Title: | Bridging the Gap Between Qualitative Data and Quantitative Analysis |
---|---|
Description: | Automates many of the tasks associated with quantitative discourse analysis of transcripts containing discourse including frequency counts of sentence types, words, sentences, turns of talk, syllables and other assorted analysis tasks. The package provides parsing tools for preparing transcript data. Many functions enable the user to aggregate data by any number of grouping variables, providing analysis and seamless integration with other R packages that undertake higher level analysis and visualization of text. This affords the user a more efficient and targeted analysis. 'qdap' is designed for transcript analysis, however, many functions are applicable to other areas of Text Mining/ Natural Language Processing. |
Authors: | Tyler Rinker [aut, cre], Bryan Goodrich [ctb], Dason Kurkiewicz [ctb] |
Maintainer: | Tyler Rinker <[email protected]> |
License: | GPL-2 |
Version: | 2.4.6 |
Built: | 2024-12-30 09:15:24 UTC |
Source: | CRAN |
%&%
- Chain qdap_df
s to qdap functions with a
text.var
argument. Saves typing of an explicit text.var
argument and supplying a data.frame
.
%>%
- The magrittr "then" chain operator imported by
dplyr. Imported for convenience. See
https://github.com/tidyverse/magrittr for details.
qdap_df.object %&% qdap.fun lhs %>% rhs
qdap_df.object %&% qdap.fun lhs %>% rhs
qdap_df.object |
A |
qdap.fun |
A qdap function with a |
lhs |
The value to be piped. |
rhs |
A function or expression. |
Inspired by magrittr's %>%
functionality.
## Not run: dat <- qdap_df(DATA, state) dat %&% trans_cloud(grouping.var=person) dat %&% trans_cloud(grouping.var=person, text.var=stemmer(DATA$state)) dat %&% termco(grouping.var=person, match.list=list("fun", "computer")) ## Various examples with qdap functions (sentSplit gives class "qdap_df") dat <- sentSplit(DATA, "state") dat %&% trans_cloud(grouping.var=person) dat %&% termco(person, match.list=list("fun", "computer")) dat %&% trans_venn(person) dat %&% polarity(person) dat %&% formality(person) dat %&% automated_readability_index(person) dat %&% Dissimilarity(person) dat %&% gradient_cloud(sex) dat %&% dispersion_plot(c("fun", "computer")) dat %&% discourse_map(list(sex, adult)) dat %&% gantt_plot(person) dat %&% word_list(adult) dat %&% end_mark_by(person) dat %&% end_mark() dat %&% word_stats(person) dat %&% wfm(person) dat %&% word_cor(person, "i") dat %&% sentCombine(person) dat %&% question_type(person) dat %&% word_network_plot() dat %&% character_count() dat %&% char_table(person) dat %&% phrase_net(2, .1) dat %&% boolean_search("it||!") dat %&% trans_context(person, which(end_mark(DATA.SPLIT[, "state"]) == "?")) dat %&% mgsub(c("it's", "I'm"), c("it is", "I am")) ## combine with magrittr/dplyr chaining dat %&% wfm(person) %>% plot() dat %&% polarity(person) %>% scores() dat %&% polarity(person) %>% counts() dat %&% polarity(person) %>% scores() dat %&% polarity(person) %>% scores() %>% plot() dat %&% polarity(person) %>% scores %>% plot ## Change text column in `qdap_df` (Example 1) dat2 <- sentSplit(DATA, "state", stem.col = TRUE) class(dat2) dat2 %&% trans_cloud() Text(dat2) ## change the `text.var` column Text(dat2) <- "stem.text" dat2 %&% trans_cloud() ## Change text column in `qdap_df` (Example 2) (dat2$fake_dat <- paste(emoticon[1:11,2], dat2$state)) Text(dat2) <- "fake_dat" (m <- dat2 %&% sub_holder(emoticon[,2])) m$unhold(strip(m$output)) ## End(Not run)
## Not run: dat <- qdap_df(DATA, state) dat %&% trans_cloud(grouping.var=person) dat %&% trans_cloud(grouping.var=person, text.var=stemmer(DATA$state)) dat %&% termco(grouping.var=person, match.list=list("fun", "computer")) ## Various examples with qdap functions (sentSplit gives class "qdap_df") dat <- sentSplit(DATA, "state") dat %&% trans_cloud(grouping.var=person) dat %&% termco(person, match.list=list("fun", "computer")) dat %&% trans_venn(person) dat %&% polarity(person) dat %&% formality(person) dat %&% automated_readability_index(person) dat %&% Dissimilarity(person) dat %&% gradient_cloud(sex) dat %&% dispersion_plot(c("fun", "computer")) dat %&% discourse_map(list(sex, adult)) dat %&% gantt_plot(person) dat %&% word_list(adult) dat %&% end_mark_by(person) dat %&% end_mark() dat %&% word_stats(person) dat %&% wfm(person) dat %&% word_cor(person, "i") dat %&% sentCombine(person) dat %&% question_type(person) dat %&% word_network_plot() dat %&% character_count() dat %&% char_table(person) dat %&% phrase_net(2, .1) dat %&% boolean_search("it||!") dat %&% trans_context(person, which(end_mark(DATA.SPLIT[, "state"]) == "?")) dat %&% mgsub(c("it's", "I'm"), c("it is", "I am")) ## combine with magrittr/dplyr chaining dat %&% wfm(person) %>% plot() dat %&% polarity(person) %>% scores() dat %&% polarity(person) %>% counts() dat %&% polarity(person) %>% scores() dat %&% polarity(person) %>% scores() %>% plot() dat %&% polarity(person) %>% scores %>% plot ## Change text column in `qdap_df` (Example 1) dat2 <- sentSplit(DATA, "state", stem.col = TRUE) class(dat2) dat2 %&% trans_cloud() Text(dat2) ## change the `text.var` column Text(dat2) <- "stem.text" dat2 %&% trans_cloud() ## Change text column in `qdap_df` (Example 2) (dat2$fake_dat <- paste(emoticon[1:11,2], dat2$state)) Text(dat2) <- "fake_dat" (m <- dat2 %&% sub_holder(emoticon[,2])) m$unhold(strip(m$output)) ## End(Not run)
This operator allows you to add themes to a Network object.
