
Package: qtlnet (via r-universe)
September 8, 2024

Version 1.5.4

Date 2020-04-12

Author Elias Chaibub Neto <echaibub@hotmail.com> and Brian S. yandell

<brian.yandell@wisc.edu>

Title Causal Inference of QTL Networks

Description Functions to Simultaneously Infer Causal Graphs and
Genetic Architecture. Includes acyclic and cyclic graphs for
data from an experimental cross with a modest number (<10) of
phenotypes driven by a few genetic loci (QTL). Chaibub Neto E,
Keller MP, Attie AD, Yandell BS (2010) Causal Graphical Models
in Systems Genetics: a unified framework for joint inference of
causal network and genetic architecture for correlated
phenotypes. Annals of Applied Statistics 4: 320-339.
<doi:10.1214/09-AOAS288>.

Maintainer Brian S. Yandell <brian.yandell@wisc.edu>

Depends qtl,igraph,sem,graph,pcalg, R (>= 2.10)

LazyLoad yes

LazyData yes

License GPL (>= 2)

URL http://www.stat.wisc.edu/~yandell/sysgen

RoxygenNote 6.0.1

NeedsCompilation no

Repository CRAN

Date/Publication 2020-04-13 04:30:02 UTC

Contents
acyclic . 2
bic.qtlnet . 4
cyclica . 7

1

https://doi.org/10.1214/09-AOAS288
http://www.stat.wisc.edu/~yandell/sysgen

2 acyclic

cyclicb . 8
cyclicc . 10
dist.qtlnet . 11
generate.qtl . 12
glxnet . 13
igraph.qtlnet . 15
loci.qtlnet . 16
mcmc.qtlnet . 17
parallel.qtlnet . 20
parents.qtlnet . 21
Pscdbp . 23
qdg . 24
qdg.perm.test . 27
qdg.sem . 29
subset.qtlnet . 31
summary.qtlnet . 32
write.qtlnet . 34

Index 36

acyclic Acyclic graph example

Description

We generate synthetic data (sample size 300) according to a DAG composed by 100 nodes and 107
edges (exactly as in Figure 1). Each phenotype node is affected by three QTLs, and we allow only
additive genetic effects. The QTLs for each phenotype are randomly selected among 200 markers,
with 10 markers unevenly distributed on each of 20 autosomes. We allowed different phenotypes
to potentially share common QTLs. For each phenotype, the regression coefficients with other
phenotypes are chosen uniformly between 0.5 and 1; QTL effects are chosen between 0.2 to 0.6;
and residual standard deviations are chosen from 0.1 to 0.5. For each realization we apply the
QDG algorithm to infer causal directions for the edges of the skeleton obtained by the PC-skeleton
algorithm.

Usage

data(acyclic)

Details

For cyclic graphs, the output of the qdg function computes the log-likelihood up to the normalization
constant (un-normalized log-likelihood). We can use the un-normalized log-likelihood to compare
cyclic graphs with reversed directions (since they have the same normalization constant). However
we cannot compare cyclic and acyclic graphs.

acyclic 3

References

Chaibub Neto et al. (2008) Inferring causal phenotype networks from segregating populations.
Genetics 179: 1089-1100.

See Also

sim.cross, sim.geno, sim.map, skeleton, qdg, graph.qdg, generate.qtl.pheno

Examples

Not run:
This reproduces Figure 1 exactly.
set.seed(3456789)

tmp <- options(warn=-1)
acyclic.DG <- randomDAG(n = 100, prob = 2 / 99)

options(tmp)

Simulate cross object using R/qtl routines.
n.ind <- 300
mymap <- sim.map(len=rep(100,20), n.mar=10, eq.spacing=FALSE, include.x=FALSE)
mycross <- sim.cross(map=mymap, n.ind=n.ind, type="f2")
summary(mycross)
mycross <- sim.geno(mycross,n.draws=1)

Produce 100 QTL at three markers apiece.
acyclic.qtl <- generate.qtl.markers(cross=mycross,n.phe=100)

Generate data from directed graph.
bp <- runif(100,0.5,1)
stdev <- runif(100,0.1,0.5)
bq <- matrix(0,100,3)
bq[,1] <- runif(100,0.2,0.4)
bq[,2] <- bq[,1]+0.1
bq[,3] <- bq[,2]+0.1
Generate phenotypes.
acyclic.data <- generate.qtl.pheno("acyclic", cross = mycross,

bp = bp, bq = bq, stdev = stdev, allqtl = acyclic.qtl$allqtl)

acyclic.qdg <- qdg(cross=acyclic.data,
phenotype.names=paste("y",1:100,sep=""),
marker.names=acyclic.qtl$markers,
QTL=acyclic.qtl$allqtl,
alpha=0.005,
n.qdg.random.starts=1,
skel.method="pcskel")

save(acyclic.DG, acyclic.qtl, acyclic.data, acyclic.qdg,
file = "acyclic.RData", compress = TRUE)

data(acyclic)

4 bic.qtlnet

dims <- dim(acyclic.data$pheno)
SuffStat <- list(C = cor(acyclic.data$pheno), n = dims[1])
pc <- skeleton(SuffStat, gaussCItest, p = dims[2], alpha = 0.005)
summary(pc)

summary(graph.qdg(acyclic.qdg))
gr <- graph.qdg(acyclic.qdg, include.qtl = FALSE)
plot(gr)

End(Not run)

bic.qtlnet Pre-compute BIC values for qtlnet sampling.

Description

Pre-compute BIC values for qtlnet sampling to speed up MCMC sampling.

Usage

bic.qtlnet(cross, pheno.col, threshold, addcov = NULL, intcov = NULL,
max.parents = 3, parents, verbose = TRUE, ...)

bic.join(cross, pheno.col, ..., max.parents = 3)
data(Pscdbp.bic)

Arguments

cross Object of class cross. See read.cross.

pheno.col Phenotype identifiers from cross object. May be numeric, logical or character.

threshold Scalar or list of thresholds, one per each node.

addcov Additive covariates for each phenotype (NULL if not used). If entered as scalar
or vector (same format as pheno.col), then the same addcov is used for all
phenotypes. Altenatively, may be a list of additive covariate identifiers.

intcov Interactive covariates, entered in the same manner as addcov.

max.parents Maximum number of parents per node. This reduces the complexity of graphs
and shortens run time. Probably best to consider values of 3-5.

parents List containing all possible parents up to max.parents in size. May be a subset

verbose Print iteration and number of models fit.

... Additional arguments passed to internal routines. In the case of bic.join, these
are a list of objects produced by bic.qtlnet (see example below).

bic.qtlnet 5

Details

The most expensive part of calculations is running scanone on each phenotype with parent pheno-
types as covariates. One strategy is to pre-compute the BIC contributions using a cluster and save
them for later use.

We divide the job into three steps: 1) determine parents and divide into reasonable sized groups; 2)
compute BIC scores using scanone on a grid of computers; 3) compute multiple MCMC runs on a
grid of computers. See the example for details.

Value

Matrix with columns:

code Binary code as decimal for the parents of a phenotype node, excluding the phe-
notype. Value is between 0 (no parents) and 2 ^ (length(pheno.col) - 1).

pheno.col Phenotype column in reduced set, in range 1:length(pheno.col).

bic BIC score for phenotype conditional on parents (and covariates).

Author(s)

Brian S. Yandell and Elias Chaibub Neto

References

Chaibub Neto E, Keller MP, Attie AD, Yandell BS (2010) Causal Graphical Models in Systems
Genetics: a unified framework for joint inference of causal network and genetic architecture for
correlated phenotypes. Ann Appl Statist 4: 320-339. http://dx.doi.org/10.1214/09-AOAS288

See Also

mcmc.qtlnet, parents.qtlnet

Examples

pheno.col <- 1:13
max.parents <- 12
size.qtlnet(pheno.col, max.parents)

Not run:
Compute all phenotype/parent combinations.
This shows how to break up into many smaller jobs.

