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qrcm-package Quantile Regression Coefficients Modeling

Description

This package implements quantile regression coefficient modeling (qrcm), in which the coefficients
of a quantile regression model are described by (flexible) parametric functions. The method is
described in Frumento and Bottai (2016, 2017); Frumento and Salvati (2021); Frumento, Bottai,
and Fernandez-Val (2021); and Hsu, Wen, and Chen (2021). Special functions can be used to
diagnose and eliminate quantile crossing (Sottile and Frumento, 2023).

Details

Package: qrcm
Type: Package
Version: 3.1
Date: 2024-02-13
License: GPL-2

The function iqr permits specifying regression models for cross-sectional data, allowing for cen-
sored and truncated outcomes. The function iqrL can be used to analyze longitudinal data in which
the same individuals are observed repeatedly.

Two special functions, slp and plf, can be used for model building. Auxiliary functions for model
summary, prediction, and plotting are provided. The generic function test.fit is used to assess
the model fit.

The function diagnose.qc can be applied to iqr objects to diagnose quantile crossing, and the
option remove.qc can be used to remove it, using the algorithm described in qc.control.

Author(s)

Paolo Frumento

Maintainer: Paolo Frumento <paolo.frumento@unipi.it>

References

Frumento, P., and Bottai, M. (2016). Parametric modeling of quantile regression coefficient func-
tions. Biometrics, 72 (1), 74-84.

Frumento, P., and Bottai, M. (2017). Parametric modeling of quantile regression coefficient func-
tions with censored and truncated data. Biometrics, 73 (4), 1179-1188.
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Frumento, P., and Salvati, N. (2021). Parametric modeling of quantile regression coefficient func-
tions with count data. Statistical Methods and Applications, 30, 1237-1258.

Frumento, P., Bottai, M., and Fernandez-Val, I. (2021). Parametric modeling of quantile regression
coefficient functions with longitudinal data. Journal of the American Statistical Association, 116
(534), 783-797.

Hsu, C.Y., Wen, C.C., and Chen, Y.H. (2021). Quantile function regression analysis for interval
censored data, with application to salary survey data. Japanese Journal of Statistics and Data
Science, 4, 999-1018.

Sottile, G., and Frumento, P. (2023). Parametric estimation of non-crossing quantile functions.
Statistical Modelling, 23 (2), 173-195.

Frumento, P., and Corsini, L. (2024). Using parametric quantile regression to investigate determi-
nants of unemployment duration. Unpublished manuscript.

Examples

# iqr(y ~ x) # cross-sectional observations
# iqr(Surv(time, event) ~ x) # right-censored data
# iqr(Surv(start, stop, event) ~ x) # right-censored and left-truncated data
# iqr(Surv(time1, time2, type = "interval") ~ x) # interval-censored data
# iqrL(y ~ x, id = id) # repeated measures

# diagnose.qc(model) # diagnose quantile crossing
# Use iqr(..., remove.qc = TRUE) to remove crossing

diagnose.qc Diagnose Quantile Crossing

Description

Diagnose quantile crossing in a model estimated with iqr.

Usage

diagnose.qc(obj)

Arguments

obj an object created with iqr.

Details

The function determines if quantile crossing occurs in your fitted model, and provides a number of
diagnostic tools.

Local quantile crossing is defined by obj$PDF < 0, and is obtained when the quantile function, say
Q(p|x), has negative first derivatives at the values of p that correspond to the observed data. Global
quantile crossing occurs when the conditional quantile function has negative first derivatives at some
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values of p. To assess global crossing, a grid of approximately 1000 quantiles is used. Note that
local crossing is a special case of global crossing.

The function will assess local and global crossing, and return a summary pcross of the quantiles
at which global crossing occurs. It is important to understand that crossing at extremely low or
high quantiles is very common, but may be considered irrelevant in practice. For example, if all
observations have crossing quantiles, implying that global crossing is 100%, but crossing only
occurs at quantile above 0.999, the fitted model can be safely used for prediction. Very frequently,
crossing occurs at extreme quantiles that do not correspond to any observation in the data.

This command will also compute a crossIndex, that represents the average length, across observa-
tions, of the sub-intervals p∗ such that Q′(p ∗ |x) < 0. For example, if Q′(p|x) < 0 in the interval
p∗ = (0.3, 0.5), the contribution to the crossIndex is 0.5 - 0.3 = 0.2. If crossing is detected
at a single quantile, the interval is assumed to have length 1e-6. In principle, the crossIndex is
always between 0 (no quantile crossing) and 1 (all observations crossing at all quantiles, which is
clearly impossible). In practice, values of crossIndex greater than 0.05 are relatively rare.

Value

A list with the following items:

qc a data frame with two columns (qc.local, qc.global) containing logical
indicators of local and global quantile crossing for each observation in the data.

qc.local, qc.global
the absolute number of observations for which local/global quantile crossing
was detected.

pcross a frequency table of the values of p at which global quantile crossing was de-
tected.

crossIndex the estimated index of crossing described above.

If no quantile crossing is detected, pcross = NULL, and crossIndex = 0.

Author(s)

Paolo Frumento <paolo.frumento@unipi.it>

References

Sottile, G., and Frumento, P. (2023). Parametric estimation of non-crossing quantile functions.
Statistical Modelling, 23(2), 173-195.

See Also

iqr, qc.control.

Examples

# Using simulated data

n <- 1000
x1 <- runif(n,0,3)
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x2 <- rbinom(n,1,0.5)

u <- runif(n)
y <- 1*qexp(u) + (2 + 3*u)*x1 + 5*x2
m <- iqr(y ~ x1 + x2, formula.p = ~ slp(p,7))
diagnose.qc(m)

iqr Quantile Regression Coefficients Modeling

Description

This function implements Frumento and Bottai’s (2016, 2017) and Hsu, Wen, and Chen’s (2021)
methods for quantile regression coefficients modeling (qrcm). Quantile regression coefficients are
described by (flexible) parametric functions of the order of the quantile. Quantile crossing can be
eliminated using the method described in Sottile and Frumento (2023).

Usage

iqr(formula, formula.p = ~ slp(p,3), weights, data, s,
tol = 1e-6, maxit, remove.qc = FALSE)

Arguments

formula a two-sided formula of the form y ~ x1 + x2 + ...: a symbolic description of the
quantile regression model. The left side of the formula is Surv(time,event)
if the data are right-censored; Surv(time,time2,event) if the data are right-
censored and left-truncated (time < time2, time can be -Inf); and Surv(time1,
time2, type = "interval2") for interval-censored data (use time1 = time2
for exact observations, time1 = -Inf or NA for left-censored, and time2 = Inf
or NA for right-censored).

formula.p a one-sided formula of the form ~ b1(p, ...) + b2(p, ...) + ..., describing
how quantile regression coefficients depend on p, the order of the quantile.

weights an optional vector of weights to be used in the fitting process. The weights will
always be normalized to sum to the sample size. This implies that, for example,
using double weights will not halve the standard errors.

data an optional data frame, list or environment containing the variables in formula.

s an optional 0/1 matrix that permits excluding some model coefficients (see ‘Ex-
amples’).

tol convergence criterion for numerical optimization.

maxit maximum number of iterations.

remove.qc either a logical value, or a list created with qc.control. See ‘Details’.
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Details

Quantile regression permits modeling conditional quantiles of a response variabile, given a set of
covariates. A linear model is used to describe the conditional quantile function:

Q(p|x) = β0(p) + β1(p)x1 + β2(p)x2 + . . . .

The model coefficients β(p) describe the effect of covariates on the p-th quantile of the response
variable. Usually, one or more quantiles are estimated, corresponding to different values of p.