## S3 method for class 'Network' Network.obj + x
## S3 method for class 'Network' Network.obj + x
Network.obj |
An object of class |
x |
A component to add to |
Automatically detect missing endmarks and replace with the |
endmark
symbol to indicate an incomplete sentence.
add_incomplete(text.var, endmarks = "[.?|!]+$", silent = FALSE)
add_incomplete(text.var, endmarks = "[.?|!]+$", silent = FALSE)
text.var |
The text variable. |
endmarks |
A reguar expression to check for endmarks. |
silent |
logical. If |
Returns a vector with missing endmarks replaced with |
.
add_incomplete( c( "This in a", "I am funny!", "An ending of sorts%", "What do you want?" ) )
add_incomplete( c( "This in a", "I am funny!", "An ending of sorts%", "What do you want?" ) )
Add -s, -es, or -ies to words.
add_s(x, keep.original = TRUE)
add_s(x, keep.original = TRUE)
x |
A vector of words to make plural. |
keep.original |
logical. If |
Returns a vector of plural words.
set.seed(10) add_s(sample(GradyAugmented, 10)) set.seed(10) add_s(sample(GradyAugmented, 10), FALSE)
set.seed(10) add_s(sample(GradyAugmented, 10)) set.seed(10) add_s(sample(GradyAugmented, 10), FALSE)
Takes a matrix (wfm) or termco object and generates an adjacency matrix for use with the igraph package.
adjacency_matrix(matrix.obj) adjmat(matrix.obj)
adjacency_matrix(matrix.obj) adjmat(matrix.obj)
matrix.obj |
A matrix object, preferably, of the class "termco"
generated from |
Returns list:
boolean |
A Boolean matrix |
adjacency |
An adjacency matrix. Diagonals are the total (sum) number of occurrences a variable had |
shared |
An adjacency matrix with no diagonal and the upper triangle replaced with NA |
sum |
The diagonal of the adjacency matrix; the total (sum) number of occurrences a variable had |
## Not run: words <- c(" you", " the", "it", "oo") Terms <- with(DATA, termco(state, list(sex, adult), words)) Terms adjacency_matrix(Terms) wordLIST <- c(" montague", " capulet", " court", " marry") raj.termco <- with(raj.act.1, termco(dialogue, person, wordLIST)) raj.adjmat <- adjmat(raj.termco) names(raj.adjmat) #see what's available from the adjacency_matrix object library(igraph) g <- graph.adjacency(raj.adjmat$adjacency, weighted=TRUE, mode ="undirected") g <- simplify(g) V(g)$label <- V(g)$name V(g)$degree <- degree(g) plot(g, layout=layout.auto(g)) ## End(Not run)
## Not run: words <- c(" you", " the", "it", "oo") Terms <- with(DATA, termco(state, list(sex, adult), words)) Terms adjacency_matrix(Terms) wordLIST <- c(" montague", " capulet", " court", " marry") raj.termco <- with(raj.act.1, termco(dialogue, person, wordLIST)) raj.adjmat <- adjmat(raj.termco) names(raj.adjmat) #see what's available from the adjacency_matrix object library(igraph) g <- graph.adjacency(raj.adjmat$adjacency, weighted=TRUE, mode ="undirected") g <- simplify(g) V(g)$label <- V(g)$name V(g)$degree <- degree(g) plot(g, layout=layout.auto(g)) ## End(Not run)
A convenience function to find words that begin with or contain a letter chunk and returns the frequency counts of the number of occurrences of each word.
all_words( text.var, begins.with = NULL, contains = NULL, alphabetical = TRUE, apostrophe.remove = FALSE, char.keep = char2space, char2space = "~~", ... )
all_words( text.var, begins.with = NULL, contains = NULL, alphabetical = TRUE, apostrophe.remove = FALSE, char.keep = char2space, char2space = "~~", ... )
text.var |
The text variable. |
begins.with |
This argument takes a word chunk. Default is |
contains |
This argument takes a word chunk. Default is |
alphabetical |
logical. If |
apostrophe.remove |
logical. If |
char.keep |
A character vector of symbol character (i.e., punctuation) that strip should keep. The default is to strip everything except apostrophes. This enables the use of special characters to be turned into spaces or for characters to be retained. |
char2space |
A vector of characters to be turned into spaces. |
... |
Other argument supplied to |
Returns a dataframe with frequency counts of words that begin with or contain the provided word chunk.
Cannot provide both begins.with
and contains
arguments
at once. If both begins.with and contains are NULL
.
all_words
returns a
frequency count for all words.
## Not run: x1 <- all_words(raj$dialogue, begins.with="re") head(x1, 10) x2 <- all_words(raj$dialogue, "q") head(x2, 10) all_words(raj$dialogue, contains="conc") x3 <- all_words(raj$dialogue) head(x3, 10) x4 <- all_words(raj$dialogue, contains="the") head(x4) x5 <- all_words(raj$dialogue, contains="read") head(x5) ## Filter by nchar and stopwords Filter(head(x3), min = 3) ## Keep spaces all_words(space_fill(DATA$state, c("are you", "can be"))) ## End(Not run)
## Not run: x1 <- all_words(raj$dialogue, begins.with="re") head(x1, 10) x2 <- all_words(raj$dialogue, "q") head(x2, 10) all_words(raj$dialogue, contains="conc") x3 <- all_words(raj$dialogue) head(x3, 10) x4 <- all_words(raj$dialogue, contains="the") head(x4) x5 <- all_words(raj$dialogue, contains="read") head(x5) ## Filter by nchar and stopwords Filter(head(x3), min = 3) ## Keep spaces all_words(space_fill(DATA$state, c("are you", "can be"))) ## End(Not run)
Animate select qdap objects.
Animate(x, ...)
Animate(x, ...)
x |
An animatable qdap object (e.g., |
... |
Arguments passed to Animate method of other classes. |
Returns a plot object.
scores
,
counts
,
preprocessed
,
proportions
Animate.character
- Animate a character
object.
Typically this function is useful in conjunction with other Animate
objects to create complex animations with accompanying text.
## S3 method for class 'character' Animate( x, wc.time = TRUE, time.constant = 2, width = 65, coord = c(0, 0.5), just = c(0, 0.5), size = 5, color = "black", border.color = NA, ... )
## S3 method for class 'character' Animate( x, wc.time = TRUE, time.constant = 2, width = 65, coord = c(0, 0.5), just = c(0, 0.5), size = 5, color = "black", border.color = NA, ... )
x |
A |
wc.time |
logical. If |
time.constant |
A constant to divide the maximum word count by. Time is calculated by 'round(exp(WORD COUNT/(max(WORD COUNT)/time.constant)))'. Therefore a larger constant will make the difference between the large and small word counts greater. |
width |
The width to break text at if |
coord |
The x/y coordinate to plot the text.. |
just |
The |
size |
The size to print the text. Can be a vector of length 1 or equal
to the length of |
color |
The color to print the text. Can be a vector of length 1 or equal
to the length of |
border.color |
The |
... |
Other arguments passed to |
character Method for Animate
## Not run: Animate(DATA[["state"]]) Animate(DATA[["state"]], color="red") Animate(DATA[["state"]], color=RColorBrewer::brewer.pal(11, "Set3"), size=10) cls <- DATA[["person"]] %l% data.frame(levels(DATA[["person"]]), RColorBrewer::brewer.pal(5, "Set3")) Animate(DATA[["state"]], color=cls, size=10, width=30) cls2 <- DATA[["sex"]] %l% data.frame(c("m", "f"),c("lightblue", "pink")) Animate(DATA[["state"]], color=cls2, just=c(.5, .5), coord = c(.5, .5)) ## Print method print(Animate(DATA[["state"]], color=cls2, just=c(.5, .5), coord = c(.5, .5)), pause=.25) Animate(DATA[["state"]], color=sample(colors(), nrow(DATA)), size=sample(4:13, nrow(DATA), TRUE), width=30, just=c(.5, .5), coord = c(.5, .5)) ## End(Not run)
## Not run: Animate(DATA[["state"]]) Animate(DATA[["state"]], color="red") Animate(DATA[["state"]], color=RColorBrewer::brewer.pal(11, "Set3"), size=10) cls <- DATA[["person"]] %l% data.frame(levels(DATA[["person"]]), RColorBrewer::brewer.pal(5, "Set3")) Animate(DATA[["state"]], color=cls, size=10, width=30) cls2 <- DATA[["sex"]] %l% data.frame(c("m", "f"),c("lightblue", "pink")) Animate(DATA[["state"]], color=cls2, just=c(.5, .5), coord = c(.5, .5)) ## Print method print(Animate(DATA[["state"]], color=cls2, just=c(.5, .5), coord = c(.5, .5)), pause=.25) Animate(DATA[["state"]], color=sample(colors(), nrow(DATA)), size=sample(4:13, nrow(DATA), TRUE), width=30, just=c(.5, .5), coord = c(.5, .5)) ## End(Not run)
Animate.discourse_map
- Animate a discourse
discourse_map
.
