Package 'rCBA'

Title: CBA Classifier
Description: Provides implementations of a classifier based on the "Classification Based on Associations" (CBA). It can be used for building classification models from association rules. Rules are pruned in the order of precedence given by the sort criteria and a default rule is added. The final classifier labels provided instances. CBA was originally proposed by Liu, B. Hsu, W. and Ma, Y. Integrating Classification and Association Rule Mining. Proceedings KDD-98, New York, 27-31 August. AAAI. pp80-86 (1998, ISBN:1-57735-070-7).
Authors: Jaroslav Kuchar [aut, cre], Tomas Kliegr [ctb]
Maintainer: Jaroslav Kuchar <[email protected]>
License: Apache License (== 2.0)
Version: 0.4.3
Built: 2024-12-27 06:30:09 UTC
Source: CRAN

Help Index


Build classifier function (Apriori-based)

Description

Automatic build of the classification model using the Apriori algorithm from the arules

Usage

build(trainData, className = NA, pruning = TRUE, sa = list(),
  verbose = TRUE, parallel = TRUE)

Arguments

trainData

data.frame or transactions from arules with input data

className

column name with the target class - default is the last column

pruning

performing pruning while building the model

sa

simulated annealing setting. Default values: list(temp=100.0, alpha=0.05, tabuRuleLength=5, timeout=10)

verbose

verbose indicator

parallel

parallel indicator

Value

list with parameters and model as data.frame with rules

Examples

library("rCBA")
data("iris")

output <- rCBA::build(iris,sa = list(alpha=0.5), parallel=FALSE) # speeding up the cooling
model <- output$model

predictions <- rCBA::classification(iris, model)
table(predictions)
sum(as.character(iris$Species)==as.character(predictions), na.rm=TRUE) / length(predictions)

Build classifier function (FP-Growth-based)

Description

Automatic build of the classification model using the FP-Growth algorithm

Usage

buildFPGrowth(train, className = NULL, verbose = TRUE,
  parallel = TRUE)

Arguments

train

data.frame or transactions from arules with input data

className

column name with the target class - default is the last column

verbose

verbose indicator

parallel

parallel indicator

Value

list with parameters and model as data.frame with rules

Examples

library("rCBA")
data("iris")

output <- rCBA::buildFPGrowth(iris[sample(nrow(iris), 10),], "Species",
 parallel=FALSE, verbose=TRUE)
inspect(output$model)

A classification function

Description

A classification function

Usage

classification(test, rules, verbose = TRUE)

Arguments

test

data.frame or transactions from arules with input data

rules

data.frame with rules

verbose

verbose indicator

Value

vector with classifications

Examples

library("arules")
library("rCBA")
data("iris")

train <- sapply(iris, as.factor)
train <- data.frame(train, check.names=FALSE)
txns <- as(train,"transactions")

rules = apriori(txns, parameter=list(support=0.03, confidence=0.03, minlen=2),
appearance = list(rhs=c("Species=setosa", "Species=versicolor", "Species=virginica"),default="lhs"))

predictions <- rCBA::classification(train,rules)
table(predictions)
sum(as.character(train$Species)==as.character(predictions),na.rm=TRUE)/length(predictions)

FP-Growth

Description

FP-Growth algorithm - Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without candidate generation. SIGMOD Rec. 29, 2 (2000) <doi:10.1145/335191.335372>

Usage

fpgrowth(train, support = 0.01, confidence = 1, maxLength = 5,
  consequent = NULL, verbose = TRUE, parallel = TRUE)

Arguments

train

data.frame or transactions from arules with input data

support

minimum support

confidence

minimum confidence

maxLength

maximum length

consequent

filter consequent - column name with consequent/target class

verbose

verbose indicator

parallel

parallel indicator

Examples

library("rCBA")
data("iris")

train <- sapply(iris,as.factor)
train <- data.frame(train, check.names=FALSE)
txns <- as(train,"transactions")

rules = rCBA::fpgrowth(txns, support=0.03, confidence=0.03, maxLength=2, consequent="Species",
           parallel=FALSE)

predictions <- rCBA::classification(train,rules)
table(predictions)
sum(as.character(train$Species)==as.character(predictions),na.rm=TRUE)/length(predictions)

prunedRules <- rCBA::pruning(train, rules, method="m2cba", parallel=FALSE)
predictions <- rCBA::classification(train, prunedRules)
table(predictions)
sum(as.character(train$Species)==as.character(predictions),na.rm=TRUE)/length(predictions)

Conversion of data.frame to rules from arules

Description

Conversion of data.frame to rules from arules

Usage

frameToRules(model)

Arguments

model

data.frame with rules

Value

arules rules representation

Examples

library("rCBA")

model <- data.frame("rules" = c("{X=1} => {Y=1}","{X=0} => {Y=0}"),
                    "support" = c(0.5,0.5),
                    "confidence" = c(0.5,0.5),
                    "lift" = c(1.0,1.0))

rules <- rCBA::frameToRules(model)
inspect(rules)

A Pruning function

Description

A Pruning function

Usage

pruning(train, rules, method = "m2cba", verbose = TRUE,
  parallel = TRUE)

Arguments

train

trainData data.frame or transactions from arules with input data

rules

data.frame with rules

method

pruning method m2cba(default)|m1cba|dcbrcba

verbose

verbose indicator

parallel

parallel indicator

Value

data.frame with pruned rules

Examples

library("arules")
library("rCBA")
data("iris")

train <- sapply(iris,as.factor)
train <- data.frame(train, check.names=FALSE)
txns <- as(train,"transactions")

rules = apriori(txns, parameter=list(support=0.03, confidence=0.03, minlen=2),
appearance = list(rhs=c("Species=setosa", "Species=versicolor", "Species=virginica"),default="lhs"))

print(length(rules))
prunedRules <- rCBA::pruning(train, rules, method="m2cba", parallel=FALSE)
print(length(prunedRules))