicolor") pdta3 <- get.partial.plot.data(partial.obj, target = "virginica") ## plot the results par(mfrow=c(1,1)) plot(pdta1$x, pdta1$yhat, type="b", pch = 16, xlab = "sepal length", ylab = "adjusted probability", ylim = range(pdta1$yhat,pdta2$yhat,pdta3$yhat)) points(pdta2$x, pdta2$yhat, col = 2, type = "b", pch = 16) points(pdta3$x, pdta3$yhat, col = 4, type = "b", pch = 16) legend("topleft", legend=levels(iris.obj$yvar), fill = c(1, 2, 4)) ## ------------------------------------------------------------ ## ## survival ## ## ------------------------------------------------------------ data(veteran, package = "randomForestSRC") v.obj <- rfsrc(Surv(time,status)~., veteran, nsplit = 10, ntree = 100) ## partial effect of age on mortality partial.obj <- partial(v.obj, partial.type = "mort", partial.xvar = "age", partial.values = v.obj$xvar$age, partial.time = v.obj$time.interest) pdta <- get.partial.plot.data(partial.obj) plot(lowess(pdta$x, pdta$yhat, f = 1/3), type = "l", xlab = "age", ylab = "adjusted mortality") ## example where x is discrete - partial effect of age on mortality ## we use the granule=TRUE option partial.obj <- partial(v.obj, partial.type = "mort", partial.xvar = "trt", partial.values = v.obj$xvar$trt, partial.time = v.obj$time.interest) pdta <- get.partial.plot.data(partial.obj, granule = TRUE) boxplot(pdta$yhat ~ pdta$x, xlab = "treatment", ylab = "partial effect") ## partial effects of karnofsky score on survival karno <- quantile(v.obj$xvar$karno) partial.obj <- partial(v.obj, partial.type = "surv", partial.xvar = "karno", partial.values = karno, partial.time = v.obj$time.interest) pdta <- get.partial.plot.data(partial.obj) matplot(pdta$partial.time, t(pdta$yhat), type = "l", lty = 1, xlab = "time", ylab = "karnofsky adjusted survival") legend("topright", legend = paste0("karnofsky = ", karno), fill = 1:5) ## ------------------------------------------------------------ ## ## competing risk ## ## ------------------------------------------------------------ data(follic, package = "randomForestSRC") follic.obj <- rfsrc(Surv(time, status) ~ ., follic, nsplit = 3, ntree = 100) ## partial effect of age on years lost partial.obj <- partial(follic.obj, partial.type = "years.lost", partial.xvar = "age", partial.values = follic.obj$xvar$age, partial.time = follic.obj$time.interest) pdta1 <- get.partial.plot.data(partial.obj, target = 1) pdta2 <- get.partial.plot.data(partial.obj, target = 2) par(mfrow=c(2,2)) plot(lowess(pdta1$x, pdta1$yhat), type = "l", xlab = "age", ylab = "adjusted years lost relapse") plot(lowess(pdta2$x, pdta2$yhat), type = "l", xlab = "age", ylab = "adjusted years lost death") ## partial effect of age on cif partial.obj <- partial(follic.obj, partial.type = "cif", partial.xvar = "age", partial.values = quantile(follic.obj$xvar$age), partial.time = follic.obj$time.interest) pdta1 <- get.partial.plot.data(partial.obj, target = 1) pdta2 <- get.partial.plot.data(partial.obj, target = 2) matplot(pdta1$partial.time, t(pdta1$yhat), type = "l", lty = 1, xlab = "time", ylab = "age adjusted cif for relapse") matplot(pdta2$partial.time, t(pdta2$yhat), type = "l", lty = 1, xlab = "time", ylab = "age adjusted cif for death") ## ------------------------------------------------------------ ## ## multivariate mixed outcomes ## ## ------------------------------------------------------------ mtcars2 <- mtcars mtcars2$carb <- factor(mtcars2$carb) mtcars2$cyl <- factor(mtcars2$cyl) mtcars.mix <- rfsrc(Multivar(carb, mpg, cyl) ~ ., data = mtcars2) ## partial effect of displacement for each the three-outcomes partial.obj <- partial(mtcars.mix, partial.xvar = "disp", partial.values = mtcars.mix$xvar$disp) pdta1 <- get.partial.plot.data(partial.obj, m.target = "carb") pdta2 <- get.partial.plot.data(partial.obj, m.target = "mpg") pdta3 <- get.partial.plot.data(partial.obj, m.target = "cyl") par(mfrow=c(2,2)) plot(lowess(pdta1$x, pdta1$yhat), type = "l", xlab="displacement", ylab="carb") plot(lowess(pdta2$x, pdta2$yhat), type = "l", xlab="displacement", ylab="mpg") plot(lowess(pdta3$x, pdta3$yhat), type = "l", xlab="displacement", ylab="cyl")
Data from the Mayo Clinic trial in primary biliary cirrhosis (PBC) of the liver conducted between 1974 and 1984. A total of 424 PBC patients, referred to Mayo Clinic during that ten-year interval, met eligibility criteria for the randomized placebo controlled trial of the drug D-penicillamine. The first 312 cases in the data set participated in the randomized trial and contain largely complete data.
Flemming and Harrington, 1991, Appendix D.1.
Flemming T.R and Harrington D.P., (1991) Counting Processes and Survival Analysis. New York: Wiley.
data(pbc, package = "randomForestSRC") pbc.obj <- rfsrc(Surv(days, status) ~ ., pbc, nsplit = 3)
data(pbc, package = "randomForestSRC") pbc.obj <- rfsrc(Surv(days, status) ~ ., pbc, nsplit = 3)
The data involve 2231 patients with systolic heart failure who underwent cardiopulmonary stress testing at the Cleveland Clinic. The primary end point was all-cause death. In total, 39 variables were measured for each patient, including baseline clinical values and exercise stress test results. A key variable of interest is peak VO2 (mL/kg per min), the peak respiratory exchange ratio. More details regarding the data can be found in Hsich et al. (2011).
Hsich E., Gorodeski E.Z.,Blackstone E.H., Ishwaran H. and Lauer M.S. (2011). Identifying important risk factors for survival in systolic heart failure patients using random survival forests. Circulation: Cardio. Qual. Outcomes, 4(1), 39-45.
## load the data data(peakVO2, package = "randomForestSRC") ## random survival forest analysis o <- rfsrc(Surv(ttodead, died)~., peakVO2) print(o) ## partial effect of peak V02 on mortality partial.o <- partial(o, partial.type = "mort", partial.xvar = "peak.vo2", partial.values = o$xvar$peak.vo2, partial.time = o$time.interest) pdta.m <- get.partial.plot.data(partial.o) ## partial effect of peak V02 on survival pvo2 <- quantile(o$xvar$peak.vo2) partial.o <- partial(o, partial.type = "surv", partial.xvar = "peak.vo2", partial.values = pvo2, partial.time = o$time.interest) pdta.s <- get.partial.plot.data(partial.o) ## compare the two plots par(mfrow=c(1,2)) plot(lowess(pdta.m$x, pdta.m$yhat, f = 2/3), type = "l", xlab = "peak VO2", ylab = "adjusted mortality") rug(o$xvar$peak.vo2) matplot(pdta.s$partial.time, t(pdta.s$yhat), type = "l", lty = 1, xlab = "years", ylab = "peak VO2 adjusted survival") legend("bottomleft", legend = paste0("peak VO2 = ", pvo2), bty = "n", cex = .75, fill = 1:5)
## load the data data(peakVO2, package = "randomForestSRC") ## random survival forest analysis o <- rfsrc(Surv(ttodead, died)~., peakVO2) print(o) ## partial effect of peak V02 on mortality partial.o <- partial(o, partial.type = "mort", partial.xvar = "peak.vo2", partial.values = o$xvar$peak.vo2, partial.time = o$time.interest) pdta.m <- get.partial.plot.data(partial.o) ## partial effect of peak V02 on survival pvo2 <- quantile(o$xvar$peak.vo2) partial.o <- partial(o, partial.type = "surv", partial.xvar = "peak.vo2", partial.values = pvo2, partial.time = o$time.interest) pdta.s <- get.partial.plot.data(partial.o) ## compare the two plots par(mfrow=c(1,2)) plot(lowess(pdta.m$x, pdta.m$yhat, f = 2/3), type = "l", xlab = "peak VO2", ylab = "adjusted mortality") rug(o$xvar$peak.vo2) matplot(pdta.s$partial.time, t(pdta.s$yhat), type = "l", lty = 1, xlab = "years", ylab = "peak VO2 adjusted survival") legend("bottomleft", legend = paste0("peak VO2 = ", pvo2), bty = "n", cex = .75, fill = 1:5)
Plot useful summary curves from a random survival forest competing risk analysis.
## S3 method for class 'rfsrc' plot.competing.risk(x, plots.one.page = FALSE, ...)
## S3 method for class 'rfsrc' plot.competing.risk(x, plots.one.page = FALSE, ...)
x |
An object of class |
plots.one.page |
Should plots be placed on one page? |
... |
Further arguments passed to or from other methods. |
Given a random survival forest object from a competing risk analysis (Ishwaran et al. 2014), plots from top to bottom, left to right: (1) cause-specific cumulative hazard function (CSCHF) for each event, (2) cumulative incidence function (CIF) for each event, and (3) continuous probability curves (CPC) for each event (Pepe and Mori, 1993).
Does not apply to right-censored data. Whenever possible, out-of-bag (OOB) values are displayed.
Hemant Ishwaran and Udaya B. Kogalur
Ishwaran H., Gerds T.A., Kogalur U.B., Moore R.D., Gange S.J. and Lau B.M. (2014). Random survival forests for competing risks. Biostatistics, 15(4):757-773.
Pepe, M.S. and Mori, M., (1993). Kaplan-Meier, marginal or conditional probability curves in summarizing competing risks failure time data? Statistics in Medicine, 12(8):737-751.
## ------------------------------------------------------------ ## follicular cell lymphoma ## ------------------------------------------------------------ data(follic, package = "randomForestSRC") follic.obj <- rfsrc(Surv(time, status) ~ ., follic, nsplit = 3, ntree = 100) print(follic.obj) plot.competing.risk(follic.obj) ## ------------------------------------------------------------ ## Hodgkin's Disease ## ------------------------------------------------------------ data(hd, package = "randomForestSRC") hd.obj <- rfsrc(Surv(time, status) ~ ., hd, nsplit = 3, ntree = 100) print(hd.obj) plot.competing.risk(hd.obj) ## ------------------------------------------------------------ ## competing risk analysis of pbc data from the survival package ## events are transplant (1) and death (2) ## ------------------------------------------------------------ if (library("survival", logical.return = TRUE)) { data(pbc, package = "survival") pbc$id <- NULL plot.competing.risk(rfsrc(Surv(time, status) ~ ., pbc)) }
## ------------------------------------------------------------ ## follicular cell lymphoma ## ------------------------------------------------------------ data(follic, package = "randomForestSRC") follic.obj <- rfsrc(Surv(time, status) ~ ., follic, nsplit = 3, ntree = 100) print(follic.obj) plot.competing.risk(follic.obj) ## ------------------------------------------------------------ ## Hodgkin's Disease ## ------------------------------------------------------------ data(hd, package = "randomForestSRC") hd.obj <- rfsrc(Surv(time, status) ~ ., hd, nsplit = 3, ntree = 100) print(hd.obj) plot.competing.risk(hd.obj) ## ------------------------------------------------------------ ## competing risk analysis of pbc data from the survival package ## events are transplant (1) and death (2) ## ------------------------------------------------------------ if (library("survival", logical.return = TRUE)) { data(pbc, package = "survival") pbc$id <- NULL plot.competing.risk(rfsrc(Surv(time, status) ~ ., pbc)) }
Plots quantiles obtained from a quantile regression forest. Additionally insets the continuous rank probability score (crps), a useful diagnostic of accuracy.
## S3 method for class 'rfsrc' plot.quantreg(x, prbL = .25, prbU = .75, m.target = NULL, crps = TRUE, subset = NULL, xlab = NULL, ylab = NULL, ...)
## S3 method for class 'rfsrc' plot.quantreg(x, prbL = .25, prbU = .75, m.target = NULL, crps = TRUE, subset = NULL, xlab = NULL, ylab = NULL, ...)
x |
A quantile regression object obtained from calling |
prbL |
Lower quantile (preferably < .5). |
prbU |
Upper quantile (preferably > .5). |
m.target |
Character value for multivariate families specifying the target outcome to be used. If left unspecified, the algorithm will choose a default target. |
crps |
Calculate crps and inset it? |
subset |
Restricts plotted values to a subset of the data. Default is to use the entire data. |
xlab |
Horizontal axis label. |
ylab |
Vertical axis label. |
... |
Further arguments passed to or from other methods. |
Hemant Ishwaran and Udaya B. Kogalur
Plot out-of-bag (OOB) error rates and variable importance (VIMP) from a RF-SRC analysis. This is the default plot method for the package.
## S3 method for class 'rfsrc' plot(x, m.target = NULL, plots.one.page = TRUE, sorted = TRUE, verbose = TRUE, ...)
## S3 method for class 'rfsrc' plot(x, m.target = NULL, plots.one.page = TRUE, sorted = TRUE, verbose = TRUE, ...)
x |
An object of class |
m.target |
Character value for multivariate families specifying the target outcome to be used. If left unspecified, the algorithm will choose a default target. |
plots.one.page |
Should plots be placed on one page? |
sorted |
Should variables be sorted by importance values? |
verbose |
Should VIMP be printed? |
... |
Further arguments passed to or from other methods. |
Plot cumulative OOB error rates as a function of number of trees and
variable importance (VIMP) if available. Note that the default
settings are now such that the error rate is no longer calculated on
every tree and VIMP is only calculated if requested. To get OOB error
rates for ever tree, use the option block.size = 1
when
growing or restoring the forest. Likewise, to view VIMP, use the option
importance
when growing or restoring the forest.
Hemant Ishwaran and Udaya B. Kogalur
Breiman L. (2001). Random forests, Machine Learning, 45:5-32.
Ishwaran H. and Kogalur U.B. (2007). Random survival forests for R, Rnews, 7(2):25-31.
## ------------------------------------------------------------ ## classification example ## ------------------------------------------------------------ iris.obj <- rfsrc(Species ~ ., data = iris, block.size = 1, importance = TRUE) plot(iris.obj) ## ------------------------------------------------------------ ## competing risk example ## ------------------------------------------------------------ ## use the pbc data from the survival package ## events are transplant (1) and death (2) if (library("survival", logical.return = TRUE)) { data(pbc, package = "survival") pbc$id <- NULL plot(rfsrc(Surv(time, status) ~ ., pbc, block.size = 1)) } ## ------------------------------------------------------------ ## multivariate mixed forests ## ------------------------------------------------------------ mtcars.new <- mtcars mtcars.new$cyl <- factor(mtcars.new$cyl) mtcars.new$carb <- factor(mtcars.new$carb, ordered = TRUE) mv.obj <- rfsrc(cbind(carb, mpg, cyl) ~., data = mtcars.new, block.size = 1) plot(mv.obj, m.target = "carb") plot(mv.obj, m.target = "mpg") plot(mv.obj, m.target = "cyl")
## ------------------------------------------------------------ ## classification example ## ------------------------------------------------------------ iris.obj <- rfsrc(Species ~ ., data = iris, block.size = 1, importance = TRUE) plot(iris.obj) ## ------------------------------------------------------------ ## competing risk example ## ------------------------------------------------------------ ## use the pbc data from the survival package ## events are transplant (1) and death (2) if (library("survival", logical.return = TRUE)) { data(pbc, package = "survival") pbc$id <- NULL plot(rfsrc(Surv(time, status) ~ ., pbc, block.size = 1)) } ## ------------------------------------------------------------ ## multivariate mixed forests ## ------------------------------------------------------------ mtcars.new <- mtcars mtcars.new$cyl <- factor(mtcars.new$cyl) mtcars.new$carb <- factor(mtcars.new$carb, ordered = TRUE) mv.obj <- rfsrc(cbind(carb, mpg, cyl) ~., data = mtcars.new, block.size = 1) plot(mv.obj, m.target = "carb") plot(mv.obj, m.target = "mpg") plot(mv.obj, m.target = "cyl")
Plots VIMP (variable importance) confidence regions obtained from subsampling a forest.
## S3 method for class 'rfsrc' plot.subsample(x, alpha = .01, xvar.names, standardize = TRUE, normal = TRUE, jknife = FALSE, target, m.target = NULL, pmax = 75, main = "", sorted = TRUE, show.plots = TRUE, ...)
## S3 method for class 'rfsrc' plot.subsample(x, alpha = .01, xvar.names, standardize = TRUE, normal = TRUE, jknife = FALSE, target, m.target = NULL, pmax = 75, main = "", sorted = TRUE, show.plots = TRUE, ...)
x |
An object obtained from calling |
alpha |
Desired level of significance. |
xvar.names |
Names of the x-variables to be used. If not specified all variables used. |
standardize |
Standardize VIMP? For regression families, VIMP is standardized by dividing by the variance. For all other families, VIMP is unaltered. |
normal |
Use parametric normal confidence regions or nonparametric regions? Generally, parametric regions perform better. |
jknife |
Use the delete-d jackknife variance estimator? |
target |
For classification families, an integer or character
value specifying the class VIMP will be conditioned on (default is
to use unconditional VIMP). For competing risk families, an integer
value between 1 and |
m.target |
Character value for multivariate families specifying the target outcome to be used. If left unspecified, the algorithm will choose a default target. |
pmax |
Trims the data to this number of variables (sorted by VIMP). |
main |
Title used for plot. |
sorted |
Should variables be sorted by importance values? |
show.plots |
Should plots be displayed? Allows users to produce their own custom plots. |
... |
Further arguments that can be passed to |
Most of the options used by the R function bxp will work here and can be used for customization of plots. Currently the following parameters will work:
"xaxt", "yaxt", "las", "cex.axis", "col.axis", "cex.main", "col.main", "sub", "cex.sub", "col.sub", "ylab", "cex.lab", "col.lab"
Invisibly, returns the boxplot data that is plotted.
Hemant Ishwaran and Udaya B. Kogalur
Ishwaran H. and Lu M. (2017). Standard errors and confidence intervals for variable importance in random forest regression, classification, and survival.
Politis, D.N. and Romano, J.P. (1994). Large sample confidence regions based on subsamples under minimal assumptions. The Annals of Statistics, 22(4):2031-2050.
Shao, J. and Wu, C.J. (1989). A general theory for jackknife variance estimation. The Annals of Statistics, 17(3):1176-1197.
o <- rfsrc(Ozone ~ ., airquality) oo <- subsample(o) plot.subsample(oo) plot.subsample(oo, xvar.names = o$xvar.names[1:3]) plot.subsample(oo, jknife = FALSE) plot.subsample(oo, alpha = .01) plot(oo,cex.axis=.5)
o <- rfsrc(Ozone ~ ., airquality) oo <- subsample(o) plot.subsample(oo) plot.subsample(oo, xvar.names = o$xvar.names[1:3]) plot.subsample(oo, jknife = FALSE) plot.subsample(oo, alpha = .01) plot(oo,cex.axis=.5)
Plot various survival estimates.
## S3 method for class 'rfsrc' plot.survival(x, show.plots = TRUE, subset, collapse = FALSE, cens.model = c("km", "rfsrc"), ...)
## S3 method for class 'rfsrc' plot.survival(x, show.plots = TRUE, subset, collapse = FALSE, cens.model = c("km", "rfsrc"), ...)
x |
An object of class |
show.plots |
Should plots be displayed? |
subset |
Vector indicating which cases from |
collapse |
Collapse the survival function? |
cens.model |
Using the training data, specifies method for estimating the censoring distribution used in the inverse probability of censoring weights (IPCW) for calculating the Brier score:
|
... |
Further arguments passed to or from other methods. |
Produces the following plots (going from top to bottom, left to right):
Forest estimated survival function for each individual (thick red line is overall ensemble survival, thick green line is Nelson-Aalen estimator).
Brier score (0=perfect, 1=poor, and 0.25=guessing) stratified by ensemble mortality. Based on the IPCW method described in Gerds et al. (2006). Stratification is into 4 groups corresponding to the 0-25, 25-50, 50-75 and 75-100 percentile values of mortality. Red line is overall (non-stratified) Brier score.
Continuous rank probability score (CRPS) equal to the integrated Brier score divided by time.
Plot of mortality of each individual versus observed time. Points in blue correspond to events, black points are censored observations. Not given for prediction settings lacking survival response information.
Whenever possible, out-of-bag (OOB) values are used.
Only applies to survival families. In particular, fails for competing
risk analyses. Use plot.competing.risk
in such cases.
Mortality (Ishwaran et al., 2008) represents estimated risk for an individual calibrated to the scale of number of events (as a specific example, if i has a mortality value of 100, then if all individuals had the same x-values as i, we would expect an average of 100 events).
The utility function get.brier.survival
can be used to extract
the Brier score among other useful quantities.
Invisibly, the conditional and unconditional Brier scores, and the integrated Brier score.
Hemant Ishwaran and Udaya B. Kogalur
Gerds T.A and Schumacher M. (2006). Consistent estimation of the expected Brier score in general survival models with right-censored event times, Biometrical J., 6:1029-1040.
Graf E., Schmoor C., Sauerbrei W. and Schumacher M. (1999). Assessment and comparison of prognostic classification schemes for survival data, Statist. in Medicine, 18:2529-2545.
Ishwaran H. and Kogalur U.B. (2007). Random survival forests for R, Rnews, 7(2):25-31.
Ishwaran H., Kogalur U.B., Blackstone E.H. and Lauer M.S. (2008). Random survival forests, Ann. App. Statist., 2:841-860.
plot.competing.risk.rfsrc
,
predict.rfsrc
,
rfsrc
## veteran data data(veteran, package = "randomForestSRC") plot.survival(rfsrc(Surv(time, status)~ ., veteran), cens.model = "rfsrc") ## pbc data data(pbc, package = "randomForestSRC") pbc.obj <- rfsrc(Surv(days, status) ~ ., pbc) ## use subset to focus on specific individuals plot.survival(pbc.obj, subset = 3) plot.survival(pbc.obj, subset = c(3, 10)) plot.survival(pbc.obj, subset = c(3, 10), collapse = TRUE) ## get.brier.survival function does many nice things! plot(get.brier.survival(pbc.obj, cens.model="km")$brier.score,type="s", col=2) lines(get.brier.survival(pbc.obj, cens.model="rfsrc")$brier.score, type="s", col=4) legend("bottomright", legend=c("cens.model = km", "cens.model = rfsrc"), fill=c(2,4))
## veteran data data(veteran, package = "randomForestSRC") plot.survival(rfsrc(Surv(time, status)~ ., veteran), cens.model = "rfsrc") ## pbc data data(pbc, package = "randomForestSRC") pbc.obj <- rfsrc(Surv(days, status) ~ ., pbc) ## use subset to focus on specific individuals plot.survival(pbc.obj, subset = 3) plot.survival(pbc.obj, subset = c(3, 10)) plot.survival(pbc.obj, subset = c(3, 10), collapse = TRUE) ## get.brier.survival function does many nice things! plot(get.brier.survival(pbc.obj, cens.model="km")$brier.score,type="s", col=2) lines(get.brier.survival(pbc.obj, cens.model="rfsrc")$brier.score, type="s", col=4) legend("bottomright", legend=c("cens.model = km", "cens.model = rfsrc"), fill=c(2,4))
Plot the marginal effect of an x-variable on the class probability (classification), response (regression), mortality (survival), or the expected years lost (competing risk). Users can select between marginal (unadjusted, but fast) and partial plots (adjusted, but slower).
## S3 method for class 'rfsrc' plot.variable(x, xvar.names, target, m.target = NULL, time, surv.type = c("mort", "rel.freq", "surv", "years.lost", "cif", "chf"), class.type = c("prob", "bayes"), partial = FALSE, oob = TRUE, show.plots = TRUE, plots.per.page = 4, granule = 5, sorted = TRUE, nvar, npts = 25, smooth.lines = FALSE, subset, ...)
## S3 method for class 'rfsrc' plot.variable(x, xvar.names, target, m.target = NULL, time, surv.type = c("mort", "rel.freq", "surv", "years.lost", "cif", "chf"), class.type = c("prob", "bayes"), partial = FALSE, oob = TRUE, show.plots = TRUE, plots.per.page = 4, granule = 5, sorted = TRUE, nvar, npts = 25, smooth.lines = FALSE, subset, ...)
x |
An object of class |
xvar.names |
Names of the x-variables to be used. If not supplied all variables will be used. |
target |
For classification, an integer or
character value specifying the class to focus on (defaults to the
first class). For competing risks, an integer value between
1 and |
m.target |
Character value for multivariate families specifying the target outcome to be used. If left unspecified, the algorithm will choose a default target. |
time |
For survival, the time at which the predicted
survival value is evaluated at (depends on |
surv.type |
For survival, specifies the predicted value. See details below. |
class.type |
For classification, specifies the predicted value. See details below. |
partial |
Should partial plots be used? |
oob |
OOB (TRUE) or in-bag (FALSE) predicted values. |
show.plots |
Should plots be displayed? |
plots.per.page |
Integer value controlling page layout. |
granule |
Integer value controlling whether a plot for a specific variable should be treated as a factor and therefore given as a boxplot. Larger values coerce boxplots. |
sorted |
Should variables be sorted by importance values. |
nvar |
Number of variables to be plotted. Default is all. |
npts |
Maximum number of points used when generating partial plots for continuous variables. |
smooth.lines |
Use lowess to smooth partial plots. |
subset |
Vector indicating which rows of the x-variable matrix
|
... |
Further arguments passed to or from other methods. |
The vertical axis displays the ensemble predicted value, while x-variables are plotted on the horizontal axis.
For regression, the predicted response is used.
For classification, it is the predicted class probability specified by target, or the class of maximum probability depending on class.type is set to "prob" or "bayes".
For multivariate families, it is the predicted value of the outcome specified by m.target and if that is a classification outcome, by target.
For survival, the choices are:
Mortality (mort
). Mortality (Ishwaran et al.,
2008) represents estimated risk for an individual
calibrated to the scale of number of events (as a
specific example, if i has a mortality value of
100, then if all individuals had the same x-values as
i, we would expect an average of 100 events).
Relative frequency of mortality (rel.freq
).
Predicted survival (surv
), where the predicted
survival is for the time point specified using
time
(the default is the median follow up
time).
For competing risks, the choices are:
The expected number of life years lost (years.lost
).
The cumulative incidence function (cif
).
The cumulative hazard function (chf
).
In all three cases, the predicted value is for the event type
specified by target. For cif
and
chf
the quantity is evaluated at the time point specified
by time
.
For partial plots use partial=TRUE. Their interpretation are
different than marginal plots. The y-value for a variable ,
evaluated at
, is
where represents the value for all other variables
other than
for individual
and
is the
predicted value. Generating partial plots can be very slow.
Choosing a small value for
npts
can speed up computational
times as this restricts the number of distinct values used
in computing
.
For continuous variables, red points are used to indicate partial values and dashed red lines indicate a smoothed error bar of +/- two standard errors. Black dashed line are the partial values. Set smooth.lines=TRUE for lowess smoothed lines. For discrete variables, partial values are indicated using boxplots with whiskers extending out approximately two standard errors from the mean. Standard errors are meant only to be a guide and should be interpreted with caution.
Partial plots can be slow. Setting npts to a smaller number can help.
For greater customization and computational speed for partial plot calls,
consider using the function partial.rfsrc
which provides a
direct interface for calculating partial plot data.
Hemant Ishwaran and Udaya B. Kogalur
Friedman J.H. (2001). Greedy function approximation: a gradient boosting machine, Ann. of Statist., 5:1189-1232.
Ishwaran H., Kogalur U.B. (2007). Random survival forests for R, Rnews, 7(2):25-31.
Ishwaran H., Kogalur U.B., Blackstone E.H. and Lauer M.S. (2008). Random survival forests, Ann. App. Statist., 2:841-860.