###
STEP 1: Preparation. Fast. Needed in steps 2 and 3.

pheno.col <- 1:13
max.parents <- 12
threshold <- 3.83

Load cross object. Here we use internal object.
data(Pscdbp)

http://dx.doi.org/10.1214/09-AOAS288

6 bic.qtlnet

or: load("Pscdbp.RData")
cross <- Pscdbp
or: cross <- read.cross("Pscdbp.csv", "csv")

Break up into groups to run on several machines.
~53 groups of ~1000, for a total of 53248 scanone runs.
parents <- parents.qtlnet(pheno.col, max.parents)
groups <- group.qtlnet(parents = parents, group.size = 1000)

Save all relevant objects for later steps.
save(cross, pheno.col, max.parents, threshold, parents, groups,

file = "Step1.RData", compress = TRUE)

###
STEP 2: Compute BIC scores. Parallelize.

NB: Configuration of parallelization determined using Step 1 results.
Load Step 1 computations.
load("Step1.RData")

Parallelize this:
for(i in seq(nrow(groups)))
{

Pre-compute BIC scores for selected parents.
bic <- bic.qtlnet(cross, pheno.col, threshold,
max.parents = max.parents,
parents = parents[seq(groups[i,1], groups[i,2])])

save(bic, file = paste("bic", i, ".RData", sep = ""), compress = TRUE)
}

###
STEP 3: Sample Markov chain (MCMC). Parallelize.

NB: n.runs sets the number of parallel runs.
n.runs <- 100

Load Step 1 computations.
load("Step1.RData")

Read in saved BIC scores and combine into one object.
bic.group <- list()
for(i in seq(nrow(groups)))
{

load(paste("bic", i, ".RData", sep = ""))
bic.group[[i]] <- bic

}
saved.scores <- bic.join(cross, pheno.col, bic.group)

Parallelize this:
for(i in seq(n.runs))
{

cyclica 7

Run MCMC with randomized initial network.
mcmc <- mcmc.qtlnet(cross, pheno.col, threshold = threshold,

max.parents = max.parents, saved.scores = saved.scores, init.edges = NULL)

save(mcmc, file = paste("mcmc", i, ".RData", sep = ""), compress = TRUE)
}

###
STEP 4: Combine results for post-processing.

NB: n.runs needed from Step 3.
n.runs <- 100

Combine outputs together.
outs.qtlnet <- list()
for(i in seq(n.runs))
{

load(paste("mcmc", i, ".RData", sep = ""))
outs.qtlnet[[i]] <- mcmc

}
out.qtlnet <- c.qtlnet(outs.qtlnet)
summary(out.qtlnet)
print(out.qtlnet)

End of parallel example.
###

End(Not run)

dim(Pscdbp.bic)

cyclica Cyclic graph (a) example

Description

We use a Gibbs sampling scheme to generate a data-set with 200 individuals (according with cyclic
graph (a)). Each phenotype is affected by 3 QTLs. We fixed the regression coefficients at 0.5, error
variances at 0.025 and the QTL effects at 0.2, 0.3 and 0.4 for the three F2 genotypes. We used a
burn-in of 2000 for the Gibbs sampler.

Usage

data(cyclica)

Details

For cyclic graphs, the output of the qdg function computes the log-likelihood up to the normalization
constant (un-normalized log-likelihood). We can use the un-normalized log-likelihood to compare
cyclic graphs with reversed directions (they have the same normalization constant). However we
cannot compare cyclic and acyclic graphs.

8 cyclicb

References

Chaibub Neto et al. (2008) Inferring causal phenotype networks from segregating populations.
Genetics 179: 1089-1100.

See Also

sim.cross, sim.geno, sim.map, skeleton, qdg, graph.qdg, generate.qtl.pheno

Examples

Not run:
bp <- matrix(0, 6, 6)
bp[2,1] <- bp[4,2] <- bp[4,3] <- bp[5,4] <- bp[2,5] <- bp[6,5] <- 0.5
stdev <- rep(0.025, 6)

Use R/qtl routines to simulate.
set.seed(3456789)
mymap <- sim.map(len = rep(100,20), n.mar = 10, eq.spacing = FALSE,

include.x = FALSE)
mycross <- sim.cross(map = mymap, n.ind = 200, type = "f2")
mycross <- sim.geno(mycross, n.draws = 1)

cyclica.qtl <- generate.qtl.markers(cross = mycross, n.phe = 6)
mygeno <- pull.geno(mycross)[, unlist(cyclica.qtl$markers)]

cyclica.data <- generate.qtl.pheno("cyclica", cross = mycross, burnin = 2000,
bq = c(0.2,0.3,0.4), bp = bp, stdev = stdev, geno = mygeno)

save(cyclica.qtl, cyclica.data, file = "cyclica.RData", compress = TRUE)

data(cyclica)
out <- qdg(cross=cyclica.data,

phenotype.names=paste("y",1:6,sep=""),
marker.names=cyclica.qtl$markers,
QTL=cyclica.qtl$allqtl,
alpha=0.005,
n.qdg.random.starts=10,
skel.method="pcskel")

gr <- graph.qdg(out)
gr
plot(gr)

End(Not run)

cyclicb Cyclic graph (b) example

cyclicb 9

Description

We use a Gibbs sampling scheme to generate a data-set with 200 individuals (according with cyclic
graph (b)). Each phenotype is affected by 3 QTLs. We fixed the regression coefficients at 0.5, error
variances at 0.025 and the QTL effects at 0.2, 0.3 and 0.4 for the three F2 genotypes. We used a
burn-in of 2000 for the Gibbs sampler.

Usage

data(cyclicb)

Details

For cyclic graphs, the output of the qdg function computes the log-likelihood up to the normalization
constant (un-normalized log-likelihood). We can use the un-normalized log-likelihood to compare
cyclic graphs with reversed directions (since they have the same normalization constant). However
we cannot compare cyclic and acyclic graphs.

References

Chaibub Neto et al. (2008) Inferring causal phenotype networks from segregating populations.
Genetics 179: 1089-1100.

See Also

sim.cross, sim.geno, sim.map, skeleton, qdg, graph.qdg, generate.qtl.pheno

Examples

Not run:
bp <- matrix(0, 6, 6)
bp[2,1] <- bp[1,5] <- bp[3,1] <- bp[4,2] <- bp[5,4] <- bp[5,6] <- bp[6,3] <- 0.5
stdev <- rep(0.025, 6)

Use R/qtl routines to simulate.
set.seed(3456789)
mymap <- sim.map(len = rep(100,20), n.mar = 10, eq.spacing = FALSE,

include.x = FALSE)
mycross <- sim.cross(map = mymap, n.ind = 200, type = "f2")
mycross <- sim.geno(mycross, n.draws = 1)

cyclicb.qtl <- generate.qtl.markers(cross = mycross, n.phe = 6)
mygeno <- pull.geno(mycross)[, unlist(cyclicb.qtl$markers)]

cyclicb.data <- generate.qtl.pheno("cyclicb", cross = mycross, burnin = 2000,
bq = c(0.2,0.3,0.4), bp = bp, stdev = stdev, geno = mygeno)

save(cyclicb.qtl, cyclicb.data, file = "cyclicb.RData", compress = TRUE)

data(cyclicb)
out <- qdg(cross=cyclicb.data,

phenotype.names=paste("y",1:6,sep=""),
marker.names=cyclicb.qtl$markers,

10 cyclicc

QTL=cyclicb.qtl$allqtl,
alpha=0.005,
n.qdg.random.starts=10,
skel.method="pcskel")

gr <- graph.qdg(out)
gr
plot(gr)

End(Not run)

cyclicc Cyclic graph (c) example

Description

We use a Gibbs sampling scheme to generate a data-set with 200 individuals (according with cyclic
graph (c)). Each phenotype is affected by 3 QTLs. We fixed the regression coefficients at 0.5,
(except for beta[5,2]=0.8) error variances at 0.025 and the QTL effects at 0.2, 0.3 and 0.4 for the
three F2 genotypes. We used a burn-in of 2000 for the Gibbs sampler. This example illustrates
that even though our method cannot detect reciprocal interactions (e.g. between phenotypes 2 and
5 in cyclic graph (c)), it can still infer the stronger direction, that is, the direction corresponding to
the higher regression coefficient. Since beta[5,2] is greater than beta[2,5], the QDG method should
infer the direction from 2 to 5.