Assume that each coefficient can be expressed as a parametric function of p of the form:

β(p|θ) = θ0 + θ1b1(p) + θ2b2(p) + . . .

where b1(p), b2(p, . . .) are known functions of p. If q is the dimension of x = (1, x1, x2, . . .) and
k is that of b(p) = (1, b1(p), b2(p), . . .), the entire conditional quantile function is described by a
q × k matrix θ of model parameters.

Users are required to specify two formulas: formula describes the regression model, while formula.p
identifies the ’basis’ b(p). By default, formula.p = ~ slp(p, k = 3), a 3rd-degree shifted Legendre
polynomial (see slp). Any user-defined function b(p, . . .) can be used, see ‘Examples’.

If no censoring and truncation are present, estimation of θ is carried out by minimizing an objective
function that corresponds to the integral, with respect to p, of the loss function of standard quantile
regression. Details are in Frumento and Bottai (2016). If the data are censored or truncated, instead,
θ is estimated by solving the estimating equations described in Frumento and Bottai (2017) and Hsu,
Wen, and Chen (2021).

The option remove.qc applies the method described by Sottile and Frumento (2023) to remove
quantile crossing. You can either choose remove.qc = TRUE, or use remove.qc = qc.control(...),
which allows to specify the operational parameters of the algorithm. Please read qc.control for
more details on the method, and use diagnose.qc to diagnose quantile crossing.

Value

An object of class “iqr”, a list containing the following items:

coefficients a matrix of estimated model parameters describing the fitted quantile function.

converged logical. The convergence status.

n.it the number of iterations.

call the matched call.

obj.function if the data are neither censored nor truncated, the value of the minimized loss
function; otherwise, a meaningful loss function which, however, is not the ob-
jective function of the model (see note 3). The number of model parameter is
returned as an attribute.

mf the model frame used.

PDF, CDF the fitted values of the conditional probability density function (PDF) and cumu-
lative distribution function (CDF). See note 1 for details.

covar the estimated covariance matrix.

s the used ‘s’ matrix.
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Use summary.iqr, plot.iqr, and predict.iqr for summary information, plotting, and predic-
tions from the fitted model. The function test.fit can be used for goodness-of-fit assessment.
The generic accessory functions coefficients, formula, terms, model.matrix, vcov are avail-
able to extract information from the fitted model. The special function diagnose.qc can be used to
diagnose quantile crossing.

Note

NOTE 1 (PDF, CDF, quantile crossing, and goodness-of-fit). By expressing quantile regression
coefficients as functions of p, you practically specify a parametric model for the entire conditional
distribution. The induced CDF is the value p∗ such that y = Q(p∗|x). The corresponding PDF
is given by 1/Q′(p∗|x). Negative values of PDF indicate quantile crossing, occurring when the
estimated quantile function is not monotonically increasing. If negative PDF values occur for a
relatively large proportion of data, the model is probably misspecified or ill-defined. If the model
is correct, the fitted CDF should approximately follow a Uniform(0,1) distribution. This idea is used
to implement a goodness-of-fit test, see test.fit.

NOTE 2 (model intercept). The intercept can be excluded from formula, e.g., iqr(y ~ -1 + x).
This, however, implies that when x = 0, y is zero at all quantiles. See example 5 in ‘Examples’.
The intercept can also be removed from formula.p. This is recommended if the data are bounded.
For example, for strictly positive data, use iqr(y ~ 1, formula.p = -1 + slp(p,3)) to force the
smallest quantile to be zero. See example 6 in ‘Examples’.

NOTE 3 (censoring, truncation, and loss function). Data are right-censored when, instead of
a response variable T , one can only observe Y = min(T,C) and d = I(T ≤ C). Here, C
is a censoring variable that is assumed to be conditionally independent of T . Additionally, left
truncation occurs if Y can only be observed when it exceeds another random variable Z. For
example, in the prevalent sampling design, subjects with a disease are enrolled; those who died
before enrollment are not observed.

Ordinary quantile regression minimizes L(β(p)) =
∑

(p − ω)(t − x′β(p)) where ω = I(t ≤
x′β(p)). Equivalently, it solves its first derivative, S(β(p)) =

∑
x(ω − p). The objective function

of iqr is simply the integral of L(β(p|θ)) with respect to p.

If the data are censored and truncated, ω is replaced by

ω∗ = ω.y + (1− d)ω.y(p− 1)/S.y − ω.z − ω.z(p− 1)/S.z + p

where ω.y = I(y ≤ x′β(p)), ω.z = I(z ≤ x′β(p)), S.y = P (T > y), and S.z = P (T > z).
The above formula can be obtained from equation (7) of Frumento and Bottai, 2017. Replacing ω
with ω∗ in L(β(p)) is NOT equivalent to replacing ω with ω∗ in S(β(p)). The latter option leads
to a much simpler computation, and generates the estimating equation used by iqr. This means
that, if the data are censored or truncated, the obj.function returned by iqr is NOT the objective
function being minimized, and should not be used to compare models. However, if one of two
models has a much larger value of the obj.function, this may be a sign of severe misspecification
or poor convergence.

If the data are interval-censored, the loss function is obtained as the average between the loss calcu-
lated on the lower end of the interval, and that calculated on the upper end. The presence of right-
or left-censored observations is handled as described above.

Author(s)

Paolo Frumento <paolo.frumento@unipi.it>
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See Also

summary.iqr, plot.iqr, predict.iqr, for summary, plotting, and prediction, and test.fit.iqr
for goodness-of-fit assessment; plf and slp to define b(p) to be a piecewise linear function and a
shifted Legendre polynomial basis, respectively; diagnose.qc to diagnose quantile crossing.

Examples

##### Using simulated data in all examples

##### Example 1

n <- 1000
x <- runif(n)
y <- rnorm(n, 1 + x, 1 + x)
# true quantile function: Q(p | x) = beta0(p) + beta1(p)*x, with

# beta0(p) = beta1(p) = 1 + qnorm(p)

# fit the true model: b(p) = (1 , qnorm(p))
m1 <- iqr(y ~ x, formula.p = ~ I(qnorm(p)))
# the fitted quantile regression coefficient functions are

# beta0(p) = m1$coef[1,1] + m1$coef[1,2]*qnorm(p)
# beta1(p) = m1$coef[2,1] + m1$coef[2,2]*qnorm(p)

# a basis b(p) = (1, p), i.e., beta(p) is assumed to be a linear function of p
m2 <- iqr(y ~ x, formula.p = ~ p)

# a 'rich' basis b(p) = (1, p, p^2, log(p), log(1 - p))
m3 <- iqr(y ~ x, formula.p = ~ p + I(p^2) + I(log(p)) + I(log(1 - p)))

# 'slp' creates an orthogonal spline basis using shifted Legendre polynomials
m4 <- iqr(y ~ x, formula.p = ~ slp(p, k = 3)) # note that this is the default
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# 'plf' creates the basis of a piecewise linear function
m5 <- iqr(y ~ x, formula.p = ~ plf(p, knots = c(0.1,0.9)))

summary(m1)
summary(m1, p = c(0.25,0.5,0.75))
test.fit(m1)
par(mfrow = c(1,2)); plot(m1, ask = FALSE)
# see the documentation for 'summary.iqr', 'test.fit.iqr', and 'plot.iqr'

##### Example 2 ### excluding coefficients

n <- 1000
x <- runif(n)
qy <- function(p,x){(1 + qnorm(p)) + (1 + log(p))*x}
# true quantile function: Q(p | x) = beta0(p) + beta1(p)*x, with

# beta0(p) = 1 + qnorm(p)
# beta1(p) = 1 + log(p)

y <- qy(runif(n), x) # to generate y, plug uniform p in qy(p,x)
iqr(y ~ x, formula.p = ~ I(qnorm(p)) + I(log(p)))