Ishwaran H., Gerds T.A., Kogalur U.B., Moore R.D., Gange S.J. and Lau B.M. (2014). Random survival forests for competing risks. Biostatistics, 15(4):757-773.
rfsrc
,
synthetic.rfsrc
,
partial.rfsrc
,
predict.rfsrc
## ------------------------------------------------------------ ## survival/competing risk ## ------------------------------------------------------------ ## survival data(veteran, package = "randomForestSRC") v.obj <- rfsrc(Surv(time,status)~., veteran, ntree = 100) plot.variable(v.obj, plots.per.page = 3) plot.variable(v.obj, plots.per.page = 2, xvar.names = c("trt", "karno", "age")) plot.variable(v.obj, surv.type = "surv", nvar = 1, time = 200) plot.variable(v.obj, surv.type = "surv", partial = TRUE, smooth.lines = TRUE) plot.variable(v.obj, surv.type = "rel.freq", partial = TRUE, nvar = 2) ## example of plot.variable calling a pre-processed plot.variable object p.v <- plot.variable(v.obj, surv.type = "surv", partial = TRUE, smooth.lines = TRUE) plot.variable(p.v) p.v$plots.per.page <- 1 p.v$smooth.lines <- FALSE plot.variable(p.v) ## example using a pre-processed plot.variable to define custom plots p.v <- plot.variable(v.obj, surv.type = "surv", partial = TRUE, show.plots = FALSE) plotthis <- p.v$plotthis plot(plotthis[["age"]], xlab = "age", ylab = "partial effect", type = "b") boxplot(yhat ~ x, plotthis[["trt"]], xlab = "treatment", ylab = "partial effect") ## competing risks data(follic, package = "randomForestSRC") follic.obj <- rfsrc(Surv(time, status) ~ ., follic, nsplit = 3, ntree = 100) plot.variable(follic.obj, target = 2) ## ------------------------------------------------------------ ## regression ## ------------------------------------------------------------ ## airquality airq.obj <- rfsrc(Ozone ~ ., data = airquality) plot.variable(airq.obj, partial = TRUE, smooth.lines = TRUE) plot.variable(airq.obj, partial = TRUE, subset = airq.obj$xvar$Solar.R < 200) ## motor trend cars mtcars.obj <- rfsrc(mpg ~ ., data = mtcars) plot.variable(mtcars.obj, partial = TRUE, smooth.lines = TRUE) ## ------------------------------------------------------------ ## classification ## ------------------------------------------------------------ ## iris iris.obj <- rfsrc(Species ~., data = iris) plot.variable(iris.obj, partial = TRUE) ## motor trend cars: predict number of carburetors mtcars2 <- mtcars mtcars2$carb <- factor(mtcars2$carb, labels = paste("carb", sort(unique(mtcars$carb)))) mtcars2.obj <- rfsrc(carb ~ ., data = mtcars2) plot.variable(mtcars2.obj, partial = TRUE) ## ------------------------------------------------------------ ## multivariate regression ## ------------------------------------------------------------ mtcars.mreg <- rfsrc(Multivar(mpg, cyl) ~., data = mtcars) plot.variable(mtcars.mreg, m.target = "mpg", partial = TRUE, nvar = 1) plot.variable(mtcars.mreg, m.target = "cyl", partial = TRUE, nvar = 1) ## ------------------------------------------------------------ ## multivariate mixed outcomes ## ------------------------------------------------------------ mtcars2 <- mtcars mtcars2$carb <- factor(mtcars2$carb) mtcars2$cyl <- factor(mtcars2$cyl) mtcars.mix <- rfsrc(Multivar(carb, mpg, cyl) ~ ., data = mtcars2) plot.variable(mtcars.mix, m.target = "cyl", target = "4", partial = TRUE, nvar = 1) plot.variable(mtcars.mix, m.target = "cyl", target = 2, partial = TRUE, nvar = 1)
## ------------------------------------------------------------ ## survival/competing risk ## ------------------------------------------------------------ ## survival data(veteran, package = "randomForestSRC") v.obj <- rfsrc(Surv(time,status)~., veteran, ntree = 100) plot.variable(v.obj, plots.per.page = 3) plot.variable(v.obj, plots.per.page = 2, xvar.names = c("trt", "karno", "age")) plot.variable(v.obj, surv.type = "surv", nvar = 1, time = 200) plot.variable(v.obj, surv.type = "surv", partial = TRUE, smooth.lines = TRUE) plot.variable(v.obj, surv.type = "rel.freq", partial = TRUE, nvar = 2) ## example of plot.variable calling a pre-processed plot.variable object p.v <- plot.variable(v.obj, surv.type = "surv", partial = TRUE, smooth.lines = TRUE) plot.variable(p.v) p.v$plots.per.page <- 1 p.v$smooth.lines <- FALSE plot.variable(p.v) ## example using a pre-processed plot.variable to define custom plots p.v <- plot.variable(v.obj, surv.type = "surv", partial = TRUE, show.plots = FALSE) plotthis <- p.v$plotthis plot(plotthis[["age"]], xlab = "age", ylab = "partial effect", type = "b") boxplot(yhat ~ x, plotthis[["trt"]], xlab = "treatment", ylab = "partial effect") ## competing risks data(follic, package = "randomForestSRC") follic.obj <- rfsrc(Surv(time, status) ~ ., follic, nsplit = 3, ntree = 100) plot.variable(follic.obj, target = 2) ## ------------------------------------------------------------ ## regression ## ------------------------------------------------------------ ## airquality airq.obj <- rfsrc(Ozone ~ ., data = airquality) plot.variable(airq.obj, partial = TRUE, smooth.lines = TRUE) plot.variable(airq.obj, partial = TRUE, subset = airq.obj$xvar$Solar.R < 200) ## motor trend cars mtcars.obj <- rfsrc(mpg ~ ., data = mtcars) plot.variable(mtcars.obj, partial = TRUE, smooth.lines = TRUE) ## ------------------------------------------------------------ ## classification ## ------------------------------------------------------------ ## iris iris.obj <- rfsrc(Species ~., data = iris) plot.variable(iris.obj, partial = TRUE) ## motor trend cars: predict number of carburetors mtcars2 <- mtcars mtcars2$carb <- factor(mtcars2$carb, labels = paste("carb", sort(unique(mtcars$carb)))) mtcars2.obj <- rfsrc(carb ~ ., data = mtcars2) plot.variable(mtcars2.obj, partial = TRUE) ## ------------------------------------------------------------ ## multivariate regression ## ------------------------------------------------------------ mtcars.mreg <- rfsrc(Multivar(mpg, cyl) ~., data = mtcars) plot.variable(mtcars.mreg, m.target = "mpg", partial = TRUE, nvar = 1) plot.variable(mtcars.mreg, m.target = "cyl", partial = TRUE, nvar = 1) ## ------------------------------------------------------------ ## multivariate mixed outcomes ## ------------------------------------------------------------ mtcars2 <- mtcars mtcars2$carb <- factor(mtcars2$carb) mtcars2$cyl <- factor(mtcars2$cyl) mtcars.mix <- rfsrc(Multivar(carb, mpg, cyl) ~ ., data = mtcars2) plot.variable(mtcars.mix, m.target = "cyl", target = "4", partial = TRUE, nvar = 1) plot.variable(mtcars.mix, m.target = "cyl", target = 2, partial = TRUE, nvar = 1)
Obtain predicted values using a forest. Also returns performance values if the test data contains y-outcomes.
## S3 method for class 'rfsrc' predict(object, newdata, m.target = NULL, importance = c(FALSE, TRUE, "none", "anti", "permute", "random"), get.tree = NULL, block.size = if (any(is.element(as.character(importance), c("none", "FALSE")))) NULL else 10, na.action = c("na.omit", "na.impute", "na.random"), outcome = c("train", "test"), perf.type = NULL, proximity = FALSE, forest.wt = FALSE, ptn.count = 0, distance = FALSE, var.used = c(FALSE, "all.trees", "by.tree"), split.depth = c(FALSE, "all.trees", "by.tree"), case.depth = FALSE, seed = NULL, do.trace = FALSE, membership = FALSE, statistics = FALSE, ...)
## S3 method for class 'rfsrc' predict(object, newdata, m.target = NULL, importance = c(FALSE, TRUE, "none", "anti", "permute", "random"), get.tree = NULL, block.size = if (any(is.element(as.character(importance), c("none", "FALSE")))) NULL else 10, na.action = c("na.omit", "na.impute", "na.random"), outcome = c("train", "test"), perf.type = NULL, proximity = FALSE, forest.wt = FALSE, ptn.count = 0, distance = FALSE, var.used = c(FALSE, "all.trees", "by.tree"), split.depth = c(FALSE, "all.trees", "by.tree"), case.depth = FALSE, seed = NULL, do.trace = FALSE, membership = FALSE, statistics = FALSE, ...)
object |
An object of class |
newdata |
Test data. If missing, the original grow (training) data is used. |
m.target |
Character vector for multivariate families specifying the target outcomes to be used. The default uses all coordinates. |
importance |
Method used for variable importance (VIMP). Also
see |
get.tree |
Vector of integer(s) identifying trees over which the
ensembles are calculated over. By default, uses all trees in the
forest. As an example, the user can extract the ensemble, the VIMP
, or proximity from a single tree (or several trees). Note that
|
block.size |
Should the error rate be calculated on every tree?
When |
na.action |
Missing value action. The default |
outcome |
Determines whether the y-outcomes from the training
data or the test data are used to calculate the predicted value.
The default and natural choice is |
perf.type |
Optional character value for requesting metric used
for predicted value, variable importance (VIMP) and error rate. If not
specified, values returned are calculated by the default action used
for the family. Currently applicable only to classification and
multivariate classification; allowed values are
|
proximity |
Should proximity between test observations
be calculated? Possible choices are |
distance |
Should distance between test observations
be calculated? Possible choices are |
forest.wt |
Should the forest weight matrix for test observations be calculated? Choices are the same as proximity. |
ptn.count |
The number of terminal nodes that each tree in the
grow forest should be pruned back to. The terminal node membership
for the pruned forest is returned but no other action is taken. The
default is |
var.used |
Record the number of times a variable is split? |
split.depth |
Return minimal depth for each variable for each case? |
case.depth |
Return a matrix recording the depth at which a case
first splits in a tree. Default is |
seed |
Negative integer specifying seed for the random number generator. |
do.trace |
Number of seconds between updates to the user on approximate time to completion. |
membership |
Should terminal node membership and inbag information be returned? |
statistics |
Should split statistics be returned? Values can be
parsed using |
... |
Further arguments passed to or from other methods. |
Predicted values are obtained by "dropping" test data down the trained forest (forest calculated using training data). Performance values are returned if test data contains y-outcome values. Single as well as joint VIMP are also returned if requested.
If no test data is provided, the original training data is used, and the code reverts to restore mode allowing the user to restore the original trained forest. This feature allows extracting outputs from the forest not asked for in the original grow call.
If outcome="test", the predictor is calculated by using y-outcomes from the test data (outcome information must be present). Terminal nodes from the trained forest are recalculated using y-outcomes from the test set. This yields a modified predictor in which the topology of the forest is based solely on the training data, but where predicted values are obtained from test data. Error rates and VIMP are calculated by bootstrapping the test data and using out-of-bagging to ensure unbiased estimates.
csv=TRUE
returns case specific VIMP; cse=TRUE
returns
case specific error rates. Applies to all families except survival.
These options can also be applied while training.
An object of class (rfsrc, predict)
, which is a list with the
following components:
call |
The original grow call to |
family |
The family used in the analysis. |
n |
Sample size of test data (depends upon |
ntree |
Number of trees in the grow forest. |
yvar |
Test set y-outcomes or original grow y-outcomes if none. |
yvar.names |
A character vector of the y-outcome names. |
xvar |
Data frame of test set x-variables. |
xvar.names |
A character vector of the x-variable names. |
leaf.count |
Number of terminal nodes for each tree in the
grow forest. Vector of length |
proximity |
Symmetric proximity matrix of the test data. |
forest |
The grow forest. |
membership |
Matrix recording terminal node membership for the test data where each column contains the node number that a case falls in for that tree. |
inbag |
Matrix recording inbag membership for the test data where each column contains the number of times that a case appears in the bootstrap sample for that tree. |
var.used |
Count of the number of times a variable was used in growing the forest. |
imputed.indv |
Vector of indices of records in test data with missing values. |
imputed.data |
Data frame comprising imputed test data. The first columns are the y-outcomes followed by the x-variables. |
split.depth |
Matrix (i,j) or array (i,j,k) recording the minimal depth for variable j for case i, either averaged over the forest, or by tree k. |
node.stats |
Split statistics returned when
|
err.rate |
Cumulative OOB error rate for the test data if y-outcomes are present. |
importance |
Test set variable importance (VIMP). Can be
|
predicted |
Test set predicted value. |
predicted.oob |
OOB predicted value ( |
quantile |
Quantile value at probabilities requested. |
quantile.oob |
OOB quantile value at probabilities requested ( |
++++++++ |
for classification settings, additionally ++++++++ |
class |
In-bag predicted class labels. |
class.oob |
OOB predicted class labels ( |
++++++++ |
for multivariate settings, additionally ++++++++ |
regrOutput |
List containing performance values for test multivariate regression responses (applies only in multivariate settings). |
clasOutput |
List containing performance values for test multivariate categorical (factor) responses (applies only in multivariate settings). |
++++++++ |
for survival settings, additionally ++++++++ |
chf |
Cumulative hazard function (CHF). |
chf.oob |
OOB CHF ( |
survival |
Survival function. |
survival.oob |
OOB survival function ( |
time.interest |
Ordered unique death times. |
ndead |
Number of deaths. |
++++++++ |
for competing risks, additionally ++++++++ |
chf |
Cause-specific cumulative hazard function (CSCHF) for each event. |
chf.oob |
OOB CSCHF for each event ( |
cif |
Cumulative incidence function (CIF) for each event. |
cif.oob |
OOB CIF ( |
The dimensions and values of returned objects depend heavily on the
underlying family and whether y-outcomes are present in the test data.
In particular, items related to performance will be NULL
when
y-outcomes are not present. For multivariate families, predicted
values, VIMP, error rate, and performance values are stored in the
lists regrOutput
and clasOutput
which can be extracted
using functions get.mv.error
, get.mv.predicted
and
get.mv.vimp
.
Hemant Ishwaran and Udaya B. Kogalur
Breiman L. (2001). Random forests, Machine Learning, 45:5-32.
Ishwaran H., Kogalur U.B., Blackstone E.H. and Lauer M.S. (2008). Random survival forests, Ann. App. Statist., 2:841-860.
Ishwaran H. and Kogalur U.B. (2007). Random survival forests for R, Rnews, 7(2):25-31.
holdout.vimp.rfsrc
,
plot.competing.risk.rfsrc
,
plot.rfsrc
,
plot.survival.rfsrc
,
plot.variable.rfsrc
,
rfsrc
,
rfsrc.fast
,
stat.split.rfsrc
,
synthetic.rfsrc
,
vimp.rfsrc
## ------------------------------------------------------------ ## typical train/testing scenario ## ------------------------------------------------------------ data(veteran, package = "randomForestSRC") train <- sample(1:nrow(veteran), round(nrow(veteran) * 0.80)) veteran.grow <- rfsrc(Surv(time, status) ~ ., veteran[train, ]) veteran.pred <- predict(veteran.grow, veteran[-train, ]) print(veteran.grow) print(veteran.pred) ## ------------------------------------------------------------ ## restore mode ## - if predict is called without specifying the test data ## the original training data is used and the forest is restored ## ------------------------------------------------------------ ## first train the forest airq.obj <- rfsrc(Ozone ~ ., data = airquality) ## now we restore it and compare it to the original call ## they are identical predict(airq.obj) print(airq.obj) ## we can retrieve various outputs that were not asked for in ## in the original call ## here we extract the proximity matrix prox <- predict(airq.obj, proximity = TRUE)$proximity print(prox[1:10,1:10]) ## here we extract the number of times a variable was used to grow ## the grow forest var.used <- predict(airq.obj, var.used = "by.tree")$var.used print(head(var.used)) ## ------------------------------------------------------------ ## prediction when test data has missing values ## ------------------------------------------------------------ data(pbc, package = "randomForestSRC") trn <- pbc[1:312,] tst <- pbc[-(1:312),] o <- rfsrc(Surv(days, status) ~ ., trn) ## default imputation method used by rfsrc print(predict(o, tst, na.action = "na.impute")) ## random imputation print(predict(o, tst, na.action = "na.random")) ## ------------------------------------------------------------ ## requesting different performance for classification ## ------------------------------------------------------------ ## default performance is misclassification o <- rfsrc(Species~., iris) print(o) ## get (normalized) brier performance print(predict(o, perf.type = "brier")) ## ------------------------------------------------------------ ## vimp for each tree: illustrates get.tree ## ------------------------------------------------------------ ## regression analysis but no VIMP o <- rfsrc(mpg~., mtcars) ## now extract VIMP for each tree using get.tree vimp.tree <- do.call(rbind, lapply(1:o$ntree, function(b) { predict(o, get.tree = b, importance = TRUE)$importance })) ## boxplot of tree VIMP boxplot(vimp.tree, outline = FALSE, col = "cyan") abline(h = 0, lty = 2, col = "red") ## summary information of tree VIMP print(summary(vimp.tree)) ## extract tree-averaged VIMP using importance=TRUE ## remember to set block.size to 1 print(predict(o, importance = TRUE, block.size = 1)$importance) ## use direct call to vimp() for tree-averaged VIMP print(vimp(o, block.size = 1)$importance) ## ------------------------------------------------------------ ## vimp for just a few trees ## illustrates how to get vimp if you have a large data set ## ------------------------------------------------------------ ## survival analysis but no VIMP data(pbc, package = "randomForestSRC") o <- rfsrc(Surv(days, status) ~ ., pbc, ntree = 2000) ## get vimp for a small number of trees print(predict(o, get.tree=1:250, importance = TRUE)$importance) ## ------------------------------------------------------------ ## case-specific vimp ## returns VIMP for each case ## ------------------------------------------------------------ o <- rfsrc(mpg~., mtcars) op <- predict(o, importance = TRUE, csv = TRUE) csvimp <- get.mv.csvimp(op, standardize=TRUE) print(csvimp) ## ------------------------------------------------------------ ## case-specific error rate ## returns tree-averaged error rate for each case ## ------------------------------------------------------------ o <- rfsrc(mpg~., mtcars) op <- predict(o, importance = TRUE, cse = TRUE) cserror <- get.mv.cserror(op, standardize=TRUE) print(cserror) ## ------------------------------------------------------------ ## predicted probability and predicted class labels are returned ## in the predict object for classification analyses ## ------------------------------------------------------------ data(breast, package = "randomForestSRC") breast.obj <- rfsrc(status ~ ., data = breast[(1:100), ]) breast.pred <- predict(breast.obj, breast[-(1:100), ]) print(head(breast.pred$predicted)) print(breast.pred$class) ## ------------------------------------------------------------ ## unique feature of randomForestSRC ## cross-validation can be used when factor labels differ over ## training and test data ## ------------------------------------------------------------ ## first we convert all x-variables to factors data(veteran, package = "randomForestSRC") veteran2 <- data.frame(lapply(veteran, factor)) veteran2$time <- veteran$time veteran2$status <- veteran$status ## split the data into unbalanced train/test data (25/75) ## the train/test data have the same levels, but different labels train <- sample(1:nrow(veteran2), round(nrow(veteran2) * .25)) summary(veteran2[train,]) summary(veteran2[-train,]) ## train the forest and use this to predict on test data o.grow <- rfsrc(Surv(time, status) ~ ., veteran2[train, ]) o.pred <- predict(o.grow, veteran2[-train , ]) print(o.grow) print(o.pred) ## even harder ... factor level not previously encountered in training veteran3 <- veteran2[1:3, ] veteran3$celltype <- factor(c("newlevel", "1", "3")) o2.pred <- predict(o.grow, veteran3) print(o2.pred) ## the unusual level is treated like a missing value but is not removed print(o2.pred$xvar) ## ------------------------------------------------------------ ## example illustrating the flexibility of outcome = "test" ## illustrates restoration of forest via outcome = "test" ## ------------------------------------------------------------ ## first we train the forest data(pbc, package = "randomForestSRC") pbc.grow <- rfsrc(Surv(days, status) ~ ., pbc) ## use predict with outcome = TEST pbc.pred <- predict(pbc.grow, pbc, outcome = "test") ## notice that error rates are the same!! print(pbc.grow) print(pbc.pred) ## note this is equivalent to restoring the forest pbc.pred2 <- predict(pbc.grow) print(pbc.grow) print(pbc.pred) print(pbc.pred2) ## similar example, but with na.action = "na.impute" airq.obj <- rfsrc(Ozone ~ ., data = airquality, na.action = "na.impute") print(airq.obj) print(predict(airq.obj)) ## ... also equivalent to outcome="test" but na.action = "na.impute" required print(predict(airq.obj, airquality, outcome = "test", na.action = "na.impute")) ## classification example iris.obj <- rfsrc(Species ~., data = iris) print(iris.obj) print(predict.rfsrc(iris.obj, iris, outcome = "test")) ## ------------------------------------------------------------ ## another example illustrating outcome = "test" ## unique way to check reproducibility of the forest ## ------------------------------------------------------------ ## training step set.seed(542899) data(pbc, package = "randomForestSRC") train <- sample(1:nrow(pbc), round(nrow(pbc) * 0.50)) pbc.out <- rfsrc(Surv(days, status) ~ ., data=pbc[train, ]) ## standard prediction call pbc.train <- predict(pbc.out, pbc[-train, ], outcome = "train") ##non-standard predict call: overlays the test data on the grow forest pbc.test <- predict(pbc.out, pbc[-train, ], outcome = "test") ## check forest reproducibilility by comparing "test" predicted survival ## curves to "train" predicted survival curves for the first 3 individuals Time <- pbc.out$time.interest matplot(Time, t(pbc.train$survival[1:3,]), ylab = "Survival", col = 1, type = "l") matlines(Time, t(pbc.test$survival[1:3,]), col = 2) ## ------------------------------------------------------------ ## ... just for _fun_ ... ## survival analysis using mixed multivariate outcome analysis ## compare the predicted value to RSF ## ------------------------------------------------------------ ## train survival forest using pbc data data(pbc, package = "randomForestSRC") rsf.obj <- rfsrc(Surv(days, status) ~ ., pbc) yvar <- rsf.obj$yvar ## fit a mixed outcome forest using days and status as y-variables pbc.mod <- pbc pbc.mod$status <- factor(pbc.mod$status) mix.obj <- rfsrc(Multivar(days, status) ~., pbc.mod) ## compare oob predicted values rsf.pred <- rsf.obj$predicted.oob mix.pred <- mix.obj$regrOutput$days$predicted.oob plot(rsf.pred, mix.pred) ## compare C-error rate rsf.err <- get.cindex(yvar$days, yvar$status, rsf.pred) mix.err <- 1 - get.cindex(yvar$days, yvar$status, mix.pred) cat("RSF :", rsf.err, "\n") cat("multivariate forest:", mix.err, "\n")
## ------------------------------------------------------------ ## typical train/testing scenario ## ------------------------------------------------------------ data(veteran, package = "randomForestSRC") train <- sample(1:nrow(veteran), round(nrow(veteran) * 0.80)) veteran.grow <- rfsrc(Surv(time, status) ~ ., veteran[train, ]) veteran.pred <- predict(veteran.grow, veteran[-train, ]) print(veteran.grow) print(veteran.pred) ## ------------------------------------------------------------ ## restore mode ## - if predict is called without specifying the test data ## the original training data is used and the forest is restored ## ------------------------------------------------------------ ## first train the forest airq.obj <- rfsrc(Ozone ~ ., data = airquality) ## now we restore it and compare it to the original call ## they are identical predict(airq.obj) print(airq.obj) ## we can retrieve various outputs that were not asked for in ## in the original call ## here we extract the proximity matrix prox <- predict(airq.obj, proximity = TRUE)$proximity print(prox[1:10,1:10]) ## here we extract the number of times a variable was used to grow ## the grow forest var.used <- predict(airq.obj, var.used = "by.tree")$var.used print(head(var.used)) ## ------------------------------------------------------------ ## prediction when test data has missing values ## ------------------------------------------------------------ data(pbc, package = "randomForestSRC") trn <- pbc[1:312,] tst <- pbc[-(1:312),] o <- rfsrc(Surv(days, status) ~ ., trn) ## default imputation method used by rfsrc print(predict(o, tst, na.action = "na.impute")) ## random imputation print(predict(o, tst, na.action = "na.random")) ## ------------------------------------------------------------ ## requesting different performance for classification ## ------------------------------------------------------------ ## default performance is misclassification o <- rfsrc(Species~., iris) print(o) ## get (normalized) brier performance print(predict(o, perf.type = "brier")) ## ------------------------------------------------------------ ## vimp for each tree: illustrates get.tree ## ------------------------------------------------------------ ## regression analysis but no VIMP o <- rfsrc(mpg~., mtcars) ## now extract VIMP for each tree using get.tree vimp.tree <- do.call(rbind, lapply(1:o$ntree, function(b) { predict(o, get.tree = b, importance = TRUE)$importance })) ## boxplot of tree VIMP boxplot(vimp.tree, outline = FALSE, col = "cyan") abline(h = 0, lty = 2, col = "red") ## summary information of tree VIMP print(summary(vimp.tree)) ## extract tree-averaged VIMP using importance=TRUE ## remember to set block.size to 1 print(predict(o, importance = TRUE, block.size = 1)$importance) ## use direct call to vimp() for tree-averaged VIMP print(vimp(o, block.size = 1)$importance) ## ------------------------------------------------------------ ## vimp for just a few trees ## illustrates how to get vimp if you have a large data set ## ------------------------------------------------------------ ## survival analysis but no VIMP data(pbc, package = "randomForestSRC") o <- rfsrc(Surv(days, status) ~ ., pbc, ntree = 2000) ## get vimp for a small number of trees print(predict(o, get.tree=1:250, importance = TRUE)$importance) ## ------------------------------------------------------------ ## case-specific vimp ## returns VIMP for each case ## ------------------------------------------------------------ o <- rfsrc(mpg~., mtcars) op <- predict(o, importance = TRUE, csv = TRUE) csvimp <- get.mv.csvimp(op, standardize=TRUE) print(csvimp) ## ------------------------------------------------------------ ## case-specific error rate ## returns tree-averaged error rate for each case ## ------------------------------------------------------------ o <- rfsrc(mpg~., mtcars) op <- predict(o, importance = TRUE, cse = TRUE) cserror <- get.mv.cserror(op, standardize=TRUE) print(cserror) ## ------------------------------------------------------------ ## predicted probability and predicted class labels are returned ## in the predict object for classification analyses ## ------------------------------------------------------------ data(breast, package = "randomForestSRC") breast.obj <- rfsrc(status ~ ., data = breast[(1:100), ]) breast.pred <- predict(breast.obj, breast[-(1:100), ]) print(head(breast.pred$predicted)) print(breast.pred$class) ## ------------------------------------------------------------ ## unique feature of randomForestSRC ## cross-validation can be used when factor labels differ over ## training and test data ## ------------------------------------------------------------ ## first we convert all x-variables to factors data(veteran, package = "randomForestSRC") veteran2 <- data.frame(lapply(veteran, factor)) veteran2$time <- veteran$time veteran2$status <- veteran$status ## split the data into unbalanced train/test data (25/75) ## the train/test data have the same levels, but different labels train <- sample(1:nrow(veteran2), round(nrow(veteran2) * .25)) summary(veteran2[train,]) summary(veteran2[-train,]) ## train the forest and use this to predict on test data o.grow <- rfsrc(Surv(time, status) ~ ., veteran2[train, ]) o.pred <- predict(o.grow, veteran2[-train , ]) print(o.grow) print(o.pred) ## even harder ... factor level not previously encountered in training veteran3 <- veteran2[1:3, ] veteran3$celltype <- factor(c("newlevel", "1", "3")) o2.pred <- predict(o.grow, veteran3) print(o2.pred) ## the unusual level is treated like a missing value but is not removed print(o2.pred$xvar) ## ------------------------------------------------------------ ## example illustrating the flexibility of outcome = "test" ## illustrates restoration of forest via outcome = "test" ## ------------------------------------------------------------ ## first we train the forest data(pbc, package = "randomForestSRC") pbc.grow <- rfsrc(Surv(days, status) ~ ., pbc) ## use predict with outcome = TEST pbc.pred <- predict(pbc.grow, pbc, outcome = "test") ## notice that error rates are the same!! print(pbc.grow) print(pbc.pred) ## note this is equivalent to restoring the forest pbc.pred2 <- predict(pbc.grow) print(pbc.grow) print(pbc.pred) print(pbc.pred2) ## similar example, but with na.action = "na.impute" airq.obj <- rfsrc(Ozone ~ ., data = airquality, na.action = "na.impute") print(airq.obj) print(predict(airq.obj)) ## ... also equivalent to outcome="test" but na.action = "na.impute" required print(predict(airq.obj, airquality, outcome = "test", na.action = "na.impute")) ## classification example iris.obj <- rfsrc(Species ~., data = iris) print(iris.obj) print(predict.rfsrc(iris.obj, iris, outcome = "test")) ## ------------------------------------------------------------ ## another example illustrating outcome = "test" ## unique way to check reproducibility of the forest ## ------------------------------------------------------------ ## training step set.seed(542899) data(pbc, package = "randomForestSRC") train <- sample(1:nrow(pbc), round(nrow(pbc) * 0.50)) pbc.out <- rfsrc(Surv(days, status) ~ ., data=pbc[train, ]) ## standard prediction call pbc.train <- predict(pbc.out, pbc[-train, ], outcome = "train") ##non-standard predict call: overlays the test data on the grow forest pbc.test <- predict(pbc.out, pbc[-train, ], outcome = "test") ## check forest reproducibilility by comparing "test" predicted survival ## curves to "train" predicted survival curves for the first 3 individuals Time <- pbc.out$time.interest matplot(Time, t(pbc.train$survival[1:3,]), ylab = "Survival", col = 1, type = "l") matlines(Time, t(pbc.test$survival[1:3,]), col = 2) ## ------------------------------------------------------------ ## ... just for _fun_ ... ## survival analysis using mixed multivariate outcome analysis ## compare the predicted value to RSF ## ------------------------------------------------------------ ## train survival forest using pbc data data(pbc, package = "randomForestSRC") rsf.obj <- rfsrc(Surv(days, status) ~ ., pbc) yvar <- rsf.obj$yvar ## fit a mixed outcome forest using days and status as y-variables pbc.mod <- pbc pbc.mod$status <- factor(pbc.mod$status) mix.obj <- rfsrc(Multivar(days, status) ~., pbc.mod) ## compare oob predicted values rsf.pred <- rsf.obj$predicted.oob mix.pred <- mix.obj$regrOutput$days$predicted.oob plot(rsf.pred, mix.pred) ## compare C-error rate rsf.err <- get.cindex(yvar$days, yvar$status, rsf.pred) mix.err <- 1 - get.cindex(yvar$days, yvar$status, mix.pred) cat("RSF :", rsf.err, "\n") cat("multivariate forest:", mix.err, "\n")
Print summary output from a RF-SRC analysis. This is the default print method for the package.
