Package: ragtop (via r-universe)

August 31, 2024

Type Package		
Title Pricing Equity Derivatives with Extensions of Black-Scholes		
Version 1.1.1		
Date 2020-02-29		
Author Brian K. Boonstra		
Maintainer Brian K. Boonstra <ragtop@boonstra.org></ragtop@boonstra.org>		
Description Algorithms to price American and European equity options, convertible bonds and a variety of other financial derivatives. It uses an extension of the usual Black-Scholes model in which jump to default may occur at a probability specified by a power-law link between stock price and hazard rate as found in the paper by Takahashi, Kobayashi, and Nakagawa (2001) <doi:10.3905 jfi.2001.319302="">. We use ideas and techniques from Andersen and Buffum (2002) <doi:10.2139 ssrn.355308=""> and Linetsky (2006) <doi:10.1111 j.1467-9965.2006.00271.x="">.</doi:10.1111></doi:10.2139></doi:10.3905>		
Depends limSolve (>= 1.5.5.1), futile.logger (>= 1.4.1), R (>= 2.10), methods (>= 3.2.2)		
Suggests testthat, roxygen2, knitr, rmarkdown, reshape2, stringr, ggplot2, MASS, RColorBrewer, BondValuation, R.cache, Quandl		
License GPL (>= 2)		
Encoding UTF-8		
LazyData TRUE		
VignetteBuilder knitr		
RoxygenNote 7.0.2		
NeedsCompilation no		
Repository CRAN		
Date/Publication 2020-03-03 09:00:02 UTC		

Contents

accelerated_coupon_value	3
adjust_for_dividends	4
american	5
AmericanOption-class	7
american_implied_volatility	7
blackscholes	9
black_scholes_on_term_structures	10
CALL	12
CallableBond-class	12
construct_implicit_grid_structure	13
construct_tridiagonals	14
control_variate_pairs	15
ConvertibleBond-class	15
CouponBond-class	16
coupon_value_at_exercise	17
detail_from_AnnivDates	18
EquityOption-class	19
equivalent_bs_vola_to_jump	19
equivalent_jump_vola_to_bs	20
EuropeanOption-class	
find_present_value	
fit_to_option_market	
fit_to_option_market_df	26
fit_variance_cumulation	27
implied_jump_process_volatility	31
implied_volatilities	32
implied_volatilities_with_rates_struct	34
implied_volatility	36
implied_volatility_with_term_struct	37
infer_conforming_time_grid	39
integrate_pde	40
is.blank	40
iterate_grid_from_timestep	41
	42 43
	45 45
price_with_intensity_link	
PUT	46
Quandl_df_fcn_UST	47
Quandl_df_fcn_UST_raw	47
ragtop	48
shift_for_dividends	50
spot_to_df_fcn	51
take_implicit_timestep	51
timestep_instruments	53
time_adj_dividends	54

TIME_RESOLUTION_FACTOR	55
TIME_RESOLUTION_SIGNIF_DIGITS	55
TSLAMarket	56
value_from_prior_coupons	56
variance_cumulation_from_vols	57
ZeroCouponBond-class	57
	59

Index

accelerated_coupon_value

Present value of coupons according to an acceleration schedule

Description

Compute "present" value as of time t for coupons that would otherwise have been paid up to time acceleration_t, in the case of accelerated coupon provisions for forced conversions (or sometimes even unforced ones).

Usage

```
accelerated_coupon_value(
   t,
    coupons_df,
   discount_factor_fcn,
   acceleration_t = Inf
)
```

Arguments

t	The time toward which all coupons should be present valued
coupons_df	A data.frame of details for each coupon. It should have the columns payment_time and payment_size.
discount_factor	r_fcn
	A function specifying how the contract says future coupons should be discounted for this instrument in case the acceleration clause is triggered
acceleration_t	Time limit, up to which coupons will be accelerated

See Also

Other Bond Coupons: coupon_value_at_exercise(), value_from_prior_coupons() Other Bond Coupon Acceleration: coupon_value_at_exercise() adjust_for_dividends Find the sum of time-adjusted dividend values and adjust grid prices according to their size in the given interval

Description

Analyze dividends to find ones paid in the interval (t,t+dt]. Form present value as of time t for them, and then use spline interpolation to adjust instrument values accordingly.

Usage

```
adjust_for_dividends(grid_values, t, dt, r, h, S, S0, dividends)
```

Arguments

grid_values	A matrix with one row for each level of S and one column per set of S-associated instrument values $% \mathcal{S}_{\mathrm{S}}$
t	Time after this timestep has been taken
dt	Interval to end of timestep
r	risk-free interest rate
h	Default intensities
S	Underlying equity values for the grid
SØ	Time zero price of the base equity
dividends	A data.frame with columns time, fixed, and proportional. Dividend size at the given time is then expected to be equal to fixed + proportional * S / S0

Value

An object like grid_values with entries modified according to the dividends

See Also

Other Dividends: shift_for_dividends(), time_adj_dividends()

american

Description

Use a control-variate scheme to simultaneously estimate the present values of a collection of one or more American-exercise options under a default model with survival probabilities not linked to equity prices.

Usage

```
american(
  callput,
  SØ,
 Κ,
  time,
  const_short_rate = 0,
 const_default_intensity = 0,
 discount_factor_fcn = function(T, t, ...) { exp(-const_short_rate * (T - t)) },
 survival_probability_fcn = function(T, t, ...) { exp(-const_default_intensity * (T
    - t)) },
 default_intensity_fcn = function(t, S, ...) { const_default_intensity + 0 * S },
  · · · ,
 num_time_steps = 100,
  structure_constant = 2,
  std_devs_width = 5
)
```

1 for calls, -1 for puts (may be a vector of the same)
initial underlying price
strike (may be a vector)
Time from 0 until expiration (may be a vector)
e
A constant to use for the instantaneous interest rate in case discount_factor_fcn is not given
ntensity
A constant to use for the instantaneous default intensity in case default_intensity_fcn is not given
_fcn A function for computing present values to time t of various cashflows occurring during this timestep, with arguments T, t

	survival_probability_fcn		
		(Implied argument) A function for probability of survival, with arguments T, t and T>t. E.g. with a constant volatility s this takes the form $(T - t)s^2$. Should be matched to default_intensity_fcn	
	default_intensi	ty_fcn	
		A function for computing default intensity occurring at a given time, dependent on time and stock price, with arguments t, S. Should be matched to survival_probability_fcn	
		Further arguments passed on to find_present_value	
	<pre>num_time_steps</pre>	Number of steps to use in the grid solver. Can usually be set quite low due to the control variate scheme.	
structure_constant			
		The maximum ratio between time intervals dt and the square of space intervals dz^2	
	std_devs_width	The number of standard deviations, in sigma $* \operatorname{sqrt}(T)$ units, to incorporate into the grid	

Details

The scheme uses find_present_value() to price the options and their European-exercise equivalents. It then compares the latter to black-scholes formula output and uses the results as an error correction on the prices of the American-exercise options.

Value

A vector of estimated option present values

See Also

Other Equity Independent Default Intensity: american_implied_volatility(), black_scholes_on_term_structures() blackscholes(), equivalent_bs_vola_to_jump(), equivalent_jump_vola_to_bs(), implied_volatilities_with_implied_volatilities(), implied_volatility_with_term_struct(), implied_volatility()

Other American Exercise Equity Options: american_implied_volatility(), control_variate_pairs()

Examples

AmericanOption-class A standard option contract allowing for early exercise at the choice of the option holder

Description

A standard option contract allowing for early exercise at the choice of the option holder

Methods

optionality_fcn(v, ...) Return a version of v at time t corrected for any optionality conditions.

recovery_fcn(v, S, t, ...) Return recovery value, given non-default values v at time t. Subclasses may be more elaborate, this method simply returns 0.0.

```
american_implied_volatility
```

Implied volatility of an american option with equity-independent term structures

Description

Use the grid solver to generate american option values under a default model with survival probabilities not linked to equity prices. and run them through a bisective root search method until a constant volatility matching the provided option price has been found.

Usage

```
american_implied_volatility(
  option_price,
  callput,
  SØ,
 Κ,
  time,
 const_default_intensity = 0,
 survival_probability_fcn = function(T, t, ...) {
                                                    exp(-const_default_intensity * (T
    - t)) },
 default_intensity_fcn = function(t, S, ...) { const_default_intensity + 0 * S },
  . . . ,
  num_time_steps = 30,
  structure_constant = 2,
  std_devs_width = 5,
  relative_tolerance = 1e-04,
 max.iter = 100,
 max_vola = 4
)
```

Arguments

option_price	Option price to match
callput	1 for calls, -1 for puts
S0	An initial stock price, for setting grid scale
К	strike
time	Time from 0 until expiration
<pre>const_default_i</pre>	ntensity
	A constant to use for the instantaneous default intensity in case default_intensity_fcn is not given
survival_probab	ility_fcn
	(Implied argument) A function for probability of survival, with arguments T, t and T>t.
default_intensi	ty_fcn
	A function for computing default intensity occurring at a given time, dependent on time and stock price, with arguments t, S. Should be matched to survival_probability_fcn
	Additional arguments to be passed on to implied_volatility_with_term_struct and american
num_time_steps	Minimum number of time steps in the grid
structure_const	ant
	The maximum ratio between time intervals dt and the square of space intervals dz^2
std_devs_width	The number of standard deviations, in sigma * sqrt(T) units, to incorporate into the grid
relative_tolera	nce
	Relative tolerance in instrument price defining the root-finder halting condition
max.iter	Maximum number of root-finder iterations allowed
max_vola	Maximum volatility to try

Value

Estimated volatility

See Also

implied_volatility_with_term_struct for implied volatility of European options under the same conditions, american for the underlying pricing algorithm

Other Implied Volatilities: equivalent_bs_vola_to_jump(), equivalent_jump_vola_to_bs(), fit_variance_cumulation(), implied_jump_process_volatility(), implied_volatilities_with_rates_struct() implied_volatilities(), implied_volatility_with_term_struct(), implied_volatility()

Other Equity Independent Default Intensity: american(), black_scholes_on_term_structures(), blackscholes(), equivalent_bs_vola_to_jump(), equivalent_jump_vola_to_bs(), implied_volatilities_with_rem_struct(), implied_volatility()

Other American Exercise Equity Options: american(), control_variate_pairs()

blackscholes

Examples

```
american_implied_volatility(25,CALL,S0=100,K=100,time=2.2,
    const_short_rate=0.03, num_time_steps=5)
df250 = function(t) ( exp(-0.02*t)*exp(-0.03*max(0,t-1.0))) # Simple term structure
df25 = function(T,t){df250(T)/df250(t)} # Relative discount factors
american_implied_volatility(25,-1,100,100,2.2,
    discount_factor_fcn=df25, num_time_steps=5)
```

```
blackscholes
```

Vectorized Black-Scholes pricing of european-exercise options

Description

Price options according to the famous Black-Scholes formula, with the optional addition of a jump-to-default intensity and discrete dividends.