# I would like to exclude log(p) from beta0(p), and qnorm(p) from beta1(p)
# I set to 0 the corresponding entries of 's'

s <- matrix(1,2,3); s[1,3] <- s[2,2] <- 0
iqr(y ~ x, formula.p = ~ I(qnorm(p)) + I(log(p)), s = s)

##### Example 3 ### excluding coefficients when b(p) is singular

n <- 1000
x <- runif(n)
qy <- function(p,x){(1 + log(p) - 2*log(1 - p)) + (1 + log(p/(1 - p)))*x}
# true quantile function: Q(p | x) = beta0(p) + beta1(p)*x, with

# beta0(p) = 1 + log(p) - 2*log(1 - p)
# beta1(p) = 1 + log(p/(1 - p))

y <- qy(runif(n), x) # to generate y, plug uniform p in qy(p,x)

iqr(y ~ x, formula.p = ~ I(log(p)) + I(log(1 - p)) + I(log(p/(1 - p))))
# log(p/(1 - p)) is dropped due to singularity

# I want beta0(p) to be a function of log(p) and log(1 - p),
# and beta1(p) to depend on log(p/(1 - p)) alone

s <- matrix(1,2,4); s[2,2:3] <- 0
iqr(y ~ x, formula.p = ~ I(log(p)) + I(log(1 - p)) + I(log(p/(1 - p))), s = s)
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# log(p/(1 - p)) is not dropped

##### Example 4 ### using slp to test deviations from normality

n <- 1000
x <- runif(n)
y <- rnorm(n, 2 + x)
# the true model is normal, i.e., b(p) = (1, qnorm(p))

summary(iqr(y ~ x, formula.p = ~ I(qnorm(p)) + slp(p,3)))
# if slp(p,3) is not significant, no deviation from normality

##### Example 5 ### formula without intercept

n <- 1000
x <- runif(n)
y <- runif(n, 0,x)

# True quantile function: Q(p | x) = p*x, i.e., beta0(p) = 0, beta1(p) = p
# When x = 0, all quantiles of y are 0, i.e., the distribution is degenerated
# To explicitly model this, remove the intercept from 'formula'

iqr(y ~ -1 + x, formula.p = ~ p)

# the true model does not have intercept in b(p) either:

iqr(y ~ -1 + x, formula.p = ~ -1 + p)

##### Example 6 ### no covariates, strictly positive outcome

n <- 1000
y <- rgamma(n, 3,1)

# you know that Q(0) = 0
# remove intercept from 'formula.p', and use b(p) such that b(0) = 0

summary(iqr(y ~ 1, formula.p = ~ -1 + slp(p,5))) # shifted Legendre polynomials
summary(iqr(y ~ 1, formula.p = ~ -1 + sin(p*pi/2) + I(qbeta(p,2,4)))) # unusual basis
summary(iqr(y ~ 1, formula.p = ~ -1 + I(sqrt(p))*I(log(1 - p)))) # you can include interactions

##### Example 7 ### revisiting the classical linear model
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n <- 1000
x <- runif(n)
y <- 2 + 3*x + rnorm(n,0,1) # beta0 = 2, beta1 = 3

iqr(y ~ x, formula.p = ~ I(qnorm(p)), s = matrix(c(1,1,1,0),2))
# first column of coefficients: (beta0, beta1)
# top-right coefficient: residual standard deviation

##### Example 8 ### censored data

n <- 1000
x <- runif(n,0,5)

u <- runif(n)
beta0 <- -log(1 - u)
beta1 <- 0.2*log(1 - u)
t <- beta0 + beta1*x # time variable
c <- rexp(n,2) # censoring variable
y <- pmin(t,c) # observed events
d <- (t <= c) # 1 = event, 0 = censored

iqr(Surv(y,d) ~ x, formula.p = ~ I(log(1 - p)))

##### Example 8 (cont.) ### censored and truncated data

z <- rexp(n,10) # truncation variable
w <- which(y > z) # only observe z,y,d,x when y > z
z <- z[w]; y <- y[w]; d <- d[w]; x <- x[w]

iqr(Surv(z,y,d) ~ x, formula.p = ~ I(log(1 - p)))

##### Example 9 ### interval-censored data
# (with a very naif data-generating process)

n <- 1000
x <- runif(n,0,5)

u <- runif(n)
beta0 <- 10*u + 20*u^2
beta1 <- 10*u
t <- beta0 + beta1*x # time variable
time1 <- floor(t) # lower bound
time2 <- ceiling(t) # upper bound
iqr(Surv(time1, time2, type = "interval2") ~ x, formula.p = ~ -1 + p + I(p^2))
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iqrL Quantile Regression Coefficients Modeling with Longitudinal Data

Description

This function implements Frumento et al’s (2021) method for quantile regression coefficients mod-
eling with longitudinal data.

Usage

iqrL(fx, fu = ~ slp(u,3), fz = ~ 1, fv = ~ -1 + I(qnorm(v)),
id, weights, s.theta, s.phi, data, tol = 1e-5, maxit)

Arguments

fx, fu, fz, fv formulas that describe the model (see ‘Details’).

id a vector of cluster identifiers.

weights an optional vector of weights to be used in the fitting process.

s.theta, s.phi optional 0/1 matrices that permit excluding some model coefficients.

data an optional data frame, list or environment containing the variables in fx and
fz.

tol convergence criterion for numerical optimization.

maxit maximum number of iterations. If missing, a default is computed.

Details

New users are recommended to read Frumento and Bottai’s (2016) paper for details on notation
and modeling, and to have some familiarity with the iqr command, of which iqrL is a natural
expansion.

The following data-generating process is assumed:

Yit = xitβ(Uit) + ziγ(Vi)

where xit are level-1 covariates, zi are level-2 covariates, and (Uit, Vi) are independent U(0, 1)
random variables. This model implies that αi = ziγ(Vi) are cluster-level effects with quantile
function ziγ(v), while xitβ(u) is the quantile function of Yit − αi.

Both β(u) and γ(v) are modeled parametrically, using a linear combination of known “basis” func-
tions b(u) and c(v) such that

β(u) = β(u|θ) = θb(u),

γ(u) = γ(u|ϕ) = ϕc(v),

where θ and ϕ are matrices of model parameters.

Model specification is implemented as follows.
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• fx is a two-sided formula of the form y ~ x.

• fu is a one-sided formula that describes b(u).

• fz is a one-sided formula of the form ~ z.

• fv is a one-sided formula that describes c(v).

By default, fu = ~ slp(u,3), a shifted Legendre’s polynomial (see slp), and the distribution of
αi is assumed to be Normal (fv = ~ -1 + I(qnorm(v))) and to not depend on covariates (fz =
~ 1).

Restrictions on θ and ϕ are imposed by setting to zero the corresponding elements of s.theta and
s.phi.

Value

An object of class “iqrL”, a list containing the following items:

theta, phi estimates of θ and ϕ.

obj.function the value of the minimized loss function, and, separately, the level-1 and the
level-2 loss. The number of model parameters (excluding the individual effects)
is returned as an attribute.

call the matched call.

converged logical. The convergence status.

n.it the number of iterations.
covar.theta, covar.phi

the estimated covariance matrices.
mf.theta, mf.phi

the model frames used to fit θ and ϕ, respectively. Note that mf.theta is sorted
by increasing id and, within each id, by increasing values of the response vari-
able y, while mf.phi is sorted by increasing id.

s.theta, s.phi the used ‘s.theta’ and ‘s.phi’ matrices.

fit a data.frame with the following variables:

• id the cluster identifier.
• y the response variable.
• alpha the estimated individual effects.
• y_alpha = y - alpha[id], the estimated responses purged of the individ-

ual effects.
• v estimates of Vi.
• u estimates of Uit.