## S3 method for class 'rfsrc' print(x, outcome.target = NULL, ...)
## S3 method for class 'rfsrc' print(x, outcome.target = NULL, ...)
x |
An object of class |
outcome.target |
Character value for multivariate families specifying the target outcome to be used. The default is to use the first coordinate from the continuous outcomes (otherwise if none, the first coordinate from the categorical outcomes). |
... |
Further arguments passed to or from other methods. |
Hemant Ishwaran and Udaya B. Kogalur
Ishwaran H. and Kogalur U.B. (2007). Random survival forests for R, Rnews, 7/2:25-31.
options(rf.cores=2, mc.cores=2) iris.obj <- rfsrc(Species ~., data = iris, ntree=10) print(iris.obj)
options(rf.cores=2, mc.cores=2) iris.obj <- rfsrc(Species ~., data = iris, ntree=10) print(iris.obj)
Grows a univariate or multivariate quantile regression forest and returns its conditional quantile and density values. Can be used for both training and testing purposes.
## S3 method for class 'rfsrc' quantreg(formula, data, object, newdata, method = "local", splitrule = NULL, prob = NULL, prob.epsilon = NULL, oob = TRUE, fast = FALSE, maxn = 1e3, ...)
## S3 method for class 'rfsrc' quantreg(formula, data, object, newdata, method = "local", splitrule = NULL, prob = NULL, prob.epsilon = NULL, oob = TRUE, fast = FALSE, maxn = 1e3, ...)
formula |
A symbolic description of the model to be fit.
Must be specified unless |
data |
Data frame containing the y-outcome and x-variables in
the model. Must be specified unless |
object |
(Optional) A previously grown quantile regression forest. |
newdata |
(Optional) Test data frame used for prediction. Note
that prediction on test data must always be done with the
|
method |
Method used to calculate quantiles. Three methods are
provided: (1) A variation of the method used in Meinshausen (2006)
based on forest weight ( |
splitrule |
The default action is local adaptive quantile regression splitting, but this can be over-ridden by the user. Not applicable to multivariate forests. See details below. |
prob |
Target quantile probabilities when training. If left unspecified,
uses percentiles (1 through 99) for |
prob.epsilon |
Greenwald-Khanna allowable error for quantile probabilities when training. |
oob |
Return OOB (out-of-bag) quantiles? If false, in-bag values are returned. |
fast |
Use fast random forests, |
maxn |
Maximum number of unique y training values used when calculating the conditional density. |
... |
Further arguments to be passed to the |
The most common method for calculating RF quantiles uses the method
described in Meinshausen (2006) using forest weights. The forest
weights method employed here (specified using method
="forest"),
however differs in that quantiles are estimated using a
weighted local cumulative distribution function estimator. For this
reason, results may differ from Meinshausen (2006). Moreover, results
may also differ as the default splitting rule uses local adaptive
quantile regression splitting instead of CART regression mean squared
splitting which was used by Meinshausen (2006). Note that local
adaptive quantile regression splitting is not available for
multivariate forests which reverts to the default multivariate
composite splitting rule. In multivariate regression, users however do
have the option to over-ride this using
Mahalanobis splitting by setting splitrule="mahalanobis"
A second method for estimating quantiles uses the Greenwald-Khanna
(2001) algorithm (invoked by method
="gk", "GK", "G-K" or
"g-k"). While this will not be as accurate as forest weights, the
high memory efficiency of Greenwald-Khanna makes it feasible to
implement in big data settings unlike forest weights.
The Greenwald-Khanna algorithm is implemented roughly as follows. To form a distribution of values for each case, from which we sample to determine quantiles, we create a chain of values for the case as we grow the forest. Every time a case lands in a terminal node, we insert all of its co-inhabitants to its chain of values.
The best case scenario is when tree node size is 1 because each case gets only one insert into its chain for that tree. The worst case scenario is when node size is so large that trees stump. This is because each case receives insertions for the entire in-bag population.
What the user needs to know is that Greenwald-Khanna can become slow
in counter-intutive settings such as when node size is large. The
easy fix is to change the epsilon quantile approximation that is
requested. You will see a significant speed-up just by doubling
prob.epsilon
. This is because the chains stay a lot smaller as
epsilon increases, which is exactly what you want when node sizes are
large. Both time and space requirements for the algorithm are affected
by epsilon.
The best results for Greenwald-Khanna come from setting the number of quantiles equal to 2 times the sample size and epsilon to 1 over 2 times the sample size which is the default values used if left unspecified. This will be slow, especially for big data, and less stringent choices should be used if computational speed is of concern.
Finally, the default method, method
="local", implements the
locally adjusted cdf estimator of Zhang et al. (2019). This does not
use forest weights and is reasonably fast and can be used for large
data. However, this relies on the assumption of homogeneity of the
error distribution, i.e. that errors are iid and therefore have equal
variance. While this is reasonably robust to departures of homogeneity,
there are instances where this may perform poorly; see Zhang et
al. (2019) for details. If hetereogeneity is suspected we recommend
method
="forest".
Returns the object quantreg
containing quantiles for each of
the requested probabilities (which can be conveniently extracted using
get.quantile
). Also contains the conditional density (and
conditional cdf) for each case in the training data (or test data if
provided) evaluated at each of the unique grow y-values. The
conditional density can be used to calculate conditional moments, such
as the mean and standard deviation. Use get.quantile.stat
as a
way to conveniently obtain these quantities.
For multivariate forests, returned values will be a list of length equal to the number of target outcomes.
Hemant Ishwaran and Udaya B. Kogalur
Greenwald M. and Khanna S. (2001). Space-efficient online computation of quantile summaries. Proceedings of ACM SIGMOD, 30(2):58-66.
Meinshausen N. (2006) Quantile regression forests, Journal of Machine Learning Research, 7:983-999.
Zhang H., Zimmerman J., Nettleton D. and Nordman D.J. (2019). Random forest prediction intervals. The American Statistician. 4:1-5.
## ------------------------------------------------------------ ## regression example ## ------------------------------------------------------------ ## standard call o <- quantreg(mpg ~ ., mtcars) ## extract conditional quantiles print(get.quantile(o)) print(get.quantile(o, c(.25, .50, .75))) ## extract conditional mean and standard deviation print(get.quantile.stat(o)) ## standardized continuous rank probabiliy score (crps) performance plot(get.quantile.crps(o), type = "l") ## ------------------------------------------------------------ ## train/test regression example ## ------------------------------------------------------------ ## train (grow) call followed by test call o <- quantreg(mpg ~ ., mtcars[1:20,]) o.tst <- quantreg(object = o, newdata = mtcars[-(1:20),]) ## extract test set quantiles and conditional statistics print(get.quantile(o.tst)) print(get.quantile.stat(o.tst)) ## ------------------------------------------------------------ ## quantile regression for Boston Housing using forest method ## ------------------------------------------------------------ if (library("mlbench", logical.return = TRUE)) { ## quantile regression with mse splitting data(BostonHousing) o <- quantreg(medv ~ ., BostonHousing, method = "forest", nodesize = 1) ## standardized continuous rank probabiliy score (crps) plot(get.quantile.crps(o), type = "l") ## quantile regression plot plot.quantreg(o, .05, .95) plot.quantreg(o, .25, .75) ## (A) extract 25,50,75 quantiles quant.dat <- get.quantile(o, c(.25, .50, .75)) ## (B) values expected under normality quant.stat <- get.quantile.stat(o) c.mean <- quant.stat$mean c.std <- quant.stat$std q.25.est <- c.mean + qnorm(.25) * c.std q.75.est <- c.mean + qnorm(.75) * c.std ## compare (A) and (B) print(head(data.frame(quant.dat[, -2], q.25.est, q.75.est))) } ## ------------------------------------------------------------ ## multivariate mixed outcomes example ## quantiles are only returned for the continous outcomes ## ------------------------------------------------------------ dta <- mtcars dta$cyl <- factor(dta$cyl) dta$carb <- factor(dta$carb, ordered = TRUE) o <- quantreg(cbind(carb, mpg, cyl, disp) ~., data = dta) plot.quantreg(o, m.target = "mpg") plot.quantreg(o, m.target = "disp") ## ------------------------------------------------------------ ## multivariate regression example using Mahalanobis splitting ## ------------------------------------------------------------ dta <- mtcars o <- quantreg(cbind(mpg, disp) ~., data = dta, splitrule = "mahal") plot.quantreg(o, m.target = "mpg") plot.quantreg(o, m.target = "disp") ## ------------------------------------------------------------ ## example of quantile regression for ordinal data ## ------------------------------------------------------------ ## use the wine data for illustration data(wine, package = "randomForestSRC") ## run quantile regression o <- quantreg(quality ~ ., wine, ntree = 100) ## extract "probabilities" = density values qo.dens <- o$quantreg$density yunq <- o$quantreg$yunq colnames(qo.dens) <- yunq ## convert y to a factor yvar <- factor(cut(o$yvar, c(-1, yunq), labels = yunq)) ## confusion matrix qo.confusion <- get.confusion(yvar, qo.dens) print(qo.confusion) ## normalized Brier score cat("Brier:", 100 * get.brier.error(yvar, qo.dens), "\n") ## ------------------------------------------------------------ ## example of large data using Greenwald-Khanna algorithm ## ------------------------------------------------------------ ## load the data and do quick and dirty imputation data(housing, package = "randomForestSRC") housing <- impute(SalePrice ~ ., housing, ntree = 50, nimpute = 1, splitrule = "random") ## Greenwald-Khanna algorithm ## request a small number of quantiles o <- quantreg(SalePrice ~ ., housing, method = "gk", prob = (1:20) / 20, prob.epsilon = 1 / 20, ntree = 250) plot.quantreg(o) ## ------------------------------------------------------------ ## using mse splitting with local cdf method for large data ## ------------------------------------------------------------ ## load the data and do quick and dirty imputation data(housing, package = "randomForestSRC") housing <- impute(SalePrice ~ ., housing, ntree = 50, nimpute = 1, splitrule = "random") ## use mse splitting and reduce number of trees o <- quantreg(SalePrice ~ ., housing, splitrule = "mse", ntree = 250) plot.quantreg(o)
## ------------------------------------------------------------ ## regression example ## ------------------------------------------------------------ ## standard call o <- quantreg(mpg ~ ., mtcars) ## extract conditional quantiles print(get.quantile(o)) print(get.quantile(o, c(.25, .50, .75))) ## extract conditional mean and standard deviation print(get.quantile.stat(o)) ## standardized continuous rank probabiliy score (crps) performance plot(get.quantile.crps(o), type = "l") ## ------------------------------------------------------------ ## train/test regression example ## ------------------------------------------------------------ ## train (grow) call followed by test call o <- quantreg(mpg ~ ., mtcars[1:20,]) o.tst <- quantreg(object = o, newdata = mtcars[-(1:20),]) ## extract test set quantiles and conditional statistics print(get.quantile(o.tst)) print(get.quantile.stat(o.tst)) ## ------------------------------------------------------------ ## quantile regression for Boston Housing using forest method ## ------------------------------------------------------------ if (library("mlbench", logical.return = TRUE)) { ## quantile regression with mse splitting data(BostonHousing) o <- quantreg(medv ~ ., BostonHousing, method = "forest", nodesize = 1) ## standardized continuous rank probabiliy score (crps) plot(get.quantile.crps(o), type = "l") ## quantile regression plot plot.quantreg(o, .05, .95) plot.quantreg(o, .25, .75) ## (A) extract 25,50,75 quantiles quant.dat <- get.quantile(o, c(.25, .50, .75)) ## (B) values expected under normality quant.stat <- get.quantile.stat(o) c.mean <- quant.stat$mean c.std <- quant.stat$std q.25.est <- c.mean + qnorm(.25) * c.std q.75.est <- c.mean + qnorm(.75) * c.std ## compare (A) and (B) print(head(data.frame(quant.dat[, -2], q.25.est, q.75.est))) } ## ------------------------------------------------------------ ## multivariate mixed outcomes example ## quantiles are only returned for the continous outcomes ## ------------------------------------------------------------ dta <- mtcars dta$cyl <- factor(dta$cyl) dta$carb <- factor(dta$carb, ordered = TRUE) o <- quantreg(cbind(carb, mpg, cyl, disp) ~., data = dta) plot.quantreg(o, m.target = "mpg") plot.quantreg(o, m.target = "disp") ## ------------------------------------------------------------ ## multivariate regression example using Mahalanobis splitting ## ------------------------------------------------------------ dta <- mtcars o <- quantreg(cbind(mpg, disp) ~., data = dta, splitrule = "mahal") plot.quantreg(o, m.target = "mpg") plot.quantreg(o, m.target = "disp") ## ------------------------------------------------------------ ## example of quantile regression for ordinal data ## ------------------------------------------------------------ ## use the wine data for illustration data(wine, package = "randomForestSRC") ## run quantile regression o <- quantreg(quality ~ ., wine, ntree = 100) ## extract "probabilities" = density values qo.dens <- o$quantreg$density yunq <- o$quantreg$yunq colnames(qo.dens) <- yunq ## convert y to a factor yvar <- factor(cut(o$yvar, c(-1, yunq), labels = yunq)) ## confusion matrix qo.confusion <- get.confusion(yvar, qo.dens) print(qo.confusion) ## normalized Brier score cat("Brier:", 100 * get.brier.error(yvar, qo.dens), "\n") ## ------------------------------------------------------------ ## example of large data using Greenwald-Khanna algorithm ## ------------------------------------------------------------ ## load the data and do quick and dirty imputation data(housing, package = "randomForestSRC") housing <- impute(SalePrice ~ ., housing, ntree = 50, nimpute = 1, splitrule = "random") ## Greenwald-Khanna algorithm ## request a small number of quantiles o <- quantreg(SalePrice ~ ., housing, method = "gk", prob = (1:20) / 20, prob.epsilon = 1 / 20, ntree = 250) plot.quantreg(o) ## ------------------------------------------------------------ ## using mse splitting with local cdf method for large data ## ------------------------------------------------------------ ## load the data and do quick and dirty imputation data(housing, package = "randomForestSRC") housing <- impute(SalePrice ~ ., housing, ntree = 50, nimpute = 1, splitrule = "random") ## use mse splitting and reduce number of trees o <- quantreg(SalePrice ~ ., housing, splitrule = "mse", ntree = 250) plot.quantreg(o)
Fast OpenMP parallel computing of random forests (Breiman 2001) for regression, classification, survival analysis (Ishwaran et al. 2008), competing risks (Ishwaran et al. 2012), multivariate (Segal and Xiao 2011), unsupervised (Mantero and Ishwaran 2020), quantile regression (Meinhausen 2006, Zhang et al. 2019, Greenwald-Khanna 2001), and class imbalanced q-classification (O'Brien and Ishwaran 2019). Different splitting rules invoked under deterministic or random splitting (Geurts et al. 2006, Ishwaran 2015) are available for all families. Different types of variable importance (VIMP), holdout VIMP, as well as confidence regions (Ishwaran and Lu 2019) can be calculated for single and grouped variables. Minimal depth variable selection (Ishwaran et al. 2010, 2011). Fast interface for missing data imputation using a variety of different random forest methods (Tang and Ishwaran 2017).
Highlighted new items:
For computational speed, the default VIMP is no longer
"permute" (Breiman-Cutler permutation importance) and has been
switched to "anti" (importance="anti"
,
importance=TRUE
; see below for details). Be aware in some
situations, such as highly imbalanced classification, that
permutation VIMP may perform better. Permutation VIMP is
obtained using importance="permute"
.
save.memory
can be used for big data to save memory;
especially useful for survival and competing risks.
Mahalanobis splitting for multivariate regression with
correlated y-outcomes (splitrule="mahalanobis"
). Now allows
for a user specified covariance matrix.
Visualize trees on your Safari or Google Chrome
browser (works for all families). See get.tree
.
This is the main entry point to the randomForestSRC
package. For more information about this package and OpenMP parallel
processing, use the command package?randomForestSRC
.
rfsrc(formula, data, ntree = 500, mtry = NULL, ytry = NULL, nodesize = NULL, nodedepth = NULL, splitrule = NULL, nsplit = NULL, importance = c(FALSE, TRUE, "none", "anti", "permute", "random"), block.size = if (any(is.element(as.character(importance), c("none", "FALSE")))) NULL else 10, bootstrap = c("by.root", "none", "by.user"), samptype = c("swor", "swr"), samp = NULL, membership = FALSE, sampsize = if (samptype == "swor") function(x){x * .632} else function(x){x}, na.action = c("na.omit", "na.impute"), nimpute = 1, ntime = 150, cause, perf.type = NULL, proximity = FALSE, distance = FALSE, forest.wt = FALSE, xvar.wt = NULL, yvar.wt = NULL, split.wt = NULL, case.wt = NULL, case.depth = FALSE, forest = TRUE, save.memory = FALSE, var.used = c(FALSE, "all.trees", "by.tree"), split.depth = c(FALSE, "all.trees", "by.tree"), seed = NULL, do.trace = FALSE, statistics = FALSE, ...) ## convenient interface for growing a CART tree rfsrc.cart(formula, data, ntree = 1, mtry = ncol(data), bootstrap = "none", ...)
rfsrc(formula, data, ntree = 500, mtry = NULL, ytry = NULL, nodesize = NULL, nodedepth = NULL, splitrule = NULL, nsplit = NULL, importance = c(FALSE, TRUE, "none", "anti", "permute", "random"), block.size = if (any(is.element(as.character(importance), c("none", "FALSE")))) NULL else 10, bootstrap = c("by.root", "none", "by.user"), samptype = c("swor", "swr"), samp = NULL, membership = FALSE, sampsize = if (samptype == "swor") function(x){x * .632} else function(x){x}, na.action = c("na.omit", "na.impute"), nimpute = 1, ntime = 150, cause, perf.type = NULL, proximity = FALSE, distance = FALSE, forest.wt = FALSE, xvar.wt = NULL, yvar.wt = NULL, split.wt = NULL, case.wt = NULL, case.depth = FALSE, forest = TRUE, save.memory = FALSE, var.used = c(FALSE, "all.trees", "by.tree"), split.depth = c(FALSE, "all.trees", "by.tree"), seed = NULL, do.trace = FALSE, statistics = FALSE, ...) ## convenient interface for growing a CART tree rfsrc.cart(formula, data, ntree = 1, mtry = ncol(data), bootstrap = "none", ...)
formula |
Object of class 'formula' describing the model to fit. Interaction terms are not supported. If missing, unsupervised splitting is implemented. |
data |
Data frame containing the y-outcome and x-variables. |
ntree |
Number of trees. |
mtry |
Number of variables to possibly split at each node. Default is number of variables divided by 3 for regression. For all other families (including unsupervised settings), the square root of number of variables. Values are rounded up. |
ytry |
The number of randomly selected pseudo-outcomes for
unsupervised families (see details below). Default is
|
nodesize |
Minumum size of terminal node. The defaults are:
survival (15), competing risk (15), regression (5), classification
(1), mixed outcomes (3), unsupervised (3). It is recommended to
experiment with different |
nodedepth |
Maximum depth to which a tree should be grown. Parameter is ignored by default. |
splitrule |
Splitting rule (see below). |
nsplit |
Non-negative integer specifying number of random splits for splitting a variable. When zero, all split values are used (deterministic splitting), which can be slower. By default 10 is used. |
importance |
Method for computing variable importance (VIMP); see
below. Default action is |
block.size |
Determines how cumulative error rate is calculated.
When |
bootstrap |
Bootstrap protocol. Default is |
samptype |
Type of bootstrap used when |
samp |
Bootstrap specification when |
membership |
Should terminal node membership and inbag information be returned? |
sampsize |
Specifies bootstrap size when |
na.action |
Action taken if the data contains
|
nimpute |
Number of iterations of the missing data algorithm.
Performance measures such as out-of-bag (OOB) error rates are
optimistic if |
ntime |
Integer value for survival to constrain ensemble
calculations to an |
cause |
Integer value between 1 and |
perf.type |
Optional character value specifying the metric used for
predicted value, variable importance (VIMP), and error rate.
Defaults to the family metric if not specified.
|
proximity |
Proximity of cases as measured by the frequency of
sharing the same terminal node. This is an |
distance |
Distance between cases as measured by the ratio of the
sum of the count of edges from each case to their immediate common
ancestor node to the sum of the count of edges from each case to the
root node. If the cases are co-terminal for a tree, this measure is
zero and reduces to 1 - the proximity measure. This is an
|
forest.wt |
Calculate the forest weight matrix? Creates an
|
xvar.wt |
Vector of non-negative weights (does not have to sum to 1) representing the probability of selecting a variable for splitting. Default is uniform weights. |
yvar.wt |
Vector of non-negative weights (does not have to sum to 1) representing the probability of selecting a response variable in multivariate regression. Used when the number of responses are high-dimensional. See the example below. |
split.wt |
Vector of non-negative weights used for multiplying the split statistic for a variable. A large value encourages the node to split on a specific variable. Default is uniform weights. |
case.wt |
Vector of non-negative weights (does not have to sum to 1) for sampling cases. Observations with larger weights will be selected with higher probability in the bootstrap (or subsampled) samples. It is generally better to use real weights rather than integers. See the breast data example below illustrating its use for class imbalanced data. |
case.depth |
Return a matrix recording the depth at which a case
first splits in a tree. Default is |
forest |
Save key forest values? Used for prediction on new data and required by many of the package functions. Turn this off if you are only interested in training a forest. |
save.memory |
Save memory? Default is to store terminal node quantities used for prediction on test data. This yields rapid prediction but can be memory intensive for big data, especially competing risks and survival models. Turn this flag off in those cases. |
var.used |
Return statistics on number of times a variable split?
Default is |
split.depth |
Records the minimal depth for each variable.
Default is |
seed |
Negative integer specifying seed for the random number generator. |
do.trace |
Number of seconds between updates to the user on approximate time to completion. |
statistics |
Should split statistics be returned? Values can be
parsed using |
... |
Further arguments passed to or from other methods. |
Types of forests
There is no need to set the type of forest as the package automagically determines the underlying random forest requested from the type of outcome and the formula supplied. There are several possible scenarios:
Regression forests for continuous outcomes.
Classification forests for factor outcomes.
Multivariate forests for continuous and/or factor outcomes and for mixed (both type) of outcomes.
Unsupervised forests when there is no outcome.
Survival forests for right-censored survival.
Competing risk survival forests for competing risk.
Splitting
Splitting rules are specified by the option splitrule
.
For all families, pure random splitting can be invoked by setting
splitrule="random"
.
For all families, computational speed can be increased using
randomized splitting invoked by the option nsplit
.
See Improving Computational Speed.
Available splitting rules
Regression analysis:
splitrule="mse"
(default split rule): weighted
mean-squared error splitting (Breiman et al. 1984, Chapter 8.4).
splitrule="quantile.regr"
: quantile regression splitting via
the "check-loss" function. Requires specifying the target
quantiles. See quantreg.rfsrc
for further details.
la.quantile.regr
: local adaptive quantile
regression splitting. See quantreg.rfsrc
.
Classification analysis:
splitrule="gini"
(default splitrule): Gini
index splitting (Breiman et al. 1984, Chapter 4.3).
splitrule="auc"
: AUC (area under the ROC curve) splitting
for both two-class and multiclass setttings. AUC splitting is
appropriate for imbalanced data. See imbalanced
for
more information.
splitrule="entropy"
: entropy splitting (Breiman et
al. 1984, Chapter 2.5, 4.3).
Survival analysis:
splitrule="logrank"
(default splitrule):
log-rank splitting (Segal, 1988; Leblanc and Crowley, 1993).
splitrule="bs.gradient"
: gradient-based (global non-quantile)
brier score splitting. The time horizon used for the Brier
score is set to the 90th percentile of the observed event times.
This can be over-ridden by the option prob
, which must be
a value between 0 and 1 (set to .90 by default).
splitrule="logrankscore"
: log-rank score splitting (Hothorn and
Lausen, 2003).
Competing risk analysis (for details see Ishwaran et al., 2014):
splitrule="logrankCR"
(default splitrule): modified
weighted log-rank splitting rule modeled after Gray's test
(Gray, 1988). Use this to find *all* variables
that are informative and when the goal is long term
prediction.
splitrule="logrank"
: weighted log-rank splitting where each
event type is treated as the event of interest and all
other events are treated as censored. The split rule is
the weighted value of each of log-rank statistics,
standardized by the variance. Use this to find variables
that affect a *specific* cause of interest and when
the goal is a targeted analysis of a specific cause.
However in order for this to be effective, remember to set
the cause
option to the targeted cause of interest.
See examples below.