Usage

```
blackscholes(
   callput,
   S0,
   K,
   r,
   time,
   vola,
   default_intensity = 0,
   divrate = 0,
   borrow_cost = 0,
   dividends = NULL
)
```

callput	1 for calls, -1 for puts	
S0	initial underlying price	
К	strike	
r	risk-free interest rate	
time	Time from 0 until expiration	
vola	Default-free volatility of the underlying	
default_intensity		
	hazard rate of underlying default	
divrate	A continuous rate for dividends and other cashflows such as foreign interest rates	
borrow_cost	A continuous rate for stock borrow costs	
dividends	A data.frame with columns time, fixed, and proportional. Dividend size at the given time is then expected to be equal to fixed + proportional $*$ S / S0. Fixed dividends will be converted to proportional for purposes of this algorithm.	

Note that if the default_intensity is set larger than zero then put-call parity still holds. Greeks are reduced according to cumulated default probability.

All inputs must either be scalars or have the same nonscalar shape.

Value

A list with elements

Price The present value(s)

Delta Sensitivity to underlying price

Vega Sensitivity to volatility

See Also

```
Other European Options: black_scholes_on_term_structures(), implied_volatilities_with_rates_struct(), implied_volatilities(), implied_volatility_with_term_struct(), implied_volatility()
```

```
Other Equity Independent Default Intensity: american_implied_volatility(), american(),
black_scholes_on_term_structures(), equivalent_bs_vola_to_jump(), equivalent_jump_vola_to_bs(),
implied_volatilities_with_rates_struct(), implied_volatilities(), implied_volatility_with_term_struct
implied_volatility()
```

Examples

```
blackscholes(callput=-1, S0=100, K=90, r=0.03, time=1, # -1 is a PUT
vola=0.5, default_intensity=0.07)
```

black_scholes_on_term_structures

Black-Scholes pricing of european-exercise options with term structure arguments

Description

Price an option according to the famous Black-Scholes formula, with the optional addition of a jump-to-default intensity and discrete dividends. Volatility and rates may be provided as constants or as 2+ parameter functions with first argument T corresponding to maturity and second argument t corresponding to model date.

Usage

```
black_scholes_on_term_structures(
  callput,
  S0,
  K,
  time,
```

```
const_volatility = 0.5,
const_short_rate = 0,
const_default_intensity = 0,
discount_factor_fcn = function(T, t, ...) { exp(-const_short_rate * (T - t)) },
survival_probability_fcn = function(T, t, ...) { exp(-const_default_intensity * (T
- t)) },
variance_cumulation_fcn = function(T, t) { const_volatility^2 * (T - t) },
dividends = NULL,
borrow_cost = 0,
dividend_rate = 0
)
```

Arguments

callput	1 for calls, -1 for puts
S0	initial underlying price
К	strike
time	Time from 0 until expiration
const_volatili	ty
	A constant to use for volatility in case variance_cumulation_fcn is not given
const_short_ra	te
	A constant to use for the instantaneous interest rate in case discount_factor_fcn is not given
const_default_	intensity
	A constant to use for the instantaneous default intensity in case default_intensity_fcn is not given
discount_facto	r_fcn
	A function for computing present values to time t of various cashflows occurring during this timestep, with arguments T, t
survival_proba	bility_fcn
	A function for probability of survival, with arguments T, t and T>t. E.g. with a constant volatility s this takes the form $(T - t)s^2$.
variance_cumul	ation_fcn
	A function for computing total stock variance occurring during this timestep, with arguments T, t. E.g. with a constant volatility s this takes the form $(T - t)s^2$.
dividends	A data.frame with columns time, fixed, and proportional. Dividend size at the given time is then expected to be equal to fixed + proportional * S / S0. Fixed dividends will be converted to proportional for purposes of this algorithm.
borrow_cost	A continuous rate for stock borrow costs
dividend_rate	A continuous rate for dividends and other cashflows such as foreign interest rates

Details

Any term structures will be converted to equivalent constant arguments by calling them with the arguments (time, 0).

See Also

Other European Options: blackscholes(), implied_volatilities_with_rates_struct(), implied_volatilities(), implied_volatility_with_term_struct(), implied_volatility()

Other Equity Independent Default Intensity: american_implied_volatility(), american(),
blackscholes(), equivalent_bs_vola_to_jump(), equivalent_jump_vola_to_bs(), implied_volatilities_with_implied_volatilities(), implied_volatility_with_term_struct(), implied_volatility()

Examples

CALL

Constant CALL for defining option contracts

Description

Constant CALL for defining option contracts

Usage

CALL

Format

An object of class numeric of length 1.

CallableBond-class Callable (and putable) corporate or government bond.

Description

When a bond is emphcallable, the issuer may choose to pay the call price to the bond holder and end the life of the contract.

Details

When a bond is emphyutable, the bond holder may choose to force the issuer pay the put price to the bond holder thus ending the life of the contract.

12

Fields

calls A data.frame of details for each call. It should have the columns call_price and effective_time. puts A data.frame of details for each put. It should have the columns put_price and effective_time.

Methods

critical_times() Important times in the life of this instrument for simulation and grid solvers

```
construct_implicit_grid_structure
```

Structure of implicit numerical integration grid

Description

Infer a reasonable structure for our implicit grid solver based on the voltime, structure constant, and requested grid width in standard deviations.

Usage

```
construct_implicit_grid_structure(
  tenors,
  M,
  S0,
  K,
  c,
  sigma,
  structure_constant,
  std_devs_width,
  min_z_width = 0
)
```

tenors	Tenors of instruments to be treated on this grid
М	Minimum number of timesteps on this grid
S0	An initial stock price, for setting grid scale
К	An instrument reference stock price, for setting grid scale
С	A continuous stock drift rate
sigma	Volatility of diffusion process (without jumps to default)
structure_const	tant
	The maximum ratio between time intervals dt and the square of space intervals dz^2
std_devs_width	The number of standard deviations, in sigma $*$ sqrt(T) units, to incorporate into the grid
<pre>min_z_width</pre>	Minimum grid width, in log space

Details

Generally speaking pricing will be good to about 10bp of relative accuracy when the ratio of timesteps to voltime (in annualized units) is over 200.

Cases with pathologically low volatility may go awry (in the sense of yielding ultimately inaccurate PDE solutions), as the structure_constant will force a step in z space much bigger than the width in standard deviations.

Value

A list with elements

- T The maximum time for this grid
- dt Largest permissible timestep size
- dz Distance between space grid points
- z0 Center of space grid
- z_width Width in z space
- half_N A misnomer, actually (N-1)/2
- N The number of space points
- z Locations of space points

See Also

Other Implicit Grid Solver: find_present_value(), form_present_value_grid(), infer_conforming_time_grid(), integrate_pde(), iterate_grid_from_timestep(), take_implicit_timestep(), timestep_instruments()

construct_tridiagonals

Matrix entries for implicit numerical differentiation using Neumann boundary conditions

Description

Matrix entries for implicit numerical differentiation using Neumann boundary conditions

Usage

```
construct_tridiagonals(sigma, structure_constant, drift)
```

sigma	Volatility of diffusion process (without jumps to default)
structure_c	onstant
	The ratio between time interval dt and the square of space interval dz^2
drift	Vector of drift rate of underlying equity grid points, including induced drift from default intensity

Value

A list with elements super, diag and sub containing the superdiagonal, diagonal and subdiagonal of the implicit timestep differencing matrix

control_variate_pairs Form instrument objects for vanilla options

Description

Form a list twice as long as the longest of the arguments callput, K, time whose first half consists of AmericanOption objects and second half consists of EuropeanOption objects having the same exercise specification

Usage

```
control_variate_pairs(callput, K, time)
```

Arguments

callput	1 for calls, -1 for puts
К	strike
time	Time from 0 until expiration

See Also

Other American Exercise Equity Options: american_implied_volatility(), american()

ConvertibleBond-class Convertible bond with exercise into stock

Description

Convertible bond with exercise into stock

Fields

conversion_ratio The number of shares, per bond, that result from exercise dividend_ceiling The level of dividend protection (if any) specified in terms and conditions

Methods

- exercise_decision(v, S, t, discount_factor_fctn = discount_factor_fcn, ...) Find indexes where hold value v will be inferior to conversion value at each stock price level in S, adjusted to include all past coupons
- optionality_fcn(v, S, t, discount_factor_fctn = discount_factor_fcn, ...) Return the greater of hold value v or exercise value at each stock price level in S. If the given date is beyond maturity, return value at maturity.
- terminal_values(v, ...) Return a terminal value. defaults to simply calling optionality_fcn.

CouponBond-class Standard corporate or government bond

Description

A coupon bond is treated here as the entire collection of cashflows. In particular, coupons are included in the package even after they have been paid, accruing at the risk-free rate.

Fields

coupons A data.frame of details for each coupon. It should have the columns payment_time and payment_size.

Methods

- accumulate_coupon_values_before(t, discount_factor_fctn = discount_factor_fcn) Compute
 the sum of coupon present values as of t according to discount_factor_fctn
- critical_times() Important times in the life of this instrument for simulation and grid solvers
- optionality_fcn(v, S, t, ...) Return the notional value in the shape of S at any time on or after maturity, otherwise just return v
- total_coupon_values_between(small_t, big_t, discount_factor_fctn = discount_factor_fcn)
 Compute the sum (as of big_t) of present values of coupons paid between small_t and big_t

coupon_value_at_exercise

Present value of coupons according to an acceleration schedule

Description

Compute "present" value as of time t for coupons that would otherwise have been paid up to time acceleration_t, in the case of accelerated coupon provisions for forced conversions (or sometimes even unforced ones).