Usage

data(cyclicc)

Details

For cyclic graphs, the output of the qdg function computes the log-likelihood up to the normalization
constant (un-normalized log-likelihood). We can use the un-normalized log-likelihood to compare
cyclic graphs with reversed directions (since they have the same normalization constant). However
we cannot compare cyclic and acyclic graphs.

References

Chaibub Neto et al. (2008) Inferring causal phenotype networks from segregating populations.
Genetics 179: 1089-1100.

See Also

sim.cross, sim.geno, sim.map, skeleton, qdg, graph.qdg, generate.qtl.pheno

dist.qtlnet 11

Examples

Not run:
bp <- matrix(0, 6, 6)
bp[2,5] <- 0.5
bp[5,2] <- 0.8
bp[2,1] <- bp[3,2] <- bp[5,4] <- bp[6,5] <- 0.5
stdev <- rep(0.025, 6)

Use R/qtl routines to simulate map and genotypes.
set.seed(34567899)
mymap <- sim.map(len = rep(100,20), n.mar = 10, eq.spacing = FALSE,

include.x = FALSE)
mycross <- sim.cross(map = mymap, n.ind = 200, type = "f2")
mycross <- sim.geno(mycross, n.draws = 1)

Use R/qdg routines to produce QTL sample and generate phenotypes.
cyclicc.qtl <- generate.qtl.markers(cross = mycross, n.phe = 6)
mygeno <- pull.geno(mycross)[, unlist(cyclicc.qtl$markers)]

cyclicc.data <- generate.qtl.pheno("cyclicc", cross = mycross, burnin = 2000,
bq = c(0.2,0.3,0.4), bp = bp, stdev = stdev, geno = mygeno)

save(cyclicc.qtl, cyclicc.data, file = "cyclicc.RData", compress = TRUE)

data(cyclicc)
out <- qdg(cross=cyclicc.data,

phenotype.names=paste("y",1:6,sep=""),
marker.names=cyclicc.qtl$markers,
QTL=cyclicc.qtl$allqtl,
alpha=0.005,
n.qdg.random.starts=1,
skel.method="pcskel")

gr <- graph.qdg(out)
plot(gr)

End(Not run)

dist.qtlnet QTL network diagnostic routines

Description

Various QTLnet diagnostic routines.

Usage

dist.qtlnet(qtlnet.object, min.prob = 0.9, method = "manhattan", cex = 5)
edgematch.qtlnet(qtlnet.object, min.prob = 0.9, method = "manhattan", cex = 5)
mds.qtlnet(qtlnet.object, min.prob = 0.9, method = "manhattan", cex = 5)
plotbic.qtlnet(x, ..., smooth = TRUE)

12 generate.qtl

Arguments

qtlnet.object, x
Object of class qtlnet.

min.prob Minimum probability to include edge in network.

method Distance method to be used between columns of connection matrix. Used by
dist. (Only used for mds.qtlnet.)

cex Character expansion. (Only used for mds.qtlnet, scaled by range of BIC val-
ues.)

smooth Use lowess smoother if TRUE.

... Additional unused arguments.

Value

List containing, for each phenotype in the network, a character vector of the QTL names as chr@pos,
or pseudomarker name if chr.pos is FALSE.

Author(s)

Brian S. Yandell and Elias Chaibub Neto

References

Chaibub Neto E, Keller MP, Attie AD, Yandell BS (2010) Causal Graphical Models in Systems
Genetics: a unified framework for joint inference of causal network and genetic architecture for
correlated phenotypes. Ann Appl Statist 4: 320-339. http://www.stat.wisc.edu/~yandell/
doc/2010/92.AnnApplStat.pdf

See Also

mcmc.qtlnet

Examples

loci.qtlnet(Pscdbp.qtlnet)

generate.qtl Generate QTLs ane phenotypes from cross object

Description

Generate QTLs ane phenotype data for individual examples from cross. These are utility routines
to illustrate the examples. They are not meant for users per se.

http://www.stat.wisc.edu/~yandell/doc/2010/92.AnnApplStat.pdf
http://www.stat.wisc.edu/~yandell/doc/2010/92.AnnApplStat.pdf

glxnet 13

Usage

generate.qtl.markers(cross, n.phe, nqtl = 3)
generate.qtl.pheno(name, cross, bp, bq, stdev, allqtl,

burnin = 2000, geno)

Arguments

cross object of class cross; see read.cross

name character string for example name

bp vector or matrix of coefficients for dependencies between phenotypes; see cyclic
and acyclic examples

bq vector or matrix of coefficients for QTL effects on phenotypes; see cyclic and
acyclic examples

stdev vector of standard deviations per phenotype

allqtl list of objects of class qtl produced by generate.qtl.sample

burnin number of burnin cycles for MCMC; default is 2000

geno genotypes at markers, typically extracted with pull.geno

n.phe number of phenotypes

nqtl number of QTL

See Also

acyclic, cyclica, cyclicb, cyclicc

Examples

Not run:
example(acyclic)
example(cyclica)
example(cyclicb)
example(cyclicc)

End(Not run)

glxnet Generate and graph Glx network

Description

This is the Glx network reported in Chaibub Neto et al 2008 and in Ferrara et al 2008. Age was
used as an additive covariate and we allowed for sex by genotype interaction. The network differs
slightly from the published network due to improved code.

14 glxnet

References

Chaibub Neto et al. 2008 Inferring causal phenotype networks from segregating populations. Ge-
netics 179: 1089-1100.

Ferrara et al. 2008 Genetic networks of liver metabolism revealed by integration of metabolomic
and transcriptomic profiling. PLoS Genetics 4: e1000034.

See Also

qdg

Examples

data(glxnet)
glxnet.cross <- calc.genoprob(glxnet.cross)
set.seed(1234)
glxnet.cross <- sim.geno(glxnet.cross)

n.node <- nphe(glxnet.cross) - 2 ## Last two are age and sex.
markers <- glxnet.qtl <- vector("list", n.node)
for(i in 1:n.node) {

ac <- model.matrix(~ age + sex, glxnet.cross$pheno)[, -1]
ss <- summary(scanone(glxnet.cross, pheno.col = i,

addcovar = ac, intcovar = ac[,2]),
threshold = 2.999)

glxnet.qtl[[i]] <- makeqtl(glxnet.cross, chr = ss$chr, pos = ss$pos)
markers[[i]] <- find.marker(glxnet.cross, chr = ss$chr, pos = ss$pos)

}
names(glxnet.qtl) <- names(markers) <- names(glxnet.cross$pheno)[seq(n.node)]

glxnet.qdg <- qdg(cross=glxnet.cross,
phenotype.names = names(glxnet.cross$pheno[,seq(n.node)]),
marker.names = markers,
QTL = glxnet.qtl,
alpha = 0.05,
n.qdg.random.starts=10,
addcov="age",
intcov="sex",
skel.method="udgskel",
udg.order=6)

glxnet.qdg

Not run:
gr <- graph.qdg(glxnet.qdg)
plot(gr)

Or use tkplot().
glxnet.cross <- clean(glxnet.cross)
save(glxnet.cross, glxnet.qdg, glxnet.qtl, file = "glxnet.RData", compress = TRUE)

End(Not run)

igraph.qtlnet 15

igraph.qtlnet qtlnet plot using igraph

Description

Plot inferred causal network using igraph package.