Multivariate analysis:
Default is the multivariate normalized composite split rule using mean-squared error and Gini index (Tang and Ishwaran, 2017).
splitrule="mahalanobis"
: Mahalanobis splitting
that adjusts for correlation (also allows for a user specified
covariance matrix, see example below). Only works for
multivariate regression (all outcomes must be real).
Unsupervised analysis: In settings where there is no
outcome, unsupervised splitting that uses pseudo-outcomes is
applied using the default multivariate splitting rule (see
below for details) Also see sidClustering
for a
more sophisticated method for unsupervised analysis (Mantero
and Ishwaran, 2020).
Custom splitting: All families except unsupervised are
available for user defined custom splitting. Some basic
C-programming skills are required. The harness for defining
these rules is in splitCustom.c
. In this file we
give examples of how to code rules for regression,
classification, survival, and competing risk. Each family
can support up to sixteen custom split rules. Specifying
splitrule="custom"
or splitrule="custom1"
will
trigger the first split rule for the family defined by the
training data set. Multivariate families will need a custom
split rule for both regression and classification. In the
examples, we demonstrate how the user is presented with the
node specific membership. The task is then to define a
split statistic based on that membership. Take note of the
instructions in splitCustom.c
on how to
register the custom split rules. It is suggested
that the existing custom split rules be kept in place for
reference and that the user proceed to develop
splitrule="custom2"
and so on. The package must be
recompiled and installed for the custom split rules to
become available.
Improving computational speed
See the function rfsrc.fast
for a fast
implementation of rfsrc
. Key methods for
increasing speed are as follows:
Nodesize
Increasing nodesize
has the greatest effect in speeding
calculations. In some big data settings this can also lead to
better prediction performance.
Save memory
Use option save.memory="TRUE"
for big data competing risk
and survival models. By default the package stores terminal
node quantities to be used in prediction for test data but this
can be memory intensive for big data.
Block size
Make sure block.size="NULL"
(or set to number of trees)
so that the cumulative error is calculated only once.
Turn off performace
The C-error rate calculation can be very expensive for big
survival data. Set perf.type="none"
to turn this off and
all other performance calculations (then consider using the
function get.brier.survival
as a fast way to get survival
performance).
perf.type="none"
applies to all other families as well.
Randomized splitting rules
Set nsplit
to a small non-zero integer value. Then a
maximum of nsplit
split points are chosen randomly for
each of the candidate splitting variables when splitting a tree
node, thus significantly reducing computational costs.
For more details about randomized splitting see Loh and Shih
(1997), Dietterich (2000), and Lin and Jeon (2006). Geurts et
al. (2006) introduced extremely randomized trees using the
extra-trees algorithm. This algorithm corresponds to
nsplit
=1. In our experience however this may be too low
for general use (Ishwaran, 2015).
For completely randomized (pure random) splitting use
splitrule="random"
. In pure splitting, nodes are split
by randomly selecting a variable and randomly selecting its
split point (Cutler and Zhao, 2001).
Subsampling
Reduce the size of the bootstrap using sampsize
and
samptype
. See rfsrc.fast
for a fast forest
implementation using subsampling.
Unique time points
Setting ntime
to a reasonably small value such as 50
constrains survival ensemble calculations to a restricted grid
of time points and significantly improves computational times.
Large number of variables
Try filtering variables ahead of time. Make sure not to request
VIMP (variable importance can always be recovered later using
vimp
or predict
). Also if variable
selection is desired, but is too slow, consider using
max.subtree
which calculates minimal depth, a measure
of the depth that a variable splits, and yields fast variable
selection (Ishwaran, 2010).
Prediction Error
Prediction error is calculated using OOB data. The metric used is
mean-squared-error for regression, and misclassification error for
classification. A normalized Brier score (relative to a coin-toss)
and the AUC (area under the ROC curve) is also provided upon
printing a classification forest. Performance for Brier score can
be specified using perf.type="brier"
. G-mean performance is
also available, see the function imbalanced
for more
details.
For survival, prediction error is measured by the C-error rate defined as 1-C, where C is Harrell's (Harrell et al., 1982) concordance index. The C-error is between 0 and 1, and measures error in ranking (classifying) two random individuals in terms of survival. A value of 0.5 is no better than random guessing. A value of 0 is perfect.
When bootstrapping is by none
, a coherent OOB subset is not
available to assess prediction error. Thus, all outputs dependent
on this are suppressed. In such cases, prediction error is only
available via classical cross-validation (the user will need to use
the predict.rfsrc
function).
Variable Importance (VIMP)
VIMP is calculated using OOB data in several ways.
importance="permute"
yields permutation VIMP (Breiman-Cutler
importance) by permuting OOB cases. importance="random"
uses
random left/right assignments whenever a split is encountered for
the target variable. The default importance="anti"
(equivalent to importance=TRUE
) assigns cases to the anti
(opposite) split.
VIMP depends upon block.size
, an integer value between 1 and
ntree
, specifying number of trees in a block used for VIMP.
When block.size
=1, VIMP is calculated for each tree. When
block.size="ntree"
, VIMP is calculated for the entire forest
by comparing the perturbed OOB forest ensemble (using all trees) to
the unperturbed OOB forest ensemble (using all trees). This yields
ensemble VIMP, which does not measure the tree average effect of a
variable, but rather its overall forest effect.
A useful compromise between tree VIMP and ensemble VIMP can be
obtained by setting block.size
to a value between 1 and
ntree
. Smaller values generally gives better accuracy,
however computational times will be higher because VIMP is
calculated over more blocks. However, see imbalanced
for
imbalanced classification data where larger block.size
often works better (O'Brien and Ishwaran, 2019).
See vimp
for a user interface for extracting VIMP and
subsampling
for calculating confidence intervals for VIMP.
Also see holdout.vimp
for holdout VIMP, which calculates
importance by holding out variables. This is more conservative, but
with good false discovery properties.
For classification, VIMP is returned as a matrix with J+1 columns where J is the number of classes. The first column "all" is the unconditional VIMP, while the remaining columns are conditional VIMP calculated using only OOB cases with the class label.
Multivariate Forests
Multivariate forests can be specified in two ways:
rfsrc(Multivar(y1, y2, ..., yd) ~ . , my.data, ...)
rfsrc(cbind(y1, y2, ..., yd) ~ . , my.data, ...)
By default, a multivariate normalized composite splitting rule is used to split nodes (for multivariate regression, users have the option to use Mahalanobis splitting).
The nature of the outcomes informs the code as to what type of multivariate forest is grown; i.e. whether it is real-valued, categorical, or a combination of both (mixed). Performance measures (when requested) are returned for all outcomes.
Helper functions get.mv.formula
,
get.mv.predicted
, get.mv.error
can be used for
defining the multivariate forest formula and extracting predicted
values (all outcomes) and VIMP (all variables, all outcomes;
assuming importance was requested in the call). The latter two
functions also work for univariate (regular) forests. Both
functions return standardized values (dividing by the variance for
regression, or multiplying by 100, otherwise) using option
standardize="TRUE"
.
Unsupervised Forests and sidClustering
See sidClustering sidClustering
for a more sophisticated
method for unsupervised analysis.
Otherwise a more direct (but naive) way to proceed is to use the unsupervised splitting rule. The following are equivalent ways to grow an unsupervised forest via unsupervised splitting:
rfsrc(data = my.data)
rfsrc(Unsupervised() ~ ., data = my.data)
In unsupervised mode, features take turns acting as target
y-outcomes and x-variables for splitting. Specifically, mtry
x-variables are randomly selected for splitting the node. Then for
each mtry
feature, ytry
variables are selected
from the remaining features to act as the target pseduo-outcomes.
Splitting uses the multivariate normalized composite splitting rule.
The default value of ytry
is 1 but can be increased. As
illustration, the following equivalent unsupervised calls set
mtry=10
and ytry=5
:
rfsrc(data = my.data, ytry = 5, mtry = 10)
rfsrc(Unsupervised(5) ~ ., my.data, mtry = 10)
Note that all performance values (error rates, VIMP, prediction) are turned off in unsupervised mode.
Survival, Competing Risks
Survival settings require a time and censoring variable which
should be identifed in the formula as the outcome using the standard
Surv
formula specification. A typical formula call looks like:
Surv(my.time, my.status) ~ .
where my.time
and my.status
are the variables names for
the event time and status variable in the users data set.
For survival forests (Ishwaran et al. 2008), the censoring variable must be coded as a non-negative integer with 0 reserved for censoring and (usually) 1=death (event).
For competing risk forests (Ishwaran et al., 2013), the implementation is similar to survival, but with the following caveats:
Censoring must be coded as a non-negative integer, where 0
indicates right-censoring, and non-zero values indicate different
event types. While 0,1,2,..,J
is standard, and recommended,
events can be coded non-sequentially, although 0 must always be used
for censoring.
Setting the splitting rule to logrankscore
will result
in a survival analysis in which all events are treated as if they
are the same type (indeed, they will coerced as such).
Generally, competing risks requires a larger nodesize
than
survival settings.
Missing data imputation
na.action="na.impute"
imputes missing data (both x and
y-variables) using the missing data algorithm of Ishwaran et
al. (2008). But also see the impute
for an
alternate way to do fast and accurate imputation.
The missing data algorithm can be iterated by setting nimpute
to a positive integer greater than 1. When iterated, at the
completion of each iteration, missing data is imputed using OOB
non-missing terminal node data which is then used as input to grow a
new forest. A side effect of iteration is that missing values in
the returned objects xvar
, yvar
are replaced by
imputed values. In other words the incoming data is overlaid with
the missing data. Also, performance measures such as error rates
and VIMP become optimistically biased.
Records in which all outcome and x-variable information are missing are removed from the forest analysis. Variables having all missing values are also removed.
Allowable data types and factors
Data types must be real valued, integer, factor or logical –
however all except factors are coerced and treated as if real
valued. For ordered x-variable factors, splits are similar to real
valued variables. For unordered factors, a split will move a subset
of the levels in the parent node to the left daughter, and the
complementary subset to the right daughter. All possible
complementary pairs are considered and apply to factors with an
unlimited number of levels. However, there is an optimization check
to ensure number of splits attempted is not greater than number of
cases in a node or the value of nsplit
.
For coherence, an immutable map is applied to each factor that ensures factor levels in the training data are consistent with the factor levels in any subsequent test data. This map is applied to each factor before and after the native C library is executed. Because of this, if all x-variables all factors, then computational time will be long in high dimensional problems. Consider converting factors to real if this is the case.
An object of class (rfsrc, grow)
with the following
components:
call |
The original call to |
family |
The family used in the analysis. |
n |
Sample size of the data (depends upon |
ntree |
Number of trees grown. |
mtry |
Number of variables randomly selected for splitting at each node. |
nodesize |
Minimum size of terminal nodes. |
nodedepth |
Maximum depth allowed for a tree. |
splitrule |
Splitting rule used. |
nsplit |
Number of randomly selected split points. |
yvar |
y-outcome values. |
yvar.names |
A character vector of the y-outcome names. |
xvar |
Data frame of x-variables. |
xvar.names |
A character vector of the x-variable names. |
xvar.wt |
Vector of non-negative weights specifying the probability used to select a variable for splitting a node. |
split.wt |
Vector of non-negative weights specifying multiplier by which the split statistic for a covariate is adjusted. |
cause.wt |
Vector of weights used for the composite competing risk splitting rule. |
leaf.count |
Number of terminal nodes for each tree in the
forest. Vector of length |
proximity |
Proximity matrix recording the frequency of pairs of data points occur within the same terminal node. |
forest |
If |
forest.wt |
Forest weight matrix. |
membership |
Matrix recording terminal node membership where each column records node mebership for a case for a tree (rows). |
splitrule |
Splitting rule used. |
inbag |
Matrix recording inbag membership where each column contains the number of times that a case appears in the bootstrap sample for a tree (rows). |
var.used |
Count of the number of times a variable is used in growing the forest. |
imputed.indv |
Vector of indices for cases with missing values. |
imputed.data |
Data frame of the imputed data. The first column(s) are reserved for the y-outcomes, after which the x-variables are listed. |
split.depth |
Matrix (i,j) or array (i,j,k) recording the minimal depth for variable j for case i, either averaged over the forest, or by tree k. |
node.stats |
Split statistics returned when
|
err.rate |
Tree cumulative OOB error rate. |
err.block.rate |
When |
importance |
Variable importance (VIMP) for each x-variable. |
predicted |
In-bag predicted value. |
predicted.oob |
OOB predicted value. |
++++++++ |
for classification settings, additionally ++++++++ |
class |
In-bag predicted class labels. |
class.oob |
OOB predicted class labels. |
++++++++ |
for multivariate settings, additionally ++++++++ |
regrOutput |
List containing performance values for multivariate regression outcomes (applies only in multivariate settings). |
clasOutput |
List containing performance values for multivariate categorical (factor) outcomes (applies only in multivariate settings). |
++++++++ |
for survival settings, additionally ++++++++ |
survival |
In-bag survival function. |
survival.oob |
OOB survival function. |
chf |
In-bag cumulative hazard function (CHF). |
chf.oob |
OOB CHF. |
time.interest |
Ordered unique death times. |
ndead |
Number of deaths. |
++++++++ |
for competing risks, additionally ++++++++ |
chf |
In-bag cause-specific cumulative hazard function (CSCHF) for each event. |
chf.oob |
OOB CSCHF. |
cif |
In-bag cumulative incidence function (CIF) for each event. |
cif.oob |
OOB CIF. |
Values returned depend heavily on the family. In particular,
predicted values from the forest (predicted
and
predicted.oob
) are as follows:
For regression, a vector of predicted y-outcomes.
For classification, a matrix with columns containing the estimated class probability for each class. Performance values and VIMP for classification are reported as a matrix with J+1 columns where J is the number of classes. The first column "all" is the unconditional value for performance (VIMP), while the remaining columns are performance (VIMP) conditioned on cases corresponding to that class label.
For survival, a vector of mortality values (Ishwaran et al.,
2008) representing estimated risk for each individual calibrated
to the scale of the number of events (as a specific example, if
i has a mortality value of 100, then if all individuals had
the same x-values as i, we would expect an average of 100
events). Also returned are matrices containing
the CHF and survival function. Each row corresponds to an
individual's ensemble CHF or survival function evaluated at each
time point in time.interest
.
For competing risks, a matrix with one column for each event
recording the expected number of life years lost due to the event
specific cause up to the maximum follow up (Ishwaran et al.,
2013). Also returned are the cause-specific cumulative hazard
function (CSCHF) and the cumulative incidence function (CIF) for
each event type. These are encoded as a three-dimensional array,
with the third dimension used for the event type, each time point
in time.interest
making up the second dimension (columns),
and the case (individual) being the first dimension (rows).
For multivariate families, predicted values (and other
performance values such as VIMP and error rates) are stored in the
lists regrOutput
and clasOutput
which can be
extracted using functions get.mv.error
,
get.mv.predicted
and get.mv.vimp
.
Hemant Ishwaran and Udaya B. Kogalur
Breiman L., Friedman J.H., Olshen R.A. and Stone C.J. (1984). Classification and Regression Trees, Belmont, California.
Breiman L. (2001). Random forests, Machine Learning, 45:5-32.
Cutler A. and Zhao G. (2001). PERT-Perfect random tree ensembles. Comp. Sci. Statist., 33: 490-497.
Dietterich, T. G. (2000). An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Machine Learning, 40, 139-157.
Gray R.J. (1988). A class of k-sample tests for comparing the cumulative incidence of a competing risk, Ann. Statist., 16: 1141-1154.
Geurts, P., Ernst, D. and Wehenkel, L., (2006). Extremely randomized trees. Machine learning, 63(1):3-42.
Greenwald M. and Khanna S. (2001). Space-efficient online computation of quantile summaries. Proceedings of ACM SIGMOD, 30(2):58-66.
Harrell et al. F.E. (1982). Evaluating the yield of medical tests, J. Amer. Med. Assoc., 247:2543-2546.
Hothorn T. and Lausen B. (2003). On the exact distribution of maximally selected rank statistics, Comp. Statist. Data Anal., 43:121-137.
Ishwaran H. (2007). Variable importance in binary regression trees and forests, Electronic J. Statist., 1:519-537.
Ishwaran H. and Kogalur U.B. (2007). Random survival forests for R, Rnews, 7(2):25-31.
Ishwaran H., Kogalur U.B., Blackstone E.H. and Lauer M.S. (2008). Random survival forests, Ann. App. Statist., 2:841-860.
Ishwaran H., Kogalur U.B., Gorodeski E.Z, Minn A.J. and Lauer M.S. (2010). High-dimensional variable selection for survival data. J. Amer. Statist. Assoc., 105:205-217.
Ishwaran H., Kogalur U.B., Chen X. and Minn A.J. (2011). Random survival forests for high-dimensional data. Stat. Anal. Data Mining, 4:115-132
Ishwaran H., Gerds T.A., Kogalur U.B., Moore R.D., Gange S.J. and Lau B.M. (2014). Random survival forests for competing risks. Biostatistics, 15(4):757-773.
Ishwaran H. and Malley J.D. (2014). Synthetic learning machines. BioData Mining, 7:28.
Ishwaran H. (2015). The effect of splitting on random forests. Machine Learning, 99:75-118.
Lin, Y. and Jeon, Y. (2006). Random forests and adaptive nearest neighbors. J. Amer. Statist. Assoc., 101(474), 578-590.
Lu M., Sadiq S., Feaster D.J. and Ishwaran H. (2018). Estimating individual treatment effect in observational data using random forest methods. J. Comp. Graph. Statist, 27(1), 209-219
Ishwaran H. and Lu M. (2019). Standard errors and confidence intervals for variable importance in random forest regression, classification, and survival. Statistics in Medicine, 38, 558-582.
LeBlanc M. and Crowley J. (1993). Survival trees by goodness of split, J. Amer. Statist. Assoc., 88:457-467.
Loh W.-Y and Shih Y.-S (1997). Split selection methods for classification trees, Statist. Sinica, 7:815-840.
Mantero A. and Ishwaran H. (2021). Unsupervised random forests. Statistical Analysis and Data Mining, 14(2):144-167.
Meinshausen N. (2006) Quantile regression forests, Journal of Machine Learning Research, 7:983-999.
Mogensen, U.B, Ishwaran H. and Gerds T.A. (2012). Evaluating random forests for survival analysis using prediction error curves, J. Statist. Software, 50(11): 1-23.
O'Brien R. and Ishwaran H. (2019). A random forests quantile classifier for class imbalanced data. Pattern Recognition, 90, 232-249
Segal M.R. (1988). Regression trees for censored data, Biometrics, 44:35-47.
Segal M.R. and Xiao Y. Multivariate random forests. (2011). Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 1(1):80-87.
Tang F. and Ishwaran H. (2017). Random forest missing data algorithms. Statistical Analysis and Data Mining, 10:363-377.
Zhang H., Zimmerman J., Nettleton D. and Nordman D.J. (2019). Random forest prediction intervals. The American Statistician. 4:1-5.
imbalanced.rfsrc
,
impute.rfsrc
,
partial.rfsrc
,
plot.competing.risk.rfsrc
,
plot.rfsrc
,
plot.survival.rfsrc
,
plot.variable.rfsrc
,
predict.rfsrc
,
print.rfsrc
,
rfsrc
,
rfsrc.anonymous
,
rfsrc.cart
,
rfsrc.fast
,
stat.split.rfsrc
,
subsample.rfsrc
,
synthetic.rfsrc
,
##------------------------------------------------------------ ## survival analysis ##------------------------------------------------------------ ## veteran data ## randomized trial of two treatment regimens for lung cancer data(veteran, package = "randomForestSRC") v.obj <- rfsrc(Surv(time, status) ~ ., data = veteran, block.size = 1) ## plot tree number 3 plot(get.tree(v.obj, 3)) ## print results of trained forest print(v.obj) ## plot results of trained forest plot(v.obj) ## plot survival curves for first 10 individuals -- direct way matplot(v.obj$time.interest, 100 * t(v.obj$survival.oob[1:10, ]), xlab = "Time", ylab = "Survival", type = "l", lty = 1) ## plot survival curves for first 10 individuals ## using function "plot.survival" plot.survival(v.obj, subset = 1:10) ## obtain Brier score using KM and RSF censoring distribution estimators bs.km <- get.brier.survival(v.obj, cens.model = "km")$brier.score bs.rsf <- get.brier.survival(v.obj, cens.model = "rfsrc")$brier.score ## plot the brier score plot(bs.km, type = "s", col = 2) lines(bs.rsf, type ="s", col = 4) legend("topright", legend = c("cens.model = km", "cens.model = rfsrc"), fill = c(2,4)) ## plot CRPS (continuous rank probability score) as function of time ## here's how to calculate the CRPS for every time point trapz <- randomForestSRC:::trapz time <- v.obj$time.interest crps.km <- sapply(1:length(time), function(j) { trapz(time[1:j], bs.km[1:j, 2] / diff(range(time[1:j]))) }) crps.rsf <- sapply(1:length(time), function(j) { trapz(time[1:j], bs.rsf[1:j, 2] / diff(range(time[1:j]))) }) plot(time, crps.km, ylab = "CRPS", type = "s", col = 2) lines(time, crps.rsf, type ="s", col = 4) legend("bottomright", legend=c("cens.model = km", "cens.model = rfsrc"), fill=c(2,4)) ## fast nodesize optimization for veteran data ## optimal nodesize in survival is larger than other families ## see the function "tune" for more examples tune.nodesize(Surv(time,status) ~ ., veteran) ## Primary biliary cirrhosis (PBC) of the liver data(pbc, package = "randomForestSRC") pbc.obj <- rfsrc(Surv(days, status) ~ ., pbc) print(pbc.obj) ## save.memory example for survival ## growing many deep trees creates memory issue without this option! data(pbc, package = "randomForestSRC") print(rfsrc(Surv(days, status) ~ ., pbc, splitrule = "random", ntree = 25000, nodesize = 1, save.memory = TRUE)) ##------------------------------------------------------------ ## trees can be plotted for any family ## see get.tree for details and more examples ##------------------------------------------------------------ ## survival where factors have many levels data(veteran, package = "randomForestSRC") vd <- veteran vd$celltype=factor(vd$celltype) vd$diagtime=factor(vd$diagtime) vd.obj <- rfsrc(Surv(time,status)~., vd, ntree = 100, nodesize = 5) plot(get.tree(vd.obj, 3)) ## classification iris.obj <- rfsrc(Species ~., data = iris) plot(get.tree(iris.obj, 25, class.type = "bayes")) plot(get.tree(iris.obj, 25, target = "setosa")) plot(get.tree(iris.obj, 25, target = "versicolor")) plot(get.tree(iris.obj, 25, target = "virginica")) ## ------------------------------------------------------------ ## simple example of VIMP using iris classification ## ------------------------------------------------------------ ## directly from trained forest print(rfsrc(Species~.,iris,importance=TRUE)$importance) ## VIMP (and performance) use misclassification error by default ## but brier prediction error can be requested print(rfsrc(Species~.,iris,importance=TRUE,perf.type="brier")$importance) ## example using vimp function (see vimp help file for details) iris.obj <- rfsrc(Species ~., data = iris) print(vimp(iris.obj)$importance) print(vimp(iris.obj,perf.type="brier")$importance) ## example using hold out vimp (see holdout.vimp help file for details) print(holdout.vimp(Species~.,iris)$importance) print(holdout.vimp(Species~.,iris,perf.type="brier")$importance) ## ------------------------------------------------------------ ## confidence interval for vimp using subsampling ## compare with holdout vimp ## ------------------------------------------------------------ ## new York air quality measurements o <- rfsrc(Ozone ~ ., data = airquality) so <- subsample(o) plot(so) ## compare with holdout vimp print(holdout.vimp(Ozone ~ ., data = airquality)$importance) ##------------------------------------------------------------ ## example of imputation in survival analysis ##------------------------------------------------------------ data(pbc, package = "randomForestSRC") pbc.obj2 <- rfsrc(Surv(days, status) ~ ., pbc, na.action = "na.impute") ## same as above but iterate the missing data algorithm pbc.obj3 <- rfsrc(Surv(days, status) ~ ., pbc, na.action = "na.impute", nimpute = 3) ## fast way to impute data (no inference is done) ## see impute for more details pbc.imp <- impute(Surv(days, status) ~ ., pbc, splitrule = "random") ##------------------------------------------------------------ ## compare RF-SRC to Cox regression ## Illustrates C-error and Brier score measures of performance ## assumes "pec" and "survival" libraries are loaded ##------------------------------------------------------------ if (library("survival", logical.return = TRUE) & library("pec", logical.return = TRUE) & library("prodlim", logical.return = TRUE)) { ##prediction function required for pec predictSurvProb.rfsrc <- function(object, newdata, times, ...){ ptemp <- predict(object,newdata=newdata,...)