## S3 method for class 'discourse_map' Animate( x, edge.constant, sep = "_", current.color = "red", previous.color = "grey50", wc.time = TRUE, time.constant = 2, title = NULL, ... )
## S3 method for class 'discourse_map' Animate( x, edge.constant, sep = "_", current.color = "red", previous.color = "grey50", wc.time = TRUE, time.constant = 2, title = NULL, ... )
x |
The discourse_map object. |
edge.constant |
A constant to multiple edge width by. |
sep |
The separator character to use between grouping variables. |
current.color |
The color to make the vector edge as it moves. |
previous.color |
The color to make the already plotted edges. |
wc.time |
logical. If |
time.constant |
A constant to divide the maximum word count by. Time is calculated by 'round(exp(WORD COUNT/(max(WORD COUNT)/time.constant)))'. Therefore a larger constant will make the difference between the large and small word counts greater. |
title |
The title to apply to the animated image(s). |
... |
ignored |
discourse_map Method for Animate
The width of edges is based on words counts on that edge until that
moment divided by total number of words used until that moment. Thicker
edges tend to thin as time passes. The actual duration the current edge
stays as the current.color
is based on word counts for that particular
flow of dialogue divided by total dialogue (words) used.
Animate.formality
- Animate a formality
object.
## S3 method for class 'formality' Animate( x, contextual = "yellow", formal = "red", edge.constant, wc.time = TRUE, time.constant = 2, title = NULL, digits = 3, current.color = "black", current.speaker.color = NULL, non.speaker.color = NA, missing.color = "purple", all.color.line = "red", plus.300.color = "grey40", under.300.color = "grey88", type = "network", width = 65, coord = c(0, 0.5), just = c(0, 0.5), ... )
## S3 method for class 'formality' Animate( x, contextual = "yellow", formal = "red", edge.constant, wc.time = TRUE, time.constant = 2, title = NULL, digits = 3, current.color = "black", current.speaker.color = NULL, non.speaker.color = NA, missing.color = "purple", all.color.line = "red", plus.300.color = "grey40", under.300.color = "grey88", type = "network", width = 65, coord = c(0, 0.5), just = c(0, 0.5), ... )
x |
A |
contextual |
The color to use for 0% formality (purely contextual). |
formal |
The color to use for 100% formality (purely formal). |
edge.constant |
A constant to multiple edge width by. |
wc.time |
logical. If |
time.constant |
A constant to divide the maximum word count by. Time is calculated by 'round(exp(WORD COUNT/(max(WORD COUNT)/time.constant)))'. Therefore a larger constant will make the difference between the large and small word counts greater. |
title |
The title to apply to the animated image(s). |
digits |
The number of digits to use in the current turn of talk formality. |
current.color |
The color to use for the current turn of talk formality. |
current.speaker.color |
The color for the current speaker. |
non.speaker.color |
The color for the speakers not currently speaking. |
missing.color |
The color to use in a network plot for edges
corresponding to missing text data. Use |
all.color.line |
The color to use for the total discourse formality
color line if |
plus.300.color |
The bar color to use for grouping variables exceeding 299 words per Heylighen & Dewaele's (2002) minimum word recommendations. |
under.300.color |
The bar color to use for grouping variables less than 300 words per Heylighen & Dewaele's (2002) minimum word recommendations. |
type |
Character string of either |
width |
The width to break text at if |
coord |
The x/y coordinate to plot the text if |
just |
The |
... |
Other arguments passed to |
formality Method for Animate
The width of edges is based on words counts on that edge until that
moment divided by total number of words used until that moment. Thicker
edges tend to thin as time passes. The actual duration the current edge
stays as the current.color
is based on word counts for that particular
flow of dialogue divided by total dialogue (words) used. The edge label is
the current formality for that turn of talk (an aggregation of the sub
sentences of the current turn of talk). The coloring of the current edge
formality is produced at th sentence level, therefor a label may indicate a
positive current turn of talk, while the coloring may indicate a negative
sentences. Coloring is based on percentage of formal parts of speech (i.e.,
noun, adjective, preposition, article).
gantt
- Animate discourse from gantt
.
## S3 method for class 'gantt' Animate(x, wc.time = TRUE, time.constant = 2, colors = NULL, ...)
## S3 method for class 'gantt' Animate(x, wc.time = TRUE, time.constant = 2, colors = NULL, ...)
x |
The gantt object. |
wc.time |
logical. If |
time.constant |
A constant to divide the maximum word count by. Time is calculated by 'round(exp(WORD COUNT/(max(WORD COUNT)/time.constant)))'. Therefore a larger constant will make the difference between the large and small word counts greater. |
colors |
An optional character vector of colors to color the Gantt bars. Must be length 1 (repeats the same color) or equal to the levels of the grouping variable. |
... |
Other arguments passed to |
gantt Method for Animate
gantt_plot
- Animate discourse from gantt_wrap
,
gantt_plot
, or any other Gantt plotting method.
## S3 method for class 'gantt_plot' Animate(x, wc.time = TRUE, time.constant = 2, colors = NULL, ...)
## S3 method for class 'gantt_plot' Animate(x, wc.time = TRUE, time.constant = 2, colors = NULL, ...)
x |
The gantt_plot object. |
wc.time |
logical. If |
time.constant |
A constant to divide the maximum word count by. Time is calculated by 'round(exp(WORD COUNT/(max(WORD COUNT)/time.constant)))'. Therefore a larger constant will make the difference between the large and small word counts greater. |
colors |
An optional character vector of colors to color the Gantt bars. Must be length 1 (repeats the same color) or equal to the levels of the grouping variable. |
... |
ignored |
gantt_plot Method for Animate
Animate.lexical_classification
- Animate a
lexical_classification
object.