Usage

igraph.qtlnet(x, edges, loci.list,
pheno.color = "green", qtl.color = "red", vertex.color,
include.qtl = TRUE, ...)

S3 method for class 'qtlnet'
plot(x, ...)

Arguments

x Object of class qtlnet.
edges Data frame with first two columns being cause and effect directed phenotype

pairs. Typically determined as averaged.net element from call to summary.qtlnet.
loci.list List of character names of loci by phenotype. Typically determined by call to

loci.qtlnet.
pheno.color, qtl.color

Name of color to use for phenotypes and QTLs, respectively.
vertex.color Vertex colors in order of pheno-pheno edged augmented by loci.list, by de-

fault determined by pheno.color and qtl.color.
include.qtl Include QTL in graph if TRUE and loci.list is not NULL.
... Additional arguments passed to called routines.

Details

Uses the igraph package to create graph objects. These can be exported to a variety of other modern
graphics packages. graph.qtlnet is synonymous with igraph.qtlnet.

Value

Object of class graph created using graph.data.frame.

Author(s)

Brian S. Yandell and Elias Chaibub Neto

References

Chaibub Neto E, Keller MP, Attie AD, Yandell BS (2010) Causal Graphical Models in Systems
Genetics: a unified framework for joint inference of causal network and genetic architecture for
correlated phenotypes. Ann Appl Statist 4: 320-339. http://www.stat.wisc.edu/~yandell/
doc/2010/92.AnnApplStat.pdf

http://www.stat.wisc.edu/~yandell/doc/2010/92.AnnApplStat.pdf
http://www.stat.wisc.edu/~yandell/doc/2010/92.AnnApplStat.pdf

16 loci.qtlnet

See Also

summary.qtlnet, loci.qtlnet, graph.data.frame, tkplot

Examples

Pscdbp.graph <- igraph.qtlnet(Pscdbp.qtlnet)
Pscdbp.graph
Not run:
tkplot(Pscdbp.graph)

End(Not run)

loci.qtlnet QTL architecture per node as list

Description

Determines QTL that affect each phenotype conditional on the model-averaged network and on
covariates.

Usage

loci.qtlnet(qtlnet.object, chr.pos = TRUE, merge.qtl = 10, ...)
est.qtlnet(qtlnet.object, ..., verbose = TRUE)

Arguments

qtlnet.object Object of class qtlnet.

chr.pos Include chromsome and position if TRUE.

merge.qtl Merge QTL within merge.qtl cM of the mean QTL per chromosome across all
nodes. No merge if 0 or less. This can reduce the number of QTL nodes to one
per chr.

... Additional unused arguments.

verbose verbose output if TRUE.

Value

List containing, for each phenotype in the network, a character vector of the QTL names as chr@pos,
or pseudomarker name if chr.pos is FALSE.

Author(s)

Brian S. Yandell and Elias Chaibub Neto

mcmc.qtlnet 17

References

Chaibub Neto E, Keller MP, Attie AD, Yandell BS (2010) Causal Graphical Models in Systems
Genetics: a unified framework for joint inference of causal network and genetic architecture for
correlated phenotypes. Ann Appl Statist 4: 320-339. http://www.stat.wisc.edu/~yandell/
doc/2010/92.AnnApplStat.pdf

See Also

mcmc.qtlnet

Examples

loci.qtlnet(Pscdbp.qtlnet)

mcmc.qtlnet Sample genetic architecture and QTL network

Description

Use MCMC to alternatively sample genetic architecture and QTL network as directed acyclic graphs
(DAGs).

Usage

mcmc.qtlnet(cross, pheno.col, threshold, addcov = NULL, intcov = NULL,
nSamples = 1000, thinning = 1, max.parents = 3, M0 = NULL,
burnin = 0.1, method = "hk", random.seed = NULL, init.edges = 0,
saved.scores = NULL, rev.method = c("nbhd", "node.edge", "single"),
verbose = FALSE, ...)

init.qtlnet(pheno.col, max.parents, init.edges)

Arguments

cross Object of class cross. See read.cross.

pheno.col Phenotype identifiers from cross object. May be numeric, logical or character.

threshold Scalar or list of thresholds, one per each node.

addcov Additive covariates for each phenotype (NULL if not used). If entered as scalar
or vector (same format as pheno.col), then the same addcov is used for all
phenotypes. Altenatively, may be a list of additive covariate identifiers.

intcov Interactive covariates, entered in the same manner as addcov.

nSamples Number of samples to record.

thinning Thinning rate. Number of MCMC samples is nSamples*thinning.

max.parents Maximum number of parents to a node. This reduces the complexity of graphs
and shortens run time. Probably best to consider values of 3-5.

http://www.stat.wisc.edu/~yandell/doc/2010/92.AnnApplStat.pdf
http://www.stat.wisc.edu/~yandell/doc/2010/92.AnnApplStat.pdf

18 mcmc.qtlnet

M0 Matrix of 0s and 1s with initial directed graph of row->col if (row,col) entry is
1. Cycles are forbidden (e.g. 1s on diagonal or symmetric 1s across diagonal).
Default (if NULL) is sampled by a call to init.qtlnet; all 0s if init.edges =
0 (default).

burnin Proportion of MCMC samples to use as burnin. Default is 0.1 if burnin is TRUE.
Must be between 0 and 1.

method Model fitting method for scanone.

random.seed Initialization seed for random number generator. Must be NULL (no reset) or
positive numeric. Used in Random.

init.edges Initial number of edges for M0, to be sampled using {init.qtlnet}. Chosen
uniformly from 0 to the number of possible edges if set to NULL.

saved.scores Updated scores, typically pre-computed by bic.qtlnet.

rev.method Method to use for reversing edges. See details.

verbose Print iteration and number of models fit.

... Additional arguments. Advanced users may want to supply pre-computed saved.scores
to speed up calculations.

Details

Models are coded compactly as (1)(2|1)(3|1,2,4,5)(4|2)(5|2). Each parenthetical entry is a
of form (node|parents); these each require a model fit, for now with scanone.

The scanone routine is run on multiple phenotypes in the network that could all have the same
parents. For instance, for 5 phenotypes, if (1|2,4) is sampled, then do scanone of this model as
well as (3|2,4) and (5|2,4). Setting the hidden parameter scan.parents to a value smaller than
length(pheno.col) - 1 (default) disallows multiple trait scanning with more than that number of
parents.

The saved.scores parameter can greatly reduce MCMC run time, by supplying pre-computed BIC
scores. See bic.qtlnet. Another option is to capture saved.scores from a previous mcmc.qtlnet
run with the same phenotypes (and covariates). Caution is advised as only a modest amount of
checking can be done.

The init.qtlnet routine can be used to randomly find an initial causal network M0 with up to
init.edges edges.

MCMC updates include delete, add or reverse edge direction. The early version of this method
only considered the edge on its own (rev.method = "single"), while the neighborhood method
(rev.method = "nbhd") uses the update

Value

List of class qtlnet

post.model Model code (see details).

post.bic Posterior BIC

Mav Model average of M across MCMC samples.

freq.accept Frequency of acceptance M-H proposals.

mcmc.qtlnet 19

saved.scores Saved LOD score for each phenotype and all possible sets of the other pheno-
types as parent nodes.

all.bic

cross The cross object with calculated genotype probabilities.