$survival pos <- sindex(jump.times = object$time.interest, eval.times = times) p <- cbind(1,ptemp)[, pos + 1] if (NROW(p) != NROW(newdata) || NCOL(p) != length(times)) stop("Prediction failed") p } ## data, formula specifications data(pbc, package = "randomForestSRC") pbc.na <- na.omit(pbc) ##remove NA's surv.f <- as.formula(Surv(days, status) ~ .) pec.f <- as.formula(Hist(days,status) ~ 1) ## run cox/rfsrc models ## for illustration we use a small number of trees cox.obj <- coxph(surv.f, data = pbc.na, x = TRUE) rfsrc.obj <- rfsrc(surv.f, pbc.na, ntree = 150) ## compute bootstrap cross-validation estimate of expected Brier score ## see Mogensen, Ishwaran and Gerds (2012) Journal of Statistical Software set.seed(17743) prederror.pbc <- pec(list(cox.obj,rfsrc.obj), data = pbc.na, formula = pec.f, splitMethod = "bootcv", B = 50) print(prederror.pbc) plot(prederror.pbc) ## compute out-of-bag C-error for cox regression and compare to rfsrc rfsrc.obj <- rfsrc(surv.f, pbc.na) cat("out-of-bag Cox Analysis ...", "\n") cox.err <- sapply(1:100, function(b) { if (b%%10 == 0) cat("cox bootstrap:", b, "\n") train <- sample(1:nrow(pbc.na), nrow(pbc.na), replace = TRUE) cox.obj <- tryCatch({coxph(surv.f, pbc.na[train, ])}, error=function(ex){NULL}) if (!is.null(cox.obj)) { get.cindex(pbc.na$days[-train], pbc.na$status[-train], predict(cox.obj, pbc.na[-train, ])) } else NA }) cat("\n\tOOB error rates\n\n") cat("\tRSF : ", rfsrc.obj$err.rate[rfsrc.obj$ntree], "\n") cat("\tCox regression : ", mean(cox.err, na.rm = TRUE), "\n") } ##------------------------------------------------------------ ## competing risks ##------------------------------------------------------------ ## WIHS analysis ## cumulative incidence function (CIF) for HAART and AIDS stratified by IDU data(wihs, package = "randomForestSRC") wihs.obj <- rfsrc(Surv(time, status) ~ ., wihs, nsplit = 3, ntree = 100) plot.competing.risk(wihs.obj) cif <- wihs.obj$cif.oob Time <- wihs.obj$time.interest idu <- wihs$idu cif.haart <- cbind(apply(cif[,,1][idu == 0,], 2, mean), apply(cif[,,1][idu == 1,], 2, mean)) cif.aids <- cbind(apply(cif[,,2][idu == 0,], 2, mean), apply(cif[,,2][idu == 1,], 2, mean)) matplot(Time, cbind(cif.haart, cif.aids), type = "l", lty = c(1,2,1,2), col = c(4, 4, 2, 2), lwd = 3, ylab = "Cumulative Incidence") legend("topleft", legend = c("HAART (Non-IDU)", "HAART (IDU)", "AIDS (Non-IDU)", "AIDS (IDU)"), lty = c(1,2,1,2), col = c(4, 4, 2, 2), lwd = 3, cex = 1.5) ## illustrates the various splitting rules ## illustrates event specific and non-event specific variable selection if (library("survival", logical.return = TRUE)) { ## use the pbc data from the survival package ## events are transplant (1) and death (2) data(pbc, package = "survival") pbc$id <- NULL ## modified Gray's weighted log-rank splitting ## (equivalent to cause=c(1,1) and splitrule="logrankCR") pbc.cr <- rfsrc(Surv(time, status) ~ ., pbc) ## log-rank cause-1 specific splitting and targeted VIMP for cause 1 pbc.log1 <- rfsrc(Surv(time, status) ~ ., pbc, splitrule = "logrankCR", cause = c(1,0), importance = TRUE) ## log-rank cause-2 specific splitting and targeted VIMP for cause 2 pbc.log2 <- rfsrc(Surv(time, status) ~ ., pbc, splitrule = "logrankCR", cause = c(0,1), importance = TRUE) ## extract VIMP from the log-rank forests: event-specific ## extract minimal depth from the Gray log-rank forest: non-event specific var.perf <- data.frame(md = max.subtree(pbc.cr)$order[, 1], vimp1 = 100 * pbc.log1$importance[ ,1], vimp2 = 100 * pbc.log2$importance[ ,2]) print(var.perf[order(var.perf$md), ], digits = 2) } ## ------------------------------------------------------------ ## regression analysis ## ------------------------------------------------------------ ## new York air quality measurements airq.obj <- rfsrc(Ozone ~ ., data = airquality, na.action = "na.impute") # partial plot of variables (see plot.variable for more details) plot.variable(airq.obj, partial = TRUE, smooth.lines = TRUE) ## motor trend cars mtcars.obj <- rfsrc(mpg ~ ., data = mtcars) ## ------------------------------------------------------------ ## regression with custom bootstrap ## ------------------------------------------------------------ ntree <- 25 n <- nrow(mtcars) s.size <- n / 2 swr <- TRUE samp <- randomForestSRC:::make.sample(ntree, n, s.size, swr) o <- rfsrc(mpg ~ ., mtcars, bootstrap = "by.user", samp = samp) ## ------------------------------------------------------------ ## classification analysis ## ------------------------------------------------------------ ## iris data iris.obj <- rfsrc(Species ~., data = iris) ## wisconsin prognostic breast cancer data data(breast, package = "randomForestSRC") breast.obj <- rfsrc(status ~ ., data = breast, block.size=1) plot(breast.obj) ## ------------------------------------------------------------ ## big data set, reduce number of variables using simple method ## ------------------------------------------------------------ ## use Iowa housing data set data(housing, package = "randomForestSRC") ## original data contains lots of missing data, use fast imputation ## however see impute for other methods housing2 <- impute(data = housing, fast = TRUE) ## run shallow trees to find variables that split any tree xvar.used <- rfsrc(SalePrice ~., housing2, ntree = 250, nodedepth = 4, var.used="all.trees", mtry = Inf, nsplit = 100)$var.used ## now fit forest using filtered variables xvar.keep <- names(xvar.used)[xvar.used >= 1] o <- rfsrc(SalePrice~., housing2[, c("SalePrice", xvar.keep)]) print(o) ## ------------------------------------------------------------ ## imbalanced classification data ## see the "imbalanced" function for further details ## ## (a) use balanced random forests with undersampling of the majority class ## Specifically let n0, n1 be sample sizes for majority, minority ## cases. We sample 2 x n1 cases with majority, minority cases chosen ## with probabilities n1/n, n0/n where n=n0+n1 ## ## (b) balanced random forests using "imbalanced" ## ## (c) q-classifier (RFQ) using "imbalanced" ## ## ------------------------------------------------------------ ## Wisconsin breast cancer example data(breast, package = "randomForestSRC") breast <- na.omit(breast) ## balanced random forests - brute force y <- breast$status obdirect <- rfsrc(status ~ ., data = breast, nsplit = 10, case.wt = randomForestSRC:::make.wt(y), sampsize = randomForestSRC:::make.size(y)) print(obdirect) print(get.imbalanced.performance(obdirect)) ## balanced random forests - using "imbalanced" ob <- imbalanced(status ~ ., data = breast, method = "brf") print(ob) print(get.imbalanced.performance(ob)) ## q-classifier (RFQ) - using "imbalanced" oq <- imbalanced(status ~ ., data = breast) print(oq) print(get.imbalanced.performance(oq)) ## q-classifier (RFQ) - with auc splitting oqauc <- imbalanced(status ~ ., data = breast, splitrule = "auc") print(oqauc) print(get.imbalanced.performance(oqauc)) ## ------------------------------------------------------------ ## unsupervised analysis ## ------------------------------------------------------------ ## two equivalent ways to implement unsupervised forests mtcars.unspv <- rfsrc(Unsupervised() ~., data = mtcars) mtcars2.unspv <- rfsrc(data = mtcars) ## illustration of sidClustering for the mtcars data ## see sidClustering for more details mtcars.sid <- sidClustering(mtcars, k = 1:10) print(split(mtcars, mtcars.sid$cl[, 3])) print(split(mtcars, mtcars.sid$cl[, 10])) ## ------------------------------------------------------------ ## bivariate regression using Mahalanobis splitting ## also illustrates user specified covariance matrix ## ------------------------------------------------------------ if (library("mlbench", logical.return = TRUE)) { ## load boston housing data, specify the bivariate regression data(BostonHousing) f <- formula("Multivar(lstat, nox) ~.") ## Mahalanobis splitting bh.mreg <- rfsrc(f, BostonHousing, importance = TRUE, splitrule = "mahal") ## performance error and vimp vmp <- get.mv.vimp(bh.mreg) pred <- get.mv.predicted(bh.mreg) ## standardized error and vimp err.std <- get.mv.error(bh.mreg, standardize = TRUE) vmp.std <- get.mv.vimp(bh.mreg, standardize = TRUE) ## same analysis, but with user specified covariance matrix sigma <- cov(BostonHousing[, c("lstat","nox")]) bh.mreg2 <- rfsrc(f, BostonHousing, splitrule = "mahal", sigma = sigma) } ## ------------------------------------------------------------ ## multivariate mixed forests (nutrigenomic study) ## study effects of diet, lipids and gene expression for mice ## diet, genotype and lipids used as the multivariate y ## genes used for the x features ## ------------------------------------------------------------ ## load the data (data is a list) data(nutrigenomic, package = "randomForestSRC") ## assemble the multivariate y data ydta <- data.frame(diet = nutrigenomic$diet, genotype = nutrigenomic$genotype, nutrigenomic$lipids) ## multivariate mixed forest call ## uses "get.mv.formula" for conveniently setting formula mv.obj <- rfsrc(get.mv.formula(colnames(ydta)), data.frame(ydta, nutrigenomic$genes), importance=TRUE, nsplit = 10) ## print results for diet and genotype y values print(mv.obj, outcome.target = "diet") print(mv.obj, outcome.target = "genotype") ## extract standardized VIMP svimp <- get.mv.vimp(mv.obj, standardize = TRUE) ## plot standardized VIMP for diet, genotype and lipid for each gene boxplot(t(svimp), col = "bisque", cex.axis = .7, las = 2, outline = FALSE, ylab = "standardized VIMP", main = "diet/genotype/lipid VIMP for each gene") ## ------------------------------------------------------------ ## illustrates yvar.wt which sets the probability of selecting ## the response variables in multivariate regression ## ------------------------------------------------------------ ## use mtcars: add fake responses mult.mtcars <- cbind(mtcars, mtcars$mpg, mtcars$mpg) names(mult.mtcars) = c(names(mtcars), "mpg2", "mpg3") ## noise up the fake responses mult.mtcars$mpg2 <- sample(mtcars$mpg) mult.mtcars$mpg3 <- sample(mtcars$mpg) formula = as.formula(Multivar(mpg, mpg2, mpg3) ~ .) ## select 2 of the 3 responses randomly at each split with an associated weight vector. ## choose the noisy y responses which should degrade performance yvar.wt = c(0.000001, 0.5, 0.5) ytry = 2 mult.grow <- rfsrc(formula = formula, data = mult.mtcars, ytry = ytry, yvar.wt = yvar.wt) print(mult.grow) print(get.mv.error(mult.grow)) ## Also, compare the following two results, as they should be similar: yvar.wt = c(1.0, 00000.1, 00000.1) ytry = 1 result1 = rfsrc(formula = formula, data = mult.mtcars, ytry = ytry, yvar.wt = yvar.wt) result2 = rfsrc(mpg ~ ., mtcars) print(get.mv.error(result1)) print(get.mv.error(result2)) ## ------------------------------------------------------------ ## custom splitting using the pre-coded examples ## ------------------------------------------------------------ ## motor trend cars mtcars.obj <- rfsrc(mpg ~ ., data = mtcars, splitrule = "custom") ## iris analysis iris.obj <- rfsrc(Species ~., data = iris, splitrule = "custom1") ## WIHS analysis wihs.obj <- rfsrc(Surv(time, status) ~ ., wihs, nsplit = 3, ntree = 100, splitrule = "custom1")
##------------------------------------------------------------ ## survival analysis ##------------------------------------------------------------ ## veteran data ## randomized trial of two treatment regimens for lung cancer data(veteran, package = "randomForestSRC") v.obj <- rfsrc(Surv(time, status) ~ ., data = veteran, block.size = 1) ## plot tree number 3 plot(get.tree(v.obj, 3)) ## print results of trained forest print(v.obj) ## plot results of trained forest plot(v.obj) ## plot survival curves for first 10 individuals -- direct way matplot(v.obj$time.interest, 100 * t(v.obj$survival.oob[1:10, ]), xlab = "Time", ylab = "Survival", type = "l", lty = 1) ## plot survival curves for first 10 individuals ## using function "plot.survival" plot.survival(v.obj, subset = 1:10) ## obtain Brier score using KM and RSF censoring distribution estimators bs.km <- get.brier.survival(v.obj, cens.model = "km")$brier.score bs.rsf <- get.brier.survival(v.obj, cens.model = "rfsrc")$brier.score ## plot the brier score plot(bs.km, type = "s", col = 2) lines(bs.rsf, type ="s", col = 4) legend("topright", legend = c("cens.model = km", "cens.model = rfsrc"), fill = c(2,4)) ## plot CRPS (continuous rank probability score) as function of time ## here's how to calculate the CRPS for every time point trapz <- randomForestSRC:::trapz time <- v.obj$time.interest crps.km <- sapply(1:length(time), function(j) { trapz(time[1:j], bs.km[1:j, 2] / diff(range(time[1:j]))) }) crps.rsf <- sapply(1:length(time), function(j) { trapz(time[1:j], bs.rsf[1:j, 2] / diff(range(time[1:j]))) }) plot(time, crps.km, ylab = "CRPS", type = "s", col = 2) lines(time, crps.rsf, type ="s", col = 4) legend("bottomright", legend=c("cens.model = km", "cens.model = rfsrc"), fill=c(2,4)) ## fast nodesize optimization for veteran data ## optimal nodesize in survival is larger than other families ## see the function "tune" for more examples tune.nodesize(Surv(time,status) ~ ., veteran) ## Primary biliary cirrhosis (PBC) of the liver data(pbc, package = "randomForestSRC") pbc.obj <- rfsrc(Surv(days, status) ~ ., pbc) print(pbc.obj) ## save.memory example for survival ## growing many deep trees creates memory issue without this option! data(pbc, package = "randomForestSRC") print(rfsrc(Surv(days, status) ~ ., pbc, splitrule = "random", ntree = 25000, nodesize = 1, save.memory = TRUE)) ##------------------------------------------------------------ ## trees can be plotted for any family ## see get.tree for details and more examples ##------------------------------------------------------------ ## survival where factors have many levels data(veteran, package = "randomForestSRC") vd <- veteran vd$celltype=factor(vd$celltype) vd$diagtime=factor(vd$diagtime) vd.obj <- rfsrc(Surv(time,status)~., vd, ntree = 100, nodesize = 5) plot(get.tree(vd.obj, 3)) ## classification iris.obj <- rfsrc(Species ~., data = iris) plot(get.tree(iris.obj, 25, class.type = "bayes")) plot(get.tree(iris.obj, 25, target = "setosa")) plot(get.tree(iris.obj, 25, target = "versicolor")) plot(get.tree(iris.obj, 25, target = "virginica")) ## ------------------------------------------------------------ ## simple example of VIMP using iris classification ## ------------------------------------------------------------ ## directly from trained forest print(rfsrc(Species~.,iris,importance=TRUE)$importance) ## VIMP (and performance) use misclassification error by default ## but brier prediction error can be requested print(rfsrc(Species~.,iris,importance=TRUE,perf.type="brier")$importance) ## example using vimp function (see vimp help file for details) iris.obj <- rfsrc(Species ~., data = iris) print(vimp(iris.obj)$importance) print(vimp(iris.obj,perf.type="brier")$importance) ## example using hold out vimp (see holdout.vimp help file for details) print(holdout.vimp(Species~.,iris)$importance) print(holdout.vimp(Species~.,iris,perf.type="brier")$importance) ## ------------------------------------------------------------ ## confidence interval for vimp using subsampling ## compare with holdout vimp ## ------------------------------------------------------------ ## new York air quality measurements o <- rfsrc(Ozone ~ ., data = airquality) so <- subsample(o) plot(so) ## compare with holdout vimp print(holdout.vimp(Ozone ~ ., data = airquality)$importance) ##------------------------------------------------------------ ## example of imputation in survival analysis ##------------------------------------------------------------ data(pbc, package = "randomForestSRC") pbc.obj2 <- rfsrc(Surv(days, status) ~ ., pbc, na.action = "na.impute") ## same as above but iterate the missing data algorithm pbc.obj3 <- rfsrc(Surv(days, status) ~ ., pbc, na.action = "na.impute", nimpute = 3) ## fast way to impute data (no inference is done) ## see impute for more details pbc.imp <- impute(Surv(days, status) ~ ., pbc, splitrule = "random") ##------------------------------------------------------------ ## compare RF-SRC to Cox regression ## Illustrates C-error and Brier score measures of performance ## assumes "pec" and "survival" libraries are loaded ##------------------------------------------------------------ if (library("survival", logical.return = TRUE) & library("pec", logical.return = TRUE) & library("prodlim", logical.return = TRUE)) { ##prediction function required for pec predictSurvProb.rfsrc <- function(object, newdata, times, ...){ ptemp <- predict(object,newdata=newdata,...)$survival pos <- sindex(jump.times = object$time.interest, eval.times = times) p <- cbind(1,ptemp)[, pos + 1] if (NROW(p) != NROW(newdata) || NCOL(p) != length(times)) stop("Prediction failed") p } ## data, formula specifications data(pbc, package = "randomForestSRC") pbc.na <- na.omit(pbc) ##remove NA's surv.f <- as.formula(Surv(days, status) ~ .) pec.f <- as.formula(Hist(days,status) ~ 1) ## run cox/rfsrc models ## for illustration we use a small number of trees cox.obj <- coxph(surv.f, data = pbc.na, x = TRUE) rfsrc.obj <- rfsrc(surv.f, pbc.na, ntree = 150) ## compute bootstrap cross-validation estimate of expected Brier score ## see Mogensen, Ishwaran and Gerds (2012) Journal of Statistical Software set.seed(17743) prederror.pbc <- pec(list(cox.obj,rfsrc.obj), data = pbc.na, formula = pec.f, splitMethod = "bootcv", B = 50) print(prederror.pbc) plot(prederror.pbc) ## compute out-of-bag C-error for cox regression and compare to rfsrc rfsrc.obj <- rfsrc(surv.f, pbc.na) cat("out-of-bag Cox Analysis ...", "\n") cox.err <- sapply(1:100, function(b) { if (b%%10 == 0) cat("cox bootstrap:", b, "\n") train <- sample(1:nrow(pbc.na), nrow(pbc.na), replace = TRUE) cox.obj <- tryCatch({coxph(surv.f, pbc.na[train, ])}, error=function(ex){NULL}) if (!is.null(cox.obj)) { get.cindex(pbc.na$days[-train], pbc.na$status[-train], predict(cox.obj, pbc.na[-train, ])) } else NA }) cat("\n\tOOB error rates\n\n") cat("\tRSF : ", rfsrc.obj$err.rate[rfsrc.obj$ntree], "\n") cat("\tCox regression : ", mean(cox.err, na.rm = TRUE), "\n") } ##------------------------------------------------------------ ## competing risks ##------------------------------------------------------------ ## WIHS analysis ## cumulative incidence function (CIF) for HAART and AIDS stratified by IDU data(wihs, package = "randomForestSRC") wihs.obj <- rfsrc(Surv(time, status) ~ ., wihs, nsplit = 3, ntree = 100) plot.competing.risk(wihs.obj) cif <- wihs.obj$cif.oob Time <- wihs.obj$time.interest idu <- wihs$idu cif.haart <- cbind(apply(cif[,,1][idu == 0,], 2, mean), apply(cif[,,1][idu == 1,], 2, mean)) cif.aids <- cbind(apply(cif[,,2][idu == 0,], 2, mean), apply(cif[,,2][idu == 1,], 2, mean)) matplot(Time, cbind(cif.haart, cif.aids), type = "l", lty = c(1,2,1,2), col = c(4, 4, 2, 2), lwd = 3, ylab = "Cumulative Incidence") legend("topleft", legend = c("HAART (Non-IDU)", "HAART (IDU)", "AIDS (Non-IDU)", "AIDS (IDU)"), lty = c(1,2,1,2), col = c(4, 4, 2, 2), lwd = 3, cex = 1.5) ## illustrates the various splitting rules ## illustrates event specific and non-event specific variable selection if (library("survival", logical.return = TRUE)) { ## use the pbc data from the survival package ## events are transplant (1) and death (2) data(pbc, package = "survival") pbc$id <- NULL ## modified Gray's weighted log-rank splitting ## (equivalent to cause=c(1,1) and splitrule="logrankCR") pbc.cr <- rfsrc(Surv(time, status) ~ ., pbc) ## log-rank cause-1 specific splitting and targeted VIMP for cause 1 pbc.log1 <- rfsrc(Surv(time, status) ~ ., pbc, splitrule = "logrankCR", cause = c(1,0), importance = TRUE) ## log-rank cause-2 specific splitting and targeted VIMP for cause 2 pbc.log2 <- rfsrc(Surv(time, status) ~ ., pbc, splitrule = "logrankCR", cause = c(0,1), importance = TRUE) ## extract VIMP from the log-rank forests: event-specific ## extract minimal depth from the Gray log-rank forest: non-event specific var.perf <- data.frame(md = max.subtree(pbc.cr)$order[, 1], vimp1 = 100 * pbc.log1$importance[ ,1], vimp2 = 100 * pbc.log2$importance[ ,2]) print(var.perf[order(var.perf$md), ], digits = 2) } ## ------------------------------------------------------------ ## regression analysis ## ------------------------------------------------------------ ## new York air quality measurements airq.obj <- rfsrc(Ozone ~ ., data = airquality, na.action = "na.impute") # partial plot of variables (see plot.variable for more details) plot.variable(airq.obj, partial = TRUE, smooth.lines = TRUE) ## motor trend cars mtcars.obj <- rfsrc(mpg ~ ., data = mtcars) ## ------------------------------------------------------------ ## regression with custom bootstrap ## ------------------------------------------------------------ ntree <- 25 n <- nrow(mtcars) s.size <- n / 2 swr <- TRUE samp <- randomForestSRC:::make.sample(ntree, n, s.size, swr) o <- rfsrc(mpg ~ ., mtcars, bootstrap = "by.user", samp = samp) ## ------------------------------------------------------------ ## classification analysis ## ------------------------------------------------------------ ## iris data iris.obj <- rfsrc(Species ~., data = iris) ## wisconsin prognostic breast cancer data data(breast, package = "randomForestSRC") breast.obj <- rfsrc(status ~ ., data = breast, block.size=1) plot(breast.obj) ## ------------------------------------------------------------ ## big data set, reduce number of variables using simple method ## ------------------------------------------------------------ ## use Iowa housing data set data(housing, package = "randomForestSRC") ## original data contains lots of missing data, use fast imputation ## however see impute for other methods housing2 <- impute(data = housing, fast = TRUE) ## run shallow trees to find variables that split any tree xvar.used <- rfsrc(SalePrice ~., housing2, ntree = 250, nodedepth = 4, var.used="all.trees", mtry = Inf, nsplit = 100)$var.used ## now fit forest using filtered variables xvar.keep <- names(xvar.used)[xvar.used >= 1] o <- rfsrc(SalePrice~., housing2[, c("SalePrice", xvar.keep)]) print(o) ## ------------------------------------------------------------ ## imbalanced classification data ## see the "imbalanced" function for further details ## ## (a) use balanced random forests with undersampling of the majority class ## Specifically let n0, n1 be sample sizes for majority, minority ## cases. We sample 2 x n1 cases with majority, minority cases chosen ## with probabilities n1/n, n0/n where n=n0+n1 ## ## (b) balanced random forests using "imbalanced" ## ## (c) q-classifier (RFQ) using "imbalanced" ## ## ------------------------------------------------------------ ## Wisconsin breast cancer example data(breast, package = "randomForestSRC") breast <- na.omit(breast) ## balanced random forests - brute force y <- breast$status obdirect <- rfsrc(status ~ ., data = breast, nsplit = 10, case.wt = randomForestSRC:::make.wt(y), sampsize = randomForestSRC:::make.size(y)) print(obdirect) print(get.imbalanced.performance(obdirect)) ## balanced random forests - using "imbalanced" ob <- imbalanced(status ~ ., data = breast, method = "brf") print(ob) print(get.imbalanced.performance(ob)) ## q-classifier (RFQ) - using "imbalanced" oq <- imbalanced(status ~ ., data = breast) print(oq) print(get.imbalanced.performance(oq)) ## q-classifier (RFQ) - with auc splitting oqauc <- imbalanced(status ~ ., data = breast, splitrule = "auc") print(oqauc) print(get.imbalanced.performance(oqauc)) ## ------------------------------------------------------------ ## unsupervised analysis ## ------------------------------------------------------------ ## two equivalent ways to implement unsupervised forests mtcars.unspv <- rfsrc(Unsupervised() ~., data = mtcars) mtcars2.unspv <- rfsrc(data = mtcars) ## illustration of sidClustering for the mtcars data ## see sidClustering for more details mtcars.sid <- sidClustering(mtcars, k = 1:10) print(split(mtcars, mtcars.sid$cl[, 3])) print(split(mtcars, mtcars.sid$cl[, 10])) ## ------------------------------------------------------------ ## bivariate regression using Mahalanobis splitting ## also illustrates user specified covariance matrix ## ------------------------------------------------------------ if (library("mlbench", logical.return = TRUE)) { ## load boston housing data, specify the bivariate regression data(BostonHousing) f <- formula("Multivar(lstat, nox) ~.") ## Mahalanobis splitting bh.mreg <- rfsrc(f, BostonHousing, importance = TRUE, splitrule = "mahal") ## performance error and vimp vmp <- get.mv.vimp(bh.mreg) pred <- get.mv.predicted(bh.mreg) ## standardized error and vimp err.std <- get.mv.error(bh.mreg, standardize = TRUE) vmp.std <- get.mv.vimp(bh.mreg, standardize = TRUE) ## same analysis, but with user specified covariance matrix sigma <- cov(BostonHousing[, c("lstat","nox")]) bh.mreg2 <- rfsrc(f, BostonHousing, splitrule = "mahal", sigma = sigma) } ## ------------------------------------------------------------ ## multivariate mixed forests (nutrigenomic study) ## study effects of diet, lipids and gene expression for mice ## diet, genotype and lipids used as the multivariate y ## genes used for the x features ## ------------------------------------------------------------ ## load the data (data is a list) data(nutrigenomic, package = "randomForestSRC") ## assemble the multivariate y data ydta <- data.frame(diet = nutrigenomic$diet, genotype = nutrigenomic$genotype, nutrigenomic$lipids) ## multivariate mixed forest call ## uses "get.mv.formula" for conveniently setting formula mv.obj <- rfsrc(get.mv.formula(colnames(ydta)), data.frame(ydta, nutrigenomic$genes), importance=TRUE, nsplit = 10) ## print results for diet and genotype y values print(mv.obj, outcome.target = "diet") print(mv.obj, outcome.target = "genotype") ## extract standardized VIMP svimp <- get.mv.vimp(mv.obj, standardize = TRUE) ## plot standardized VIMP for diet, genotype and lipid for each gene boxplot(t(svimp), col = "bisque", cex.axis = .7, las = 2, outline = FALSE, ylab = "standardized VIMP", main = "diet/genotype/lipid VIMP for each gene") ## ------------------------------------------------------------ ## illustrates yvar.wt which sets the probability of selecting ## the response variables in multivariate regression ## ------------------------------------------------------------ ## use mtcars: add fake responses mult.mtcars <- cbind(mtcars, mtcars$mpg, mtcars$mpg) names(mult.mtcars) = c(names(mtcars), "mpg2", "mpg3") ## noise up the fake responses mult.mtcars$mpg2 <- sample(mtcars$mpg) mult.mtcars$mpg3 <- sample(mtcars$mpg) formula = as.formula(Multivar(mpg, mpg2, mpg3) ~ .) ## select 2 of the 3 responses randomly at each split with an associated weight vector. ## choose the noisy y responses which should degrade performance yvar.wt = c(0.000001, 0.5, 0.5) ytry = 2 mult.grow <- rfsrc(formula = formula, data = mult.mtcars, ytry = ytry, yvar.wt = yvar.wt) print(mult.grow) print(get.mv.error(mult.grow)) ## Also, compare the following two results, as they should be similar: yvar.wt = c(1.0, 00000.1, 00000.1) ytry = 1 result1 = rfsrc(formula = formula, data = mult.mtcars, ytry = ytry, yvar.wt = yvar.wt) result2 = rfsrc(mpg ~ ., mtcars) print(get.mv.error(result1)) print(get.mv.error(result2)) ## ------------------------------------------------------------ ## custom splitting using the pre-coded examples ## ------------------------------------------------------------ ## motor trend cars mtcars.obj <- rfsrc(mpg ~ ., data = mtcars, splitrule = "custom") ## iris analysis iris.obj <- rfsrc(Species ~., data = iris, splitrule = "custom1") ## WIHS analysis wihs.obj <- rfsrc(Surv(time, status) ~ ., wihs, nsplit = 3, ntree = 100, splitrule = "custom1")
Anonymous random forests applies random forests but is carefully modified so as not to save the original training data. This allows users to share their forest with other researchers but without having to share their original data.
rfsrc.anonymous(formula, data, forest = TRUE, ...)
rfsrc.anonymous(formula, data, forest = TRUE, ...)
formula |
A symbolic description of the model to be fit. If missing, unsupervised splitting is implemented. |
data |
Data frame containing the y-outcome and x-variables. |
forest |
Should the forest object be returned? Used for prediction on new data and required by many of the package functions. |
... |
Further arguments as in |
Calls rfsrc
and returns an object with the training data
removed so that users can share their forest while maintaining privacy
of their data.
In order to predict on test data, it is however necessary for certain minimal information to be saved from the training data. This includes the names of the original variables, and if factor variables are present, the levels of the factors. The mean value and maximal class value for real and factor variables in the training data are also stored for the purposes of imputation on test data (see below). The topology of grow trees is also saved, which includes among other things, the split values used for splitting tree nodes.
For the most privacy, we recommend that variable names be made non-identifiable and that data be coerced to real values. If factors are required, the user should consider using non-identifiable factor levels. However, in all cases, it is the users responsibility to de-identify their data and to check that data privacy holds. We provide NO GUARANTEES of this.
Missing data is especially delicate with anonymous forests. Training
data cannot be imputed and the option na.action="na.impute"
simply reverts to na.action="na.omit"
. Therefore if you have
training data with missing values consider using pre-imputing the data
using impute
. It is however possible to impute on test
data. The option na.action="na.impute"
in the prediction call
triggers a rough and fast imputation method where the value of missing
test data are replaced by the mean (or maximal class) value from the
training data. A second option na.action="na.random"
uses a
fast random imputation method.
In general, it is important to keep in mind that while anonymous forests tries to play nice with other functions in the package, it only works with calls that do not specifically require training data.