## S3 method for class 'lexical_classification' Animate( x, type = "network", content = "red", functional = "yellow", edge.constant, wc.time = TRUE, time.constant = 2, title = NULL, digits = 2, current.color = "black", current.speaker.color = NULL, non.speaker.color = NA, missing.color = "purple", all.color.line = "red", width = 65, function.words = qdapDictionaries::function.words, left = "<<", right = ">>", coord = c(0, 0.5), just = c(0, 0.5), ... )
## S3 method for class 'lexical_classification' Animate( x, type = "network", content = "red", functional = "yellow", edge.constant, wc.time = TRUE, time.constant = 2, title = NULL, digits = 2, current.color = "black", current.speaker.color = NULL, non.speaker.color = NA, missing.color = "purple", all.color.line = "red", width = 65, function.words = qdapDictionaries::function.words, left = "<<", right = ">>", coord = c(0, 0.5), just = c(0, 0.5), ... )
x |
A |
type |
Character string of either |
content |
The color to use for 100% lexical_classification (purely content). |
functional |
The color to use for 0% lexical_classification (purely functional). |
edge.constant |
A constant to multiple edge width by. |
wc.time |
logical. If |
time.constant |
A constant to divide the maximum word count by. Time is calculated by 'round(exp(WORD COUNT/(max(WORD COUNT)/time.constant)))'. Therefore a larger constant will make the difference between the large and small word counts greater. |
title |
The title to apply to the animated image(s). |
digits |
The number of digits to use in the current turn of talk's content rate. |
current.color |
The color to use for the current turn of talk's content rate. |
current.speaker.color |
The color for the current speaker. |
non.speaker.color |
The color for the speakers not currently speaking. |
missing.color |
The color to use in a network plot for edges
corresponding to missing text data. Use |
all.color.line |
The color to use for the total average discourse content rate. |
width |
The width to break text at if |
function.words |
A vector of function words. Default is
|
left |
A left bound to wrap content words with if |
right |
A right bound to wrap content words with if |
coord |
The x/y coordinate to plot the test if |
just |
The |
... |
Other arguments passed to |
lexical_classification Method for Animate
The width of edges is based on words counts on that edge until that
moment divided by total number of words used until that moment. Thicker
edges tend to thin as time passes. The actual duration the current edge
stays as the current.color
is based on word counts for that particular
flow of dialogue divided by total dialogue (words) used. The edge label is
the current content rate for that turn of talk (an aggregation of
the sub sentences of the current turn of talk). The coloring of the current
edge content rate is produced at th sentence level, therefor a label may
indicate a more content laden current turn of talk, while the coloring may
indicate a functional laden average of sentences. Coloring is based on
percentage of conent words.
Animate.polarity
- Animate a polarity
object.
## S3 method for class 'polarity' Animate( x, negative = "blue", positive = "red", neutral = "yellow", edge.constant, wc.time = TRUE, time.constant = 2, title = NULL, digits = 3, width = 65, current.color = "black", current.speaker.color = NULL, non.speaker.color = NA, ave.color.line = "red", type = "network", coord = c(0, 0.5), just = c(0, 0.5), ... )
## S3 method for class 'polarity' Animate( x, negative = "blue", positive = "red", neutral = "yellow", edge.constant, wc.time = TRUE, time.constant = 2, title = NULL, digits = 3, width = 65, current.color = "black", current.speaker.color = NULL, non.speaker.color = NA, ave.color.line = "red", type = "network", coord = c(0, 0.5), just = c(0, 0.5), ... )
x |
A |
negative |
The color to use for negative polarity. |
positive |
The color to use for positive polarity. |
neutral |
The color to use for neutral polarity. |
edge.constant |
A constant to multiple edge width by. |
wc.time |
logical. If |
time.constant |
A constant to divide the maximum word count by. Time is calculated by 'round(exp(WORD COUNT/(max(WORD COUNT)/time.constant)))'. Therefore a larger constant will make the difference between the large and small word counts greater. |
title |
The title to apply to the animated image(s). |
digits |
The number of digits to use in the current turn of talk polarity. |
width |
The width to break text at if |
current.color |
The color to use for the current turn of talk polarity. |
current.speaker.color |
The color for the current speaker. |
non.speaker.color |
The color for the speakers not currently speaking. |
ave.color.line |
The color to use for the average color line if
|
type |
Character string of either |
coord |
The x/y coordinate to plot the test if |
just |
The |
... |
Other arguments passed to |
polarity Method for Animate
The width of edges is based on words counts on that edge until that
moment divided by total number of words used until that moment. Thicker
edges tend to thin as time passes. The actual duration the current edge
stays as the current.color
is based on word counts for that particular
flow of dialogue divided by total dialogue (words) used. The edge label is
the current polarity for that turn of talk (an aggregation of the sub
sentences of the current turn of talk). The coloring of the current edge
polarity is produced at th sentence level, therefor a label may indicate a
positive current turn of talk, while the coloring may indicate a negative
sentences.
as.tdm
- Create term document matrices from raw text or
wfm
for use with other text analysis packages.
as.TermDocumentMatrix
- Create document term matrices from raw text or
wfm
for use with other text analysis packages.
as.dtm
- Create document term matrices from raw text or
wfm
for use with other text analysis packages.
as.DocumentTermMatrix
- Create document term matrices from raw text or
wfm
for use with other text analysis packages.
as.data.frame
- Convert a tm package Corpus
to
a qdap data.frame
.
as.Corpus
- Attempts to convert its argument into a tm package
Corpus
.
apply_as_tm
- Apply functions intended to be used on the tm
package's TermDocumentMatrix
to a wfm
object.
apply_as_df
- Apply a tm Corpus
as a qdap
dataframe.
apply_as_df
- Apply functions intended to be used on the qdap
package's data.frame
+ sentSplit
to
a tm Corpus
object.