Usage

```
coupon_value_at_exercise(
    t,
    coupons_df,
    discount_factor_fcn,
    model_t = 0,
    accelerate_future_coupons = FALSE,
    acceleration_discount_factor_fcn = discount_factor_fcn,
    acceleration_t = Inf
)
```

Arguments

t	The time toward which all coupons should be present valued	
coupons_df	A data.frame of details for each coupon. It should have the columns payment_time and payment_size.	
discount_facto	r_fcn	
	A function specifying how future cashflows should generally be discounted for this instrument	
model_t	Model timestamp passed to value_from_prior_coupons	
accelerate_future_coupons		
	If TRUE, future coupons will be accelerated on exercise to pad present value	
acceleration_discount_factor_fcn		
	A function specifying how future coupons should be discounted for this instru- ment under coupon acceleration conditions	
acceleration_t	The maximum time up to which future coupons will be counted for acceleration, passed on to accelerated_coupon_value	

Value

A scalar equal to the present value

See Also

Other Bond Coupons: accelerated_coupon_value(), value_from_prior_coupons() Other Bond Coupon Acceleration: accelerated_coupon_value()

detail_from_AnnivDates

Convert output of BondValuation::AnnivDates to inputd for Bond

Description

The BondValuation package provides day count convention treatments superior to quantmod or any other R package known (as of May 2019). This function takes output from BondValuation::AnnivDates(...) and parses it into notionals, maturity time, and coupon times and sizes.

Usage

```
detail_from_AnnivDates(
    anvdates,
    as_of = Sys.time(),
    normalization_factor = 365.25
)
```

Arguments

anvdates	Output of BondValuation::AnnivDates(), which must have included a 'Coup' argument so that the resulting list contains an entry for 'PaySched'
as_of	Date or time from whose perspective times should be computed
normalization_factor	
	Factor by which raw R time differences should be multiplied. If volatilites are
	going to be annualized, then this should typically be 365 or so.

Details

Note: volatilities used in 'ragtop' must have compatible time units to these times.

Value

A list with some of the arguments appropriate for defining a Bond as follows: maturity - maturity notional - notional amount coupons - 'data.frame' with 'payment_time', 'payment_size'

EquityOption-class An option contract with call or put terms

Description

An option contract with call or put terms

Fields

strike A decision price for the contract callput Either 1 for a call or -1 for a put

equivalent_bs_vola_to_jump

Find straight Black-Scholes volatility equivalent to jump process with a given default risk

Description

Find Black-Scholes volatility based on known interest rates and hazard rates, using an at-the-money put option at the given tenor to set the standard price.

Usage

```
equivalent_bs_vola_to_jump(
  jump_process_vola,
  time,
  const_short_rate = 0,
  const_default_intensity = 0,
  discount_factor_fcn = function(T, t, ...) { exp(-const_short_rate * (T - t)) },
  survival_probability_fcn = function(T, t, ...) { exp(-const_default_intensity * (T
        - t)) },
  dividends = NULL,
  borrow_cost = 0,
  dividend_rate = 0,
  relative_tolerance = 1e-06,
  max.iter = 100
)
```

Arguments

jump_process_vola Volatility of default-free process time Time to expiration of associated option contracts

const_short_rate		
	A constant to use for the instantaneous interest rate in case discount_factor_fcn is not given	
const_default_i	ntensity	
	A constant to use for the instantaneous default intensity in case survival_probability_fcn is not given	
discount_factor	r_fcn	
	A function for computing present values to time t of various cashflows occurring during this timestep, with arguments T, t	
survival_probability_fcn		
	(Implied argument) A function for probability of survival, with arguments T, t and T>t.	
dividends	A data.frame with columns time, fixed, and proportional. Dividend size at the given time is then expected to be equal to fixed + proportional * S / S0. Fixed dividends will be converted to proportional for purposes of this algorithm.	
borrow_cost	A continuous rate for stock borrow costs	
dividend_rate	A continuous accumulation rate for the stock, affecting the drift	
relative_tolerance		
	Relative tolerance in instrument price defining the root-finder halting condition	
max.iter	Maximum number of root-finder iterations allowed	

Value

A scalar defaultable volatility of an option

See Also

```
Other Implied Volatilities: american_implied_volatility(), equivalent_jump_vola_to_bs(),
fit_variance_cumulation(), implied_jump_process_volatility(), implied_volatilities_with_rates_struct()
implied_volatilities(), implied_volatility_with_term_struct(), implied_volatility()
```

```
Other Equity Independent Default Intensity: american_implied_volatility(), american(),
black_scholes_on_term_structures(), blackscholes(), equivalent_jump_vola_to_bs(),
implied_volatilities_with_rates_struct(), implied_volatilities(), implied_volatility_with_term_struct
implied_volatility()
```

equivalent_jump_vola_to_bs

Find jump process volatility with a given default risk from a straight Black-Scholes volatility

Description

Find default-free volatility (i.e. volatility of a Wiener process with a companion jump process to default) based on known interest rates and hazard rates, using and at-the-money put option at the given tenor to set the standard price.

Usage

Arguments

bs_vola	BlackScholes volatility of an option with no default assumption	
time	Time to expiration of associated option contracts	
const_short_ra	te	
	A constant to use for the instantaneous interest rate in case discount_factor_fcn is not given	
<pre>const_default_</pre>	intensity	
	A constant to use for the instantaneous default intensity in case survival_probability_fcn is not given	
discount_facto	r_fcn	
	A function for computing present values to time t of various cashflows occurring during this timestep, with arguments T, t	
survival_probability_fcn		
	(Implied argument) A function for probability of survival, with arguments T, t and T>t.	
dividends	A data.frame with columns time, fixed, and proportional. Dividend size	
	at the given time is then expected to be equal to fixed + proportional \star S / S0	
borrow_cost	Stock borrow cost, affecting the drift rate	
dividend_rate	A continuous accumulation rate for the stock, affecting the drift	
relative_toler	ance	
	Relative tolerance in instrument price defining the root-finder halting condition	
max.iter	Maximum number of root-finder iterations allowed	

Value

A scalar volatility

See Also

```
Other Implied Volatilities: american_implied_volatility(), equivalent_bs_vola_to_jump(),
fit_variance_cumulation(), implied_jump_process_volatility(), implied_volatilities_with_rates_struct(
implied_volatilities(), implied_volatility_with_term_struct(), implied_volatility()
```

```
Other Equity Independent Default Intensity: american_implied_volatility(), american(),
black_scholes_on_term_structures(), blackscholes(), equivalent_bs_vola_to_jump(),
implied_volatilities_with_rates_struct(), implied_volatilities(), implied_volatility_with_term_struct
implied_volatility()
```

EuropeanOption-class A standard option contract

Description

At maturity, the call option holder will "exercise", i.e. choose stock, with value S, if the stock price is above the strike K, paying K to the option issuer, realizing value S-K. The put option holder will exercise, receiving K while surrendering stock worth S, if the stock price is below K.

Details

Therefore the value at maturity is equal to max(0, callput*(S-K))

Methods

optionality_fcn(v, ...) Return a version of v at time t corrected for any optionality conditions.

recovery_fcn(v, S, t, ...) Return recovery value, given non-default values v at time t. Subclasses may be more elaborate, this method simply returns 0.0.

find_present_value Use a model to estimate the present value of financial derivatives

Description

Use a finite difference scheme to form estimates of present values for a variety of stock prices. Once the grid has been created, interpolate to obtain the value of each instrument at the present stock price S0

22

find_present_value

Usage

```
find_present_value(
  S0,
  num_time_steps,
  instruments,
  const_volatility = 0.5,
  const_short_rate = 0,
  const_default_intensity = 0,
  override_Tmax = NA,
 discount_factor_fcn = function(T, t, ...) { exp(-const_short_rate * (T - t)) },
 default_intensity_fcn = function(t, S, ...) {
                                                const_default_intensity + 0 * S },
 variance_cumulation_fcn = function(T, t) {
                                                 const_volatility^2 * (T - t) },
 dividends = NULL,
  borrow_cost = 0,
  dividend_rate = 0,
  structure_constant = 2,
  std_devs_width = 3
)
```

S0	An initial stock price, for setting grid scale	
<pre>num_time_steps</pre>	Minimum number of time steps in the grid	
instruments	A list of instruments to be priced. Each one must have a strike and a optionality_fcn, as with GridPricedInstrument and its subclasses.	
const_volatilit	Ly .	
	A constant to use for volatility in case variance_cumulation_fcn is not given	
const_short_rat	te	
	A constant to use for the instantaneous interest rate in case discount_factor_fcn is not given	
<pre>const_default_i</pre>	intensity	
	A constant to use for the instantaneous default intensity in case default_intensity_fcn is not given	
override_Tmax	A different maximum time on the grid to enforce	
discount_factor_fcn		
	A function for computing present values to time t of various cashflows occurring during this timestep, with arguments T, t	
default_intensi	ity_fcn	
	A function for computing default intensity occurring during this timestep, de- pendent on time and stock price, with arguments t, S.	
variance_cumulation_fcn		
	A function for computing total stock variance occurring during this timestep, with arguments T, t. E.g. with a constant volatility s this takes the form $(T - t)s^2$.	
dividends	A data.frame with columns time, fixed, and proportional. Dividend size at the given time is then expected to be equal to fixed + proportional $*$ S / S0	

borrow_cost	Stock borrow cost, affecting the drift rate	
dividend_rate	Continuous dividend rate, affecting the drift rate	
structure_constant		
	The maximum ratio between time intervals dt and the square of space intervals dz^{2}	
std_devs_width	The number of standard deviations, in $\texttt{sigma} * \texttt{sqrt}(\texttt{T})$ units, to incorporate into the grid	

Value

A list of present values, with the same names as instruments

See Also

Other Equity Dependent Default Intensity: fit_to_option_market_df(), fit_variance_cumulation(), form_present_value_grid(), implied_jump_process_volatility()

Other Implicit Grid Solver: construct_implicit_grid_structure(), form_present_value_grid(), infer_conforming_time_grid(), integrate_pde(), iterate_grid_from_timestep(), take_implicit_timestep(), timestep_instruments()

fit_to_option_market Calibrate volatilities and equity-linked default intensity

Description

Given derivative instruments (subclasses of GridPricedInstrument, though typically either AmericanOption or EuropeanOption objects), along with their prices and spreads, calibrate variance cumulation (the at-the-money volatility of the continuous process) and equity linked default intensity of the form $h(s + (1-s)(SO/S_t)^p)$.