An object of class (rfsrc, grow, anonymous)
.
Hemant Ishwaran and Udaya B. Kogalur
## ------------------------------------------------------------ ## regression ## ------------------------------------------------------------ print(rfsrc.anonymous(mpg ~ ., mtcars)) ## ------------------------------------------------------------ ## plot anonymous regression tree (using get.tree) ## TBD CURRENTLY NOT IMPLEMENTED ## ------------------------------------------------------------ ## plot(get.tree(rfsrc.anonymous(mpg ~ ., mtcars), 10)) ## ------------------------------------------------------------ ## classification ## ------------------------------------------------------------ print(rfsrc.anonymous(Species ~ ., iris)) ## ------------------------------------------------------------ ## survival ## ------------------------------------------------------------ data(veteran, package = "randomForestSRC") print(rfsrc.anonymous(Surv(time, status) ~ ., data = veteran)) ## ------------------------------------------------------------ ## competing risks ## ------------------------------------------------------------ data(wihs, package = "randomForestSRC") print(rfsrc.anonymous(Surv(time, status) ~ ., wihs, ntree = 100)) ## ------------------------------------------------------------ ## unsupervised forests ## ------------------------------------------------------------ print(rfsrc.anonymous(data = iris)) ## ------------------------------------------------------------ ## multivariate regression ## ------------------------------------------------------------ print(rfsrc.anonymous(Multivar(mpg, cyl) ~., data = mtcars)) ## ------------------------------------------------------------ ## prediction on test data with missing values using pbc data ## cases 1 to 312 have no missing values ## cases 313 to 418 having missing values ## ------------------------------------------------------------ data(pbc, package = "randomForestSRC") pbc.obj <- rfsrc.anonymous(Surv(days, status) ~ ., pbc) print(pbc.obj) ## mean value imputation print(predict(pbc.obj, pbc[-(1:312),], na.action = "na.impute")) ## random imputation print(predict(pbc.obj, pbc[-(1:312),], na.action = "na.random")) ## ------------------------------------------------------------ ## train/test setting but tricky because factor labels differ over ## training and test data ## ------------------------------------------------------------ # first we convert all x-variables to factors data(veteran, package = "randomForestSRC") veteran.factor <- data.frame(lapply(veteran, factor)) veteran.factor$time <- veteran$time veteran.factor$status <- veteran$status # split the data into train/test data (25/75) # the train/test data have the same levels, but different labels train <- sample(1:nrow(veteran), round(nrow(veteran) * .5)) summary(veteran.factor[train, ]) summary(veteran.factor[-train, ]) # grow the forest on the training data and predict on the test data v.grow <- rfsrc.anonymous(Surv(time, status) ~ ., veteran.factor[train, ]) v.pred <- predict(v.grow, veteran.factor[-train, ]) print(v.grow) print(v.pred)
## ------------------------------------------------------------ ## regression ## ------------------------------------------------------------ print(rfsrc.anonymous(mpg ~ ., mtcars)) ## ------------------------------------------------------------ ## plot anonymous regression tree (using get.tree) ## TBD CURRENTLY NOT IMPLEMENTED ## ------------------------------------------------------------ ## plot(get.tree(rfsrc.anonymous(mpg ~ ., mtcars), 10)) ## ------------------------------------------------------------ ## classification ## ------------------------------------------------------------ print(rfsrc.anonymous(Species ~ ., iris)) ## ------------------------------------------------------------ ## survival ## ------------------------------------------------------------ data(veteran, package = "randomForestSRC") print(rfsrc.anonymous(Surv(time, status) ~ ., data = veteran)) ## ------------------------------------------------------------ ## competing risks ## ------------------------------------------------------------ data(wihs, package = "randomForestSRC") print(rfsrc.anonymous(Surv(time, status) ~ ., wihs, ntree = 100)) ## ------------------------------------------------------------ ## unsupervised forests ## ------------------------------------------------------------ print(rfsrc.anonymous(data = iris)) ## ------------------------------------------------------------ ## multivariate regression ## ------------------------------------------------------------ print(rfsrc.anonymous(Multivar(mpg, cyl) ~., data = mtcars)) ## ------------------------------------------------------------ ## prediction on test data with missing values using pbc data ## cases 1 to 312 have no missing values ## cases 313 to 418 having missing values ## ------------------------------------------------------------ data(pbc, package = "randomForestSRC") pbc.obj <- rfsrc.anonymous(Surv(days, status) ~ ., pbc) print(pbc.obj) ## mean value imputation print(predict(pbc.obj, pbc[-(1:312),], na.action = "na.impute")) ## random imputation print(predict(pbc.obj, pbc[-(1:312),], na.action = "na.random")) ## ------------------------------------------------------------ ## train/test setting but tricky because factor labels differ over ## training and test data ## ------------------------------------------------------------ # first we convert all x-variables to factors data(veteran, package = "randomForestSRC") veteran.factor <- data.frame(lapply(veteran, factor)) veteran.factor$time <- veteran$time veteran.factor$status <- veteran$status # split the data into train/test data (25/75) # the train/test data have the same levels, but different labels train <- sample(1:nrow(veteran), round(nrow(veteran) * .5)) summary(veteran.factor[train, ]) summary(veteran.factor[-train, ]) # grow the forest on the training data and predict on the test data v.grow <- rfsrc.anonymous(Surv(time, status) ~ ., veteran.factor[train, ]) v.pred <- predict(v.grow, veteran.factor[-train, ]) print(v.grow) print(v.pred)
Fast approximate random forests using subsampling with forest options set to encourage computational speed. Applies to all families.
rfsrc.fast(formula, data, ntree = 500, nsplit = 10, bootstrap = "by.root", sampsize = function(x){min(x * .632, max(150, x ^ (3/4)))}, samptype = "swor", samp = NULL, ntime = 50, forest = FALSE, save.memory = TRUE, ...)
rfsrc.fast(formula, data, ntree = 500, nsplit = 10, bootstrap = "by.root", sampsize = function(x){min(x * .632, max(150, x ^ (3/4)))}, samptype = "swor", samp = NULL, ntime = 50, forest = FALSE, save.memory = TRUE, ...)
formula |
Model to be fit. If missing, unsupervised splitting is implemented. |
data |
Data frame containing the y-outcome and x-variables. |
ntree |
Number of trees. |
nsplit |
Non-negative integer value specifying number of random split points used to split a node (deterministic splitting corresponds to the value zero and can be slower). |
bootstrap |
Bootstrap protocol used in growing a tree. |
sampsize |
Function specifying size of subsampled data. Can also be a number. |
samptype |
Type of bootstrap used. |
samp |
Bootstrap specification when |
ntime |
Integer value used for survival to
constrain ensemble calculations to a grid of |
forest |
Save key forest values? Turn this on if you want prediction on test data. |
save.memory |
Save memory? Setting this to |
... |
Further arguments to be passed to |
Calls rfsrc
by choosing options (like subsampling) to
encourage computational speeds. This will provide a good
approximation but will not be as good as default settings of
rfsrc
.
An object of class (rfsrc, grow)
.
Hemant Ishwaran and Udaya B. Kogalur
## ------------------------------------------------------------ ## regression ## ------------------------------------------------------------ ## load the Iowa housing data data(housing, package = "randomForestSRC") ## do quick and *dirty* imputation housing <- impute(SalePrice ~ ., housing, ntree = 50, nimpute = 1, splitrule = "random") ## grow a fast forest o1 <- rfsrc.fast(SalePrice ~ ., housing) o2 <- rfsrc.fast(SalePrice ~ ., housing, nodesize = 1) print(o1) print(o2) ## grow a fast bivariate forest o3 <- rfsrc.fast(cbind(SalePrice,Overall.Qual) ~ ., housing) print(o3) ## ------------------------------------------------------------ ## classification ## ------------------------------------------------------------ data(wine, package = "randomForestSRC") wine$quality <- factor(wine$quality) o <- rfsrc.fast(quality ~ ., wine) print(o) ## ------------------------------------------------------------ ## grow fast random survival forests without C-calculation ## use brier score to assess model performance ## compare pure random splitting to logrank splitting ## ------------------------------------------------------------ data(peakVO2, package = "randomForestSRC") f <- as.formula(Surv(ttodead, died)~.) o1 <- rfsrc.fast(f, peakVO2, perf.type = "none") o2 <- rfsrc.fast(f, peakVO2, perf.type = "none", splitrule = "random") bs1 <- get.brier.survival(o1, cens.model = "km") bs2 <- get.brier.survival(o2, cens.model = "km") plot(bs2$brier.score, type = "s", col = 2) lines(bs1$brier.score, type = "s", col = 4) legend("bottomright", legend = c("random", "logrank"), fill = c(2,4)) ## ------------------------------------------------------------ ## competing risks ## ------------------------------------------------------------ data(wihs, package = "randomForestSRC") o <- rfsrc.fast(Surv(time, status) ~ ., wihs) print(o) ## ------------------------------------------------------------ ## class imbalanced data using gmean performance ## ------------------------------------------------------------ data(breast, package = "randomForestSRC") breast <- na.omit(breast) f <- as.formula(status ~ .) o <- rfsrc.fast(f, breast, perf.type = "gmean") print(o) ## ------------------------------------------------------------ ## class imbalanced data using random forests quantile-classifer (RFQ) ## fast=TRUE => rfsrc.fast ## see imbalanced function for further details ## ------------------------------------------------------------ data(breast, package = "randomForestSRC") breast <- na.omit(breast) f <- as.formula(status ~ .) o <- imbalanced(f, breast, fast = TRUE) print(o)
## ------------------------------------------------------------ ## regression ## ------------------------------------------------------------ ## load the Iowa housing data data(housing, package = "randomForestSRC") ## do quick and *dirty* imputation housing <- impute(SalePrice ~ ., housing, ntree = 50, nimpute = 1, splitrule = "random") ## grow a fast forest o1 <- rfsrc.fast(SalePrice ~ ., housing) o2 <- rfsrc.fast(SalePrice ~ ., housing, nodesize = 1) print(o1) print(o2) ## grow a fast bivariate forest o3 <- rfsrc.fast(cbind(SalePrice,Overall.Qual) ~ ., housing) print(o3) ## ------------------------------------------------------------ ## classification ## ------------------------------------------------------------ data(wine, package = "randomForestSRC") wine$quality <- factor(wine$quality) o <- rfsrc.fast(quality ~ ., wine) print(o) ## ------------------------------------------------------------ ## grow fast random survival forests without C-calculation ## use brier score to assess model performance ## compare pure random splitting to logrank splitting ## ------------------------------------------------------------ data(peakVO2, package = "randomForestSRC") f <- as.formula(Surv(ttodead, died)~.) o1 <- rfsrc.fast(f, peakVO2, perf.type = "none") o2 <- rfsrc.fast(f, peakVO2, perf.type = "none", splitrule = "random") bs1 <- get.brier.survival(o1, cens.model = "km") bs2 <- get.brier.survival(o2, cens.model = "km") plot(bs2$brier.score, type = "s", col = 2) lines(bs1$brier.score, type = "s", col = 4) legend("bottomright", legend = c("random", "logrank"), fill = c(2,4)) ## ------------------------------------------------------------ ## competing risks ## ------------------------------------------------------------ data(wihs, package = "randomForestSRC") o <- rfsrc.fast(Surv(time, status) ~ ., wihs) print(o) ## ------------------------------------------------------------ ## class imbalanced data using gmean performance ## ------------------------------------------------------------ data(breast, package = "randomForestSRC") breast <- na.omit(breast) f <- as.formula(status ~ .) o <- rfsrc.fast(f, breast, perf.type = "gmean") print(o) ## ------------------------------------------------------------ ## class imbalanced data using random forests quantile-classifer (RFQ) ## fast=TRUE => rfsrc.fast ## see imbalanced function for further details ## ------------------------------------------------------------ data(breast, package = "randomForestSRC") breast <- na.omit(breast) f <- as.formula(status ~ .) o <- imbalanced(f, breast, fast = TRUE) print(o)
Show the NEWS file of the randomForestSRC package.
rfsrc.news(...)
rfsrc.news(...)
... |
Further arguments passed to or from other methods. |
None.
Hemant Ishwaran and Udaya B. Kogalur
Clustering of unsupervised data using SID (Mantero and Ishwaran, 2020). Also implements the artificial two-class approach of Breiman (2003).
## S3 method for class 'rfsrc' sidClustering(data, method = "sid", k = NULL, reduce = TRUE, ntree = 500, ntree.reduce = function(p, vtry){100 * p / vtry}, fast = FALSE, x.no.sid = NULL, use.sid.for.x = TRUE, x.only = NULL, y.only = NULL, dist.sharpen = TRUE, ...)
## S3 method for class 'rfsrc' sidClustering(data, method = "sid", k = NULL, reduce = TRUE, ntree = 500, ntree.reduce = function(p, vtry){100 * p / vtry}, fast = FALSE, x.no.sid = NULL, use.sid.for.x = TRUE, x.only = NULL, y.only = NULL, dist.sharpen = TRUE, ...)
data |
Data frame containing the unsupervised data. |
method |
The method used for unsupervised clustering. Default is "sid" which implements sidClustering using SID (Staggered Interaction Data; see Mantero and Ishwaran, 2020). A second approach transforms the unsupervised learning problem into a two-class supervised problem (Breiman, 2003) using artificial data created using mode 1 or mode 2 of Shi-Horvath (2006). This approach is specified by any one of the following: "sh", "SH", "sh1", "SH1" for mode 1, or "sh2", "SH2" for mode 2. Finally, a third approach is a plain vanilla method where the data are used both as features and response with splitting implemented using the multivariate splitting rule. This is faster than sidClustering but potentially less accurate. This method is specified using "unsupv". |
k |
Requested number of clusters. Can be a number or a vector. If a fixed number, returns a vector recording clustering of data. If a vector, returns a matrix of clusters with each column recording the clustering of the data for the specified number of clusters. |
reduce |
Apply dimension reduction? Uses holdout vimp which is
computationally intensive and conservative but has good false
discovery properties. Only applies to |
ntree |
Number of trees used by sidClustering in the main analysis. |
ntree.reduce |
Number of trees used by holdout vimp in the
reduction step. See |
fast |
Use fast random forests, |
x.no.sid |
Features not to be "sid-ified": meaning that these
features are to be included in the final design matrix without SID
processing. Can be either a data frame (should not overlap with
|
use.sid.for.x |
If FALSE, reverses features and outcomes in the
SID analysis. Thus, staggered interactions are used for the
outcomes rather than staggered features. This is much slower and is
generally much less effective. This option is only retained for
legacy reasons. Applies only to |
x.only |
Use only these variables for the features. Applies only
to |
y.only |
Use only these variables for the multivariate outcomes. Applies only
to |
dist.sharpen |
By default, distance sharpening is requested,
which applies Euclidean distance to the random forest distance
matrix to sharpen it. Because of this, the returned distance matrix
will not have values between 0 and 1 (as for random forests distance) when
this option is in effect. Distance sharpening is a useful, but slow
step. Set this option to |
... |
Further arguments to be passed to the |
Given an unsupervised data set, random forests is used to calculate the distance between all pairs of data points. The distance matrix is used for clustering the unsupervised data where the default is to use hierarchcial clustering. Users can apply other clustering procedures to the distance matrix. See the examples below.
The default method, method="sid"
, implements sidClustering.
The sidClustering algorithm begins by first creating an enhanced SID
(Staggered Interaction Data) feature space by sidification of the
original variables. Sidification results in: (a) SID main features
which are the original features that have been shifted in order to
make them strictly positive and staggered so all of their ranges are
mutually exclusive; and (b) SID interaction features which are the
multiplicative interactions formed between every pair of SID main
features. Multivariate random forests are then trained to predict the
main SID features using the interaction SID features as predictors.
The basic premise is if features are informative for clusters, then
they will vary over the space in a systematic manner, and because each
SID interaction feature is uniquely determined by the original feature
values used to form the interaction, cuts along the SID interaction
feature will be able to find the regions where the informative
features vary by cluster, thereby not only reducing impurity, but also
separating the clusters which are dependent on those features. See
Mantero and Ishwaran (2020) for details.
Because SID uses all pairwise interactions, the dimension of the feature space is proportional to the square of the number of original features (or even larger if factors are present). Thus it is helpful to reduce the feature space. The reduction step (applied by default) utilizes holdout VIMP to accomplish this. It is recommended this step be skipped only when the dimension is reasonably small. For very large data sets this step may be slow.
A second approach (Breiman, 2003; Shi-Horvath, 2006) transforms the unsupervised learning problem into a two class supervised problem. The first class consists of the original observations, while the second class is artificially created. The idea is that in detecting the first class out of the second, the model will generate the random forest proximity between observations of which those for the original class can be extracted and used for clustering. Note in this approach the distance matrix is defined to equal one minus the proximity. This is unlike the distance matrix from SID which is not proximity based. Artificial data is created using "mode 1" or "mode 2" of Shi-Horvath (2006). Mode 1 randomly draws from each set of observed features. Mode 2 draws a uniform value from the minimum and maximum values of a feature.
Mantero and Ishwaran (2020) studied both methods and found SID worked well in all settings, whereas Breiman/Shi-Horvath was sensitive to cluster structure. Performance was poor when clusters were hidden in lower dimensional subspaces; for example when interactions were present or in mixed variable settings (factors/continuous variables). See the V-shaped cluster example below. Generally Shi-Horvath mode 1 outperforms mode 2.
Finally, a third method where the data is used for both the features
and outcome is implemented using method="unsupv"
. Tree nodes
are split using the multivariate splitting rule. This is much faster
than sidClustering but potentially less accurate.
There is an internal function sid.perf.metric
for evaluating
performance of the procedures using a normalized measure score.
Smaller values indicate better performance. See Mantero and Ishwaran
(2020) for details.
A list with the following components:
clustering |
Vector or matrix containing indices mapping data points to their clusters. |
rf |
Random forest object (either a multivariate forest or RF-C object). |
dist |
Distance matrix. |
sid |
The "sid-ified" data. Conveniently broken up into separate values for outcomes and features used by the multivariate forest. |
Hemant Ishwaran and Udaya B. Kogalur
Breiman, L. (2003). Manual on setting up, using and understanding random forest, V4.0. University of California Berkeley, Statistics Department, Berkeley.
Mantero A. and Ishwaran H. (2021). Unsupervised random forests. Statistical Analysis and Data Mining, 14(2):144-167.
Shi, T. and Horvath, S. (2006). Unsupervised learning with random forest predictors. Journal of Computational and Graphical Statistics, 15(1):118-138.
## ------------------------------------------------------------ ## mtcars example ## ------------------------------------------------------------ ## default SID method o1 <- sidClustering(mtcars) print(split(mtcars, o1$cl[, 10])) ## using artifical class approach o1.sh <- sidClustering(mtcars, method = "sh") print(split(mtcars, o1.sh$cl[, 10])) ## ------------------------------------------------------------ ## glass data set ## ------------------------------------------------------------ if (library("mlbench", logical.return = TRUE)) { ## this is a supervised problem, so we first strip the class label data(Glass) glass <- Glass y <- Glass$Type glass$Type <- NULL ## default SID call o2 <- sidClustering(glass, k = 6) print(table(y, o2$cl)) print(sid.perf.metric(y, o2$cl)) ## compare with Shi-Horvath mode 1 o2.sh <- sidClustering(glass, method = "sh1", k = 6) print(table(y, o2.sh$cl)) print(sid.perf.metric(y, o2.sh$cl)) ## plain-vanilla unsupervised analysis o2.un <- sidClustering(glass, method = "unsupv", k = 6) print(table(y, o2.un$cl)) print(sid.perf.metric(y, o2.un$cl)) } ## ------------------------------------------------------------ ## vowel data set ## ------------------------------------------------------------ if (library("mlbench", logical.return = TRUE) && library("cluster", logical.return = TRUE)) { ## strip the class label data(Vowel) vowel <- Vowel y <- Vowel$Class vowel$Class <- NULL ## SID o3 <- sidClustering(vowel, k = 11) print(table(y, o3$cl)) print(sid.perf.metric(y, o3$cl)) ## compare to Shi-Horvath which performs poorly in ## mixed variable settings o3.sh <- sidClustering(vowel, method = "sh1", k = 11) print(table(y, o3.sh$cl)) print(sid.perf.metric(y, o3.sh$cl)) ## Shi-Horvath improves with PAM clustering ## but still not as good as SID o3.sh.pam <- pam(o3.sh$dist, k = 11)$clustering print(table(y, o3.sh.pam)) print(sid.perf.metric(y, o3.sh.pam)) ## plain-vanilla unsupervised analysis o3.un <- sidClustering(vowel, method = "unsupv", k = 11) print(table(y, o3.un$cl)) print(sid.perf.metric(y, o3.un$cl)) } ## ------------------------------------------------------------ ## two-d V-shaped cluster (y=x, y=-x) sitting in 12-dimensions ## illustrates superiority of SID to Breiman/Shi-Horvath ## ------------------------------------------------------------ p <- 10 m <- 250 n <- 2 * m std <- .2 x <- runif(n, 0, 1) noise <- matrix(runif(n * p, 0, 1), n) y <- rep(NA, n) y[1:m] <- x[1:m] + rnorm(m, sd = std) y[(m+1):n] <- -x[(m+1):n] + rnorm(m, sd = std) vclus <- data.frame(clus = c(rep(1, m), rep(2,m)), x = x, y = y, noise) ## SID o4 <- sidClustering(vclus[, -1], k = 2) print(table(vclus[, 1], o4$cl)) print(sid.perf.metric(vclus[, 1], o4$cl)) ## Shi-Horvath o4.sh <- sidClustering(vclus[, -1], method = "sh1", k = 2) print(table(vclus[, 1], o4.sh$cl)) print(sid.perf.metric(vclus[, 1], o4.sh$cl)) ## plain-vanilla unsupervised analysis o4.un <- sidClustering(vclus[, -1], method = "unsupv", k = 2) print(table(vclus[, 1], o4.un$cl)) print(sid.perf.metric(vclus[, 1], o4.un$cl)) ## ------------------------------------------------------------ ## two-d V-shaped cluster using fast random forests ## ------------------------------------------------------------ o5 <- sidClustering(vclus[, -1], k = 2, fast = TRUE) print(table(vclus[, 1], o5$cl)) print(sid.perf.metric(vclus[, 1], o5$cl))
## ------------------------------------------------------------ ## mtcars example ## ------------------------------------------------------------ ## default SID method o1 <- sidClustering(mtcars) print(split(mtcars, o1$cl[, 10])) ## using artifical class approach o1.sh <- sidClustering(mtcars, method = "sh") print(split(mtcars, o1.sh$cl[, 10])) ## ------------------------------------------------------------ ## glass data set ## ------------------------------------------------------------ if (library("mlbench", logical.return = TRUE)) { ## this is a supervised problem, so we first strip the class label data(Glass) glass <- Glass y <- Glass$Type glass$Type <- NULL ## default SID call o2 <- sidClustering(glass, k = 6) print(table(y, o2$cl)) print(sid.perf.metric(y, o2$cl)) ## compare with Shi-Horvath mode 1 o2.sh <- sidClustering(glass, method = "sh1", k = 6) print(table(y, o2.sh$cl)) print(sid.perf.metric(y, o2.sh$cl)) ## plain-vanilla unsupervised analysis o2.un <- sidClustering(glass, method = "unsupv", k = 6) print(table(y, o2.un$cl)) print(sid.perf.metric(y, o2.un$cl)) } ## ------------------------------------------------------------ ## vowel data set ## ------------------------------------------------------------ if (library("mlbench", logical.return = TRUE) && library("cluster", logical.return = TRUE)) { ## strip the class label data(Vowel) vowel <- Vowel y <- Vowel$Class vowel$Class <- NULL ## SID o3 <- sidClustering(vowel, k = 11) print(table(y, o3$cl)) print(sid.perf.metric(y, o3$cl)) ## compare to Shi-Horvath which performs poorly in ## mixed variable settings o3.sh <- sidClustering(vowel, method = "sh1", k = 11) print(table(y, o3.sh$cl)) print(sid.perf.metric(y, o3.sh$cl)) ## Shi-Horvath improves with PAM clustering ## but still not as good as SID o3.sh.pam <- pam(o3.sh$dist, k = 11)$clustering print(table(y, o3.sh.pam)) print(sid.perf.metric(y, o3.sh.pam)) ## plain-vanilla unsupervised analysis o3.un <- sidClustering(vowel, method = "unsupv", k = 11) print(table(y, o3.un$cl)) print(sid.perf.metric(y, o3.un$cl)) } ## ------------------------------------------------------------ ## two-d V-shaped cluster (y=x, y=-x) sitting in 12-dimensions ## illustrates superiority of SID to Breiman/Shi-Horvath ## ------------------------------------------------------------ p <- 10 m <- 250 n <- 2 * m std <- .2 x <- runif(n, 0, 1) noise <- matrix(runif(n * p, 0, 1), n) y <- rep(NA, n) y[1:m] <- x[1:m] + rnorm(m, sd = std) y[(m+1):n] <- -x[(m+1):n] + rnorm(m, sd = std) vclus <- data.frame(clus = c(rep(1, m), rep(2,m)), x = x, y = y, noise) ## SID o4 <- sidClustering(vclus[, -1], k = 2) print(table(vclus[, 1], o4$cl)) print(sid.perf.metric(vclus[, 1], o4$cl)) ## Shi-Horvath o4.sh <- sidClustering(vclus[, -1], method = "sh1", k = 2) print(table(vclus[, 1], o4.sh$cl)) print(sid.perf.metric(vclus[, 1], o4.sh$cl)) ## plain-vanilla unsupervised analysis o4.un <- sidClustering(vclus[, -1], method = "unsupv", k = 2) print(table(vclus[, 1], o4.un$cl)) print(sid.perf.metric(vclus[, 1], o4.un$cl)) ## ------------------------------------------------------------ ## two-d V-shaped cluster using fast random forests ## ------------------------------------------------------------ o5 <- sidClustering(vclus[, -1], k = 2, fast = TRUE) print(table(vclus[, 1], o5$cl)) print(sid.perf.metric(vclus[, 1], o5$cl))
Extract split statistic information from the forest. The function
returns a list of length ntree
, in which each element
corresponds to a tree. The element [[b]] is itself a vector of length
xvar.names identified by its x-variable name. Each element [[b]]$xvar
contains the complete list of splits on xvar with associated
identifying information. The information is as follows:
treeID Tree identifier.
nodeID Node identifier.
parmID Variable indentifier.
contPT Value node was split in the case of a continuous variable.
mwcpSZ Size of the multi-word complementary pair in the case of a factor split.
dpthID Zero (0) based depth of split.
spltTY Split type for parent node:
bit 1 | bit 0 | meaning |
----- | ----- | ------- |
0 | 0 | 0 = both daughters have valid splits |
0 | 1 | 1 = only the right daughter is terminal |
1 | 0 | 2 = only the left daughter is terminal |
1 | 1 | 3 = both daughters are terminal |
spltEC End cut statistic for real valued variables between [0,0.5] that is small when the split is towards the edge and large when the split is towards the middle. Subtracting this value from 0.5 yields the end cut statistic studied in Ishwaran (2014) and is a way to identify ECP behavior (end cut preference behavior).
spltST Split statistic:
For objects of class (rfsrc, grow), this is the split statistic that resulted in the variable being choosen for the split.
For an object of class (rfsrc, pred) this is the variance of the response within the node for the test data. This value is relevant only for real valued responses. In classification and survival, it is not relevant.
## S3 method for class 'rfsrc' stat.split(object, ...)
## S3 method for class 'rfsrc' stat.split(object, ...)
object |
An object of class |
... |
Further arguments passed to or from other methods. |
Invisibly, a list with the following components:
... |
... |
Hemant Ishwaran and Udaya B. Kogalur
Ishwaran H. (2015). The effect of splitting on random forests. Machine Learning, 99:75-118.