as.tdm(text.var, grouping.var = NULL, vowel.check = TRUE, ...) as.TermDocumentMatrix(text.var, grouping.var = NULL, vowel.check = TRUE, ...) as.dtm(text.var, grouping.var = NULL, vowel.check = TRUE, ...) as.DocumentTermMatrix(text.var, grouping.var = NULL, vowel.check = TRUE, ...) ## S3 method for class 'Corpus' as.tdm(text.var, grouping.var = NULL, vowel.check = TRUE, ...) ## Default S3 method: as.tdm(text.var, grouping.var = NULL, vowel.check = TRUE, ...) ## S3 method for class 'character' as.tdm(text.var, grouping.var = NULL, vowel.check = TRUE, ...) ## S3 method for class 'Corpus' as.dtm(text.var, grouping.var = NULL, vowel.check = TRUE, ...) ## Default S3 method: as.dtm(text.var, grouping.var = NULL, vowel.check = TRUE, ...) ## S3 method for class 'character' as.dtm(text.var, grouping.var = NULL, vowel.check = TRUE, ...) ## S3 method for class 'wfm' as.tdm(text.var, grouping.var = NULL, vowel.check = TRUE, ...) ## S3 method for class 'wfm' as.dtm(text.var, grouping.var = NULL, vowel.check = TRUE, ...) ## S3 method for class 'Corpus' as.data.frame( x, row.names, optional, ..., doc = "doc_id", text = "text", sent.split = FALSE ) as.Corpus(text.var, grouping.var = NULL, demographic.vars, ...) ## S3 method for class 'sent_split' as.Corpus(text.var, grouping.var = NULL, demographic.vars, ...) ## Default S3 method: as.Corpus(text.var, grouping.var = NULL, demographic.vars, ...) apply_as_tm(wfm.obj, tmfun, ..., to.qdap = TRUE) apply_as_df( tm.corpus, qdapfun, ..., stopwords = NULL, min = 1, max = Inf, count.apostrophe = TRUE, ignore.case = TRUE ) ## S3 method for class 'TermDocumentMatrix' as.Corpus(text.var, ...) ## S3 method for class 'DocumentTermMatrix' as.Corpus(text.var, ...) ## S3 method for class 'wfm' as.Corpus(text.var, ...)
as.tdm(text.var, grouping.var = NULL, vowel.check = TRUE, ...) as.TermDocumentMatrix(text.var, grouping.var = NULL, vowel.check = TRUE, ...) as.dtm(text.var, grouping.var = NULL, vowel.check = TRUE, ...) as.DocumentTermMatrix(text.var, grouping.var = NULL, vowel.check = TRUE, ...) ## S3 method for class 'Corpus' as.tdm(text.var, grouping.var = NULL, vowel.check = TRUE, ...) ## Default S3 method: as.tdm(text.var, grouping.var = NULL, vowel.check = TRUE, ...) ## S3 method for class 'character' as.tdm(text.var, grouping.var = NULL, vowel.check = TRUE, ...) ## S3 method for class 'Corpus' as.dtm(text.var, grouping.var = NULL, vowel.check = TRUE, ...) ## Default S3 method: as.dtm(text.var, grouping.var = NULL, vowel.check = TRUE, ...) ## S3 method for class 'character' as.dtm(text.var, grouping.var = NULL, vowel.check = TRUE, ...) ## S3 method for class 'wfm' as.tdm(text.var, grouping.var = NULL, vowel.check = TRUE, ...) ## S3 method for class 'wfm' as.dtm(text.var, grouping.var = NULL, vowel.check = TRUE, ...) ## S3 method for class 'Corpus' as.data.frame( x, row.names, optional, ..., doc = "doc_id", text = "text", sent.split = FALSE ) as.Corpus(text.var, grouping.var = NULL, demographic.vars, ...) ## S3 method for class 'sent_split' as.Corpus(text.var, grouping.var = NULL, demographic.vars, ...) ## Default S3 method: as.Corpus(text.var, grouping.var = NULL, demographic.vars, ...) apply_as_tm(wfm.obj, tmfun, ..., to.qdap = TRUE) apply_as_df( tm.corpus, qdapfun, ..., stopwords = NULL, min = 1, max = Inf, count.apostrophe = TRUE, ignore.case = TRUE ) ## S3 method for class 'TermDocumentMatrix' as.Corpus(text.var, ...) ## S3 method for class 'DocumentTermMatrix' as.Corpus(text.var, ...) ## S3 method for class 'wfm' as.Corpus(text.var, ...)
text.var |
The text variable or a |
grouping.var |
The grouping variables. Default |
vowel.check |
logical. Should terms without vowels be remove? |
x |
A |
row.names |
|
optional |
logical. If |
doc |
Name for |
text |
Name for |
sent.split |
logical. If |
demographic.vars |
Additional demographic information about the grouping
variables. This is a data.frame, list of equal length vectors, or a single
vector corresponding to the grouping variable/text variable. This
information will be mapped to the DMetaData in the |
wfm.obj |
A |
tmfun |
A function applied to a |
to.qdap |
logical. If |
tm.corpus |
A |
qdapfun |
A qdap function that is usually used on text.variable ~ grouping variable. |
stopwords |
A character vector of words to remove from the text. qdap
has a number of data sets that can be used as stop words including:
|
min |
Minimum word length. |
max |
Maximum word length. |
count.apostrophe |
logical. If |
ignore.case |
logical. If |
... |
Function dependant: |
Produces output that is identical to the tm
package's
TermDocumentMatrix
, DocumentTermMatrix
,
Corpus
or allows convenient interface between the qdap and
tm packages.
as.tdm
- Returns a TermDocumentMatrix
.
as.TermDocumentMatrix
- Returns a
TermDocumentMatrix
.
as.dtm
- Returns a DocumentTermMatrix
.
as.DocumentTermMatrix
- Returns a
TermDocumentMatrix
.
as.data.frame
- Converts a Corpus
and returns
a qdap oriented data.frame
.
as.Corpus
- Converts a qdap oriented dataframe and returns
a Corpus
.
apply_as_tm
- Applies a tm oriented function to a
wfm
and attempts to simplify back to a
wfm
or weight
format.
apply_as_df
- Returns the output typical of the applied
qdap function.
aply_as_df
coerces to a dataframe with columns named 'docs' and
the other named 'text'.