Observations are sorted by increasing id and, within each id, by increasing y.

Use summary.iqrL, plot.iqrL, and predict.iqrL for summary information, plotting, and pre-
dictions from the fitted model. The function test.fit.iqrL can be used for goodness-of-fit as-
sessment. The generic accessory functions coefficients, formula, terms, model.matrix, vcov
are available to extract information from the fitted model.
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Author(s)

Paolo Frumento <paolo.frumento@unipi.it>

References

Frumento, P., and Bottai, M. (2016). Parametric modeling of quantile regression coefficient func-
tions. Biometrics, 72 (1), 74-84.

Frumento, P., Bottai, M., and Fernandez-Val, I. (2021). Parametric modeling of quantile regression
coefficient functions with longitudinal data. Journal of the American Statistical Association, 116
(534), 783-797.

See Also

summary.iqrL, plot.iqrL, predict.iqrL, for summary, plotting, and prediction, and test.fit.iqrL
for goodness-of-fit assessment. plf and slp to define b(u) or c(v) to be piecewise linear functions
and shifted Legendre polynomials, respectively.

Examples

##### Also see ?iqr for a tutorial on modeling
##### Using simulated data in all examples

##### Example 1

n <- 1000 # n. of observations
n.id <- 100 # n. of clusters
id <- rep(1:n.id, each = n/n.id) # cluster id

x1 <- runif(n) # a level-1 covariate
z1 <- rbinom(n,1,0.5)[id] # a level-2 covariate

V <- runif(n.id) # V_i
U <- runif(n) # U_it

alpha <- (0.5 + z1)*qnorm(V) # or alpha = rnorm(n.id, 0, 0.5 + z1)
y_alpha <- qexp(U) + 3*x1 # or y_alpha = 3*x1 + rexp(n)
y <- y_alpha + alpha[id] # observed outcome
mydata <- data.frame(id = id, y = y, x1 = x1, z1 = z1[id])

# true quantile function: beta0(u) + beta1(u)*x1 + gamma0(v) + gamma1(v)*z1
# beta0(u) = qexp(u)
# beta1(u) = 3
# gamma0(v) = 0.5*qnorm(v)
# gamma1(v) = qnorm(v)

##### Example 1 (cont.) fitting the model

model1 <- iqrL(fx = y ~ x1, fu = ~ I(qexp(u)), fz = ~ z1, fv = ~ -1 + I(qnorm(v)),
id = id, data = mydata)
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summary(model1) # theta, phi
summary(model1, level = 1, p = c(0.1,0.9)) # beta
summary(model1, level = 2, p = c(0.1,0.9)) # gamma
par(mfrow = c(2,2)); plot(model1, ask = FALSE)

##### Example 1 (cont.) - excluding coefficients

s.theta <- rbind(0:1,1:0) # beta0(u) has no intercept, and beta1(u) does not depend on u.
model2 <- iqrL(fx = y ~ x1, fu = ~ I(qexp(u)), fz = ~ z1, fv = ~ -1 + I(qnorm(v)),

id = id, s.theta = s.theta, data = mydata)
summary(model2)
test.fit(model2) # testing goodness-of-fit

##### Example 1 (cont.) - flexible modeling using slp for lev. 1, asymm. logistic for lev. 2

model3 <- iqrL(fx = y ~ x1, fu = ~ slp(u,3),
fz = ~ z1, fv = ~ -1 + I(log(2*v)) + I(-log(2*(1 - v))),
id = id, data = mydata)

par(mfrow = c(2,2)); plot(model3, ask = FALSE)

##### Example 2 - revisiting the classical linear random-effects model

n <- 1000 # n. of observations
n.id <- 100 # n. of clusters
id <- rep(1:n.id, each = n/n.id) # id

x1 <- runif(n,0,5)
E <- rnorm(n) # level-1 error
W <- rnorm(n.id, 0, 0.5) # level-2 error
y <- 2 + 3*x1 + E + W[id] # linear random-intercept model

s.theta <- rbind(1, 1:0)
linmod <- iqrL(fx = y ~ x1, fu = ~ I(qnorm(u)), id = id, s.theta = s.theta)
summary(linmod)

plf Basis of a Piecewise Linear Function

Description

Generates b1(p), b2(p), . . . such that, for 0 < p < 1,

θ1 ∗ b1(p) + θ2 ∗ b2(p) + . . .

is a piecewise linear function with slopes (θ1, θ2, . . .).
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Usage

plf(p, knots)

Arguments

p a numeric vector of values between 0 and 1.

knots a set of internal knots between 0 and 1. It can be NULL for no internal knots.

Details

This function permits computing a piecewise linear function on the unit interval. A different slope
holds between each pair of knots, and the function is continuous at the knots.

Value

A matrix with one row for each element of p, and length(knots) + 1 columns. The knots are
returned as attr(, "knots"). Any linear combination of the basis matrix is a piecewise linear
function where each coefficient represents the slope in the corresponding sub-interval (see ‘Exam-
ples’).

Note

This function is typically used within a call to iqr. A piecewise linear function can be used to
describe how quantile regression coefficients depend on the order of the quantile.

Author(s)

Paolo Frumento <paolo.frumento@unipi.it>

See Also

slp, for shifted Legendre polynomials.

Examples

p <- seq(0,1, 0.1)

a1 <- plf(p, knots = NULL) # returns p

a2 <- plf(p, knots = c(0.2,0.7))
plot(p, 3 + 1*a2[,1] - 1*a2[,2] + 2*a2[,3], type = "l")

# intercept = 3; slopes = (1,-1,2)
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plot.iqr Plot Quantile Regression Coefficients

Description

Plots quantile regression coefficients β(p) as a function of p, based on a fitted model of class “iqr”.

Usage

## S3 method for class 'iqr'
plot(x, conf.int = TRUE, polygon = TRUE, which = NULL, ask = TRUE, ...)

Arguments

x an object of class “iqr”, typically the result of a call to iqr.

conf.int logical. If TRUE, asymptotic 95% confidence intervals are added to the plot.

polygon logical. If TRUE, confidence intervals are represented by shaded areas via polygon.
Otherwise, dashed lines are used.

which an optional numerical vector indicating which coefficient(s) to plot. If which =
NULL, all coefficients are plotted.

ask logical. If which = NULL and ask = TRUE (the default), you will be asked
interactively which coefficients to plot.

... additional graphical parameters, that can include xlim, ylim, xlab, ylab,
col, lwd, cex.lab, cex.axis, axes, frame.plot. See par.

Details

Using iqr, each quantile regression coefficient β(p) is described by a linear combination of known
parametric functions of p. With this command, a plot of β(p) versus p is created. If ask = TRUE, an
additional option permits plotting a Q-Q plot of the fitted cumulative distribution function (CDF),
that should follow a U(0,1) distribution if the model is correctly specified. If the data are censored
or truncated, this is assessed applying the Kaplan-Meier estimator to the fitted CDF values. See also
test.fit for a formal test of uniformity.

Author(s)

Paolo Frumento <paolo.frumento@unipi.it>

See Also

iqr for model fitting; summary.iqr and predict.iqr for model summary and prediction.
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Examples

# using simulated data

n <- 1000
x <- runif(n)
qy <- function(p,x){p^2 + x*log(p)}
# true quantile function: Q(p | x) = beta0(p) + beta1(p)*x, with

# beta0(p) = p^2
# beta1(p) = log(p)

y <- qy(runif(n), x) # to generate y, plug uniform p in qy(p,x)

par(mfrow = c(1,2))
plot(iqr(y ~ x, formula.p = ~ slp(p,3)), ask = FALSE)
# flexible fit with shifted Legendre polynomials

plot.iqrL Plot Quantile Regression Coefficients with Longitudinal Data

Description

Plots quantile regression coefficients β(u) and γ(v), based on a fitted model of class “iqrL”.