## run a forest, then make a call to stat.split grow.obj <- rfsrc(mpg ~., data = mtcars, membership=TRUE, statistics=TRUE) stat.obj <- stat.split(grow.obj) ## nice wrapper to extract split-statistic for desired variable ## for continuous variables plots ECP data get.split <- function(splitObj, xvar, inches = 0.1, ...) { which.var <- which(names(splitObj[[1]]) == xvar) ntree <- length(splitObj) stat <- data.frame(do.call(rbind, sapply(1:ntree, function(b) { splitObj[[b]][which.var]}))) dpth <- stat$dpthID ecp <- 1/2 - stat$spltEC sp <- stat$contPT if (!all(is.na(sp))) { fgC <- function(x) { as.numeric(as.character(cut(x, breaks = c(-1, 0.2, 0.35, 0.5), labels = c(1, 4, 2)))) } symbols(jitter(sp), jitter(dpth), ecp, inches = inches, bg = fgC(ecp), xlab = xvar, ylab = "node depth", ...) legend("topleft", legend = c("low ecp", "med ecp", "high ecp"), fill = c(1, 4, 2)) } invisible(stat) } ## use get.split to investigate ECP behavior of variables get.split(stat.obj, "disp")
## run a forest, then make a call to stat.split grow.obj <- rfsrc(mpg ~., data = mtcars, membership=TRUE, statistics=TRUE) stat.obj <- stat.split(grow.obj) ## nice wrapper to extract split-statistic for desired variable ## for continuous variables plots ECP data get.split <- function(splitObj, xvar, inches = 0.1, ...) { which.var <- which(names(splitObj[[1]]) == xvar) ntree <- length(splitObj) stat <- data.frame(do.call(rbind, sapply(1:ntree, function(b) { splitObj[[b]][which.var]}))) dpth <- stat$dpthID ecp <- 1/2 - stat$spltEC sp <- stat$contPT if (!all(is.na(sp))) { fgC <- function(x) { as.numeric(as.character(cut(x, breaks = c(-1, 0.2, 0.35, 0.5), labels = c(1, 4, 2)))) } symbols(jitter(sp), jitter(dpth), ecp, inches = inches, bg = fgC(ecp), xlab = xvar, ylab = "node depth", ...) legend("topleft", legend = c("low ecp", "med ecp", "high ecp"), fill = c(1, 4, 2)) } invisible(stat) } ## use get.split to investigate ECP behavior of variables get.split(stat.obj, "disp")
Use subsampling to calculate confidence intervals and standard errors for VIMP (variable importance). Applies to all families.
## S3 method for class 'rfsrc' subsample(obj, B = 100, block.size = 1, importance, subratio = NULL, stratify = TRUE, performance = FALSE, performance.only = FALSE, joint = FALSE, xvar.names = NULL, bootstrap = FALSE, verbose = TRUE)
## S3 method for class 'rfsrc' subsample(obj, B = 100, block.size = 1, importance, subratio = NULL, stratify = TRUE, performance = FALSE, performance.only = FALSE, joint = FALSE, xvar.names = NULL, bootstrap = FALSE, verbose = TRUE)
obj |
A forest grow object. |
B |
Number of subsamples (or number of bootstraps). |
block.size |
Specifies number of trees in a block when calculating VIMP. This is over-ridden if VIMP is present in the original grow call in which case the grow value is used. |
importance |
Optional: specifies the type of importance to be used, selected from one of "anti", "permute", "random". If not specified reverts to default importance used by the package. Also, this is over-ridden if the original grow object contains importance, in which case importance used in the original grow call is used. |
subratio |
Ratio of subsample size to original sample size. The default is approximately equal to the inverse square root of the sample size. |
stratify |
Use stratified subsampling? See details below. |
performance |
Generalization error? User can also request standard error and confidence regions for generalization error. |
performance.only |
Only calculate standard error and confidence region for the generalization error (no VIMP). |
joint |
Joint VIMP for all variables? Users can also request joint
VIMP for specific variables using |
xvar.names |
Specifies variables for calculating joint VIMP. By default all variables are used. |
bootstrap |
Use double bootstrap approach in place of subsampling? Much slower, but potentially more accurate. |
verbose |
Provide verbose output? |
Using a previously trained forest, subsamples the data and constructs
subsampled forests to estimate standard errors and confidence
intervals for VIMP (Ishwaran and Lu, 2019). If bootstrapping is
requested, a double bootstrap is applied in place of subsampling. The
option performance="TRUE"
constructs standard errors and
confidence regions for the error rate (OOB performance) of the trained
forest. Options joint
and xvar.names
can be used to
obtain joint VIMP for all or some variables.
If the trained forest does not have VIMP values, the algorithm first
needs to calculate VIMP. Therefore, if the user plans to make
repeated calls to subsample
, it is advisable to include VIMP in
the original grow call. Also, by calling VIMP in the original call,
the type of importance used and other related parameters are set by
values used in the original call which can eliminate confusion about
what parameters are being used in the subsampled forests. For
example, the default importance used is not permutation importance.
Thus, it is generally advised to call VIMP in the original call.
Subsampled forests are calculated using the same tuning parameters as the original forest. While a sophisticated algorithm is utilized to acquire as many of these parameters as possible, keep in mind there are some conditions where this will fail: for example there are certain settings where the user has specified non-standard sampling in the grow forest.
Delete-d jackknife estimators of the variance (Shao and Wu, 1989) are returned alongside subsampled variance estimators (Politis and Romano, 1994). While these methods are closely related, the jackknife estimator generally gives *larger* standard errors, which is a form of bias correction, and which occurs primarily for the signal variables.
By default, stratified subsampling is used for classification, survival, and competing risk families. For classification, stratification is on the class label, while for survival and competing risk, stratification is on the event type and censoring. Users are discouraged from over-riding this option, especially in small sample settings, as this could lead to error due to subsampled data not having full representation of class labels in classification settings. In survival settings, subsampled data may be devoid of deaths and/or have reduced number of competing risks. Note also that stratified sampling is not available for multivariate families–users should especially exercise caution when selecting subsampling rates here.
The function extract.subsample
can be used to extract
information from the subsampled object. Returned values for VIMP are
"standardized" (this means for regression families, VIMP is
standardized by dividing by the variance of Y; for all other
families, VIMP is unaltered). Use standardize
="FALSE" if you
want unstandardized VIMP. Setting the option raw
="TRUE" returns
a more complete set of information that is used by the function
plot.subsample.rfsrc for plotting confidence intervals. Keep in
mind some of this information will be subsampled VIMP that is "raw" in
the sense it equals VIMP from a forest constructed with a much smaller
sample size. This option is for experts only.
When printing or plotting results, the default is to standardize VIMP
which can be turned off using the option standardize
. Also
these wrappers preset the "alpha" value used for confidence intervals;
users can change this using option alpha
.
A list with the following key components:
rf |
Original forest grow object. |
vmp |
Variable importance values for grow forest. |
vmpS |
Variable importance subsampled values. |
subratio |
Subratio used. |
Hemant Ishwaran and Udaya B. Kogalur
Ishwaran H. and Lu M. (2019). Standard errors and confidence intervals for variable importance in random forest regression, classification, and survival. Statistics in Medicine, 38, 558-582.
Politis, D.N. and Romano, J.P. (1994). Large sample confidence regions based on subsamples under minimal assumptions. The Annals of Statistics, 22(4):2031-2050.
Shao, J. and Wu, C.J. (1989). A general theory for jackknife variance estimation. The Annals of Statistics, 17(3):1176-1197.
holdout.vimp.rfsrc
plot.subsample.rfsrc
,
rfsrc
,
vimp.rfsrc
## ------------------------------------------------------------ ## regression ## ------------------------------------------------------------ ## training the forest reg.o <- rfsrc(Ozone ~ ., airquality) ## default subsample call reg.smp.o <- subsample(reg.o) ## plot confidence regions plot.subsample(reg.smp.o) ## summary of results print(reg.smp.o) ## joint vimp and confidence region for generalization error reg.smp.o2 <- subsample(reg.o, performance = TRUE, joint = TRUE, xvar.names = c("Day", "Month")) plot.subsample(reg.smp.o2) ## now try the double bootstrap (slower) reg.dbs.o <- subsample(reg.o, B = 25, bootstrap = TRUE) print(reg.dbs.o) plot.subsample(reg.dbs.o) ## standard error and confidence region for generalization error only gerror <- subsample(reg.o, performance.only = TRUE) plot.subsample(gerror) ## ------------------------------------------------------------ ## classification ## ------------------------------------------------------------ ## 3 non-linear, 15 linear, and 5 noise variables if (library("caret", logical.return = TRUE)) { d <- twoClassSim(1000, linearVars = 15, noiseVars = 5) ## VIMP based on (default) misclassification error cls.o <- rfsrc(Class ~ ., d) cls.smp.o <- subsample(cls.o, B = 100) plot.subsample(cls.smp.o, cex.axis = .7) ## same as above, but with VIMP defined using normalized Brier score cls.o2 <- rfsrc(Class ~ ., d, perf.type = "brier") cls.smp.o2 <- subsample(cls.o2, B = 100) plot.subsample(cls.smp.o2, cex.axis = .7) } ## ------------------------------------------------------------ ## class-imbalanced data using RFQ classifier with G-mean VIMP ## ------------------------------------------------------------ if (library("caret", logical.return = TRUE)) { ## experimental settings n <- 1000 q <- 20 ir <- 6 f <- as.formula(Class ~ .) ## simulate the data, create minority class data d <- twoClassSim(n, linearVars = 15, noiseVars = q) d$Class <- factor(as.numeric(d$Class) - 1) idx.0 <- which(d$Class == 0) idx.1 <- sample(which(d$Class == 1), sum(d$Class == 1) / ir , replace = FALSE) d <- d[c(idx.0,idx.1),, drop = FALSE] ## RFQ classifier oq <- imbalanced(Class ~ ., d, importance = TRUE, block.size = 10) ## subsample the RFQ-classifier smp.oq <- subsample(oq, B = 100) plot.subsample(smp.oq, cex.axis = .7) } ## ------------------------------------------------------------ ## survival ## ------------------------------------------------------------ data(pbc, package = "randomForestSRC") srv.o <- rfsrc(Surv(days, status) ~ ., pbc) srv.smp.o <- subsample(srv.o, B = 100) plot(srv.smp.o) ## ------------------------------------------------------------ ## competing risks ## target event is death (event = 2) ## ------------------------------------------------------------ if (library("survival", logical.return = TRUE)) { data(pbc, package = "survival") pbc$id <- NULL cr.o <- rfsrc(Surv(time, status) ~ ., pbc, splitrule = "logrankCR", cause = 2) cr.smp.o <- subsample(cr.o, B = 100) plot.subsample(cr.smp.o, target = 2) } ## ------------------------------------------------------------ ## multivariate ## ------------------------------------------------------------ if (library("mlbench", logical.return = TRUE)) { ## simulate the data data(BostonHousing) bh <- BostonHousing bh$rm <- factor(round(bh$rm)) o <- rfsrc(cbind(medv, rm) ~ ., bh) so <- subsample(o) plot.subsample(so) plot.subsample(so, m.target = "rm") ##generalization error gerror <- subsample(o, performance.only = TRUE) plot.subsample(gerror, m.target = "medv") plot.subsample(gerror, m.target = "rm") } ## ------------------------------------------------------------ ## largish data example - use rfsrc.fast for fast forests ## ------------------------------------------------------------ if (library("caret", logical.return = TRUE)) { ## largish data set d <- twoClassSim(1000, linearVars = 15, noiseVars = 5) ## use a subsampled forest with Brier score performance ## remember to set forest=TRUE for rfsrc.fast o <- rfsrc.fast(Class ~ ., d, ntree = 100, forest = TRUE, perf.type = "brier") so <- subsample(o, B = 100) plot.subsample(so, cex.axis = .7) }
## ------------------------------------------------------------ ## regression ## ------------------------------------------------------------ ## training the forest reg.o <- rfsrc(Ozone ~ ., airquality) ## default subsample call reg.smp.o <- subsample(reg.o) ## plot confidence regions plot.subsample(reg.smp.o) ## summary of results print(reg.smp.o) ## joint vimp and confidence region for generalization error reg.smp.o2 <- subsample(reg.o, performance = TRUE, joint = TRUE, xvar.names = c("Day", "Month")) plot.subsample(reg.smp.o2) ## now try the double bootstrap (slower) reg.dbs.o <- subsample(reg.o, B = 25, bootstrap = TRUE) print(reg.dbs.o) plot.subsample(reg.dbs.o) ## standard error and confidence region for generalization error only gerror <- subsample(reg.o, performance.only = TRUE) plot.subsample(gerror) ## ------------------------------------------------------------ ## classification ## ------------------------------------------------------------ ## 3 non-linear, 15 linear, and 5 noise variables if (library("caret", logical.return = TRUE)) { d <- twoClassSim(1000, linearVars = 15, noiseVars = 5) ## VIMP based on (default) misclassification error cls.o <- rfsrc(Class ~ ., d) cls.smp.o <- subsample(cls.o, B = 100) plot.subsample(cls.smp.o, cex.axis = .7) ## same as above, but with VIMP defined using normalized Brier score cls.o2 <- rfsrc(Class ~ ., d, perf.type = "brier") cls.smp.o2 <- subsample(cls.o2, B = 100) plot.subsample(cls.smp.o2, cex.axis = .7) } ## ------------------------------------------------------------ ## class-imbalanced data using RFQ classifier with G-mean VIMP ## ------------------------------------------------------------ if (library("caret", logical.return = TRUE)) { ## experimental settings n <- 1000 q <- 20 ir <- 6 f <- as.formula(Class ~ .) ## simulate the data, create minority class data d <- twoClassSim(n, linearVars = 15, noiseVars = q) d$Class <- factor(as.numeric(d$Class) - 1) idx.0 <- which(d$Class == 0) idx.1 <- sample(which(d$Class == 1), sum(d$Class == 1) / ir , replace = FALSE) d <- d[c(idx.0,idx.1),, drop = FALSE] ## RFQ classifier oq <- imbalanced(Class ~ ., d, importance = TRUE, block.size = 10) ## subsample the RFQ-classifier smp.oq <- subsample(oq, B = 100) plot.subsample(smp.oq, cex.axis = .7) } ## ------------------------------------------------------------ ## survival ## ------------------------------------------------------------ data(pbc, package = "randomForestSRC") srv.o <- rfsrc(Surv(days, status) ~ ., pbc) srv.smp.o <- subsample(srv.o, B = 100) plot(srv.smp.o) ## ------------------------------------------------------------ ## competing risks ## target event is death (event = 2) ## ------------------------------------------------------------ if (library("survival", logical.return = TRUE)) { data(pbc, package = "survival") pbc$id <- NULL cr.o <- rfsrc(Surv(time, status) ~ ., pbc, splitrule = "logrankCR", cause = 2) cr.smp.o <- subsample(cr.o, B = 100) plot.subsample(cr.smp.o, target = 2) } ## ------------------------------------------------------------ ## multivariate ## ------------------------------------------------------------ if (library("mlbench", logical.return = TRUE)) { ## simulate the data data(BostonHousing) bh <- BostonHousing bh$rm <- factor(round(bh$rm)) o <- rfsrc(cbind(medv, rm) ~ ., bh) so <- subsample(o) plot.subsample(so) plot.subsample(so, m.target = "rm") ##generalization error gerror <- subsample(o, performance.only = TRUE) plot.subsample(gerror, m.target = "medv") plot.subsample(gerror, m.target = "rm") } ## ------------------------------------------------------------ ## largish data example - use rfsrc.fast for fast forests ## ------------------------------------------------------------ if (library("caret", logical.return = TRUE)) { ## largish data set d <- twoClassSim(1000, linearVars = 15, noiseVars = 5) ## use a subsampled forest with Brier score performance ## remember to set forest=TRUE for rfsrc.fast o <- rfsrc.fast(Class ~ ., d, ntree = 100, forest = TRUE, perf.type = "brier") so <- subsample(o, B = 100) plot.subsample(so, cex.axis = .7) }
Grows a synthetic random forest (RF) using RF machines as synthetic features. Applies only to regression and classification settings.
## S3 method for class 'rfsrc' synthetic(formula, data, object, newdata, ntree = 1000, mtry = NULL, nodesize = 5, nsplit = 10, mtrySeq = NULL, nodesizeSeq = c(1:10,20,30,50,100), min.node = 3, fast = TRUE, use.org.features = TRUE, na.action = c("na.omit", "na.impute"), oob = TRUE, verbose = TRUE, ...)
## S3 method for class 'rfsrc' synthetic(formula, data, object, newdata, ntree = 1000, mtry = NULL, nodesize = 5, nsplit = 10, mtrySeq = NULL, nodesizeSeq = c(1:10,20,30,50,100), min.node = 3, fast = TRUE, use.org.features = TRUE, na.action = c("na.omit", "na.impute"), oob = TRUE, verbose = TRUE, ...)
formula |
Model to be fit. Must be specified unless |
data |
Data frame containing the y-outcome and x-variables in
the model. Must be specified unless |
object |
An object of class |
newdata |
Test data used for prediction (optional). |
ntree |
Number of trees. |
mtry |
mtry value for over-arching synthetic forest. |
nodesize |
Nodesize value for over-arching synthetic forest. |
nsplit |
nsplit-randomized splitting for significantly increased speed. |
mtrySeq |
Sequence of mtry values used for fitting the
collection of RF machines. If |
nodesizeSeq |
Sequence of nodesize values used for the fitting the collection of RF machines. |
min.node |
Minimum forest averaged number of nodes a RF machine must exceed in order to be used as a synthetic feature. |
fast |
Use fast random forests, |
use.org.features |
In addition to synthetic features, should the original features be used when fitting synthetic forests? |
na.action |
Missing value action. The default |
oob |
Preserve "out-of-bagness" so that error rates and VIMP are honest? Default is yes (oob=TRUE). |
verbose |
Set to |
... |
Further arguments to be passed to the |
A collection of random forests are fit using different nodesize values. The predicted values from these machines are then used as synthetic features (called RF machines) to fit a synthetic random forest (the original features are also used in constructing the synthetic forest). Currently only implemented for regression and classification settings (univariate and multivariate).
Synthetic features are calculated using out-of-bag (OOB) data to avoid over-using training data. However, to guarantee that performance values such as error rates and VIMP are honest, bootstrap draws are fixed across all trees used in the construction of the synthetic forest and its synthetic features. The option oob=TRUE ensures that this happens. Change this option at your own peril.
If values for mtrySeq
are given, RF machines are constructed
for each combination of nodesize and mtry values specified by
nodesizeSeq
mtrySeq
.
A list with the following components:
rfMachines |
RF machines used to construct the synthetic features. |
rfSyn |
The (grow) synthetic RF built over training data. |
rfSynPred |
The predict synthetic RF built over test data (if available). |
synthetic |
List containing the synthetic features. |
opt.machine |
Optimal machine: RF machine with smallest OOB error rate. |
Hemant Ishwaran and Udaya B. Kogalur
Ishwaran H. and Malley J.D. (2014). Synthetic learning machines. BioData Mining, 7:28.
## ------------------------------------------------------------ ## compare synthetic forests to regular forest (classification) ## ------------------------------------------------------------ ## rfsrc and synthetic calls if (library("mlbench", logical.return = TRUE)) { ## simulate the data ring <- data.frame(mlbench.ringnorm(250, 20)) ## classification forests ringRF <- rfsrc(classes ~., ring) ## synthetic forests ## 1 = nodesize varied ## 2 = nodesize/mtry varied ringSyn1 <- synthetic(classes ~., ring) ringSyn2 <- synthetic(classes ~., ring, mtrySeq = c(1, 10, 20)) ## test-set performance ring.test <- data.frame(mlbench.ringnorm(500, 20)) pred.ringRF <- predict(ringRF, newdata = ring.test) pred.ringSyn1 <- synthetic(object = ringSyn1, newdata = ring.test)$rfSynPred pred.ringSyn2 <- synthetic(object = ringSyn2, newdata = ring.test)$rfSynPred print(pred.ringRF) print(pred.ringSyn1) print(pred.ringSyn2) } ## ------------------------------------------------------------ ## compare synthetic forest to regular forest (regression) ## ------------------------------------------------------------ ## simulate the data n <- 250 ntest <- 1000 N <- n + ntest d <- 50 std <- 0.1 x <- matrix(runif(N * d, -1, 1), ncol = d) y <- 1 * (x[,1] + x[,4]^3 + x[,9] + sin(x[,12]*x[,18]) + rnorm(n, sd = std)>.38) dat <- data.frame(x = x, y = y) test <- (n+1):N ## regression forests regF <- rfsrc(y ~ ., dat[-test, ], ) pred.regF <- predict(regF, dat[test, ]) ## synthetic forests using fast rfsrc synF1 <- synthetic(y ~ ., dat[-test, ], newdata = dat[test, ]) synF2 <- synthetic(y ~ ., dat[-test, ], newdata = dat[test, ], mtrySeq = c(1, 10, 20, 30, 40, 50)) ## standardized MSE performance mse <- c(tail(pred.regF$err.rate, 1), tail(synF1$rfSynPred$err.rate, 1), tail(synF2$rfSynPred$err.rate, 1)) / var(y[-test]) names(mse) <- c("forest", "synthetic1", "synthetic2") print(mse) ## ------------------------------------------------------------ ## multivariate synthetic forests ## ------------------------------------------------------------ mtcars.new <- mtcars mtcars.new$cyl <- factor(mtcars.new$cyl) mtcars.new$carb <- factor(mtcars.new$carb, ordered = TRUE) trn <- sample(1:nrow(mtcars.new), nrow(mtcars.new)/2) mvSyn <- synthetic(cbind(carb, mpg, cyl) ~., mtcars.new[trn,]) mvSyn.pred <- synthetic(object = mvSyn, newdata = mtcars.new[-trn,])
## ------------------------------------------------------------ ## compare synthetic forests to regular forest (classification) ## ------------------------------------------------------------ ## rfsrc and synthetic calls if (library("mlbench", logical.return = TRUE)) { ## simulate the data ring <- data.frame(mlbench.ringnorm(250, 20)) ## classification forests ringRF <- rfsrc(classes ~., ring) ## synthetic forests ## 1 = nodesize varied ## 2 = nodesize/mtry varied ringSyn1 <- synthetic(classes ~., ring) ringSyn2 <- synthetic(classes ~., ring, mtrySeq = c(1, 10, 20)) ## test-set performance ring.test <- data.frame(mlbench.ringnorm(500, 20)) pred.ringRF <- predict(ringRF, newdata = ring.test) pred.ringSyn1 <- synthetic(object = ringSyn1, newdata = ring.test)$rfSynPred pred.ringSyn2 <- synthetic(object = ringSyn2, newdata = ring.test)$rfSynPred print(pred.ringRF) print(pred.ringSyn1) print(pred.ringSyn2) } ## ------------------------------------------------------------ ## compare synthetic forest to regular forest (regression) ## ------------------------------------------------------------ ## simulate the data n <- 250 ntest <- 1000 N <- n + ntest d <- 50 std <- 0.1 x <- matrix(runif(N * d, -1, 1), ncol = d) y <- 1 * (x[,1] + x[,4]^3 + x[,9] + sin(x[,12]*x[,18]) + rnorm(n, sd = std)>.38) dat <- data.frame(x = x, y = y) test <- (n+1):N ## regression forests regF <- rfsrc(y ~ ., dat[-test, ], ) pred.regF <- predict(regF, dat[test, ]) ## synthetic forests using fast rfsrc synF1 <- synthetic(y ~ ., dat[-test, ], newdata = dat[test, ]) synF2 <- synthetic(y ~ ., dat[-test, ], newdata = dat[test, ], mtrySeq = c(1, 10, 20, 30, 40, 50)) ## standardized MSE performance mse <- c(tail(pred.regF$err.rate, 1), tail(synF1$rfSynPred$err.rate, 1), tail(synF2$rfSynPred$err.rate, 1)) / var(y[-test]) names(mse) <- c("forest", "synthetic1", "synthetic2") print(mse) ## ------------------------------------------------------------ ## multivariate synthetic forests ## ------------------------------------------------------------ mtcars.new <- mtcars mtcars.new$cyl <- factor(mtcars.new$cyl) mtcars.new$carb <- factor(mtcars.new$carb, ordered = TRUE) trn <- sample(1:nrow(mtcars.new), nrow(mtcars.new)/2) mvSyn <- synthetic(cbind(carb, mpg, cyl) ~., mtcars.new[trn,]) mvSyn.pred <- synthetic(object = mvSyn, newdata = mtcars.new[-trn,])
Finds the optimal mtry and nodesize tuning parameter for a random forest using out-of-sample error. Applies to all families.
## S3 method for class 'rfsrc' tune(formula, data, mtryStart = ncol(data) / 2, nodesizeTry = c(1:9, seq(10, 100, by = 5)), ntreeTry = 100, sampsize = function(x){min(x * .632, max(150, x ^ (3/4)))}, nsplit = 1, stepFactor = 1.25, improve = 1e-3, strikeout = 3, maxIter = 25, trace = FALSE, doBest = FALSE, ...) ## S3 method for class 'rfsrc' tune.nodesize(formula, data, nodesizeTry = c(1:9, seq(10, 150, by = 5)), ntreeTry = 100, sampsize = function(x){min(x * .632, max(150, x ^ (4/5)))}, nsplit = 1, trace = TRUE, ...)
## S3 method for class 'rfsrc' tune(formula, data, mtryStart = ncol(data) / 2, nodesizeTry = c(1:9, seq(10, 100, by = 5)), ntreeTry = 100, sampsize = function(x){min(x * .632, max(150, x ^ (3/4)))}, nsplit = 1, stepFactor = 1.25, improve = 1e-3, strikeout = 3, maxIter = 25, trace = FALSE, doBest = FALSE, ...) ## S3 method for class 'rfsrc' tune.nodesize(formula, data, nodesizeTry = c(1:9, seq(10, 150, by = 5)), ntreeTry = 100, sampsize = function(x){min(x * .632, max(150, x ^ (4/5)))}, nsplit = 1, trace = TRUE, ...)
formula |
A symbolic description of the model to be fit. |
data |
Data frame containing the y-outcome and x-variables. |
mtryStart |
Starting value of mtry. |
nodesizeTry |
Values of nodesize optimized over. |
ntreeTry |
Number of trees used for the tuning step. |
sampsize |
Function specifying requested size of subsampled data. Can also be passed in as a number. |
nsplit |
Number of random splits used for splitting. |
stepFactor |
At each iteration, mtry is inflated (or deflated) by this value. |
improve |
The (relative) improvement in out-of-sample error must be by this much for the search to continue. |
strikeout |
The search is discontinued when the relative
improvement in OOB error is negative. However |
maxIter |
The maximum number of iterations allowed for each mtry bisection search. |
trace |
Print the progress of the search? |
doBest |
Return a forest fit with the optimal mtry and nodesize parameters? |
... |
Further options to be passed to |
tune
returns a matrix whose first and second
columns contain the nodesize and mtry values searched and whose third
column is the corresponding out-of-sample error. Uses standardized error
and in the case of multivariate forests it is the averaged
standardized rror over the outcomes and for competing risks it is
the averaged standardized error over the event types.
If doBest=TRUE
, also returns a forest object fit using the
optimal mtry
and nodesize
values.
All calculations (including the final optimized forest) are based on
the fast forest interface rfsrc.fast
which utilizes
subsampling. However, while this yields a fast optimization strategy,
such a solution can only be considered approximate. Users may wish to
tweak various options to improve accuracy. Increasing the default
sampsize
will definitely help. Increasing ntreeTry
(which is set to 100 for speed) may also help. It is also useful to
look at contour plots of the out-of-sample error as a function of
mtry
and nodesize
(see example below) to identify
regions of the parameter space where error rate is small.
tune.nodesize
returns the optimal nodesize where optimization is
over nodesize
only.