DocumentTermMatrix
,
Corpus
,
TermDocumentMatrix
,
as.wfm
## Not run: as.dtm(DATA$state, DATA$person) as.tdm(DATA$state, DATA$person) x <- wfm(DATA$state, DATA$person) as.tdm(x) as.dtm(x) library(tm) plot(as.tdm(x)) pres <- as.tdm(pres_debates2012$dialogue, pres_debates2012$person) plot(pres, corThreshold = 0.8) pres (pres2 <- removeSparseTerms(pres, .3)) plot(pres2, corThreshold = 0.95) shorts <- all_words(pres_debates2012)[,1][nchar(all_words( pres_debates2012)[,1]) < 4] SW <- c(shorts, qdapDictionaries::contractions[, 1], qdapDictionaries::Top200Words, "governor", "president", "mister", "obama","romney") DocTermMat2 <- with(pres_debates2012, as.dtm(dialogue, list(person, time), stopwords = SW)) DocTermMat2 <- removeSparseTerms(DocTermMat2,0.95) (DocTermMat2 <- DocTermMat2[rowSums(as.matrix(DocTermMat2))> 0,]) plot(DocTermMat2) ## Correspondence Analysis library(ca) dat <- pres_debates2012 dat <- dat[dat$person %in% qcv(ROMNEY, OBAMA), ] speech <- stemmer(dat$dialogue) mytable1 <- with(dat, as.tdm(speech, list(person, time), stopwords = Top25Words)) fit <- ca(as.matrix(mytable1)) summary(fit) plot(fit) plot3d.ca(fit, labels=1) mytable2 <- with(dat, as.tdm(speech, list(person, time), stopwords = Top200Words)) fit2 <- ca(as.matrix(mytable2)) summary(fit2) plot(fit2) plot3d.ca(fit2, labels=1) ## Topic Models # Example 1 # library(topicmodels); library(tm) # Generate stop words based on short words, frequent words and contractions shorts <- all_words(pres_debates2012)[,1][nchar(all_words( pres_debates2012)[,1]) < 4] SW <- c(shorts, qdapDictionaries::contractions[, 1], qdapDictionaries::Top200Words, "governor", "president", "mister", "obama","romney") DocTermMat <- with(pres_debates2012, as.dtm(dialogue, person, stopwords = SW)) DocTermMat <- removeSparseTerms(DocTermMat,0.999) DocTermMat <- DocTermMat[rowSums(as.matrix(DocTermMat))> 0,] lda.model <- LDA(DocTermMat, 5) (topics <- posterior(lda.model, DocTermMat)$topics) terms(lda.model,20) # Plot the Topics Per Person topic.dat <- matrix2df(topics, "Person") colnames(topic.dat)[-1] <- paste2(t(terms(lda.model,20)), sep=", ") library(reshape2) mtopic <- melt(topic.dat, variable="Topic", value.name="Proportion") ggplot(mtopic, aes(weight=Proportion, x=Topic, fill=Topic)) + geom_bar() + coord_flip() + facet_grid(Person~.) + guides(fill=FALSE) # Example 2 # DocTermMat2 <- with(pres_debates2012, as.dtm(dialogue, list(person, time), stopwords = SW)) DocTermMat2 <- removeSparseTerms(DocTermMat2,0.95) DocTermMat2 <- DocTermMat2[rowSums(as.matrix(DocTermMat2))> 0,] lda.model2 <- LDA(DocTermMat2, 6) (topics2 <- posterior(lda.model2, DocTermMat2)$topics) terms(lda.model2,20) qheat(topics2, high="blue", low="yellow", by.col=FALSE) # Example 3 # lda.model3 <- LDA(DocTermMat2, 10) (topics3 <- posterior(lda.model3, DocTermMat2)$topics) terms(lda.model3, 20) qheat(topics3, high="blue", low="yellow", by.col=FALSE) # Plot the Topics Per Person topic.dat3 <- matrix2df(topics3, "Person&Time") colnames(topic.dat3)[-1] <- paste2(t(terms(lda.model3, 10)), sep=", ") topic.dat3 <- colsplit2df(topic.dat3) library(reshape2) library(scales) mtopic3 <- melt(topic.dat3, variable="Topic", value.name="Proportion") (p1 <- ggplot(mtopic3, aes(weight=Proportion, x=Topic, fill=Topic)) + geom_bar() + coord_flip() + facet_grid(Person~Time) + guides(fill=FALSE) + scale_y_continuous(labels = percent) + theme(plot.margin = unit(c(1, 0, 0.5, .5), "lines")) + ylab("Proportion")) mtopic3.b <- mtopic3 mtopic3.b[, "Topic"] <- factor(as.numeric(mtopic3.b[, "Topic"]), levels = 1:10) mtopic3.b[, "Time"] <- factor(gsub("time ", "", mtopic3.b[, "Time"])) p2 <- ggplot(mtopic3.b, aes(x=Time, y=Topic, fill=Proportion)) + geom_tile(color = "white") + scale_fill_gradient(low = "grey70", high = "red") + facet_grid(Person~Time, scales = "free") + theme(axis.title.y = element_blank(), axis.text.x= element_text(colour="white"), axis.ticks.x= element_line(colour="white"), axis.ticks.y = element_blank(), axis.text.y= element_blank(), plot.margin = unit(c(1, -.5, .5, -.9), "lines") ) library(gridExtra) grid.arrange(p1, p2, nrow=1, widths = grid::unit(c(.85, .15), "native")) ## tm Matrices to wfm library(tm) data(crude) ## A Term Document Matrix Conversion (tm_in <- TermDocumentMatrix(crude, control = list(stopwords = TRUE))) converted <- as.wfm(tm_in) head(converted) summary(converted) ## A Document Term Matrix Conversion (dtm_in <- DocumentTermMatrix(crude, control = list(stopwords = TRUE))) summary(as.wfm(dtm_in)) ## `apply_as_tm` Examples ## Create a wfm a <- with(DATA, wfm(state, list(sex, adult))) summary(a) ## Apply functions meant for a tm TermDocumentMatrix out <- apply_as_tm(a, tm:::removeSparseTerms, sparse=0.6) summary(out) apply_as_tm(a, tm:::findAssocs, "computer", .8) apply_as_tm(a, tm:::findFreqTerms, 2, 3) apply_as_tm(a, tm:::Zipf_plot) apply_as_tm(a, tm:::Heaps_plot) apply_as_tm(a, tm:::plot.TermDocumentMatrix, corThreshold = 0.4) library(proxy) apply_as_tm(a, tm:::weightBin) apply_as_tm(a, tm:::weightBin, to.qdap = FALSE) apply_as_tm(a, tm:::weightSMART) apply_as_tm(a, tm:::weightTfIdf) ## Convert tm Corpus to Dataframe ## A tm Corpus library(tm) reut21578 <- system.file("texts", "crude", package = "tm") reuters <- Corpus(DirSource(reut21578), readerControl = list(reader = readReut21578XML)) ## Convert to dataframe corp_df <- as.data.frame(reuters) htruncdf(corp_df) z <- as.Corpus(DATA$state, DATA$person, demographic=DATA[, qcv(sex, adult, code)]) as.data.frame(z) ## Apply a qdap function out <- formality(corp_df$text, corp_df$docs) plot(out) ## Convert a qdap dataframe to tm package Corpus (x <- with(DATA2, as.Corpus(state, list(person, class, day)))) library(tm) inspect(x) inspect_text(x) class(x) (y <- with(pres_debates2012, as.Corpus(dialogue, list(person, time)))) ## Add demographic info to DMetaData of Corpus z <- as.Corpus(DATA$state, DATA$person, demographic=DATA[, qcv(sex, adult, code)]) lview(z) lview(as.Corpus(DATA$state, DATA$person, demographic=DATA$sex)) lview(as.Corpus(DATA$state, DATA$person, demographic=list(DATA$sex, DATA$adult))) ## Apply