Title: | Inverse-Regression Estimation of Radioactive Doses |
---|---|
Description: | Radioactive doses estimation using individual chromosomal aberrations information. See Higueras M, Puig P, Ainsbury E, Rothkamm K. (2015) <doi:10.1088/0952-4746/35/3/557>. |
Authors: | David Moriña (Barcelona Graduate School of Mathematics), Manuel Higueras (Basque Center for Applied Mathematics) and Pedro Puig (Universitat Autònoma de Barcelona) |
Maintainer: | David Moriña Soler <[email protected]> |
License: | GPL (>= 2) |
Version: | 1.0.4 |
Built: | 2024-10-31 06:45:55 UTC |
Source: | CRAN |
The package implements a new inverse regression model with applications to radiation biodosimetry.
Package: | radir |
Type: | Package |
Version: | 1.0.4 |
Date: | 2019-6-30 |
License: | GPL version 2 or newer |
LazyLoad: | yes |
The package implements a new inverse regression model with applications to radiation biodosimetry by means of the function dose.distr
. It allows for several distributions for the dose prior including uniform
and gamma
, and for the mean prior, including gamma
and normal
distributions. A summary containing the most relevant information about the estimated doses can be obtained via summary
and graphics can be obtained in a standard way by means of plot
or lines
functions.
David Moriña (Barcelona Graduate School of Mathematics), Manuel Higueras (Basque Center for Applied Mathematics) and Pedro Puig (Universitat Autònoma de Barcelona)
Mantainer: David Moriña Soler <[email protected]>
Higueras M, Puig P, Ainsbury EA, Rothkamm K. A new inverse regression model applied to radiation biodosimetry. Proc R Soc A 2015;471, http://dx.doi.org/10.1098/rspa.2014.0588
f <- expression(b1*x+b2*x^2) pars <- c("b1","b2") beta <- c(3.126e-3, 2.537e-2) cov <- matrix(c(7.205e-06,-3.438e-06,-3.438e-06,2.718e-06),nrow=2) ex1.a <- dose.distr(f, pars, beta, cov, cells=1811, dics=102, m.prior="normal", d.prior="uniform", prior.param=c(0, Inf)) summary(ex1.a) plot(ex1.a)
f <- expression(b1*x+b2*x^2) pars <- c("b1","b2") beta <- c(3.126e-3, 2.537e-2) cov <- matrix(c(7.205e-06,-3.438e-06,-3.438e-06,2.718e-06),nrow=2) ex1.a <- dose.distr(f, pars, beta, cov, cells=1811, dics=102, m.prior="normal", d.prior="uniform", prior.param=c(0, Inf)) summary(ex1.a) plot(ex1.a)
The function allows the user to compute credible intervals for radiation doses objects of class radir
.
ci.dose.radir(object, cr=0.95)
ci.dose.radir(object, cr=0.95)
object |
the doses estimated by |
cr |
size of the credibility region. Its default value is 0.95. |
A vector with two elements containing the lower and upper bounds of the credible region.
David Moriña (Barcelona Graduate School of Mathematics), Manuel Higueras (Basque Center for Applied Mathematics) and Pedro Puig (Universitat Autònoma de Barcelona)
Mantainer: David Moriña Soler <[email protected]>
Higueras M, Puig P, Ainsbury EA, Rothkamm K. A new inverse regression model applied to radiation biodosimetry. Proc R Soc A 2015;471, http://dx.doi.org/10.1098/rspa.2014.0588
radir-package
, dose.distr
, pr.dose.radir
### Example 3 (a) f <- expression(b1*x+b2*x^2) pars <- c("b1","b2") beta <- c(3.126e-3, 2.537e-2) cov <- matrix(c(7.205e-06,-3.438e-06,-3.438e-06,2.718e-06),nrow=2) ### (a) ex1.a <- dose.distr(f, pars, beta, cov, cells=1811, dics=102, m.prior="normal", d.prior="uniform", prior.param=c(0, Inf)) ci.dose.radir(ex1.a, 0.90)
### Example 3 (a) f <- expression(b1*x+b2*x^2) pars <- c("b1","b2") beta <- c(3.126e-3, 2.537e-2) cov <- matrix(c(7.205e-06,-3.438e-06,-3.438e-06,2.718e-06),nrow=2) ### (a) ex1.a <- dose.distr(f, pars, beta, cov, cells=1811, dics=102, m.prior="normal", d.prior="uniform", prior.param=c(0, Inf)) ci.dose.radir(ex1.a, 0.90)
The function allows the user to estimate radiation doses distribution using the methodology described in Higueras et al. (2014).