Usage

## S3 method for class 'iqrL'
plot(x, conf.int = TRUE, polygon = TRUE, which = NULL, ask = TRUE, ...)

Arguments

x an object of class “iqrL”, the result of a call to iqrL.

conf.int logical. If TRUE, asymptotic 95% confidence intervals are added to the plot.

polygon logical. If TRUE, confidence intervals are represented by shaded areas via polygon.
Otherwise, dashed lines are used.

which an optional numerical vector indicating which coefficient(s) to plot. If which =
NULL, all coefficients are plotted.

ask logical. If which = NULL and ask = TRUE (the default), you will be asked
interactively which coefficients to plot. Additional options will permit creating
Q-Q plots of u or v, which should be independently distributed according to a
Uniform(0,1) distribution. The option ppplot(u,v) will generate a P-P plot that
compares the empirical distribution of (u,v) with its theoretical value, F(u,v)
= uv, at a discrete grid of points.

... additional graphical parameters, that can include xlim, ylim, xlab, ylab,
col, lwd, cex.lab, cex.axis, axes, frame.plot. See par.

Author(s)

Paolo Frumento <paolo.frumento@unipi.it>



predict.iqr 19

See Also

iqrL for model fitting; summary.iqrL and predict.iqrL for model summary and prediction.

Examples

# using simulated data

n <- 1000 # n. of observations
n.id <- 100 # n. of clusters
id <- rep(1:n.id, each = n/n.id) # cluster id

x1 <- runif(n) # a level-1 covariate
z1 <- rnorm(n.id) # a level-2 covariate

V <- runif(n.id) # V_i
U <- runif(n) # U_it

alpha <- 2*(V - 1) + z1 # alpha
y_alpha <- 1 + 2*qnorm(U) + 3*U*x1 # y - alpha
y <- y_alpha + alpha[id] # observed outcome
mydata <- data.frame(id = id, y = y, x1 = x1, z1 = z1[id])

model <- iqrL(fx = y ~ x1, fu = ~ I(qnorm(u)) + u,
fz = ~ z1, fv = ~ -1 + I(qnorm(v)), id = id, data = mydata)

par(mfrow = c(2,2))
plot(model, ask = FALSE)

predict.iqr Prediction After Quantile Regression Coefficients Modeling

Description

Predictions from an object of class “iqr”.

Usage

## S3 method for class 'iqr'
predict(object, type = c("beta", "CDF", "QF", "sim"), newdata, p, se = TRUE, ...)

Arguments

object an object of class “iqr”, the result of a call to iqr.

type a character string specifying the type of prediction. See ‘Details’.

newdata an optional data frame in which to look for variables with which to predict. If
omitted, the data are used. For type = "CDF", it must include the response
variable. Ignored if type = "beta".

p a numeric vector indicating the order(s) of the quantile to predict. Only used if
type = "beta" or type = "QF".
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se logical. If TRUE (the default), standard errors of the prediction will be computed.
Only used if type = "beta" or type = "QF".

... for future methods.

Details

Using iqr, quantile regression coefficients β(p) are modeled as parametric functions of p, the order
of the quantile. This implies that the model parameter is not β(p) itself. The function predict.iqr
permits computing β(p) and other quantities of interest, as detailed below.

• if type = "beta" (the default), β(p) is returned at the supplied value(s) of p. If p is missing,
a default p = (0.01, ..., 0.99) is used.

• if type = "CDF", the value of the fitted CDF (cumulative distribution function) and PDF
(probability density function) are computed.

• if type = "QF", the fitted values x′β(p), corresponding to the conditional quantile function,
are computed at the supplied values of p.

• if type = "sim", data are simulated from the fitted model. To simulate the data, the fitted
conditional quantile function is computed at randomly generated p following a Uniform(0,1)
distribution.

Value

• if type = "beta" a list with one item for each covariate in the model. Each element of the list
is a data frame with columns (p, beta, se, low, up) reporting β(p), its estimated standard
error, and the corresponding 95% confidence interval. If se = FALSE, the last three columns
are not computed.

• if type = "CDF", a two-columns data frame (CDF,PDF).

• if type = "QF" and se = FALSE, a data frame with one row for each observation, and one
column for each value of p. If se = TRUE, a list of two data frames, fit (predictions) and
se.fit (standard errors).

• if type = "sim", a vector of simulated data.

Note

Prediction may generate quantile crossing if the support of the new covariates values supplied in
newdata is different from that of the observed data.

Author(s)

Paolo Frumento <paolo.frumento@unipi.it>

See Also

iqr, for model fitting; summary.iqr and plot.iqr, for summarizing and plotting iqr objects.
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Examples

# using simulated data

n <- 1000
x <- runif(n)
y <- rlogis(n, 1 + x, 1 + x)
# true quantile function: Q(p | x) = beta0(p) + beta1(p)*x, with

# beta0(p) = beta1(p) = 1 + log(p/(1 - p))

model <- iqr(y ~ x, formula.p = ~ I(log(p)) + I(log(1 - p)))
# (fit asymmetric logistic distribution)

# predict beta(0.25), beta(0.5), beta(0.75)
predict(model, type = "beta", p = c(0.25,0.5, 0.75))

# predict the CDF and the PDF at new values of x and y
predict(model, type = "CDF", newdata = data.frame(x = c(.1,.2,.3), y = c(1,2,3)))

# computes the quantile function at new x, for p = (0.25,0.5,0.75)
predict(model, type = "QF", p = c(0.25,0.5,0.75), newdata = data.frame(x = c(.1,.2,.3)))

# simulate data from the fitted model
ysim <- predict(model, type = "sim") # 'newdata' can be supplied

# if the model is correct, the distribution of y and that of ysim should be similar
qy <- quantile(y, prob = seq(.1,.9,.1))
qsim <- quantile(ysim, prob = seq(.1,.9,.1))
plot(qy, qsim); abline(0,1)

predict.iqrL Prediction After Quantile Regression Coefficients Modeling with Lon-
gitudinal Data

Description

Predictions from an object of class “iqrL”.

Usage

## S3 method for class 'iqrL'
predict(object, level, type = c("coef", "CDF", "QF", "sim"), newdata, p, se = FALSE, ...)

Arguments

object an object of class “iqrL”, the result of a call to iqrL.

level a numeric scalar. Use level = 1 to predict yit −αi, and level = 2 to predict αi

(see iqrL for the notation).
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type a character string specifying the type of prediction. See ‘Details’.

newdata an optional data frame in which to look for variables with which to predict (ig-
nored if type = "coef"). For type = "CDF", newdata must include a response
variable named ‘y_alpha’, if level = 1, and ‘alpha’ if level = 2. If newdata
is omitted, the observed data will be used, and y_alpha and alpha will be taken
from object$fit.

p a numeric vector indicating the order(s) of the quantile to predict. Only used if
type = "coef" or type = "QF".

se logical. If TRUE (the default), standard errors of the prediction will be computed.
Only used if type = "coef" or type = "QF".

... for future methods.

Details

• if type = "coef" (the default), quantile regression coefficients are returned: if level = 1,
β(p); and if level = 2, γ(p). If p is missing, a default p = (0.01, ..., 0.99) is used.

• if type = "CDF", the value of the fitted CDF (cumulative distribution function) and PDF
(probability density function) are computed. If level = 1, these refer to the distribution of
Yit − αi = xitβ(Uit), and the CDF is an estimate of Uit. If level = 2, they refer to the
distribution of αi = ziγ(Vi), and the CDF is an estimate of Vi.