Usage

```
fit_to_option_market(
  variance_instruments,
  variance_instrument_prices,
  variance_instrument_spreads,
  fit_instrument_prices,
  fit_instrument_spreads,
  fit_instrument_weights,
  S0,
  num_time_steps = 30,
  const_short_rate = 0,
  discount_factor_fcn = function(T, t) { exp(-const_short_rate * (T - t)) },
  ...,
  base_default_intensity = 0.05,
```

```
relative_spread_tolerance = 0.15,
num_variance_time_steps = 30
)
```

Arguments

variance_instruments		
	A list of instruments in strictly increasing order of maturity, from which the volatility term structure will be inferred. Once the calibration is finished, the chosen parameters will reproduce the prices of these instruments with fairly high precision.	
variance_instru	ument_prices	
	Central price targets for the variance instruments	
variance_instru	ument_spreads	
	Bid-offer spreads used to normalize errors in variance instrument prices during term structure fitting	
fit_instruments		
	A list of instruments in any order, from which the mispricing penalties used for judging fit quality will be computed	
<pre>fit_instrument_</pre>	prices	
	Central price targets for the variance instruments	
<pre>fit_instrument_</pre>	spreads	
	Bid-offer spreads used to normalize errors in fit instrument prices during default intensity	
<pre>fit_instrument_</pre>	weights	
	Weights applied to relative errors in fit instrument prices before summing to form the penalty	
S0	Current underlying price	
<pre>num_time_steps</pre>	Time step count passed on to find_present_value while fitting instrument values	
<pre>const_short_rat</pre>	const_short_rate	
	A constant to use for the instantaneous interest rate in case discount_factor_fcn is not given	
discount_factor	r_fcn	
	A function for computing present values to time t of various cashflows occurring during this timestep, with arguments T, t $$	
	Further arguments passed to penalty_with_intensity_link	
<pre>base_default_in</pre>	itensity	
	Overall default intensity (in natural units)	
relative_spread	l_tolerance	
	Tolerance to apply in calling fit_variance_cumulation	
num_variance_ti	•	
	Number of time steps to use in calling fit_variance_cumulation	

Details

In its present form, this function uses a brain-dead grid search.

See Also

penalty_with_intensity_link for the penalty function used as an optimization target

```
fit_to_option_market_df
```

Calibrate volatilities and equity-linked default intensity making many assumptions

Description

This is a convenience function for calibrating variance cumulation (the at-the-money volatility of the continuous process) and equity linked default intensity of the form $h(s + (1-s)(S0/S_t)^p)$, using a data.frame of option market data.

Usage

```
fit_to_option_market_df(
  S0 = ragtop::TSLAMarket$S0,
  discount_factor_fcn = spot_to_df_fcn(ragtop::TSLAMarket$risk_free_rates),
  options_df = ragtop::TSLAMarket$options,
  min_maturity = 1/12,
  min_moneyness = 0.8,
  max_moneyness = 1.2,
  base_default_intensity = 0.05
)
```

Arguments

S0	Current underlying price	
discount_factor	discount_factor_fcn	
	A function for computing present values to time t of various cashflows occurring during this timestep, with arguments T, t	
options_df	A data frame of American option details. It should have columns callput, K, time, mid, bid, and ask,	
min_maturity	Minimum option maturity to allow in calibration	
<pre>min_moneyness</pre>	Maximum option strike as a proportion of S0 to allow in calibration	
<pre>max_moneyness</pre>	Maximum option strike as a proportion of S0 to allow in calibration	
base_default_intensity		
	Overall default intensity (in natural units)	

See Also

fit_to_option_market the underlying fit algorithm

Other Equity Dependent Default Intensity: find_present_value(), fit_variance_cumulation(), form_present_value_grid(), implied_jump_process_volatility() fit_variance_cumulation

Fit piecewise constant volatilities to a set of equity options

Description

Given a set of equity options with increasing tenors, along with target prices for those options, and a set of equity-lined default SDE parameters, fit a vector of piecewise constant volatilities and an associated cumulative variance function to them.

Usage

```
fit_variance_cumulation(
  S0,
  eq_options,
 mid_prices,
  spreads = NULL,
  initial_vols_guess = 0.55 + 0 * mid_prices,
  use_impvol = TRUE,
  relative_spread_tolerance = 0.01,
  force_same_grid = FALSE,
  num_time_steps = 40,
  const_short_rate = 0,
  const_default_intensity = 0,
 discount_factor_fcn = function(T, t, ...) { exp(-const_short_rate * (T - t)) },
 survival_probability_fcn = function(T, t, ...) { exp(-const_default_intensity * (T
    - t)) },
 default_intensity_fcn = function(t, S, ...) { const_default_intensity + 0 * S },
 dividends = NULL,
 borrow_cost = 0,
  dividend_rate = 0,
  . . .
)
```

S0	Current stock price
eq_options	A list of options to find prices for. Each must have fields callput, maturity, and strike. This list must be in strictly increasing order of maturity.
mid_prices	Prices to match
spreads	Spreads within which any match is tolerable
initial_vols_guess	
	Initial set of volatilities to try in the root finder
use_impvol	Judge fit quality on implied vol distance rather than price distance
relative_spread_tolerance	
	Tolerance multiplier on bid-ask spreads taken from vol normalization

force_same_grid		
	Price all options on the same grid, rather than having smaller timestep sizes for earlier maturities	
<pre>num_time_steps</pre>	Minimum number of time steps in the grid	
const_short_rat	e	
	A constant to use for the instantaneous interest rate in case discount_factor_fcn is not given	
const_default_i	ntensity	
	A constant to use for the instantaneous default intensity in case default_intensity_fcn is not given	
discount_factor	r_fcn	
	A function for computing present values to time t of various cashflows occurring, with arguments T, t	
survival_probab	pility_fcn	
	A function for probability of survival, with arguments T, t and T>t. E.g. with a constant volatility s this takes the form $(T-t)s^2$. This argument is only used in normalization of prices to vols for root finder tolerance, and is therefore entirely optional	
default_intensi	ty_fcn	
	A function for computing default intensity occurring during this timestep, de- pendent on time and stock price, with arguments t, S. Should be consistent with survival_probability_fcn if specified	
dividends	A data.frame with columns time, fixed, and proportional. Dividend size at the given time is	
borrow_cost	Stock borrow cost, affecting the drift rate	
dividend_rate	Continuous dividend rate, affecting the drift rate	
	Futher arguments to find_present_value	

Details

By default, the fitting happens in implied Black-Scholes volatility space for better normalization. That is to say, the fitting does pricing using the *full* SDE and PDE solver via find_present_value, but judges fit quality on the basis of running resulting prices through a nonlinear transformation that just happens to come from the straight Black-Scholes model.

Value

A list with two elements, volatilities and cumulation_function. The cumulation_function will be a 2-parameter function giving cumulated variances, as created by codevariance_cumulation_from_vols

See Also

Other Implied Volatilities: american_implied_volatility(), equivalent_bs_vola_to_jump(), equivalent_jump_vola_to_bs(), implied_jump_process_volatility(), implied_volatilities_with_rates_stru implied_volatilities(), implied_volatility_with_term_struct(), implied_volatility()

Other Equity Dependent Default Intensity: find_present_value(), fit_to_option_market_df(), form_present_value_grid(), implied_jump_process_volatility()

form_present_value_grid

Use a model to estimate the present value of financial derivatives on a grid of initial underlying values

Description

Use a finite difference scheme to form estimates of present values for a variety of stock prices on a grid of initial underlying prices, determined by constructing a logarithmic equivalent conforming to the grid parameters structure_constant and structure_constant

Usage

```
form_present_value_grid(
  S0,
  num_time_steps,
  instruments,
  const_volatility = 0.5,
  const_short_rate = 0,
  const_default_intensity = 0,
 override_Tmax = NA,
 discount_factor_fcn = function(T, t, ...) { exp(-const_short_rate * (T - t)) },
 default_intensity_fcn = function(t, S, ...) { const_default_intensity + 0 * S },
 variance_cumulation_fcn = function(T, t) {
                                                 const_volatility^2 * (T - t) },
 dividends = NULL,
 borrow_cost = 0,
 dividend_rate = 0,
  structure_constant = 2,
  std_devs_width = 3,
  grid_center = NA
)
```

S0	An initial stock price, for setting grid scale	
num_time_steps	Minimum number of time steps in the grid	
instruments	A list of instruments to be priced. Each one must have a strike and a optionality_fcn, as with GridPricedInstrument and its subclasses.	
const_volatility		
	A constant to use for volatility in case variance_cumulation_fcn is not given	
const_short_rate		
	A constant to use for the instantaneous interest rate in case discount_factor_fcn is not given	
const_default_intensity		
	A constant to use for the instantaneous default intensity in case default_intensity_fcn is not given	

override_Tmax	A different maximum time on the grid to enforce
discount_factor	r_fcn
	A function for computing present values to time t of various cashflows occurring during this timestep, with arguments T, t
default_intens:	ity_fcn
	A function for computing default intensity occurring during this timestep, dependent on time and stock price, with arguments t, S.
variance_cumulation_fcn	
	A function for computing total stock variance occurring during this timestep, with arguments T, t. E.g. with a constant volatility s this takes the form $(T - t)s^2$.
dividends	A data.frame with columns time, fixed, and proportional. Dividend size at the given time is then expected to be equal to fixed + proportional $*$ S / S0
borrow_cost	Stock borrow cost, affecting the drift rate
dividend_rate	Continuous dividend rate, affecting the drift rate
structure_constant	
	The maximum ratio between time intervals dt and the square of space intervals dz^2
std_devs_width	The number of standard deviations, in $sigma * sqrt(T)$ units, to incorporate into the grid
grid_center	A reasonable central value for the grid, defaults to S0 or an instrument strike

Details

If any instrument in the instruments has a strike, then the grid will be normalized to the last such instrument's strike.

See Also

Other Equity Dependent Default Intensity: find_present_value(), fit_to_option_market_df(), fit_variance_cumulation(), implied_jump_process_volatility()

Other Implicit Grid Solver: construct_implicit_grid_structure(), find_present_value(), infer_conforming_time_grid(), integrate_pde(), iterate_grid_from_timestep(), take_implicit_timestep(), timestep_instruments()

GridPricedInstrument-class

Representation of financial instrument amenable to grid pricing schemes

Description

Our basic instrument defines a tenor/maturity, a method to provide values in case of default, and a method to correct instrument prices in light of exercise decisions.