In addition, a number of attributes are recorded:

M0 Initial network matrix.

threshold threshold list

nSamples Number of samples saved

thinning Thinning rate

pheno.col Phenotype columns.

pheno.names Phenotype names

addcov Additive covariate columns.

intcov Interactive covariate columns.

burnin Burnin proportion

method Method used for scanone.

random.seed Initial random number generator seed.

random.kind Random number generator kind from Random.

Author(s)

Brian S. Yandell and Elias Chaibub Neto

References

Chiabub Neto E, Keller MP, Attie AD, Yandell BS (2010) Causal graphical models in systems
genetics: a unified framework for joint inference of causal network and genetic archicecture for
correlated phenotypes. Ann Appl Statist 4: 320-339. http://dx.doi.org/10.1214/09-AOAS288

Grzegorczyk and Husmeier (2008) Improving the structure MCMC sampler for Bayesian networks
by introducing a new edge reversal move. Mach Learn 71: 265-305. http://dx.doi.org/10.
1007/s10994-008-5057-7

See Also

read.cross, scanone, Random, bic.qtlnet.

Examples

data(Pscdbp)
Not run:

Run of subset of traits. Still takes some time.
Pscdbp.qtlnet <- mcmc.qtlnet(Pscdbp, pheno.col = c(1,2,4,5,6),

threshold = 3.83,
nSamples = 1000, thinning = 20,
random.seed = 92387475, verbose = TRUE)

http://dx.doi.org/10.1214/09-AOAS288
http://dx.doi.org/10.1007/s10994-008-5057-7
http://dx.doi.org/10.1007/s10994-008-5057-7

20 parallel.qtlnet

save(Pscdbp.qtlnet, file = "Pscdbp.qtlnet.RData", compress = TRUE)

End(Not run)
data(Pscdbp.qtlnet)

Not run:
out.qtlnet <- mcmc.qtlnet(Pscdbp, pheno.col = 1:13,

threshold = 3.83,
nSamples = 1000, thinning = 20,
random.seed = 92387475, verbose = TRUE,
saved.scores = Pscdbp.bic)

End(Not run)

parallel.qtlnet Code to parallelize use of qtlnet

Description

This routine calls one of four phases in a parallelized version of qtlnet.

Usage

parallel.qtlnet(phase, index = 1, ..., dirpath = ".")

Arguments

phase Phase of parallelization as number 1 through 4. See details.

index Index for phase. Used in phases 2 and 4, and for error codes saved in RESULT.phase.index
file.

... Additional arguments for phases. See details.

dirpath Character string for directory were user can read and write files. When submit-
ting to a cluster, this should remain the default.

Details

See http://www.stat.wisc.edu/~yandell/sysgen/qtlnet for details of implementation in progress.
The plan is to run qtlnet via Condor (https://research.cs.wisc.edu/htcondor/) to scale up to
larger networks, say up to 100 nodes. Most important information is passed in files. Phase 1 imports
arguments from the params.txt file, which must have parse-able assignments to the arguments of
qtlnet:::qtlnet.phase1. This first phase produces file Phase1.RData, which included objects
used by all other phases.

Phase 1 also creates file groups.txt, which for each line has begin and end indices for the parents
that would result from a call to parents.qtlnet. Phase 2 should be run the same number of
times as the number of lines in file groups.txt. Each run produces a bicN.RData file contain-
ing BIC computations. These computations are aggregated in Phase 3 to create Phase3.RData,
which contains the saved.scores used for mcmc.qtlnet runs in Phase 4, which each produce an

http://www.stat.wisc.edu/~yandell/sysgen/qtlnet
https://research.cs.wisc.edu/htcondor/

parents.qtlnet 21

mcmcN.RData file. The number of runs of Phase 4 is an argument nruns stored in the params.txt
file processed in Phase 1. Finally, Phase 5 aggregates the MCMC results from multiple independent
runs into one qtlnet object.

Author(s)

Brian S. Yandell and Elias Chaibub Neto

References

Chaibub Neto E, Keller MP, Attie AD, Yandell BS (2010) Causal Graphical Models in Systems
Genetics: a unified framework for joint inference of causal network and genetic architecture for
correlated phenotypes. Ann Appl Statist 4: 320-339. http://www.stat.wisc.edu/~yandell/
doc/2010/92.AnnApplStat.pdf

http://www.stat.wisc.edu/~yandell/sysgen/qtlnet

See Also

mcmc.qtlnet, bic.qtlnet

Examples

Not run:
parallel.qtlnet("/u/y/a/yandell/public/html/sysgen/qtlnet/condor", 1)

End(Not run)

parents.qtlnet Determine and group node-parent combinations.

Description

Routines useful for examining the size of node-parent combinations.

Usage

parents.qtlnet(pheno.col, max.parents = 3, codes.only = FALSE)
S3 method for class 'parents.qtlnet'
summary(object, ...)
size.qtlnet(pheno.col, max.parents = 3)
group.qtlnet(pheno.col, max.parents = 3, n.groups = NULL,
group.size = 50000, parents = parents.qtlnet(pheno.col, max.parents))

http://www.stat.wisc.edu/~yandell/doc/2010/92.AnnApplStat.pdf
http://www.stat.wisc.edu/~yandell/doc/2010/92.AnnApplStat.pdf
http://www.stat.wisc.edu/~yandell/sysgen/qtlnet

22 parents.qtlnet

Arguments

pheno.col Phenotype identifiers from cross object. May be numeric, logical or character.

max.parents Maximum number of parents per node. This reduces the complexity of graphs
and shortens run time. Probably best to consider values of 3-5.

parents List containing all possible parents up to max.parents in size. May be a subset

codes.only Return only codes of parents if TRUE.

n.groups Number of groups for parallel computation. Determined from group.size if
missing.

group.size Size of groups for parallel computation. See details.

object Object of class parent.qtlnet.

... Additional arguments ignored.

Details

The most expensive part of calculations is running scanone on each phenotype with parent phe-
notypes as covariates. One strategy is to pre-compute the BIC contributions using a cluster and
save them for later use. The parents.qtlnet routine creates a list of all possible parent sets (up to
max.parents in size). The size.qtlnet determines the number of scanone calculations possible
for a network with nodes pheno.col and maximum parent size max.parents. The group.qtlnet
groups the parent sets into roughly equal size groups for parallel computations. See bic.qtlnet
for further details.

Value

The size.qtlnet returns the number of possible scanone computations needed for BIC scores.

The group.qtlnet produces and index into the parents list created by parents.qtlnet. See de-
tails.

The parents.qtlnet creates a list object with names being the code.

The summary method for such an object is a data frame with row.names being the code, a binary
code as decimal for the parents of a phenotype node, excluding the phenotype. Value is between 0
(no parents) and 2 ^ (length(pheno.col) - 1). The columns are

parents Comma-separated string of parents to potential child node.

n.child Number of possible child nodes to this parent set.

Author(s)

Brian S. Yandell and Elias Chaibub Neto

References

Chaibub Neto E, Keller MP, Attie AD, Yandell BS (2010) Causal Graphical Models in Systems
Genetics: a unified framework for joint inference of causal network and genetic architecture for
correlated phenotypes. Ann Appl Statist 4: 320-339. http://dx.doi.org/10.1214/09-AOAS288

http://dx.doi.org/10.1214/09-AOAS288

Pscdbp 23

See Also

bic.qtlnet

Examples

Restrict to at most 3 parents per node.
pheno.col <- 1:6
max.parents <- 3
size.qtlnet(pheno.col, max.parents)
parents <- parents.qtlnet(pheno.col, max.parents)
summary(parents)

Allow an arbitrary number (up to 12) of parents per node.
pheno.col <- 1:13
max.parents <- 12
size.qtlnet(pheno.col, max.parents)

Make ~53 groups of ~1000, for a total of 53248 scanone runs.
parents <- parents.qtlnet(pheno.col, max.parents)
n.child <- summary(parents)$n.child
table(n.child)
groups <- group.qtlnet(parents = parents, group.size = 1000)
apply(groups, 1,

function(group, parents) sapply(parents[seq(group[1], group[2])], length),
parents)

Pscdbp Cross and qtlnet objects with Ghazalpour et al. (2006) data. Only 13
phenotypes are included.