• if type = "QF", the fitted values xβ(p) (if level = 1), or zγ(p) (if level = 2).

• if type = "sim", data are simulated from the fitted model. If level = 1, simulated values
are from the distribution of Yit − αi, while if level = 2, they are from the distribution of αi.

Value

• if type = "coef" a list with one item for each covariate. Each element of the list is a data
frame with columns (u, beta, se, low, up), if level = 1, and (v, gamma, se, low,
up), if level = 2. If se = FALSE, the last three columns are not computed.

• if type = "CDF", a two-columns data frame (CDF,PDF).

• if type = "QF" and se = FALSE, a data frame with one row for each observation, and one
column for each value of p. If se = TRUE, a list of two data frames, fit (predictions) and
se.fit (standard errors).

• if type = "sim", a vector of simulated data.

Note

If no newdata are supplied, the observed data are used and predictions are ordered as follows:

• if level = 1, by increasing id and, within each id, by increasing values of the response
variable y. Rownames will indicate the position in the original data frame.

• if level = 2, by increasing id.

Author(s)

Paolo Frumento <paolo.frumento@unipi.it>
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See Also

iqrL, for model fitting; summary.iqrL and plot.iqrL, for summarizing and plotting iqrL objects.

Examples

# using simulated data

n <- 1000 # n. of observations
n.id <- 100 # n. of clusters
id <- rep(1:n.id, each = n/n.id) # cluster id

x1 <- runif(n) # a level-1 covariate
z1 <- rbinom(n.id,1,0.5) # a level-2 covariate

V <- runif(n.id) # V_i
U <- runif(n) # U_it

alpha <- qlogis(V)*(0.5 + z1) # alpha
y_alpha <- 1 + 2*qexp(U) + 3*x1 # y - alpha
y <- y_alpha + alpha[id] # observed outcome
mydata <- data.frame(id = id, y = y, x1 = x1, z1 = z1[id])

# true model: Y_it = beta0(U_it) + beta1(U_it)*x1 + gamma0(V_i) + gamma1(V_i)*z1
# beta0(u) = 1 + 2*pexp(u)
# beta1(u) = 3
# gamma0(v) = 0.5*qlogis(v)
# gamma1(v) = qlogis(V)

model <- iqrL(fx = y ~ x1, fu = ~ I(qexp(u)), fz = ~ z1, fv = ~ -1 + I(qlogis(v)),
id = id, data = mydata)

# predict beta(0.25), beta(0.5), beta(0.75)
predict(model, level = 1, type = "coef", p = c(0.25,0.5,0.75))

# predict gamma(0.1), gamma(0.9)
predict(model, level = 2, type = "coef", p = c(0.1,0.9))

# predict the CDF (u) and the PDF of (y - alpha), at new values of x1
predict(model, level = 1, type = "CDF",

newdata = data.frame(x1 = c(.1,.2,.3), y_alpha = c(1,2,3)))

# predict the CDF (v) and the PDF of alpha, at new values of z1
predict(model, level = 2, type = "CDF",

newdata = data.frame(z1 = c(0,1), alpha = c(-1,1)))

# computes the quantile function of (y - alpha) at new x1, for u = (0.25,0.5,0.75)
predict(model, level = 1, type = "QF", p = c(0.25,0.5,0.75),

newdata = data.frame(x1 = c(.1,.2,.3)))

# computes the quantile function of alpha at new z1, for v = (0.25,0.5,0.75)
predict(model, level = 2, type = "QF", p = c(0.25,0.5,0.75),

newdata = data.frame(z1 = c(.1,.2,.3)))
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# simulate data from the fitted model
y_alpha_sim <- predict(model, level = 1, type = "sim")
alpha_sim <- predict(model, level = 2, type = "sim")
y_sim = y_alpha_sim + alpha_sim[id]

qc.control Estimate Non-Crossing Quantile Functions

Description

This function generates a list of arguments to be used as operational parameters for remove.qc
within a call to iqr. Additionally, this R documentation page contains a short description of the
algorithm, which is presented in details in Sottile and Frumento (2023).

Usage

qc.control(maxTry = 25, trace = FALSE, lambda = NULL)

Arguments

maxTry maximum number of attempts of the algorithm.

trace logical: should the progress be printed on screen?

lambda an optional positive scalar to be used as tuning parameter (see “Details”). By
default, lambda = NULL.

Details

Quantile crossing occurs when the first derivative of the estimated quantile function is negative at
some value of p. The argument remove.qc of the iqr function can be used to eliminate quantile
crossing.

The algorithm proceeds as follows. A penalization that reflects the severity of crossing is added to
the loss function. The weight of the penalty term is determined by a tuning parameter λ. If λ is too
small, the penalization has no effect. However, if λ is too large, the objective function may lose its
convexity, causing a malfunctioning of the algorithm. In general, the value of λ is not user-defined.
The algorithm starts with an initial guess for the tuning parameter, and proceeds adaptively until it
finds a suitable value. The maximum number of iterations is determined by the maxTry argument
of this function (default maxTry = 25). The algorithm stops automatically when the crossIndex
of the model (see diagnose.qc) is zero, or when no further progress is possible.

It is possible to supply a user-defined value of λ, e.g., lambda = 7.5. If this happens, the model is
estimated once, using the requested lambda, while the maxTry argument is ignored.

This method allows for censored or truncated data, that are supported by iqr. Full details are
provided in Sottile and Frumento (2021).
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Value

The function performs a sanity check and returns its arguments.

Note

Occasionally, the loss of the penalized model is smaller than that of the unconstrained fit. This is
either an artifact due to numerical approximations or lack of convergence, or is explained by the
fact that, if the quantile function is ill-defined, so is the loss function of the model. With censored
or truncated data, however, it can also be explained by the fact that the obj.function of the model
is NOT the function being minimized (see note 3 in the documentation of iqr).

Author(s)

Paolo Frumento <paolo.frumento@unipi.it>

References

Sottile, G., and Frumento, P. (2023). Parametric estimation of non-crossing quantile functions.
Statistical Modelling, 23(2), 173-195.

See Also

iqr, diagnose.qc.

Examples

# Using simulated data

set.seed(1111)
n <- 1000
x1 <- runif(n,0,3)
x2 <- rbinom(n,1,0.5)

u <- runif(n)
y <- 1*qexp(u) + (2 + 3*u)*x1 + 5*x2

# This model is likely to suffer from quantile crossing
m <- iqr(y ~ x1 + x2, formula.p = ~ slp(p,7))
diagnose.qc(m)

# Repeat estimation with remove.qc = TRUE
m2 <- iqr(y ~ x1 + x2, formula.p = ~ slp(p,7), remove.qc = TRUE)
diagnose.qc(m2)

# Use remove.qc = qc.control(trace = TRUE) to see what is going on!
# You can set a larger 'maxTry', if the algorithm failed to remove
# quantile crossing entirely, or a smaller one, if you want to stop
# the procedure before it becomes 'too expensive' in terms of loss.
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slp Shifted Legendre Polynomials

Description

Computes shifted Legendre polynomials.

Usage

slp(p, k = 3, intercept = FALSE)

Arguments

p the variable for which to compute the polynomials. Must be 0 <= p <= 1.

k the degree of the polynomial.

intercept logical. If TRUE, the polynomials include the constant term.

Details

Shifted Legendre polynomials (SLP) are orthogonal polynomial functions in (0,1) that can be used
to build a spline basis, typically within a call to iqr. The constant term is omitted unless intercept
= TRUE: for example, the first two SLP are (2*p - 1, 6*p^2 - 6*p + 1), but slp(p, k = 2) will only
return (2*p, 6*p^2 - 6*p).