Fields

- maturity The tenor, expiration date or terminal date by which the value of this security will be certain.
- last_computed_grid The most recently computed set of values from a grid pricing scheme. Used internally for pricing chains of derivatives.
- name A mnemonic name for the instrument, not used by ragtop

Methods

- optionality_fcn(v, ...) Return a version of v at time t corrected for any optionality conditions.
- recovery_fcn(v, S, t, ...) Return recovery value, given non-default values v at time t. Subclasses may be more elaborate, this method simply returns 0.0.

terminal_values(v, ...) Return a terminal value. defaults to simply calling optionality_fcn.

Description

Use the grid solver to generate instrument prices via find_present_value and run them through a bisective root search method until a constant volatility matching the provided instrument price has been found.

Usage

```
implied_jump_process_volatility(
    instrument_price,
    instrument,
    ...,
    starting_volatility_estimate = 0.85,
    relative_tolerance = 0.005,
    max.iter = 100,
    max_vola = 4
)
```

instrument_price	
	Target price for root finder
instrument	Instrument to search for the target price on, passed as the sole instrument to find_present_value
	Additional arguments to be passed on to find_present_value
<pre>starting_volatility_estimate</pre>	
	Bisection method original guess

relative_tolerance		
	Relative tolerance in instrument price defining the root-finder halting condition	
max.iter	Maximum number of root-finder iterations allowed	
max_vola	Maximum volatility to try	

Details

Unlike american_implied_volatility, this routine allows for any legal term structures and equitylinked default intensities. For that reason, it eschews the control variate tricks that make american_implied_volatility so much faster.

Note that equity-linked default intensities can result in instrument prices that are not monotonic in volatility. This bisective root finder will find a solution but not necessarily any particular one.

Value

A list of present values, with the same names as instruments

See Also

find_present_value for the underlying pricing algorithm, implied_volatility_with_term_struct
for European options without equity dependence of default intensity, american_implied_volatility
for the same on American options

Other Implied Volatilities: american_implied_volatility(), equivalent_bs_vola_to_jump(), equivalent_jump_vola_to_bs(), fit_variance_cumulation(), implied_volatilities_with_rates_struct(), implied_volatilities(), implied_volatility_with_term_struct(), implied_volatility()

Other Equity Dependent Default Intensity: find_present_value(), fit_to_option_market_df(),
fit_variance_cumulation(), form_present_value_grid()

Examples

```
implied_jump_process_volatility(
    25, AmericanOption(maturity=1.1, strike=100, callput=-1),
    S0=100, num_time_steps=50, relative_tolerance=1.e-3)
```

implied_volatilities Implied volatilities of european-exercise options under Black-Scholes or a jump-process extension

Description

Find default-free volatilities based on known interest rates and hazard rates, using a given option price.

implied_volatilities

Usage

```
implied_volatilities(
    option_price,
    callput,
    S0,
    K,
    r,
    time,
    const_default_intensity = 0,
    divrate = 0,
    borrow_cost = 0,
    dividends = NULL,
    relative_tolerance = 1e-06,
    max_iter = 100,
    max_vola = 4
)
```

Arguments

option_price	Present option values (may be a vector)	
callput	1 for calls, -1 for puts (may be a vector)	
SØ	initial underlying price (may be a vector)	
К	strike (may be a vector)	
r	risk-free interest rate (may be a vector)	
time	Time from 0 until expiration (may be a vector)	
const_default_i	intensity	
	hazard rate of underlying default (may be a vector)	
divrate	A continuous rate for dividends and other cashflows such as foreign interest rates (may be a vector)	
borrow_cost	A continuous rate for stock borrow costs (may be a vector)	
dividends	A data.frame with columns time, fixed, and proportional. Dividend size at the given time is then expected to be equal to fixed + proportional * S / S0. Fixed dividends will be converted to proprtional for purposes of this algorithm.	
relative_tolerance		
	Relative tolerance in option price to achieve before halting the search	
max.iter	Number of iterations to try before abandoning the search	
max_vola	Maximum volatility to try in the search	

Value

Scalar volatilities

See Also

Other Implied Volatilities: american_implied_volatility(), equivalent_bs_vola_to_jump(), equivalent_jump_vola_to_bs(), fit_variance_cumulation(), implied_jump_process_volatility(), implied_volatilities_with_rates_struct(), implied_volatility_with_term_struct(), implied_volatility()

Other European Options: black_scholes_on_term_structures(), blackscholes(), implied_volatilities_with_rat implied_volatility_with_term_struct(), implied_volatility()

```
Other Equity Independent Default Intensity: american_implied_volatility(), american(),
black_scholes_on_term_structures(), blackscholes(), equivalent_bs_vola_to_jump(),
equivalent_jump_vola_to_bs(), implied_volatilities_with_rates_struct(), implied_volatility_with_term_
implied_volatility()
```

Description

Use the provided discount factor function to infer constant short rates applicable to each expiration time, then use the Black-Scholes formula to generate European option values and run them through Newton's method until a constant volatility matching each provided option price has been found.

Usage

```
implied_volatilities_with_rates_struct(
    option_price,
    callput,
    S0,
    K,
    discount_factor_fcn,
    time,
    const_default_intensity = 0,
    divrate = 0,
    borrow_cost = 0,
    dividends = NULL,
    relative_tolerance = 1e-06,
    max_iter = 100,
    max_vola = 4
)
```

Arguments

option_price	Present option values (may be a vector)
callput	1 for calls, -1 for puts (may be a vector)
S0	initial underlying prices (may be a vector)

34

implied_volatilities_with_rates_struct

К	strikes (may be a vector)	
discount_factor_fcn		
	A function for computing present values to time t, with arguments T, t	
time	Time from 0 until expirations (may be a vector)	
const_default_intensity		
	hazard rates of underlying default (may be a vector)	
divrate	A continuous rate for dividends and other cashflows such as foreign interest rates (may be a vector)	
borrow_cost	A continuous rate for stock borrow costs (may be a vector)	
dividends	A data.frame with columns time, fixed, and proportional. Dividend size at the given time is then expected to be equal to fixed + proportional * S / S0. Fixed dividends will be converted to proprtional for purposes of this algorithm.	
relative_tolerance		
	Relative tolerance in option price to achieve before halting the search	
max.iter	Number of iterations to try before abandoning the search	
max_vola	Maximum volatility to try in the search	

Details

Differs from implied_volatility_with_term_struct by first computing constant interest rates for each option, and then calling implied_volatilities

Value

Scalar volatilities

See Also

implied_volatility for simpler cases with constant parameters, implied_volatilities for the underlying algorithm with constant rates, implied_volatility_with_term_struct when volatilities or survival probabilities also have a nontrivial term structure

Other Implied Volatilities: american_implied_volatility(), equivalent_bs_vola_to_jump(), equivalent_jump_vola_to_bs(), fit_variance_cumulation(), implied_jump_process_volatility(), implied_volatilities(), implied_volatility_with_term_struct(), implied_volatility()

Other European Options: black_scholes_on_term_structures(), blackscholes(), implied_volatilities(), implied_volatility_with_term_struct(), implied_volatility()

Other Equity Independent Default Intensity: american_implied_volatility(), american(), black_scholes_on_term_structures(), blackscholes(), equivalent_bs_vola_to_jump(), equivalent_jump_vola_to_bs(), implied_volatilities(), implied_volatility_with_term_struct(), implied_volatility()

Examples

implied_volatility

Description

Find default-free volatility (not necessarily just Black-Scholes) based on known interest rates and hazard rates, using a given option price.

Usage

```
implied_volatility(
   option_price,
   callput,
   S0,
   K,
   r,
   time,
   const_default_intensity = 0,
   divrate = 0,
   borrow_cost = 0,
   dividends = NULL,
   relative_tolerance = 1e-06,
   max_iter = 100,
   max_vola = 4
)
```

option_price	Present option value
callput	1 for calls, -1 for puts
SØ	initial underlying price
К	strike
r	risk-free interest rate
time	Time from 0 until expiration
const_default_intensity	
	hazard rate of underlying default
divrate	A continuous rate for dividends and other cashflows such as foreign interest rates
borrow_cost	A continuous rate for stock borrow costs
dividends	A data.frame with columns time, fixed, and proportional. Dividend size at the given time is then expected to be equal to fixed + proportional * S / S0. Fixed dividends will be converted to proportional for purposes of this algorithm. To handle truly fixed dividends, see implied_jump_process_volatility

relative_tolerance

	Relative tolerance in option price to achieve before halting the search
max.iter	Number of iterations to try before abandoning the search
max_vola	Maximum volatility to try in the search

Details

To get a straight Black-Scholes implied volatility, simply call this function with const_default_intensity set to zero (the default).

Value

A scalar volatility

See Also

```
Other Implied Volatilities: american_implied_volatility(), equivalent_bs_vola_to_jump(),
equivalent_jump_vola_to_bs(), fit_variance_cumulation(), implied_jump_process_volatility(),
implied_volatilities_with_rates_struct(), implied_volatilities(), implied_volatility_with_term_struct
```

```
Other Equity Independent Default Intensity: american_implied_volatility(), american(),
black_scholes_on_term_structures(), blackscholes(), equivalent_bs_vola_to_jump(),
equivalent_jump_vola_to_bs(), implied_volatilities_with_rates_struct(), implied_volatilities(),
implied_volatility_with_term_struct()
```

Other European Options: black_scholes_on_term_structures(), blackscholes(), implied_volatilities_with_rat implied_volatilities(), implied_volatility_with_term_struct()

Examples

Description

Use the Black-Scholes formula to generate European option values and run them through Newton's method until a constant volatility matching the provided option price has been found.