Hemant Ishwaran and Udaya B. Kogalur
## ------------------------------------------------------------ ## White wine classification example ## ------------------------------------------------------------ ## load the data data(wine, package = "randomForestSRC") wine$quality <- factor(wine$quality) ## set the sample size manually o <- tune(quality ~ ., wine, sampsize = 100) ## here is the optimized forest print(o$rf) ## visualize the nodesize/mtry OOB surface if (library("interp", logical.return = TRUE)) { ## nice little wrapper for plotting results plot.tune <- function(o, linear = TRUE) { x <- o$results[,1] y <- o$results[,2] z <- o$results[,3] so <- interp(x=x, y=y, z=z, linear = linear) idx <- which.min(z) x0 <- x[idx] y0 <- y[idx] filled.contour(x = so$x, y = so$y, z = so$z, xlim = range(so$x, finite = TRUE) + c(-2, 2), ylim = range(so$y, finite = TRUE) + c(-2, 2), color.palette = colorRampPalette(c("yellow", "red")), xlab = "nodesize", ylab = "mtry", main = "error rate for nodesize and mtry", key.title = title(main = "OOB error", cex.main = 1), plot.axes = {axis(1);axis(2);points(x0,y0,pch="x",cex=1,font=2); points(x,y,pch=16,cex=.25)}) } ## plot the surface plot.tune(o) } ## ------------------------------------------------------------ ## tuning for class imbalanced data problem ## - see imbalanced function for details ## - use rfq and perf.type = "gmean" ## ------------------------------------------------------------ data(breast, package = "randomForestSRC") breast <- na.omit(breast) o <- tune(status ~ ., data = breast, rfq = TRUE, perf.type = "gmean") print(o) ## ------------------------------------------------------------ ## tune nodesize for competing risk - wihs data ## ------------------------------------------------------------ data(wihs, package = "randomForestSRC") plot(tune.nodesize(Surv(time, status) ~ ., wihs, trace = TRUE)$err)
## ------------------------------------------------------------ ## White wine classification example ## ------------------------------------------------------------ ## load the data data(wine, package = "randomForestSRC") wine$quality <- factor(wine$quality) ## set the sample size manually o <- tune(quality ~ ., wine, sampsize = 100) ## here is the optimized forest print(o$rf) ## visualize the nodesize/mtry OOB surface if (library("interp", logical.return = TRUE)) { ## nice little wrapper for plotting results plot.tune <- function(o, linear = TRUE) { x <- o$results[,1] y <- o$results[,2] z <- o$results[,3] so <- interp(x=x, y=y, z=z, linear = linear) idx <- which.min(z) x0 <- x[idx] y0 <- y[idx] filled.contour(x = so$x, y = so$y, z = so$z, xlim = range(so$x, finite = TRUE) + c(-2, 2), ylim = range(so$y, finite = TRUE) + c(-2, 2), color.palette = colorRampPalette(c("yellow", "red")), xlab = "nodesize", ylab = "mtry", main = "error rate for nodesize and mtry", key.title = title(main = "OOB error", cex.main = 1), plot.axes = {axis(1);axis(2);points(x0,y0,pch="x",cex=1,font=2); points(x,y,pch=16,cex=.25)}) } ## plot the surface plot.tune(o) } ## ------------------------------------------------------------ ## tuning for class imbalanced data problem ## - see imbalanced function for details ## - use rfq and perf.type = "gmean" ## ------------------------------------------------------------ data(breast, package = "randomForestSRC") breast <- na.omit(breast) o <- tune(status ~ ., data = breast, rfq = TRUE, perf.type = "gmean") print(o) ## ------------------------------------------------------------ ## tune nodesize for competing risk - wihs data ## ------------------------------------------------------------ data(wihs, package = "randomForestSRC") plot(tune.nodesize(Surv(time, status) ~ ., wihs, trace = TRUE)$err)
Variable selection using minimal depth.
## S3 method for class 'rfsrc' var.select(formula, data, object, cause, m.target, method = c("md", "vh", "vh.vimp"), conservative = c("medium", "low", "high"), ntree = (if (method == "md") 1000 else 500), mvars = (if (method != "md") ceiling(ncol(data)/5) else NULL), mtry = (if (method == "md") ceiling(ncol(data)/3) else NULL), nodesize = 2, splitrule = NULL, nsplit = 10, xvar.wt = NULL, refit = (method != "md"), fast = FALSE, na.action = c("na.omit", "na.impute"), always.use = NULL, nrep = 50, K = 5, nstep = 1, prefit = list(action = (method != "md"), ntree = 100, mtry = 500, nodesize = 3, nsplit = 1), verbose = TRUE, block.size = 10, seed = NULL,...)
## S3 method for class 'rfsrc' var.select(formula, data, object, cause, m.target, method = c("md", "vh", "vh.vimp"), conservative = c("medium", "low", "high"), ntree = (if (method == "md") 1000 else 500), mvars = (if (method != "md") ceiling(ncol(data)/5) else NULL), mtry = (if (method == "md") ceiling(ncol(data)/3) else NULL), nodesize = 2, splitrule = NULL, nsplit = 10, xvar.wt = NULL, refit = (method != "md"), fast = FALSE, na.action = c("na.omit", "na.impute"), always.use = NULL, nrep = 50, K = 5, nstep = 1, prefit = list(action = (method != "md"), ntree = 100, mtry = 500, nodesize = 3, nsplit = 1), verbose = TRUE, block.size = 10, seed = NULL,...)
formula |
A symbolic description of the model to be fit.
Must be specified unless |
data |
Data frame containing the y-outcome and x-variables in
the model. Must be specified unless |
object |
An object of class |
cause |
Integer value between 1 and |
m.target |
Character value for multivariate families specifying the target outcome to be used. If left unspecified, the algorithm will choose a default target. |
method |
Variable selection method:
|
conservative |
Level of conservativeness of the thresholding rule used in minimal depth selection:
|
ntree |
Number of trees to grow. |
mvars |
Number of randomly selected variables used in the variable hunting algorithm (ignored when method="md"). |
mtry |
The mtry value used. |
nodesize |
Forest average terminal node size. |
splitrule |
Splitting rule used. |
nsplit |
If non-zero, the specified tree splitting rule is randomized which significantly increases speed. |
xvar.wt |
Vector of non-negative weights specifying the
probability of selecting a variable for splitting a node. Must be of
dimension equal to the number of variables. Default ( |
refit |
Should a forest be refit using the selected variables? |
fast |
Speeds up the cross-validation used for variable hunting for a faster analysis. See miscellanea below. |
na.action |
Action to be taken if the data contains |
always.use |
Character vector of variable names to always be included in the model selection procedure and in the final selected model. |
nrep |
Number of Monte Carlo iterations of the variable hunting algorithm. |
K |
Integer value specifying the |
nstep |
Integer value controlling the step size used in the forward selection process of the variable hunting algorithm. Increasing this will encourage more variables to be selected. |
prefit |
List containing parameters used in preliminary forest analysis for determining weight selection of variables. Users can set all or some of the following parameters:
|
verbose |
Set to |
block.size |
VIMP is calculated in "blocks" of trees of this size. |
seed |
Negative integer specifying seed for the random number generator. |
... |
Further arguments passed to forest grow call. |
This function implements random forest variable selection using tree minimal depth methodology (Ishwaran et al., 2010). The option method allows for two different approaches:
method="md"
Invokes minimal depth variable selection. Variables are selected
using minimal depth variable selection. Uses all data and all
variables simultaneously. This is basically a front-end to the
max.subtree
wrapper. Users should consult the
max.subtree
help file for details.
Set mtry to larger values in high-dimensional problems.
method="vh" or method="vh.vimp"
Invokes variable hunting. Variable hunting is used for problems where the number of variables is substantially larger than the sample size (e.g., p/n is greater than 10). It is always prefered to use method="md", but to find more variables, or when computations are high, variable hunting may be preferred.
When method="vh": Using training data from a stratified
K-fold subsampling (stratification based on the y-outcomes), a
forest is fit using mvars
randomly selected variables
(variables are chosen with probability proportional to weights
determined using an initial forest fit; see below for more
details). The mvars
variables are ordered by increasing
minimal depth and added sequentially (starting from an initial
model determined using minimal depth selection) until joint VIMP
no longer increases (signifying the final model). A forest is
refit to the final model and applied to test data to estimate
prediction error. The process is repeated nrep
times.
Final selected variables are the top P ranked variables, where P
is the average model size (rounded up to the nearest integer) and
variables are ranked by frequency of occurrence.
The same algorithm is used when method="vh.vimp", but variables are ordered using VIMP. This is faster, but not as accurate.
Miscellanea
When variable hunting is used, a preliminary forest is run
and its VIMP is used to define the probability of selecting a
variable for splitting a node. Thus, instead of randomly
selecting mvars
at random, variables are selected with
probability proportional to their VIMP (the probability is zero
if VIMP is negative). A preliminary forest is run once prior
to the analysis if prefit$action=TRUE
, otherwise it is
run prior to each iteration (this latter scenario can be slow).
When method="md", a preliminary forest is fit only if
prefit$action=TRUE
. Then instead of randomly selecting
mtry
variables at random, mtry
variables are
selected with probability proportional to their VIMP. In all
cases, the entire option is overridden if xvar.wt
is
non-null.
If object
is supplied and method="md",
the grow forest from object
is parsed for minimal depth
information. While this avoids fitting another forest, thus
saving computational time, certain options no longer apply. In
particular, the value of cause
plays no role in the
final selected variables as minimal depth is extracted from the
grow forest, which has already been grown under a preselected
cause
specification. Users wishing to specify
cause
should instead use the formula and data interface.
Also, if the user requests a prefitted forest via
prefit$action=TRUE
, then object
is not used and a
refitted forest is used in its place for variable selection.
Thus, the effort spent to construct the original grow forest is
not used in this case.
If fast=TRUE, and variable hunting is used, the training data is chosen to be of size n/K, where n=sample size (i.e., the size of the training data is swapped with the test data). This speeds up the algorithm. Increasing K also helps.
Can be used for competing risk data. When
method="vh.vimp", variable selection based on VIMP is
confined to an event specific cause specified by cause
.
However, this can be unreliable as not all y-outcomes can be
guaranteed when subsampling (this is true even when stratifed
subsampling is used as done here).
Invisibly, a list with the following components:
err.rate |
Prediction error for the forest (a vector of
length |
modelsize |
Number of variables selected. |
topvars |
Character vector of names of the final selected variables. |
varselect |
Useful output summarizing the final selected variables. |
rfsrc.refit.obj |
Refitted forest using the final set of selected variables (requires refit=TRUE). |
md.obj |
Minimal depth object. |
Hemant Ishwaran and Udaya B. Kogalur
Ishwaran H., Kogalur U.B., Gorodeski E.Z, Minn A.J. and Lauer M.S. (2010). High-dimensional variable selection for survival data. J. Amer. Statist. Assoc., 105:205-217.
Ishwaran H., Kogalur U.B., Chen X. and Minn A.J. (2011). Random survival forests for high-dimensional data. Statist. Anal. Data Mining, 4:115-132.
find.interaction.rfsrc
,
holdout.vimp.rfsrc
,
max.subtree.rfsrc
,
vimp.rfsrc
## ------------------------------------------------------------ ## Minimal depth variable selection ## survival analysis ## use larger node size which is better for minimal depth ## ------------------------------------------------------------ data(pbc, package = "randomForestSRC") pbc.obj <- rfsrc(Surv(days, status) ~ ., pbc, nodesize = 20, importance = TRUE) # default call corresponds to minimal depth selection vs.pbc <- var.select(object = pbc.obj) topvars <- vs.pbc$topvars # the above is equivalent to max.subtree(pbc.obj)$topvars # different levels of conservativeness var.select(object = pbc.obj, conservative = "low") var.select(object = pbc.obj, conservative = "medium") var.select(object = pbc.obj, conservative = "high") ## ------------------------------------------------------------ ## Minimal depth variable selection ## competing risk analysis ## use larger node size which is better for minimal depth ## ------------------------------------------------------------ ## competing risk data set involving AIDS in women data(wihs, package = "randomForestSRC") vs.wihs <- var.select(Surv(time, status) ~ ., wihs, nsplit = 3, nodesize = 20, ntree = 100, importance = TRUE) ## competing risk analysis of pbc data from survival package ## implement cause-specific variable selection if (library("survival", logical.return = TRUE)) { data(pbc, package = "survival") pbc$id <- NULL var.select(Surv(time, status) ~ ., pbc, cause = 1) var.select(Surv(time, status) ~ ., pbc, cause = 2) } ## ------------------------------------------------------------ ## Minimal depth variable selection ## classification analysis ## ------------------------------------------------------------ vs.iris <- var.select(Species ~ ., iris) ## ------------------------------------------------------------ ## Variable hunting high-dimensional example ## van de Vijver microarray breast cancer survival data ## nrep is small for illustration; typical values are nrep = 100 ## ------------------------------------------------------------ data(vdv, package = "randomForestSRC") vh.breast <- var.select(Surv(Time, Censoring) ~ ., vdv, method = "vh", nrep = 10, nstep = 5) # plot top 10 variables plot.variable(vh.breast$rfsrc.refit.obj, xvar.names = vh.breast$topvars[1:10]) plot.variable(vh.breast$rfsrc.refit.obj, xvar.names = vh.breast$topvars[1:10], partial = TRUE) ## similar analysis, but using weights from univarate cox p-values if (library("survival", logical.return = TRUE)) { cox.weights <- function(rfsrc.f, rfsrc.data) { event.names <- all.vars(rfsrc.f)[1:2] p <- ncol(rfsrc.data) - 2 event.pt <- match(event.names, names(rfsrc.data)) xvar.pt <- setdiff(1:ncol(rfsrc.data), event.pt) sapply(1:p, function(j) { cox.out <- coxph(rfsrc.f, rfsrc.data[, c(event.pt, xvar.pt[j])]) pvalue <- summary(cox.out)$coef[5] if (is.na(pvalue)) 1.0 else 1/(pvalue + 1e-100) }) } data(vdv, package = "randomForestSRC") rfsrc.f <- as.formula(Surv(Time, Censoring) ~ .) cox.wts <- cox.weights(rfsrc.f, vdv) vh.breast.cox <- var.select(rfsrc.f, vdv, method = "vh", nstep = 5, nrep = 10, xvar.wt = cox.wts) }
## ------------------------------------------------------------ ## Minimal depth variable selection ## survival analysis ## use larger node size which is better for minimal depth ## ------------------------------------------------------------ data(pbc, package = "randomForestSRC") pbc.obj <- rfsrc(Surv(days, status) ~ ., pbc, nodesize = 20, importance = TRUE) # default call corresponds to minimal depth selection vs.pbc <- var.select(object = pbc.obj) topvars <- vs.pbc$topvars # the above is equivalent to max.subtree(pbc.obj)$topvars # different levels of conservativeness var.select(object = pbc.obj, conservative = "low") var.select(object = pbc.obj, conservative = "medium") var.select(object = pbc.obj, conservative = "high") ## ------------------------------------------------------------ ## Minimal depth variable selection ## competing risk analysis ## use larger node size which is better for minimal depth ## ------------------------------------------------------------ ## competing risk data set involving AIDS in women data(wihs, package = "randomForestSRC") vs.wihs <- var.select(Surv(time, status) ~ ., wihs, nsplit = 3, nodesize = 20, ntree = 100, importance = TRUE) ## competing risk analysis of pbc data from survival package ## implement cause-specific variable selection if (library("survival", logical.return = TRUE)) { data(pbc, package = "survival") pbc$id <- NULL var.select(Surv(time, status) ~ ., pbc, cause = 1) var.select(Surv(time, status) ~ ., pbc, cause = 2) } ## ------------------------------------------------------------ ## Minimal depth variable selection ## classification analysis ## ------------------------------------------------------------ vs.iris <- var.select(Species ~ ., iris) ## ------------------------------------------------------------ ## Variable hunting high-dimensional example ## van de Vijver microarray breast cancer survival data ## nrep is small for illustration; typical values are nrep = 100 ## ------------------------------------------------------------ data(vdv, package = "randomForestSRC") vh.breast <- var.select(Surv(Time, Censoring) ~ ., vdv, method = "vh", nrep = 10, nstep = 5) # plot top 10 variables plot.variable(vh.breast$rfsrc.refit.obj, xvar.names = vh.breast$topvars[1:10]) plot.variable(vh.breast$rfsrc.refit.obj, xvar.names = vh.breast$topvars[1:10], partial = TRUE) ## similar analysis, but using weights from univarate cox p-values if (library("survival", logical.return = TRUE)) { cox.weights <- function(rfsrc.f, rfsrc.data) { event.names <- all.vars(rfsrc.f)[1:2] p <- ncol(rfsrc.data) - 2 event.pt <- match(event.names, names(rfsrc.data)) xvar.pt <- setdiff(1:ncol(rfsrc.data), event.pt) sapply(1:p, function(j) { cox.out <- coxph(rfsrc.f, rfsrc.data[, c(event.pt, xvar.pt[j])]) pvalue <- summary(cox.out)$coef[5] if (is.na(pvalue)) 1.0 else 1/(pvalue + 1e-100) }) } data(vdv, package = "randomForestSRC") rfsrc.f <- as.formula(Surv(Time, Censoring) ~ .) cox.wts <- cox.weights(rfsrc.f, vdv) vh.breast.cox <- var.select(rfsrc.f, vdv, method = "vh", nstep = 5, nrep = 10, xvar.wt = cox.wts) }
Gene expression profiling for predicting clinical outcome of breast cancer (van't Veer et al., 2002). Microarray breast cancer data set of 4707 expression values on 78 patients with survival information.
van't Veer L.J. et al. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature, 12, 530–536.
data(vdv, package = "randomForestSRC")
data(vdv, package = "randomForestSRC")
Randomized trial of two treatment regimens for lung cancer. This is a standard survival analysis data set.
Kalbfleisch and Prentice, The Statistical Analysis of Failure Time Data.
Kalbfleisch J. and Prentice R, (1980) The Statistical Analysis of Failure Time Data. New York: Wiley.
data(veteran, package = "randomForestSRC")
data(veteran, package = "randomForestSRC")
Calculate variable importance (VIMP) for a single variable or group of variables for training or test data.
## S3 method for class 'rfsrc' vimp(object, xvar.names, m.target = NULL, importance = c("anti", "permute", "random"), block.size = 10, joint = FALSE, seed = NULL, do.trace = FALSE, ...)
## S3 method for class 'rfsrc' vimp(object, xvar.names, m.target = NULL, importance = c("anti", "permute", "random"), block.size = 10, joint = FALSE, seed = NULL, do.trace = FALSE, ...)
object |
An object of class |
xvar.names |
Names of the x-variables to be used. If not specified all variables are used. |
m.target |
Character value for multivariate families specifying the target outcome to be used. If left unspecified, the algorithm will choose a default target. |
importance |
Type of VIMP. |
block.size |
Specifies number of trees in a block when calculating VIMP. |
joint |
Individual or joint VIMP? |
seed |
Negative integer specifying seed for the random number generator. |
do.trace |
Number of seconds between updates to the user on approximate time to completion. |
... |
Further arguments passed to or from other methods. |
Using a previously trained forest, calculate the VIMP for variables
xvar.names
. By default, VIMP is calculated for the original
data, but the user can specify a new test data for the VIMP
calculation using newdata
. See rfsrc
for more
details about how VIMP is calculated.
joint=TRUE returns joint VIMP, defined as importance for a group of variables when the group is perturbed simultaneously.
csv=TRUE
return case specific VIMP. Applies to
all families except survival families. See example below.
An object of class (rfsrc, predict)
containing importance
values.
Hemant Ishwaran and Udaya B. Kogalur
Ishwaran H. (2007). Variable importance in binary regression trees and forests, Electronic J. Statist., 1:519-537.
## ------------------------------------------------------------ ## classification example ## showcase different vimp ## ------------------------------------------------------------ iris.obj <- rfsrc(Species ~ ., data = iris) ## anti vimp (default) print(vimp(iris.obj)$importance) ## anti vimp using brier prediction error print(vimp(iris.obj, perf.type = "brier")$importance) ## permutation vimp print(vimp(iris.obj, importance = "permute")$importance) ## random daughter vimp print(vimp(iris.obj, importance = "random")$importance) ## joint anti vimp print(vimp(iris.obj, joint = TRUE)$importance) ## paired anti vimp print(vimp(iris.obj, c("Petal.Length", "Petal.Width"), joint = TRUE)$importance) print(vimp(iris.obj, c("Sepal.Length", "Petal.Width"), joint = TRUE)$importance) ## ------------------------------------------------------------ ## survival example ## anti versus permute VIMP with different block sizes ## ------------------------------------------------------------ data(pbc, package = "randomForestSRC") pbc.obj <- rfsrc(Surv(days, status) ~ ., pbc) print(vimp(pbc.obj)$importance) print(vimp(pbc.obj, block.size=1)$importance) print(vimp(pbc.obj, importance="permute")$importance) print(vimp(pbc.obj, importance="permute", block.size=1)$importance) ## ------------------------------------------------------------ ## imbalanced classification example ## see the imbalanced function for more details ## ------------------------------------------------------------ data(breast, package = "randomForestSRC") breast <- na.omit(breast) f <- as.formula(status ~ .) o <- rfsrc(f, breast, ntree = 2000) ## permutation vimp print(100 * vimp(o, importance = "permute")$importance) ## anti vimp using gmean performance print(100 * vimp(o, perf.type = "gmean")$importance[, 1]) ## ------------------------------------------------------------ ## regression example ## ------------------------------------------------------------ airq.obj <- rfsrc(Ozone ~ ., airquality) print(vimp(airq.obj)) ## ------------------------------------------------------------ ## regression example where vimp is calculated on test data ## ------------------------------------------------------------ set.seed(100080) train <- sample(1:nrow(airquality), size = 80) airq.obj <- rfsrc(Ozone~., airquality[train, ]) ## training data vimp print(airq.obj$importance) print(vimp(airq.obj)$importance) ## test data vimp print(vimp(airq.obj, newdata = airquality[-train, ])$importance) ## ------------------------------------------------------------ ## case-specific vimp ## returns VIMP for each case ## ------------------------------------------------------------ o <- rfsrc(mpg~., mtcars) v <- vimp(o, csv = TRUE) csvimp <- get.mv.csvimp(v, standardize=TRUE) print(csvimp) ## ------------------------------------------------------------ ## case-specific joint vimp ## returns joint VIMP for each case ## ------------------------------------------------------------ o <- rfsrc(mpg~., mtcars) v <- vimp(o, joint = TRUE, csv = TRUE) csvimp <- get.mv.csvimp(v, standardize=TRUE) print(csvimp) ## ------------------------------------------------------------ ## case-specific joint vimp for multivariate regression ## returns joint VIMP for each case, for each outcome ## ------------------------------------------------------------ o <- rfsrc(Multivar(mpg, cyl) ~., data = mtcars) v <- vimp(o, joint = TRUE, csv = TRUE) csvimp <- get.mv.csvimp(v, standardize=TRUE) print(csvimp)
## ------------------------------------------------------------ ## classification example ## showcase different vimp ## ------------------------------------------------------------ iris.obj <- rfsrc(Species ~ ., data = iris) ## anti vimp (default) print(vimp(iris.obj)$importance) ## anti vimp using brier prediction error print(vimp(iris.obj, perf.type = "brier")$importance) ## permutation vimp print(vimp(iris.obj, importance = "permute")$importance) ## random daughter vimp print(vimp(iris.obj, importance = "random")$importance) ## joint anti vimp print(vimp(iris.obj, joint = TRUE)$importance) ## paired anti vimp print(vimp(iris.obj, c("Petal.Length", "Petal.Width"), joint = TRUE)$importance) print(vimp(iris.obj, c("Sepal.Length", "Petal.Width"), joint = TRUE)$importance) ## ------------------------------------------------------------ ## survival example ## anti versus permute VIMP with different block sizes ## ------------------------------------------------------------ data(pbc, package = "randomForestSRC") pbc.obj <- rfsrc(Surv(days, status) ~ ., pbc) print(vimp(pbc.obj)$importance) print(vimp(pbc.obj, block.size=1)$importance) print(vimp(pbc.obj, importance="permute")$importance) print(vimp(pbc.obj, importance="permute", block.size=1)$importance) ## ------------------------------------------------------------ ## imbalanced classification example ## see the imbalanced function for more details ## ------------------------------------------------------------ data(breast, package = "randomForestSRC") breast <- na.omit(breast) f <- as.formula(status ~ .) o <- rfsrc(f, breast, ntree = 2000) ## permutation vimp print(100 * vimp(o, importance = "permute")$importance) ## anti vimp using gmean performance print(100 * vimp(o, perf.type = "gmean")$importance[, 1]) ## ------------------------------------------------------------ ## regression example ## ------------------------------------------------------------ airq.obj <- rfsrc(Ozone ~ ., airquality) print(vimp(airq.obj)) ## ------------------------------------------------------------ ## regression example where vimp is calculated on test data ## ------------------------------------------------------------ set.seed(100080) train <- sample(1:nrow(airquality), size = 80) airq.obj <- rfsrc(Ozone~., airquality[train, ]) ## training data vimp print(airq.obj$importance) print(vimp(airq.obj)$importance) ## test data vimp print(vimp(airq.obj, newdata = airquality[-train, ])$importance) ## ------------------------------------------------------------ ## case-specific vimp ## returns VIMP for each case ## ------------------------------------------------------------ o <- rfsrc(mpg~., mtcars) v <- vimp(o, csv = TRUE) csvimp <- get.mv.csvimp(v, standardize=TRUE) print(csvimp) ## ------------------------------------------------------------ ## case-specific joint vimp ## returns joint VIMP for each case ## ------------------------------------------------------------ o <- rfsrc(mpg~., mtcars) v <- vimp(o, joint = TRUE, csv = TRUE) csvimp <- get.mv.csvimp(v, standardize=TRUE) print(csvimp) ## ------------------------------------------------------------ ## case-specific joint vimp for multivariate regression ## returns joint VIMP for each case, for each outcome ## ------------------------------------------------------------ o <- rfsrc(Multivar(mpg, cyl) ~., data = mtcars) v <- vimp(o, joint = TRUE, csv = TRUE) csvimp <- get.mv.csvimp(v, standardize=TRUE) print(csvimp)
Competing risk data set involving AIDS in women.
A data frame containing:
time | time to event |
status | censoring status: 0=censoring, 1=HAART initiation, 2=AIDS/Death before HAART |
ageatfda | age in years at time of FDA approval of first protease inhibitor |
idu | history of IDU: 0=no history, 1=history |
black | race: 0=not African-American; 1=African-American |
cd4nadir | CD4 count (per 100 cells/ul) |
Study included 1164 women enrolled in WIHS, who were alive, infected with HIV, and free of clinical AIDS on December, 1995, when the first protease inhibitor (saquinavir mesylate) was approved by the Federal Drug Administration. Women were followed until the first of the following occurred: treatment initiation, AIDS diagnosis, death, or administrative censoring (September, 2006). Variables included history of injection drug use at WIHS enrollment, whether an individual was African American, age, and CD4 nadir prior to baseline.
Bacon M.C, von Wyl V., Alden C., et al. (2005). The Women's Interagency HIV Study: an observational cohort brings clinical sciences to the bench, Clin Diagn Lab Immunol, 12(9):1013-1019.
data(wihs, package = "randomForestSRC") wihs.obj <- rfsrc(Surv(time, status) ~ ., wihs, nsplit = 3, ntree = 100)
data(wihs, package = "randomForestSRC") wihs.obj <- rfsrc(Surv(time, status) ~ ., wihs, nsplit = 3, ntree = 100)
The inputs include objective tests (e.g. PH values) and the output is based on sensory data (median of at least 3 evaluations made by wine experts) of white wine. Each expert graded the wine quality between 0 (very bad) and 10 (very excellent).
Cortez, P., Cerdeira, A., Almeida, F., Matos T. and Reis, J. (2009). Modeling wine preferences by data mining from physicochemical properties. In Decision Support Systems, Elsevier, 47(4):547-553.
## load wine and convert to a multiclass problem data(wine, package = "randomForestSRC") wine$quality <- factor(wine$quality)
## load wine and convert to a multiclass problem data(wine, package = "randomForestSRC") wine$quality <- factor(wine$quality)