Value

An object of class “slp”, i.e., a matrix with the same number of rows as p, and with k columns
named slp1, slp2, ... containing the SLP of the corresponding orders. The value of k is reported
as attribute.

Note

The estimation algorithm of iqr is optimized for objects of class “slp”, which means that us-
ing formula.p = ~ slp(p, k) instead of formula.p = ~ p + I(p^2) + ... + I(p^k) will result in a
quicker computation, even with k = 1, with equivalent results. The default for iqr is formula.p =
~ slp(p, k = 3).

Author(s)

Paolo Frumento <paolo.frumento@unipi.it>

References

Refaat El Attar (2009), Legendre Polynomials and Functions, CreateSpace, ISBN 978-1-4414-
9012-4.



summary.iqr 27

See Also

plf, for piecewise linear functions in the unit interval.

Examples

p <- seq(0,1,0.1)
slp(p, k = 1) # = 2*p
slp(p, k = 1, intercept = TRUE) # = 2*p - 1 (this is the true SLP of order 1)
slp(p, k = 3) # a linear combination of (p, p^2, p^3), with slp(0,k) = 0

summary.iqr Summary After Quantile Regression Coefficients Modeling

Description

Summary of an object of class “iqr”.

Usage

## S3 method for class 'iqr'
summary(object, p, cov = FALSE, ...)

Arguments

object an object of class “iqr”, the result of a call to iqr.

p an optional vector of quantiles.

cov logical. If TRUE, the covariance matrix of β(p) is reported. Ignored if p is
missing.

... for future methods.

Details

If p is missing, a summary of the fitted model is reported. This includes the estimated coefficients,
their standard errors, and other summaries (see ‘Value’). If p is supplied, the quantile regression
coefficients of order p are extrapolated and summarized.

Value

If p is supplied, a standard summary of the estimated quantile regression coefficients is returned for
each value of p. If cov = TRUE, the covariance matrix is also reported.

If p is missing (the default), a list with the following items:

converged logical value indicating the convergence status.

n.it the number of iterations.

n the number of observations.

free.par the number of free parameters in the model.
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coefficients the matrix of estimated coefficients. Each row corresponds to a covariate, while
each column corresponds to an element of b(p), the set of functions that describe
how quantile regression coefficients vary with the order of the quantile. See
‘Examples’.

se the estimated standard errors.
test.x Wald test for the covariates. Each row of coefficients is tested for nullity.
test.p Wald test for the building blocks of the quantile function. Each column of

coefficients is tested for nullity.
obj.function the minimized loss function (NULL if the data are censored or truncated).
call the matched call.

Note

In version 1.0 of the package, a chi-squared goodness-of-fit test was provided. The test appeared to
be unreliable and has been removed from the subsequent versions. Use test.fit.

Author(s)

Paolo Frumento <paolo.frumento@unipi.it>

See Also

iqr, for model fitting; predict.iqr and plot.iqr, for predicting and plotting objects of class
“iqr”. test.fit.iqr for a goodness-of-fit test.

Examples

# using simulated data

set.seed(1234); n <- 1000
x1 <- rexp(n)
x2 <- runif(n)
qy <- function(p,x){qnorm(p)*(1 + x)}
# true quantile function: Q(p | x) = beta0(p) + beta1(p)*x, with

# beta0(p) = beta1(p) = qnorm(p)

y <- qy(runif(n), x1) # to generate y, plug uniform p in qy(p,x)
# note that x2 does not enter

model <- iqr(y ~ x1 + x2, formula.p = ~ I(qnorm(p)) + p + I(p^2))
# beta(p) is modeled by linear combinations of b(p) = (1, qnorm(p),p,p^2)

summary(model)
# interpretation:

# beta0(p) = model$coef[1,]*b(p)
# beta1(p) = model$coef[2,]*b(p); etc.

# x2 and (p, p^2) are not significant

summary(model, p = c(0.25, 0.75)) # summary of beta(p) at selected quantiles
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summary.iqrL Summary After Quantile Regression Coefficients Modeling With Lon-
gitudinal Data

Description

Summary of an object of class “iqrL”.

Usage

## S3 method for class 'iqrL'
summary(object, p, level, cov = FALSE, ...)

Arguments

object an object of class “iqrL”, the result of a call to iqrL.
p an optional vector of quantiles.
level a numeric scalar. Use level = 1 to summarize β(u), and level = 2 to summa-

rize γ(v). Ignored if p is missing.
cov logical. If TRUE, the covariance matrix of the coefficients or is reported. Ignored

if p is missing.
... for future methods.

Value

If p is supplied, a standard summary of the estimated quantile regression coefficients is returned for
each value of p: if level = 1, a summary of beta(p), and if level = 2, a summary of gamma(p).
If cov = TRUE, the covariance matrix is also reported.
If p is missing (the default), a list with the following items:

converged logical value indicating the convergence status.
n.it the number of iterations.
n the number of observations.
n.id the number of unique ids.
free.par the number of free parameters in the model, excluding fixed effects.
theta the estimate of θ.
se.theta the estimated standard errors associated with theta.
phi the estimate of ϕ.
se.phi the estimated standard errors associated with phi.
test.row.theta, test.row.phi

Wald test for the covariates. Each row of theta and phi is tested for nullity.
test.col.theta, test.col.phi

Wald test for the building blocks of the quantile function. Each column of theta
and phi is tested for nullity.

obj.function the minimized loss function.
call the matched call.
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Author(s)

Paolo Frumento <paolo.frumento@unipi.it>

See Also

iqrL, for model fitting; predict.iqrL and plot.iqrL, for predicting and plotting objects of class
“iqrL”; test.fit.iqrL for a goodness-of-fit test.

Examples

# using simulated data

n <- 1000 # n. of observations
n.id <- 100 # n. of clusters
id <- rep(1:n.id, each = n/n.id) # cluster id

x <- rexp(n) # a covariate

V <- runif(n.id) # V_i
U <- runif(n) # U_it
y <- 1 + 2*log(U) + 3*x + 0.5*qnorm(V)

# true quantile function: Q(u,v | x) = beta0(u) + beta1(u)*x + gamma0(v), with
# beta0(u) = 1 + 2*log(u)
# beta1(u) = 3
# gamma0(v) = 0.5*qnorm(v)

model <- iqrL(fx = y ~ x, fu = ~ 1 + I(log(u)), fz = ~ 1, fv = ~ -1 + I(qnorm(v)), id = id)
summary(model)
summary(model, level = 1, p = c(0.25, 0.75)) # summary of beta(u) at selected quantiles
summary(model, level = 2, p = c(0.1, 0.9)) # summary of gamma(v) at selected quantiles

test.fit Goodness-of-Fit Test

Description

Generic method for goodness-of-fit test.

Usage

test.fit(object, ...)

Arguments

object an object of class “iqr” or “iqrL”.

... additional arguments to be supplied to test.fit.iqr or test.fit.iqrL.
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Details

This function will simply call test.fit.iqr or test.fit.iqrL depending on class(object).

Value

The test statistic(s) and the associated p-values evaluated with Monte Carlo.

See Also

test.fit.iqr, test.fit.iqrL

test.fit.iqr Goodness-of-Fit Test

Description

Goodness-of-fit test for a model fitted with iqr. The Kolmogorov-Smirnov statistic and the Cramer-
Von Mises statistic are computed. Their distribution under the null hypothesis is evaluated with
Monte Carlo.

Usage

## S3 method for class 'iqr'
test.fit(object, R = 100, zcmodel, icmodel, trace = FALSE, ...)

Arguments

object an object of class “iqr”.