Usage

```
implied_volatility_with_term_struct(
    option_price,
    callput,
    S0,
    K,
    time,
    ...,
    starting_volatility_estimate = 0.5,
    relative_tolerance = 1e-06,
    max_iter = 100,
    max_vola = 4
)
```

Arguments

option_price	Option price to match	
callput	1 for calls, -1 for puts	
S0	initial underlying price	
К	strike	
time	Time to expiration	
	Further arguments to be passed on to black_scholes_on_term_structures	
<pre>starting_volatility_estimate</pre>		
	The Newton method's original guess	
relative_tolerance		
	Relative tolerance in instrument price defining the root-finder halting condition	
max.iter	Maximum number of root-finder iterations allowed	
max_vola	Maximum volatility to try	

Details

Differs from implied_volatility by calling black_scholes_on_term_structures for pricing, thereby allowing term structures of rates, and a nontrivial survival_probability_fcn

Value

Estimated volatility

See Also

implied_volatility for simpler cases with constant parameters, black_scholes_on_term_structures
for the underlying pricing algorithm, implied_volatilities_with_rates_struct when neither
volatilities nor survival probabilities have a nontrivial term structure

Other Implied Volatilities: american_implied_volatility(), equivalent_bs_vola_to_jump(), equivalent_jump_vola_to_bs(), fit_variance_cumulation(), implied_jump_process_volatility(), implied_volatilities_with_rates_struct(), implied_volatilities(), implied_volatility()

Other Equity Independent Default Intensity: american_implied_volatility(), american(), black_scholes_on_term_structures(), blackscholes(), equivalent_bs_vola_to_jump(), equivalent_jump_vola_to_bs(), implied_volatilities_with_rates_struct(), implied_volatilities(), implied_volatility()

Other European Options: black_scholes_on_term_structures(), blackscholes(), implied_volatilities_with_rat implied_volatilities(), implied_volatility()

Examples

Description

At its base, this function chooses a time grid with 1+min_num_time_steps elements from 0 to Tmax. Any coupon, call, or put times occurring in one of the supplied instruments are also inserted.

Usage

```
infer_conforming_time_grid(min_num_time_steps, Tmax, instruments = NULL)
```

Arguments

<pre>min_num_time_steps</pre>	
	The minimum number of timesteps the output vector should have
Tmax	The maximum time on the grid
instruments	A set of instruments whose maturity and terms and conditions can introduce extra timesteps. Each will be queried for the output of a critical_times function.

Value

A vector of times at which the grid should have nodes

See Also

```
Other Implicit Grid Solver: construct_implicit_grid_structure(), find_present_value(),
form_present_value_grid(), integrate_pde(), iterate_grid_from_timestep(), take_implicit_timestep(),
timestep_instruments()
```

integrate_pde

Numerically integrate the pricing differential equation

Description

Use an implicit integration scheme to numerically integrate the pricing differential equation for each of the given instruments, backwardating from time Tmax to time 0.

Usage

```
integrate_pde(
    z,
    min_num_time_steps,
    S0,
    Tmax,
    instruments,
    stock_level_fcn,
    discount_factor_fcn,
    default_intensity_fcn,
    variance_cumulation_fcn,
    dividends = NULL
)
```

Arguments

Z	Space grid value morphable to stock prices using stock_level_fcn	
<pre>min_num_time_steps</pre>		
	The minimum number of timesteps used. Calls, puts and coupons may result in extra timesteps taken.	
S0	Time zero price of the base equity	
Tmax	The maximum time on the grid, from which all backwardation steps will take place.	
instruments	A list of instruments to be priced. Each one must have a strike and a optionality_fcn, as with GridPricedInstrument and its subclasses.	
<pre>stock_level_fcn</pre>		
	A function for changing space grid value to stock prices, with arguments z and t	
discount_factor_fcn		
	A function for computing present values to time t of various cashflows occurring during this timestep, with arguments T, t	

is.blank

default_intens	ity_fcn
	A function for computing default intensity occurring during this timestep, dependent on time and stock price, with arguments t, S.
variance_cumul	ation_fcn
	A function for computing total stock variance occurring during this timestep, with arguments T, t. E.g. with a constant volatility s this takes the form $(T - t)s^2$.
dividends	A data.frame with columns time, fixed, and proportional. Dividend size at the given time is then expected to be equal to fixed + proportional * S / S0

Value

A grid of present values of derivative prices, adapted to z at each timestep. Time zero value will appear in the first index.

See Also

Other Implicit Grid Solver: construct_implicit_grid_structure(), find_present_value(), form_present_value_grid(), infer_conforming_time_grid(), iterate_grid_from_timestep(), take_implicit_timestep(), timestep_instruments()

is.blank

Return TRUE if the argument is empty, NULL or NA

Description

Return TRUE if the argument is empty, NULL or NA

Usage

is.blank(x, false.triggers = FALSE)

Arguments

х

Argument to test

false.triggers Whether to allow nonempty vectors of all FALSE to trigger this condition

```
iterate_grid_from_timestep
```

Iterate over a set of timesteps to integrate the pricing differential equation

Description

Timestep an implicit integration scheme to numerically integrate the pricing differential equation for each of the given instruments, backwardating from time Tmax to time 0.

Usage

```
iterate_grid_from_timestep(
  starting_time_step,
  time_pts,
  z,
  S0,
  instruments,
  stock_level_fcn,
  discount_factor_fcn,
  default_intensity_fcn,
  variance_cumulation_fcn,
  dividends = NULL,
  grid = NULL,
  original_grid_values = as.matrix(grid[1 + starting_time_step, , ])
)
```

Arguments

<pre>starting_time_step</pre>		
	The index into time_pts of the first timestep to be emplyed. This must be no larger than the length of time_pts, minus one	
time_pts	Time nodes to be treated on the grid	
z	Space grid value morphable to stock prices using stock_level_fcn	
S0	Time zero price of the base equity	
instruments	A list of instruments to be priced. Each one must have a strike and a optionality_fcn, as with GridPricedInstrument and its subclasses.	
<pre>stock_level_fcn</pre>		
	A function for changing space grid value to stock prices, with arguments z and	
	t	
discount_factor	_fcn	
	A function for computing present values to time t of various cashflows occurring during this timestep, with arguments T, t	
default_intensity_fcn		
	A function for computing default intensity occurring during this timestep, de- pendent on time and stock price, with arguments t, S.	

variance_cumula	ation_fcn
	A function for computing total stock variance occurring during this timestep, with arguments T, t. E.g. with a constant volatility s this takes the form $(T - t)s^2$.
dividends	A data.frame with columns time, fixed, and proportional. Dividend size at the given time is then expected to be equal to fixed + proportional * S / S0
grid	An optional grid into which results at each timestep will be written. Its size should be at least (1+starting_time_step, length(z), length(instruments))
original_grid_v	values
	Grid values to timestep from

Value

Either a populated grid of present values of derivative prices, or a matrix of values at the first time point, adapted to z at each timestep. Time zero value will appear in the first index of any grid.

See Also

Other Implicit Grid Solver: construct_implicit_grid_structure(), find_present_value(),
form_present_value_grid(), infer_conforming_time_grid(), integrate_pde(), take_implicit_timestep(),
timestep_instruments()

```
penalty_with_intensity_link
```

Helper function (volatility-normalized pricing error) for calibration of equity-linked default intensity

Description

Given a set SDE parameters, form a volatility term structure that fairly precisely matches the supplied prices of the variance_instruments. Then use that term structure and the default intensity to price all the fit_instruments, and compare them to the fit_instrument_prices.

Usage

```
penalty_with_intensity_link(
    p,
    s,
    h,
    variance_instruments,
    variance_instrument_prices,
    variance_instrument_spreads,
    fit_instruments,
    fit_instrument_prices,
    fit_instrument_spreads,
    fit_instrument_weights,
```

```
S0,
num_time_steps = 30,
const_short_rate = 0,
discount_factor_fcn = function(T, t) { exp(-const_short_rate * (T - t)) },
...,
relative_spread_tolerance = 0.15,
num_variance_time_steps = 30
)
```

```
Arguments
```

р	Power of default intensity	
S	Proportion of constant default intensity	
h	Base default intensity	
variance_instru	uments	
	A list of instruments in strictly increasing order of maturity, from which the volatility term structure will be inferred. Once the calibration is finished, the chosen parameters will reproduce the prices of these instruments with fairly high precision.	
variance_instru	ument_prices	
	Central price targets for the variance instruments	
variance_instru	ument_spreads	
	Bid-offer spreads used to normalize errors in variance instrument prices during term structure fitting	
fit_instruments	5	
	A list of instruments in any order, from which the mispricing penalties used for judging fit quality will be computed	
fit_instrument_	prices	
	Central price targets for the variance instruments	
<pre>fit_instrument_spreads</pre>		
	Bid-offer spreads used to normalize errors in fit instrument prices during default intensity	
fit_instrument_weights		
	Weights applied to relative errors in fit instrument prices before summing to form the penalty	
S0	Current underlying price	
<pre>num_time_steps</pre>	Time step count passed on to find_present_value while fitting instrument values	
const_short_rate		
	A constant to use for the instantaneous interest rate in case discount_factor_fcn is not given	
discount_factor	fcn	
	A function for computing present values to time t of various cashflows occurring during this timestep, with arguments T, t	
	Further arguments passed to price_with_intensity_link	

Details

Forms implied Black-Scholes volatilities from all supplied mid prices, and their implied bid and offer prices, as well as from the prices computed by the grid solver. Each instrument is then assigned an error term component in proportion to its weight and the pricing error (in implied vol terms) divided by the spread (also in implied vol terms).

See Also

price_with_intensity_link for the pricing function

price_with_intensity_link

Helper function (instrument pricing) for calibration of equity-linked default intensity

Description

Given derivative instruments (subclasses of GridPricedInstrument, though typically either AmericanOption or EuropeanOption objects), along with their prices and spreads, calibrate variance cumulation (the at-the-money volatility of the continuous process) and then price the instruments via equity linked default intensity of the form $h(s + (1-s)(SO/S_t)^p)$.

Usage

```
price_with_intensity_link(
    p,
    s,
    h,
    variance_instruments,
    variance_instrument_prices,
    variance_instrument_spreads,
    fit_instruments,
    S0,
    num_time_steps = 30,
    ...,
    relative_spread_tolerance = 0.15,
    num_variance_time_steps = 30
)
```

Arguments

Power of default intensity		
Proportion of constant default intensity		
Base default intensity		
ments		
A list of instruments in strictly increasing order of maturity, from which the volatility term structure will be inferred. Once the calibration is finished, the chosen parameters will reproduce the prices of these instruments with fairly		
high precision.		
variance_instrument_prices		
Central price targets for the variance instruments		
ment_spreads		
Bid-offer spreads used to normalize errors in variance instrument prices during term structure fitting		
fit_instruments		
A list of instruments in any order, from which the mispricing penalties used for judging fit quality will be computed		
Current underlying price		
Time step count passed on to find_present_value while fitting instrument values		
$Further \ arguments \ passed \ to \ both \ \texttt{fit_variance_cumulation} \ and \ to \ \texttt{find_present_value}$		
relative_spread_tolerance		
Tolerance to apply in calling fit_variance_cumulation		
num_variance_time_steps		
Number of time steps to use in calling fit_variance_cumulation		

PUT

Constant PUT for defining option contracts

Description

Constant PUT for defining option contracts

Usage

PUT

Format

An object of class numeric of length 1.