Description

The R/qtl cross object was created from data at source. The qtlnet object was created using
mcmc.qtlnet.

Usage

data(Pscdbp)
data(Pscdbp.qtlnet)

Source

https://horvath.genetics.ucla.edu/coexpressionnetwork/

https://horvath.genetics.ucla.edu/coexpressionnetwork/

24 qdg

References

Ghazalpour A, Doss S, Zhang B, Wang S, Plaisier C, Castellanos R, Brozell A, Schadt EE, Drake
TA, Lusis AJ, Horvath S (2006) Integrating genetic and network analysis to characterize genes
related to mouse weight. PLoS Genetics 2: e130-NA. http://dx.doi.org/10.1371/journal.
pgen.0020130

Chaibub Neto E, Keller MP, Attie AD, Yandell BS (2010) Causal Graphical Models in Systems
Genetics: a unified framework for joint inference of causal network and genetic architecture for
correlated phenotypes. Ann Appl Statist 4: 320-339. http://dx.doi.org/10.1214/09-AOAS288

See Also

read.cross, mcmc.qtlnet

Examples

summary(Pscdbp)
Not run:
summary(Pscdbp.qtlnet)

End(Not run)

qdg Produces a directed graph using QDG algorithm

Description

This function implements the QDG algorithm described in Chaibub Neto et al 2008. It creates and
scores QDGs. The computed scores (log-likelihood and BIC) are only valid for acyclic graphs. For
cyclic networks qdgSEM should be used to compute the scores.

Usage

qdg(cross, phenotype.names, marker.names, QTL, alpha,
n.qdg.random.starts, addcov = NULL, intcov = NULL,
skel.method = c("pcskel","udgskel"), udg.order = 2)

graph.qdg(x, ...)
S3 method for class 'qdg'
print(x, ...)
S3 method for class 'qdg'
summary(object, ...)

Arguments

cross object of class cross (see read.cross).
phenotype.names

character string with names of phenotype nodes corresponding to phenotypes in
cross.

http://dx.doi.org/10.1371/journal.pgen.0020130
http://dx.doi.org/10.1371/journal.pgen.0020130
http://dx.doi.org/10.1214/09-AOAS288

qdg 25

marker.names list of character strings, one for each of phenotype.names. Each character
string has the marker names for that phenotype.

QTL object of class qtl (see makeqtl).

alpha significance level threshold for PC or UDG algorithms (for the inference of the
graph skeleton. See step 1 of the QDG algorithm). Must be between 0 and 1.

n.qdg.random.starts

number of random starts for the QDG algorithm (see step 3 of the QDG algo-
rithm).

addcov names of additive covariates. Must be valid phenotype names in cross. Ex-
panded to include all intcov names.

intcov names of additive covariates. Must be valid phenotype names in cross.

skel.method Either "pcskel" for the PC skeleton algorithm (skeleton) or "udgskel" for the
UDG algorithm (approximate.UDG routine defined internal to qdg).

udg.order maximum allowed order of the UDG algorithm. Must be between zero and the
number of variables minus 2.

x, object object of class qdg.

... additional arguments (ignored).

Details

The log-likelihood and BIC scores are computed based in the factorization of the joint distribution,
and hence are only valid for acyclic networks. For cyclic networks these scores are relative to the
unnormalized likelihoods. Models include phenotypes and QTLs. The ’udgskel’ method for the
computation of the skeleton of the causal model should be used for small networks only (the UDG
algorithm quickly becomes computationally infeasible as the number of nodes increases).

Value

List object that inherits class "qdg" and "qdg" with components:

UDG Undirected dependency graph from PC skeleton or UDG algorithms.

DG Directed dependency graph before recheck step (output of the step 2 of the QDG
algorithm).

best.lm Solution with lowest BIC (best fit to the data).

Solutions Solutions of dependency graph after recheck step (output of steps 3, 4 and 5 of
the QDG algorithm.)

marker.names List of character strings, one for each of phenotype.names. Each character
string has the marker names for that phenotype.

phenotype.names

Character string with names of phenotype nodes corresponding to phenotypes
in cross.

References

Chaibub Neto et al. (2008) Inferring causal phenotype networks from segregating populations.
Genetics 179: 1089-1100.

26 qdg

See Also

skeleton

Examples

simulate a genetic map (20 autosomes, 10 not equaly spaced markers per
chromosome)
mymap <- sim.map(len=rep(100,20), n.mar=10, eq.spacing=FALSE, include.x=FALSE)

simulate an F2 cross object with n.ind (number of individuals)
n.ind <- 200
mycross <- sim.cross(map=mymap, n.ind=n.ind, type="f2")

produce multiple imputations of genotypes using the
sim.geno function. The makeqtl function requires it,
even though we are doing only one imputation (since
we don't have missing data and we are using the
genotypes in the markers, one imputation is enough)
mycross <- sim.geno(mycross,n.draws=1)

sample markers (2 per phenotype)
genotypes <- pull.geno(mycross)
geno.names <- dimnames(genotypes)[[2]]
m1 <- sample(geno.names,2,replace=FALSE)
m2 <- sample(geno.names,2,replace=FALSE)
m3 <- sample(geno.names,2,replace=FALSE)
m4 <- sample(geno.names,2,replace=FALSE)

get marker genotypes
g11 <- genotypes[,m1[1]]; g12 <- genotypes[,m1[2]]
g21 <- genotypes[,m2[1]]; g22 <- genotypes[,m2[2]]
g31 <- genotypes[,m3[1]]; g32 <- genotypes[,m3[2]]
g41 <- genotypes[,m4[1]]; g42 <- genotypes[,m4[2]]

generate phenotypes
y1 <- runif(3,0.5,1)[g11] + runif(3,0.5,1)[g12] + rnorm(n.ind)
y2 <- runif(3,0.5,1)[g21] + runif(3,0.5,1)[g22] + rnorm(n.ind)
y3 <- runif(1,0.5,1) * y1 + runif(1,0.5,1) * y2 + runif(3,0.5,1)[g31] +

runif(3,0.5,1)[g32] + rnorm(n.ind)
y4 <- runif(1,0.5,1) * y3 + runif(3,0.5,1)[g41] + runif(3,0.5,1)[g42] +

rnorm(n.ind)

incorporate phenotypes to cross object
mycross$pheno <- data.frame(y1,y2,y3,y4)

create markers list
markers <- list(m1,m2,m3,m4)
names(markers) <- c("y1","y2","y3","y4")

create qtl object
allqtls <- list()
m1.pos <- find.markerpos(mycross, m1)

qdg.perm.test 27

allqtls[[1]] <- makeqtl(mycross, chr = m1.pos[,"chr"], pos = m1.pos[,"pos"])
m2.pos <- find.markerpos(mycross, m2)
allqtls[[2]] <- makeqtl(mycross, chr = m2.pos[,"chr"], pos = m2.pos[,"pos"])
m3.pos <- find.markerpos(mycross, m3)
allqtls[[3]] <- makeqtl(mycross, chr = m3.pos[,"chr"], pos = m3.pos[,"pos"])
m4.pos <- find.markerpos(mycross, m4)
allqtls[[4]] <- makeqtl(mycross, chr = m4.pos[,"chr"], pos = m4.pos[,"pos"])
names(allqtls) <- c("y1","y2","y3","y4")

infer QDG
out <- qdg(cross=mycross,

phenotype.names = c("y1","y2","y3","y4"),
marker.names = markers,
QTL = allqtls,
alpha = 0.005,
n.qdg.random.starts=10,
skel.method="pcskel")

out
Not run:
gr <- graph.qdg(out)
gr
plot(gr)

End(Not run)

qdg.perm.test Conduct permutation test for LOD score of edge direction on directed
graph

Description

Conduct permutation test for LOD score of edge direction on directed graph.