R number of Monte Carlo replications. If R = 0, the function only returns the test
statistics.

zcmodel a numeric value indicating how to model the joint distribution of censoring (C)
and truncation (Z). See ‘Details’.

icmodel a list of operational parameters to simulate interval-censored data. See ‘Details’.

trace logical. If TRUE, the progress will be printed.

... for future arguments.

Details

This function permits assessing goodness of fit by testing the null hypothesis that the CDF values
follow a U(0, 1) distribution, indicating that the model is correctly specified. Since the fitted CDF
values depend on estimated parameters, the distribution of the test statistic is not known. To evaluate
it, the model is fitted on R simulated datasets generated under the null hypothesis.

The testing procedures are described in details by Frumento and Bottai (2016, 2017) and Frumento
and Corsini (2024).
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Right-censored and left-truncated data. If the data are censored and truncated, object$CDF is
as well a censored and truncated outcome, and its quantiles must be computed by using a suitable
version of Kaplan-Meier product-limit estimator. The fitted survival curve is then compared with
that of a U(0, 1) distribution.

To run Monte Carlo simulations when data are censored or truncated, it is necessary to estimate the
distribution of the censoring and that of the truncation variable. To this goal, the function pchreg
from the pch package is used, with default settings.

The joint distribution of the censoring variable (C) and the truncation variable (Z) can be specified
in two ways:

• If zcmodel = 1, it is assumed that C = Z + U , where U is a positive variable and is
independent of Z, given covariates. This is the most common situation, and is verified when
censoring occurs at the end of the follow-up. Under this scenario, C and Z are correlated with
P (C > Z) = 1.

• If zcmodel = 2, it is assumed that C and Z are conditionally independent. This situation is
more plausible when all censoring is due to drop-out.

Interval-censored data.

If the data are interval-censored, object$CDF is composed of two columns, left and right. A
nonparametric estimator is applied to the interval-censored pair (left, right) using the icenReg
R package. The fitted quantiles are then compared with those of a U(0, 1) distribution.

To simulate interval-censored data, additional information is required about the censoring mech-
anism. This testing procedure assumes that interval censoring occurs because each individual is
only examined at discrete time points, say t[1], t[2], t[3],... If this is not the mechanism that
generated your data, you should not use this function.

In the ideal situation, one can use t[1], t[2], t[3],... to estimate the distribution of the time
between visits, t[j + 1] - t[j]. If, however, one only knows time1 and time2, the two endpoints
of the interval, things are more complicated. The empirical distribution of time2 - time1 is NOT
a good estimator of the distribution of t[j + 1] - t[j], because the events are likely contained in
longer intervals, a fact that obviously generates selection bias. There are two common situations:
either t[j + 1] - t[j] is a constant (e.g., one month), or it is random. If t[j + 1] - t[j] is random
and has an Exponential distribution with scale lambda, then time2 - time1 has a Gamma(shape =
2, scale = lambda) distribution. This is due to the property of memoryless of the Exponential
distribution, and may only be an approximation if there is a floor effect (i.e., if lambda is larger than
the low quantiles of the time-to-event).

The icmodel argument must be a list with four elements, model, lambda (optional), t0, and
logscale:

• model. A character string, either 'constant' or 'exponential'.

• lambda. If model = 'constant', lambda will be interpreted as a constant time between visits.
If model = 'exponential', instead, it will be interpreted as the mean (not the rate) of the
Exponential distribution that is assumed to describe the time between visits.
If you either know lambda, or you can estimate it by using additional information (e.g., indi-
vidual data on all visit times t[1], t[2], t[3], ...), you can supply a scalar value, that will
be used for all individuals, or a vector, allowing lambda to differ across individuals.
If, instead, lambda is not supplied or is NULL, the algorithm proceeds as follows. If model
= 'constant', the time between visits is assumed to be constant and equal to lambda =
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mean(time2 - time1). If model = 'exponential', times between visits are generated from
an Exponential distribution in which the mean, lambda, is allowed to depend on covariates ac-
cording to a log-linear model, and is estimated by fitting a Gamma model on time2 - time1
as described earlier.

• t0. If t0 = 0, data will be simulated assuming that the first visit occurs at time = 0 (the
“onset”), i.e., when the individual enters the risk set. This mechanism cannot generate left
censoring. If t0 = 1, instead, the first visit occurs after time zero. This mechanism generates
left censoring whenever the event occurs before the first visit. Finally, if t0 = -1, visits start
before time 0. Under this scenario, it is assumed that not only the time at the event, but also
the time at onset is interval-censored. If the event occurs in the interval (time1, time2), and
the onset is in (t01, t02), then the total duration is in the interval (time1 - t02, time2 -
t01).

• logscale. Logical: is the response variable on the log scale? If this is the case, the Monte
Carlo procedure will act accordingly. Note that lambda will always be assumed to describe
the time between visits on the natural scale.

The mechanism described above can automatically account for the presence of left censoring. In or-
der to simulate right-censored observations (if present in the data), the distribution of the censoring
variable is estimated with the function pchreg from the pch package.

Value

a matrix with columns statistic and p.value, reporting the Kolmogorov-Smirnov and Cramer-
Von Mises statistic and the associated p-values evaluated with Monte Carlo.

Author(s)

Paolo Frumento <paolo.frumento@unipi.it>

References

Frumento, P., and Bottai, M. (2016). Parametric modeling of quantile regression coefficient func-
tions. Biometrics, 72 (1), pp 74-84, doi: 10.1111/biom.12410.

Frumento, P., and Bottai, M. (2017). Parametric modeling of quantile regression coefficient func-
tions with censored and truncated data. Biometrics, doi: 10.1111/biom.12675.

Frumento, P., and Corsini, L. (2024). Using parametric quantile regression to investigate determi-
nants of unemployment duration. Unpublished manuscript.

Examples

y <- rnorm(1000)
m1 <- iqr(y ~ 1, formula.p = ~ I(qnorm(p))) # correct
m2 <- iqr(y ~ 1, formula.p = ~ p) # misspecified

test.fit(m1)
test.fit(m2)
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test.fit.iqrL Goodness-of-Fit Test

Description

Goodness-of-fit test for a model fitted with iqrL. The Kolmogorov-Smirnov statistic is computed
and its distribution under the null hypothesis is evaluated with Monte Carlo.

Usage

## S3 method for class 'iqrL'
test.fit(object, R = 100, trace = FALSE, ...)

Arguments

object an object of class “iqrL”.

R number of Monte Carlo replications. If R = 0, the function only returns the test
statistic.

trace logical. If TRUE, the progress will be printed.

... for future arguments.

Details

This function permits assessing goodness of fit by testing the null hypothesis that the estimated
(u,v) values are independent uniform variables. To evaluate the distribution of the test statistic
under the true model, a Monte Carlo method is used (Frumento et al, 2021).

Value

a vector with entries statistic and p.value, reporting the Kolmogorov-Smirnov statistic (evalu-
ated on a grid) and the associated p-value.

Author(s)

Paolo Frumento <paolo.frumento@unipi.it>

References

Frumento, P., Bottai, M., and Fernandez-Val, I. (2021). Parametric modeling of quantile regression
coefficient functions with longitudinal data. Journal of the American Statistical Association, 116
(534), 783-797.
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Examples

id <- rep(1:50, each = 10)
y <- rnorm(500) + rnorm(50)[id]
m1 <- iqrL(fx = y ~ 1, fu = ~ I(qnorm(u)), id = id) # correct
m2 <- iqrL(fx = y ~ 1, fu = ~ u, id = id) # misspecified

test.fit(m1, R = 20)
test.fit(m2, R = 20)

# Warning: this procedure may be time-consuming.
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