Quandl_df_fcn_UST Get a US Treasury curve discount factor function

Description

This is a caching wrapper for Quandl_df_fcn_UST_raw

Usage

```
Quandl_df_fcn_UST(..., envir = parent.frame())
```

Arguments

	Arguments passed to Quandl_df_fcn_UST_raw
envir	Environment passed to Quandl_df_fcn_UST_raw

Value

A function taking two time arguments, which returns the discount factor from the second to the first

Quandl_df_fcn_UST_raw Get a US Treasury curve discount factor function

Description

Get a US Treasury curve discount factor function

Usage

```
Quandl_df_fcn_UST_raw(on_date)
```

Arguments

on_date Date for which to query Quandl for the curve

Value

A function taking two time arguments, which returns the discount factor from the second to the first

ragtop

Description

Using numerical integration, we price convertible bonds, straight bonds, equity options and various other derivatives consistently using a jump-diffusion model in which default intensity can vary with equity price in a user-specified deterministic manner.

Details

We apply the stochastic model

 $dS/S = (r+h-q)dt + \sigma dZ - dJ$

where r and q play their usual roles, h is a deterministic function of stock price and time, and J is a Poisson jump process adapted to the *default intensity* or *hazard rate* h. This model is a *jump-diffusion* extension of Black-Scholes, with the jump process J representing default, compensated by extra drift in the equity at rate h.

Volatilities, default intensities and risk-free rates may all be represented with arbitrary term structures. Default intensity term structures may also take the underlying equity price into account.

Pricing in the standard Black-Scholes model is a special case with default intensity set to zero. Therefore this package *also* serves to price securities in the standard Black-Scholes model, while still allowing risk-free rates and volatilities have nontrivial term structures.

Important Features

- *Black-Scholes*: The standard model is automatically supported as a special case, but also has optimized routines
- *Term Structures*: The package allows for any kind of instrument to be priced with time-varying rates, volatility and default intensity
- *Dividends*: Allows for discrete dividends in an arbitrary combination of fixed and proportional amounts. The difference between fixed and proprtional can be up to 10 percent in implied volatility terms.
- Calibration: Model calibration routines are included
- *Bankruptcy Realism:* A parsimonious deterministic model of default intensity gives rich behavior and conforms reasonably well to observed market data
- Algorithm Parameters: Default parameters for the algorithm work well for a very wide variety
 of pricing and implied volatility scenarios

Examples

```
## With a term structure of volatility
## Not run:
black_scholes_on_term_structures(callput=-1, S0=100, K=90, time=1,
                                 const_short_rate=0.025,
                                 variance_cumulation_fcn = function(T, t) {
                                    0.45 ^{2} (T - t) + 0.15^{2} max(0, T-0.25)
                                  })
## End(Not run)
## Vanilla American exercise
## Not run:
american(PUT, S0=100, K=110, time=0.77, const_short_rate = 0.06,
         const_volatility=0.20, num_time_steps=200)
## End(Not run)
## With a term structure of volatility
## Not run:
american(callput=-1, S0=100, K=90, time=1, const_short_rate=0.025,
         variance_cumulation_fcn = function(T, t) {
             0.45 \ ^{2} \ (T - t) \ + \ 0.15^{2} \ * \ max(0, \ T - 0.25)
         })
## End(Not run)
## With discrete dividends, combined fixed and proportional
divs = data.frame(time=seq(from=0.11, to=2, by=0.25),
                  fixed=seq(1.5, 1, length.out=8),
                  proportional = seq(1, 1.5, length.out=8))
## Not run:
american(callput=-1, S0=100, K=90, time=1, const_short_rate=0.025,
         const_volatility=0.20, dividends=divs)
## End(Not run)
## American Exercise Implied Volatility
american_implied_volatility(25,CALL,S0=100,K=100,time=2.2, const_short_rate=0.03)
df250 = function(t) ( exp(-0.02*t)*exp(-0.03*max(0,t-1.0))) # Simple term structure
df25 = function(T,t){df250(T)/df250(t)} # Relative discount factors
## Not run:
american_implied_volatility(25,-1,100,100,2.2,discount_factor_fcn=df25)
## End(Not run)
## Convertible Bond
## Not Run
pct4 = function(T, t=0) \{ exp(-0.04*(T-t)) \}
cb = ConvertibleBond(conversion_ratio=3.5, maturity=1.5, notional=100,
                     discount_factor_fcn=pct4, name='Convertible')
S0 = 10; p = 6.0; h = 0.10
h_fcn = function(t, S, ...){0.9 * h + 0.1 * h * (S0/S)^p} # Intensity linked to equity price
## Not run:
find_present_value(S0=S0, instruments=list(Convertible=cb), num_time_steps=250,
                   default_intensity_fcn=h_fcn,
```

```
const_volatility = 0.4, discount_factor_fcn=pct4,
    std_devs_width=5)
## End(Not run)
## Fitting Term Structure of Volatility
## Not Run
opts = list(m1=AmericanOption(callput=-1, strike=9.9, maturity=1/12, name="m1"),
    m2=AmericanOption(callput=-1, strike=9.8, maturity=1/6, name="m2"))
## Not run:
vfit = fit_variance_cumulation(S0, opts, c(0.6, 0.8), default_intensity_fcn=h_fcn)
print(vfit$volatilities)
## End(Not run)
```

shift_for_dividends Shift a set of grid values for dividends paid, using spline interpolation

Description

Shift a set of grid values for dividends paid, using spline interpolation

Usage

```
shift_for_dividends(grid_values_before_shift, stock_prices, div_sum)
```

Arguments

grid_values_before_shift	
	Values on grid before accounting for expected dividends
<pre>stock_prices</pre>	Stock prices for which to shift the grid
div_sum	Sum of dividend values at each grid point

Value

An object like grid_values_before_shift with entries shifted according to the dividend sums

See Also

Other Dividends: adjust_for_dividends(), time_adj_dividends()

spot_to_df_fcn Create a discount factor function from a yield curve

Description

Use a piecewise constant approximation to the given spot curve to generate a function capable of returning corresponding discount factors

Usage

```
spot_to_df_fcn(yield_curve)
```

Arguments

yield_curve A data.frame with numeric columns time (in increasing order) and rate (in natural units)

Value

A function taking two time arguments, which returns the discount factor from the second to the first

Examples

```
disct_fcn = ragtop::spot_to_df_fcn(
    data.frame(time=c(1, 5, 10, 15),
        rate=c(0.01, 0.02, 0.03, 0.05)))
print(disct_fcn(1, 0.5))
```

take_implicit_timestep

Backwardate grid values one timestep

Description

Take one timestep of an implicit solver for a given instrument

Usage

```
take_implicit_timestep(
    t,
    S,
    full_discount_factor,
    local_discount_factor,
    discount_factor_fcn,
    prev_grid_values,
    survival_probabilities,
```

```
tridiag_matrix_entries,
instrument = NULL,
dividends = NULL,
instr_name = "this instrument"
```

Arguments

t	Time after this timestep has been taken	
S	Underlying equity values for the grid	
full_discount_f	Sactor	
	A discount factor for the transform from grid values to actual derivative prices	
local_discount_	factor	
	A discount factor to apply to recovery values	
discount_factor	_fcn	
	A function for computing present values to time t of various cashflows occurring during this timestep, with arguments T, t	
prev_grid_values		
	A vector of space grid values from the previously calculated timestep	
survival_probabilities		
	Vector of probabilities of survival for each space grid node	
tridiag_matrix_entries		
	Diagonal, superdiagonal and subdiagonal of tridiagonal matrix from the numer- ical integrator	
instrument	If not NULL/NA, must have a recovery_fcn and an optionality_fcn though those properties are themselves allowed to be NA.	
dividends	A data.frame with columns time, fixed, and proportional. Dividend size at the given time is then expected to be equal to fixed + proportional * S / S0	
instr_name	Name of instrument to use in log messages	

Value

Grid values for the instrument after taking the implicit timestep

See Also

Other Implicit Grid Solver: construct_implicit_grid_structure(), find_present_value(),
form_present_value_grid(), infer_conforming_time_grid(), integrate_pde(), iterate_grid_from_timestep(),
timestep_instruments()

timestep_instruments Take an implicit timestep for all the given instruments

Description

Backwardate grid values for all the given instruments from a set of grid values matched to time t+dt to form a new set of grid value as of time t.

Usage

```
timestep_instruments(
    z,
    prev_grid_values,
    t,
    dt,
    S0,
    instruments,
    stock_level_fcn,
    discount_factor_fcn,
    default_intensity_fcn,
    variance_cumulation_fcn,
    dividends = NULL
)
```

Arguments

Z	Space grid value morphable to stock prices using stock_level_fcn	
prev_grid_values		
	A matrix with one column for each instrument and one row for each of the N values of ${\sf z}$	
t	Time after this timestep has been taken	
dt	Interval to the end of this timestep	
S0	Time zero price of the base equity	
instruments	Instruments corresponding to layers of the value grid in prev_grid_values	
<pre>stock_level_fcn</pre>		
	A function for changing space grid value to stock prices, with arguments \boldsymbol{z} and	
	t	
discount_factor_fcn		
	A function for computing present values to time t of various cashflows occurring during this timestep, with arguments T, t	
default_intensity_fcn		
	A function for computing default intensity occurring during this timestep, dependent on time and stock price, with arguments t , S .	

variance_cumula	tion_fcn
	A function for computing total stock variance occurring during this timestep, with arguments T, t. E.g. with a constant volatility s this takes the form $(T - t)s^2$.
dividends	A data.frame with columns time, fixed, and proportional. Dividend size at the given time is then expected to be equal to fixed + proportional * S / S0

Value

Grid values after applying an implicit timestep

See Also

```
Other Implicit Grid Solver: construct_implicit_grid_structure(), find_present_value(),
form_present_value_grid(), infer_conforming_time_grid(), integrate_pde(), iterate_grid_from_timestep(),
take_implicit_timestep()
```

time_adj_dividends Find the sum of time-adjusted dividend values

Description

For each of the N elements of S/h find the sum of the given M dividends, discounted to t_final by r and h

Usage

```
time_adj_dividends(relevant_divs, t_final, r, h, S, S0)
```

Arguments

relevant_divs	A data.frame with columns time, fixed, and proportional. Dividend size at the given time is then expected to be equal to fixed + proportional * S / S0
t_final	Time beyond which to ignore dividends
r	risk-free interest rate
h	Default intensities
S	Stock prices
S0	initial underlying price

Value

Sum of dividends, at each grid node

See Also

Other Dividends: adjust_for_dividends(), shift_for_dividends()

TIME_RESOLUTION_FACTOR

Constant to define when times are considered so close to each other that they should be treated as simultaneous

Description

Constant to define when times are considered so close to each other that they should be treated as simultaneous

Usage

TIME_RESOLUTION_FACTOR

Format

An object of class numeric of length 1.