Usage

qdg.perm.test(cross, nperm, node1, node2, common.cov = NULL,
DG, QTLs, addcov = NULL, intcov = NULL)

S3 method for class 'qdg.perm.test'
summary(object, ...)
S3 method for class 'qdg.perm.test'
print(x, ...)

Arguments

cross Object of class cross (see read.cross).

nperm Number of permutations.

node1 Character string with name of a phenotype nodes.

28 qdg.perm.test

node2 Character string with name of a phenotype nodes.

common.cov Character string with name of common phenotype covariates.

DG Directed graph of class QDG

QTLs List of objects of class qtl.

addcov Names of additive covariates. Must be valid phenotype names in cross. Ex-
panded to include all intcov names.

intcov Names of additive covariates. Must be valid phenotype names in cross.

x, object Object of class qdg.perm.test.

... Additional arguments ignored.

Details

qdg.perm.test performs nperm permutation-based test of LOD score for an edge of a directed
graph.

Value

List composed by:

pvalue Permutation p-value.

obs.lod Observed LOD score.

PermSample Permutation LOD scores sample.

node1 Character string with name of a phenotype nodes.

node2 Character string with name of a phenotype nodes.

References

Chaibub Neto et al. (2008) Inferring causal phenotype networks from segregating populations.
Genetics 179: 1089-1100.

Examples

data(glxnet)
glxnet.cross <- calc.genoprob(glxnet.cross)
set.seed(1234)
glxnet.cross <- sim.geno(glxnet.cross)
Should really use nperm = 1000 here.
qdg.perm.test(glxnet.cross, nperm = 10, "Glx", "Slc1a2",

DG = glxnet.qdg$DG, QTLs = glxnet.qtl)

qdg.sem 29

qdg.sem Score directed graphs outputed by qdg using structural equation mod-
els (SEM)

Description

Score directed graphs (cyclic or acyclic) outputed by qdg function using the sem R package.

Usage

qdg.sem(qdgObject, cross)
S3 method for class 'qdg.sem'
print(x, ...)
S3 method for class 'qdg.sem'
summary(object, ...)

Arguments

qdgObject list containing the output of qdg.

cross object of class cross (see read.cross).

x, object object of class qdg.

... extra arguments to print or summary (ignored).

Details

Fits a SEM to the phenotypes network. QTLs are not included as variables in the model. When
additive covariates are used in qdg, qdg.sem fits a SEM model to the residuals of the variables after
adjustment of the additive covariates.

Value

List object that inherits class "qdg.sem" and "qdg" composed by:

best.SEM Solution with lowest SEM BIC (best fit to the data).

BIC.SEM Vector with the BIC values of all solutions from qdg.

path.coeffs Path coefficients associated with the best SEM solution.

Solutions Solutions of dependency graph after recheck step (output of steps 3, 4 and 5 of
the QDG algorithm.)

marker.names List of character strings, one for each of phenotype.names. Each character
string has the marker names for that phenotype.

phenotype.names

Character string with names of phenotype nodes corresponding to phenotypes
in cross.

dropped Indexes of solutions that were dropped (NULL if none dropped).

30 qdg.sem

See Also

qdg sem

Examples

simulate a genetic map (20 autosomes, 10 not equaly spaced markers per
chromosome)
mymap <- sim.map(len=rep(100,20), n.mar=10, eq.spacing=FALSE, include.x=FALSE)

simulate an F2 cross object with n.ind (number of individuals)
n.ind <- 200
mycross <- sim.cross(map=mymap, n.ind=n.ind, type="f2")

produce multiple imputations of genotypes using the
sim.geno function. The makeqtl function requires it,
even though we are doing only one imputation (since
we don't have missing data and we are using the
genotypes in the markers, one imputation is enough)
mycross <- sim.geno(mycross,n.draws=1)

sample markers (2 per phenotype)
genotypes <- pull.geno(mycross)
geno.names <- dimnames(genotypes)[[2]]
m1 <- sample(geno.names,2,replace=FALSE)
m2 <- sample(geno.names,2,replace=FALSE)
m3 <- sample(geno.names,2,replace=FALSE)
m4 <- sample(geno.names,2,replace=FALSE)

get marker genotypes
g11 <- genotypes[,m1[1]]; g12 <- genotypes[,m1[2]]
g21 <- genotypes[,m2[1]]; g22 <- genotypes[,m2[2]]
g31 <- genotypes[,m3[1]]; g32 <- genotypes[,m3[2]]
g41 <- genotypes[,m4[1]]; g42 <- genotypes[,m4[2]]

generate phenotypes
y1 <- runif(3,0.5,1)[g11] + runif(3,0.5,1)[g12] + rnorm(n.ind)
y2 <- runif(3,0.5,1)[g21] + runif(3,0.5,1)[g22] + rnorm(n.ind)
y3 <- runif(1,0.5,1) * y1 + runif(1,0.5,1) * y2 + runif(3,0.5,1)[g31] +

runif(3,0.5,1)[g32] + rnorm(n.ind)
y4 <- runif(1,0.5,1) * y3 + runif(3,0.5,1)[g41] + runif(3,0.5,1)[g42] +

rnorm(n.ind)

incorporate phenotypes to cross object
mycross$pheno <- data.frame(y1,y2,y3,y4)

create markers list
markers <- list(m1,m2,m3,m4)
names(markers) <- c("y1","y2","y3","y4")

create qtl object
allqtls <- list()
m1.pos <- find.markerpos(mycross, m1)

subset.qtlnet 31

allqtls[[1]] <- makeqtl(mycross, chr = m1.pos[,"chr"], pos = m1.pos[,"pos"])
m2.pos <- find.markerpos(mycross, m2)
allqtls[[2]] <- makeqtl(mycross, chr = m2.pos[,"chr"], pos = m2.pos[,"pos"])
m3.pos <- find.markerpos(mycross, m3)
allqtls[[3]] <- makeqtl(mycross, chr = m3.pos[,"chr"], pos = m3.pos[,"pos"])
m4.pos <- find.markerpos(mycross, m4)
allqtls[[4]] <- makeqtl(mycross, chr = m4.pos[,"chr"], pos = m4.pos[,"pos"])

names(allqtls) <- c("y1","y2","y3","y4")

infer QDG
out <- qdg(cross=mycross,

phenotype.names = c("y1","y2","y3","y4"),
marker.names = markers,
QTL = allqtls,
alpha = 0.005,
n.qdg.random.starts=10,
skel.method="pcskel")

Not run:
gr <- graph.qdg(out)
plot(gr)

Following does not work. Not sure why.
out2 <- qdg.sem(out, cross=mycross)
out2
gr2 <- graph.qdg(out2)
plot(gr2)

End(Not run)

subset.qtlnet Catenate or subset qtlnet object(s).

Description

Multiple qtlnet objects can be catenated together or subsetted by run.

Usage

S3 method for class 'qtlnet'
subset(x, run, ...)
S3 method for class 'qtlnet'
c(...)
best.qtlnet(x, burnin = attr(x, "burnin"), wh = which.min(meanbic(x, burnin)))

Arguments

x Object of class qtlnet. See mcmc.qtlnet.

32 summary.qtlnet

run Numeric index to desired run. Must be between 0 and number of runs.

burnin Proportion of MCMC samples to be considered as burnin. Taken from qtlnet
object usually.

wh Number identifying which model is best.

... For c.qtlnet, objects of class qtlnet to be joined. Ignored for subset.qtlnet.