dose.distr(f, pars, beta, cov, cells, dics, m.prior="gamma", d.prior="uniform", prior.param=c(0,"Inf"), stdf=6, nsim=1000)
dose.distr(f, pars, beta, cov, cells, dics, m.prior="gamma", d.prior="uniform", prior.param=c(0,"Inf"), stdf=6, nsim=1000)
f |
dose-response function, as an |
pars |
string vector containing the parameters in |
beta |
estimates of the parameters. |
cov |
variance-covariance matrix. |
cells |
patient information, number of cells examined. |
dics |
patient information, observed number of aberrations. |
m.prior |
string containing the prior distribution of the mean. It can be |
d.prior |
string containing the prior distribution of the dose. It can be |
prior.param |
vector of length 2 containing the parameters of the distribution of the dose prior. The parametrization for the |
stdf |
Approximated standard deviation factor. This input is useful to control the ends of the calibrative density; i.e. in case the tails of the calibrative dose density are very long this value could be reduced, or viceversa. Its default value is 6. |
nsim |
Number of simulations to base the results on. Its default value is 1000. |
An object of class dose.radir
containing the distribution of the estimated doses.
David Moriña (Barcelona Graduate School of Mathematics), Manuel Higueras (Basque Center for Applied Mathematics) and Pedro Puig (Universitat Autònoma de Barcelona)
Mantainer: David Moriña Soler <[email protected]>
Higueras M, Puig P, Ainsbury EA, Rothkamm K. A new inverse regression model applied to radiation biodosimetry. Proc R Soc A 2015;471, http://dx.doi.org/10.1098/rspa.2014.0588
radir-package
, ci.dose.radir
, pr.dose.radir
### Example 3 (a) f <- expression(b1*x+b2*x^2) pars <- c("b1","b2") beta <- c(3.126e-3, 2.537e-2) cov <- matrix(c(7.205e-06,-3.438e-06,-3.438e-06,2.718e-06),nrow=2) ### (a) ex1.a <- dose.distr(f, pars, beta, cov, cells=1811, dics=102, m.prior="normal", d.prior="uniform", prior.param=c(0, Inf))
### Example 3 (a) f <- expression(b1*x+b2*x^2) pars <- c("b1","b2") beta <- c(3.126e-3, 2.537e-2) cov <- matrix(c(7.205e-06,-3.438e-06,-3.438e-06,2.718e-06),nrow=2) ### (a) ex1.a <- dose.distr(f, pars, beta, cov, cells=1811, dics=102, m.prior="normal", d.prior="uniform", prior.param=c(0, Inf))
This function allows the user to compute the probability between two radiation doses.
pr.dose.radir(object, lod = 0, upd = object[[2]][length(object[[2]])])
pr.dose.radir(object, lod = 0, upd = object[[2]][length(object[[2]])])
object |
An object of class |
lod |
Lower dose considered. Its default value is 0. |
upd |
Upper dose considered. Its default value is the maximum dose in |
The probability that the real dose is between lod
and upd
.
David Moriña (Barcelona Graduate School of Mathematics), Manuel Higueras (Basque Center for Applied Mathematics) and Pedro Puig (Universitat Autònoma de Barcelona)
Mantainer: David Moriña Soler <[email protected]>
Higueras M, Puig P, Ainsbury EA, Rothkamm K. A new inverse regression model applied to radiation biodosimetry. Proc R Soc A 2015;471, http://dx.doi.org/10.1098/rspa.2014.0588
radir-package
, dose.distr
, ci.dose.radir
### Example 3 (a) f <- expression(b1*x+b2*x^2) pars <- c("b1","b2") beta <- c(3.126e-3, 2.537e-2) cov <- matrix(c(7.205e-06,-3.438e-06,-3.438e-06,2.718e-06),nrow=2) ### (a) ex1.a <- dose.distr(f, pars, beta, cov, cells=1811, dics=102, m.prior="normal", d.prior="uniform", prior.param=c(0, Inf)) pr.dose.radir(ex1.a, 1, 1.4)
### Example 3 (a) f <- expression(b1*x+b2*x^2) pars <- c("b1","b2") beta <- c(3.126e-3, 2.537e-2) cov <- matrix(c(7.205e-06,-3.438e-06,-3.438e-06,2.718e-06),nrow=2) ### (a) ex1.a <- dose.distr(f, pars, beta, cov, cells=1811, dics=102, m.prior="normal", d.prior="uniform", prior.param=c(0, Inf)) pr.dose.radir(ex1.a, 1, 1.4)