TIME_RESOLUTION_SIGNIF_DIGITS

Constant to define when times are considered so close to each other that they should be treated as simultaneous, in terms of significant digits

Description

Constant to define when times are considered so close to each other that they should be treated as simultaneous, in terms of significant digits

Usage

```
TIME_RESOLUTION_SIGNIF_DIGITS
```

Format

An object of class numeric of length 1.

TSLAMarket

Description

A dataset containing option contract details and a snapshot of market prices for Tesla Motors (TSLA) equity options, interest rates and an equity price.

Usage

TSLAMarket

Format

An object of class list of length 3.

Details

The TSLAMarket list contains three elements:

- S0: The stock price as of snapshot time
- risk_free_rates: The spot risk-free rate curve as of snapshot time
- options: A data frame with details of the options market

value_from_prior_coupons

Present value of past coupons paid

Description

Present value as of time t for coupons paid since the model_t

Usage

```
value_from_prior_coupons(t, coupons_df, discount_factor_fcn, model_t = 0)
```

Arguments

t	The time toward which all coupons should be present valued	
coupons_df	A data.frame of details for each coupon. It should have the columns payment_time and payment_size.	
discount_factor_fcn		
	A function specifying how the contract says future coupons should be discounted for this instrument in case the acceleration clause is triggered	
model_t	The payment time beyond which coupons will be included in this computation	

See Also

Other Bond Coupons: accelerated_coupon_value(), coupon_value_at_exercise()

variance_cumulation_from_vols

Create a variance cumulation function from a volatility term structure

Description

Given a volatility term structure, create a corresponding variance cumulation function. The function assumes piecewise constant forward volatility, with the final such forward volatility extending to infinity.

Usage

variance_cumulation_from_vols(vols_df)

Arguments

vols_df	A data.frame with numeric columns time (in increasing order) and volatility
	(not decreasing so quickly as to give negative forward variance)

Value

A function taking two time arguments, which returns the cumulated variance from the second to the first

Examples

```
vc = variance_cumulation_from_vols(
    data.frame(time=c(0.1,2,3),
    volatility=c(0.2,0.5,1.2)))
vc(1.5, 0)
```

ZeroCouponBond-class A simple contract paying the notional amount at the maturity

Description

A simple contract paying the notional amount at the maturity

Fields

notional The amount that will be paid at maturity, conditional on survival

- recovery_rate The proportion of notional that would be expected to be paid to bond holders after bankruptcy court proceedings
- discount_factor_fcn A function specifying how cashflows should generally be discounted for this instrument

Methods

- optionality_fcn(v, ...) Return a version of v at time t corrected for any optionality conditions.
- recovery_fcn(v, S, t, ...) Return recovery value, given non-default values v at time t. Subclasses may be more elaborate, this method simply returns 0.0.

Index

```
* American Exercise Equity Options
    american, 5
    american_implied_volatility,7
    control_variate_pairs, 15
* Black-Scholes
    fit_variance_cumulation, 27
    implied_volatility, 36
* Bond Coupon Acceleration
    accelerated_coupon_value, 3
    coupon_value_at_exercise, 17
* Bond Coupons
    accelerated_coupon_value, 3
    coupon_value_at_exercise, 17
    value_from_prior_coupons, 56
* Dividends
    adjust_for_dividends, 4
    shift_for_dividends, 50
    time_adj_dividends, 54
* Equity Dependent Default Intensity
    find_present_value, 22
    fit_to_option_market_df, 26
    fit_variance_cumulation, 27
    form_present_value_grid, 29
    implied_jump_process_volatility,
        31
* Equity Independent Default Intensity
    american, 5
    american_implied_volatility,7
    black_scholes_on_term_structures,
        10
    blackscholes, 9
    equivalent_bs_vola_to_jump, 19
    equivalent_jump_vola_to_bs, 20
    implied_volatilities, 32
    implied_volatilities_with_rates_struct,
        34
    implied_volatility, 36
    implied_volatility_with_term_struct,
        37
```

***** European Options black_scholes_on_term_structures, 10 blackscholes, 9 implied_volatilities, 32 implied_volatilities_with_rates_struct, 34 implied_volatility, 36 implied_volatility_with_term_struct, 37 * Implicit Grid Solver construct_implicit_grid_structure, 13 find_present_value, 22 form_present_value_grid, 29 infer_conforming_time_grid, 39 integrate_pde, 40 iterate_grid_from_timestep, 42 take_implicit_timestep, 51 timestep_instruments, 53 * Implied Volatilities american_implied_volatility,7 equivalent_bs_vola_to_jump, 19 equivalent_jump_vola_to_bs, 20 fit_variance_cumulation, 27 implied_jump_process_volatility, 31 implied_volatilities, 32 implied_volatilities_with_rates_struct, 34 implied_volatility, 36 implied_volatility_with_term_struct, 37 * bond CallableBond-class, 12 * calibration american_implied_volatility,7 fit_variance_cumulation, 27

implied_jump_process_volatility,

31 * callable CallableBond-class, 12 * datasets CALL, 12 PUT, 46 TIME_RESOLUTION_FACTOR, 55 TIME_RESOLUTION_SIGNIF_DIGITS, 55 TSLAMarket, 56 * implied volatility american_implied_volatility,7 fit_variance_cumulation, 27 implied_jump_process_volatility, 31 * putable CallableBond-class. 12 accelerated_coupon_value, 3, 17, 18, 57 adjust_for_dividends, 4, 50, 54 american, 5, 8, 10, 12, 15, 20, 22, 34, 35, 37, 39 american_implied_volatility, 6, 7, 10, 12, 15, 20, 22, 28, 32, 34, 35, 37–39 AmericanOption, 24, 45 AmericanOption (AmericanOption-class), 7 AmericanOption-class, 7 black_scholes_on_term_structures, 6, 8, 10, 10, 20, 22, 34, 35, 37–39 blackscholes, 6, 8, 9, 12, 20, 22, 34, 35, 37, 39 CALL, 12 CallableBond (CallableBond-class), 12 CallableBond-class, 12

CallableBond (CallableBond-Class), 12 CallableBond-class, 12 construct_implicit_grid_structure, 13, 24, 30, 40, 41, 43, 52, 54 construct_tridiagonals, 14 control_variate_pairs, 6, 8, 15 ConvertibleBond (ConvertibleBond-class), 15 ConvertibleBond-class, 15 coupon_value_at_exercise, 3, 17, 57 CouponBond (CouponBond-class), 16 CouponBond-class, 16

detail_from_AnnivDates, 18

EquityOption (EquityOption-class), 19

EquityOption-class, 19 equivalent_bs_vola_to_jump, 6, 8, 10, 12, 19. 22. 28. 32. 34. 35. 37-39 equivalent_jump_vola_to_bs, 6, 8, 10, 12, 20, 20, 28, 32, 34, 35, 37-39 EuropeanOption, 24, 45 EuropeanOption (EuropeanOption-class), 22 EuropeanOption-class, 22 find_present_value, 6, 14, 22, 25, 26, 28, 30-32, 40, 41, 43, 44, 46, 52, 54 fit_to_option_market, 24, 26 fit_to_option_market_df, 24, 26, 28, 30, 32 fit_variance_cumulation, 8, 20, 22, 24-26, 27, 30, 32, 34, 35, 37, 38, 45, 46 form_present_value_grid, 14, 24, 26, 28, 29, 32, 40, 41, 43, 52, 54 GridPricedInstrument, 23, 29, 40, 42 GridPricedInstrument (GridPricedInstrument-class), 30 GridPricedInstrument-class, 30 implied_jump_process_volatility, 8, 20, 22. 24. 26. 28. 30. 31. 34-38 implied_volatilities, 6, 8, 10, 12, 20, 22, 28, 32, 32, 35, 37-39 implied_volatilities_with_rates_struct, 6, 8, 10, 12, 20, 22, 28, 32, 34, 34, 37-39 implied_volatility, 6, 8, 10, 12, 20, 22, 28, 32, 34, 35, 36, 38, 39 implied_volatility_with_term_struct, 6, 8, 10, 12, 20, 22, 28, 32, 34, 35, 37, 37 infer_conforming_time_grid, 14, 24, 30, 39, 41, 43, 52, 54 integrate_pde, 14, 24, 30, 40, 40, 43, 52, 54 is.blank,41

iterate_grid_from_timestep, *14*, *24*, *30*, *40*, *41*, 42, *52*, *54*

penalty_with_intensity_link, 25, 26, 43
price_with_intensity_link, 44, 45, 45
PUT, 46

Quand1_df_fcn_UST, 47

INDEX

Quandl_df_fcn_UST_raw, 47, 47 ragtop, 48 ragtop-package (ragtop), 48 shift_for_dividends, 4, 50, 54 spot_to_df_fcn, 51 take_implicit_timestep, 14, 24, 30, 40, 41, 43, 51, 54 time_adj_dividends, 4, 50, 54 TIME_RESOLUTION_FACTOR, 55 TIME_RESOLUTION_SIGNIF_DIGITS, 55 timestep_instruments, 14, 24, 30, 40, 41, 43, 52, 53 TSLAMarket, 56value_from_prior_coupons, 3, 17, 18, 56 variance_cumulation_from_vols, 28, 57 ZeroCouponBond (ZeroCouponBond-class), 57 ZeroCouponBond-class, 57