Details

The catenation is used by parallel.qtlnet in phase 5 to join together multiple independent
MCMC runs. Note that the averaged network and the frequency of acceptance for a derived subset
are only based on the saved samples, while the original qtlnet objects used all samples. Thus
catenation and subset are not strictly reversible functions.

The best.qtlnet routine picks the run with the best (lowest) BIC score on average and returns that
run as a qtlnet object. It also produces a trace plot of BIC for all the runs.

Value

Both return an object of class qtlnet.

Author(s)

Brian Yandell

See Also

mcmc.qtlnet

Examples

Not run:
joined <- c(qtlnet1, qtlnet2)
sub1 <- subset(joined, 1)
best <- best.qtlnet(joined)
qtlnet1 and sub1 should be nearly identical.

End(Not run)

summary.qtlnet summary of model average network and posterior table

Description

Print and summary methods for qtlnet objects.

summary.qtlnet 33

Usage

S3 method for class 'qtlnet'
print(x, cutoff = 0.01, digits = 3, ...)
S3 method for class 'qtlnet'
summary(object, parent.patterns = FALSE, ...)
S3 method for class 'summary.qtlnet'
print(x, ...)
check.qtlnet(object, min.prob = 0.9, correct = TRUE, verbose = FALSE, ...)

Arguments

x, object Object of class qtlnet.

cutoff Frequency cutoff for model patterns to be displayed. Always shows at least the
most common pattern.

digits Number of digits to display for posterior probabilities on directed edges.
parent.patterns

Include summary of parent patterns if TRUE.

min.prob Set the minimum posterior probability for inclusion of an edge.

correct Correct min.prob if TRUE.

verbose Print forbidden edges in model-averaged solution if TRUE.

... Other hidden arguments. These include min.prob, which can also be passed to
other igraph.qtlnet and plot.qtlnet routines.

Author(s)

Brian S. Yandell and Elias Chaibub Neto

References

Chaibub Neto E, Keller MP, Attie AD, Yandell BS (2010) Causal Graphical Models in Systems
Genetics: a unified framework for joint inference of causal network and genetic architecture for
correlated phenotypes. Ann Appl Statist 4: 320-339. http://www.stat.wisc.edu/~yandell/
doc/2010/92.AnnApplStat.pdf

See Also

mcmc.qtlnet

Examples

data(Pscdbp.qtlnet)
print(Pscdbp.qtlnet)
summary(Pscdbp.qtlnet)

http://www.stat.wisc.edu/~yandell/doc/2010/92.AnnApplStat.pdf
http://www.stat.wisc.edu/~yandell/doc/2010/92.AnnApplStat.pdf

34 write.qtlnet

write.qtlnet write qtlnet as text file

Description

Write resulting graph as text file

Usage

write.qtlnet(x, filename, edges, loci.list, include.qtl = TRUE,
est.list, include.est = TRUE,
digits = 3, col.names = TRUE, ...)

Arguments

x Object of class qtlnet.

filename Character string with name of text file (usually ends in .txt).

edges Data frame with first two columns being cause and effect directed phenotype
pairs. Typically determined as averaged.net element from call to summary.qtlnet.

loci.list List of character names of loci by phenotype. Typically determined by call to
loci.qtlnet.

include.qtl Include QTL in graph if TRUE and loci.list is not NULL.

est.list List of estimates from internal est.qtlnet?

include.est Include estimate if TRUE.

digits Number of significant digits for width.

col.names Character vector of column names.

... Additional arguments passed to called routines.

Details

Simple write of causal network, for instance to use with Cytoscape.

Value

Invisibly returns data frame that corresponds to saved file.

Author(s)

Brian S. Yandell and Elias Chaibub Neto

References

Chaibub Neto E, Keller MP, Attie AD, Yandell BS (2010) Causal Graphical Models in Systems
Genetics: a unified framework for joint inference of causal network and genetic architecture for
correlated phenotypes. Ann Appl Statist 4: 320-339. http://www.stat.wisc.edu/~yandell/
doc/2010/92.AnnApplStat.pdf

http://www.stat.wisc.edu/~yandell/doc/2010/92.AnnApplStat.pdf
http://www.stat.wisc.edu/~yandell/doc/2010/92.AnnApplStat.pdf

write.qtlnet 35

See Also

igraph.qtlnet

Examples

Not run:
write.qtlnet(Pscdbp.qtlnet, "Pscdbp.txt")

End(Not run)

Index

∗ datagen
acyclic, 2
cyclica, 7
cyclicb, 8
cyclicc, 10
generate.qtl, 12
glxnet, 13
mcmc.qtlnet, 17
parents.qtlnet, 21

∗ datasets
Pscdbp, 23

∗ models
qdg, 24
qdg.perm.test, 27
qdg.sem, 29

∗ utilities
subset.qtlnet, 31
summary.qtlnet, 32

acyclic, 2, 13

best.qtlnet (subset.qtlnet), 31
bic.join (bic.qtlnet), 4
bic.qtlnet, 4, 18, 19, 21–23

c.qtlnet (subset.qtlnet), 31
check.qtlnet (summary.qtlnet), 32
cyclica, 7, 13
cyclicb, 8, 13
cyclicc, 10, 13

dist, 12
dist.qtlnet, 11

edgematch.qtlnet (dist.qtlnet), 11
est.qtlnet (loci.qtlnet), 16

generate.qtl, 12
generate.qtl.pheno, 3, 8–10
glxnet, 13
graph.data.frame, 15, 16

graph.qdg, 3, 8–10
graph.qdg (qdg), 24
graph.qtlnet (igraph.qtlnet), 15
group.qtlnet (parents.qtlnet), 21

igraph.qtlnet, 15, 33, 35
init.qtlnet (mcmc.qtlnet), 17

loci.qtlnet, 15, 16, 16, 34
lowess, 12

makeqtl, 25
mcmc.qtlnet, 5, 12, 17, 17, 20, 21, 23, 24,

31–33
mds.qtlnet (dist.qtlnet), 11

parallel.qtlnet, 20, 32
parents.qtlnet, 5, 20, 21
plot.qtlnet, 33
plot.qtlnet (igraph.qtlnet), 15
plotbic.qtlnet (dist.qtlnet), 11
print.qdg (qdg), 24
print.qdg.perm.test (qdg.perm.test), 27
print.qdg.sem (qdg.sem), 29
print.qtlnet (summary.qtlnet), 32
print.summary.qtlnet (summary.qtlnet),

32
Pscdbp, 23
Pscdbp.bic (bic.qtlnet), 4
pull.geno, 13

qdg, 3, 8–10, 14, 24, 29, 30
qdg.perm.test, 27
qdg.sem, 29
qtlnet (mcmc.qtlnet), 17

Random, 18, 19
read.cross, 4, 13, 17, 19, 24, 27, 29

scanone, 5, 18, 19, 22
sem, 30

36

INDEX 37

sim.cross, 3, 8–10
sim.geno, 3, 8–10
sim.map, 3, 8–10
size.qtlnet (parents.qtlnet), 21
skeleton, 3, 8–10, 25, 26
subset.qtlnet, 31
summary.parents.qtlnet

(parents.qtlnet), 21
summary.qdg (qdg), 24
summary.qdg.perm.test (qdg.perm.test),

27
summary.qdg.sem (qdg.sem), 29
summary.qtlnet, 15, 16, 32, 34

tkplot, 16

write.qtlnet, 34

	acyclic
	bic.qtlnet
	cyclica
	cyclicb
	cyclicc
	dist.qtlnet
	generate.qtl
	glxnet
	igraph.qtlnet
	loci.qtlnet
	mcmc.qtlnet
	parallel.qtlnet
	parents.qtlnet
	Pscdbp
	qdg
	qdg.perm.test
	qdg.sem
	subset.qtlnet
	summary.qtlnet
	write.qtlnet
	Index