qdap functions meant for dataframes from sentSplit to tm Corpus library(tm) reut21578 <- system.file("texts", "crude", package = "tm") reuters <- Corpus(DirSource(reut21578), readerControl = list(reader = readReut21578XML)) matches <- list( oil = qcv(oil, crude), money = c("economic", "money") ) apply_as_df(reuters, word_stats) apply_as_df(reuters, formality) apply_as_df(reuters, word_list) apply_as_df(reuters, polarity) apply_as_df(reuters, Dissimilarity) apply_as_df(reuters, diversity) apply_as_df(reuters, pos_by) apply_as_df(reuters, flesch_kincaid) apply_as_df(reuters, trans_venn) apply_as_df(reuters, gantt_plot) apply_as_df(reuters, rank_freq_mplot) apply_as_df(reuters, character_table) (termco_out <- apply_as_df(reuters, termco, match.list = matches)) plot(termco_out, values = TRUE, high="red") (wordcor_out <- apply_as_df(reuters, word_cor, word = unlist(matches))) plot(wordcor_out) (f_terms <- apply_as_df(reuters, freq_terms, at.least = 3)) plot(f_terms) apply_as_df(reuters, trans_cloud) ## To use "all" rather than "docs" as "grouping.var"... apply_as_df(reuters, trans_cloud, grouping.var=NULL, target.words=matches, cloud.colors = c("red", "blue", "grey75")) finds <- apply_as_df(reuters, freq_terms, at.least = 5, top = 5, stopwords = Top100Words) apply_as_df(reuters, dispersion_plot, match.terms = finds[, 1], total.color = NULL) ## Filter for Term Document Matrix/Document Term Matrix library(tm) data(crude) (tdm_in <- TermDocumentMatrix(crude, control = list(stopwords = TRUE))) Filter(tdm_in, 5) (dtm_in <- DocumentTermMatrix(crude, control = list(stopwords = TRUE))) Filter(dtm_in, 5) ## Filter particular words based on max/min values Filter(dtm_in, 5, 7) Filter(dtm_in, 4, 4) Filter(tdm_in, 3, 4) Filter(tdm_in, 3, 4, stopwords = Top200Words) ## SPECIAL REMOVAL OF TERMS (more flexible consideration of words than wfm) dat <- data.frame( person = paste0("person_", 1:5), tweets = c("test one two", "two apples","hashtag #apple", "#apple #tree", "http://microsoft.com") ) ## remove specialty items dat[[2]] <- rm_default(dat[[2]], pattern=pastex("@rm_url", "#apple\\b")) myCorp <- tm::tm_map(crude, tm::removeWords, Top200Words) myCorp %>% as.dtm() %>% tm::inspect() ## End(Not run)
## Not run: as.dtm(DATA$state, DATA$person) as.tdm(DATA$state, DATA$person) x <- wfm(DATA$state, DATA$person) as.tdm(x) as.dtm(x) library(tm) plot(as.tdm(x)) pres <- as.tdm(pres_debates2012$dialogue, pres_debates2012$person) plot(pres, corThreshold = 0.8) pres (pres2 <- removeSparseTerms(pres, .3)) plot(pres2, corThreshold = 0.95) shorts <- all_words(pres_debates2012)[,1][nchar(all_words( pres_debates2012)[,1]) < 4] SW <- c(shorts, qdapDictionaries::contractions[, 1], qdapDictionaries::Top200Words, "governor", "president", "mister", "obama","romney") DocTermMat2 <- with(pres_debates2012, as.dtm(dialogue, list(person, time), stopwords = SW)) DocTermMat2 <- removeSparseTerms(DocTermMat2,0.95) (DocTermMat2 <- DocTermMat2[rowSums(as.matrix(DocTermMat2))> 0,]) plot(DocTermMat2) ## Correspondence Analysis library(ca) dat <- pres_debates2012 dat <- dat[dat$person %in% qcv(ROMNEY, OBAMA), ] speech <- stemmer(dat$dialogue) mytable1 <- with(dat, as.tdm(speech, list(person, time), stopwords = Top25Words)) fit <- ca(as.matrix(mytable1)) summary(fit) plot(fit) plot3d.ca(fit, labels=1) mytable2 <- with(dat, as.tdm(speech, list(person, time), stopwords = Top200Words)) fit2 <- ca(as.matrix(mytable2)) summary(fit2) plot(fit2) plot3d.ca(fit2, labels=1) ## Topic Models # Example 1 # library(topicmodels); library(tm) # Generate stop words based on short words, frequent words and contractions shorts <- all_words(pres_debates2012)[,1][nchar(all_words( pres_debates2012)[,1]) < 4] SW <- c(shorts, qdapDictionaries::contractions[, 1], qdapDictionaries::Top200Words, "governor", "president", "mister", "obama","romney") DocTermMat <- with(pres_debates2012, as.dtm(dialogue, person, stopwords = SW)) DocTermMat <- removeSparseTerms(DocTermMat,0.999) DocTermMat <- DocTermMat[rowSums(as.matrix(DocTermMat))> 0,] lda.model <- LDA(DocTermMat, 5) (topics <- posterior(lda.model, DocTermMat)$topics) terms(lda.model,20) # Plot the Topics Per Person topic.dat <- matrix2df(topics, "Person") colnames(topic.dat)[-1] <- paste2(t(terms(lda.model,20)), sep=", ") library(reshape2) mtopic <- melt(topic.dat, variable="Topic", value.name="Proportion") ggplot(mtopic, aes(weight=Proportion, x=Topic, fill=Topic)) + geom_bar() + coord_flip() + facet_grid(Person~.) + guides(fill=FALSE) # Example 2 # DocTermMat2 <- with(pres_debates2012, as.dtm(dialogue, list(person, time), stopwords = SW)) DocTermMat2 <- removeSparseTerms(DocTermMat2,0.95) DocTermMat2 <- DocTermMat2[rowSums(as.matrix(DocTermMat2))> 0,] lda.model2 <- LDA(DocTermMat2, 6) (topics2 <- posterior(lda.model2, DocTermMat2)$topics) terms(lda.model2,20) qheat(topics2, high="blue", low="yellow", by.col=FALSE) # Example 3 # lda.model3 <- LDA(DocTermMat2, 10) (topics3 <- posterior(lda.model3, DocTermMat2)$topics) terms(lda.model3, 20) qheat(topics3, high="blue", low="yellow", by.col=FALSE) # Plot the Topics Per Person topic.dat3 <- matrix2df(topics3, "Person&Time") colnames(topic.dat3)[-1] <- paste2(t(terms(lda.model3, 10)), sep=", ") topic.dat3 <- colsplit2df(topic.dat3) library(reshape2) library(scales) mtopic3 <- melt(topic.dat3, variable="Topic", value.name="Proportion") (p1 <- ggplot(mtopic3, aes(weight=Proportion, x=Topic, fill=Topic)) + geom_bar() + coord_flip() + facet_grid(Person~Time) + guides(fill=FALSE) + scale_y_continuous(labels = percent) + theme(plot.margin = unit(c(1, 0, 0.5, .5), "lines")) + ylab("Proportion")) mtopic3.b <- mtopic3 mtopic3.b[, "Topic"] <- factor(as.numeric(mtopic3.b[, "Topic"]), levels = 1:10) mtopic3.b[, "Time"] <- factor(gsub("time ", "", mtopic3.b[, "Time"])) p2 <- ggplot(mtopic3.b, aes(x=Time, y=Topic, fill=Proportion)) + geom_tile(color = "white") + scale_fill_gradient(low = "grey70", high = "red") + facet_grid(Person~Time, scales = "free") + theme(axis.title.y = element_blank(), axis.text.x= element_text(colour="white"), axis.ticks.x= element_line(colour="white"), axis.ticks.y = element_blank(), axis.text.y= element_blank(), plot.margin = unit(c(1, -.5, .5, -.9), "lines") ) library(gridExtra) grid.arrange(p1, p2, nrow=1, widths = grid::unit(c(.85, .15), "native")) ## tm Matrices to wfm library(tm) data(crude) ## A Term Document Matrix Conversion (tm_in <- TermDocumentMatrix(crude, control = list(stopwords = TRUE))) converted <- as.wfm(tm_in) head(converted) summary(converted) ## A Document Term Matrix Conversion (dtm_in <- DocumentTermMatrix(crude, control = list(stopwords = TRUE))) summary(as.wfm(dtm_in)) ## `apply_as_tm` Examples ## Create a wfm a <- with(DATA, wfm(state, list(sex, adult))) summary(a) ## Apply functions meant for a tm TermDocumentMatrix out <- apply_as_tm(a, tm:::removeSparseTerms, sparse=0.6) summary(out) apply_as_tm(a, tm:::findAssocs, "computer", .8) apply_as_tm(a, tm:::findFreqTerms, 2, 3) apply_as_tm(a, tm:::Zipf_plot) apply_as_tm(a, tm:::Heaps_plot) apply_as_tm(a, tm:::plot.TermDocumentMatrix, corThreshold = 0.4) library(proxy) apply_as_tm(a, tm:::weightBin) apply_as_tm(a, tm:::weightBin, to.qdap = FALSE) apply_as_tm(a, tm:::weightSMART) apply_as_tm(a, tm:::weightTfIdf) ## Convert tm Corpus to Dataframe ## A tm Corpus library(tm) reut21578 <- system.file("texts", "crude", package = "tm") reuters <- Corpus(DirSource(reut21578), readerControl = list(reader = readReut21578XML)) ## Convert to dataframe corp_df <- as.data.frame(reuters) htruncdf(corp_df) z <- as.Corpus(DATA$state, DATA$person, demographic=DATA[, qcv(sex, adult, code)]) as.data.frame(z) ## Apply a qdap function out <- formality(corp_df$text, corp_df$docs) plot(out) ## Convert a qdap dataframe to tm package Corpus (x <- with(DATA2, as.Corpus(state, list(person, class, day)))) library(tm) inspect(x) inspect_text(x) class(x) (y <- with(pres_debates2012, as.Corpus(dialogue, list(person, time)))) ## Add demographic info to DMetaData of Corpus z <- as.Corpus(DATA$state, DATA$person, demographic=DATA[, qcv(sex, adult, code)]) lview(z) lview(as.Corpus(DATA$state, DATA$person, demographic=DATA$sex)) lview(as.Corpus(DATA$state, DATA$person, demographic=list(DATA$sex, DATA$adult))) ## Apply qdap functions meant for dataframes from sentSplit to tm Corpus library(tm) reut21578 <- system.file("texts", "crude", package = "tm") reuters <- Corpus(DirSource(reut21578), readerControl = list(reader = readReut21578XML)) matches <- list( oil = qcv(oil, crude), money = c("economic", "money") ) apply_as_df(reuters, word_stats) apply_as_df(reuters, formality) apply_as_df(reuters, word_list) apply_as_df(reuters, polarity) apply_as_df(reuters, Dissimilarity) apply_as_df(reuters, diversity) apply_as_df(reuters, pos_by) apply_as_df(reuters, flesch_kincaid) apply_as_df(reuters, trans_venn) apply_as_df(reuters, gantt_plot) apply_as_df(reuters, rank_freq_mplot) apply_as_df(reuters, character_table) (termco_out <- apply_as_df(reuters, termco, match.list = matches)) plot(termco_out, values = TRUE, high="red") (wordcor_out <- apply_as_df(reuters, word_cor, word = unlist(matches))) plot(wordcor_out) (f_terms <- apply_as_df(reuters, freq_terms, at.least = 3)) plot(f_terms) apply_as_df(reuters, trans_cloud) ## To use "all" rather than "docs" as "grouping.var"... apply_as_df(reuters, trans_cloud, grouping.var=NULL, target.words=matches, cloud.colors = c("red", "blue", "grey75")) finds <- apply_as_df(reuters, freq_terms, at.least = 5, top = 5, stopwords = Top100Words) apply_as_df(reuters, dispersion_plot, match.terms = finds[, 1], total.color = NULL) ## Filter for Term Document Matrix/Document Term Matrix library(tm) data(crude) (tdm_in <- TermDocumentMatrix(crude, control = list(stopwords = TRUE))) Filter(tdm_in, 5) (dtm_in <- DocumentTermMatrix(crude, control = list(stopwords = TRUE))) Filter(dtm_in, 5) ## Filter particular words based on max/min values Filter(dtm_in, 5, 7) Filter(dtm_in, 4, 4) Filter(tdm_in, 3, 4) Filter(tdm_in, 3, 4, stopwords = Top200Words) ## SPECIAL REMOVAL OF TERMS (more flexible consideration of words than wfm) dat <- data.frame( person = paste0("person_", 1:5), tweets = c("test one two", "two apples","hashtag #apple", "#apple #tree", "http://microsoft.com") ) ## remove specialty items dat[[2]] <- rm_default(dat[[2]], pattern=pastex("@rm_url", "#apple\\b")) myCorp <- tm::tm_map(crude, tm::removeWords, Top200Words) myCorp %>% as.dtm() %>% tm::inspect() ## End(Not run)
automated_readability_index
- Apply Automated Readability Index to
transcript(s) by zero or more grouping variable(s).
coleman_liau
- Apply Coleman Liau Index to transcript(s) by zero or
more grouping variable(s).
SMOG
- Apply SMOG Readability to transcript(s) by zero or more grouping variable(s).
flesch_kincaid
- Flesch-Kincaid Readability to transcript(s) by zero or more
grouping variable(s).
fry
- Apply Fry Readability to transcript(s) by zero or more
grouping variable(s).
linsear_write
- Apply Linsear Write Readability to transcript(s) by
zero or more grouping variable(s).
automated_readability_index( text.var, grouping.var = NULL, rm.incomplete = FALSE, ... ) coleman_liau(text.var, grouping.var = NULL, rm.incomplete = FALSE, ...) SMOG( text.var, grouping.var = NULL, output = "valid", rm.incomplete = FALSE, ... ) flesch_kincaid(text.var, grouping.var = NULL, rm.incomplete = FALSE, ...) fry( text.var, grouping.var = NULL, rm.incomplete = FALSE, auto.label = TRUE, grid = FALSE, div.col = "grey85", plot = TRUE, ... ) linsear_write(text.var, grouping.var = NULL, rm.incomplete = FALSE, ...)
automated_readability_index( text.var, grouping.var = NULL, rm.incomplete = FALSE, ... ) coleman_liau(text.var, grouping.var = NULL, rm.incomplete = FALSE, ...) SMOG( text.var, grouping.var = NULL, output = "valid", rm.incomplete = FALSE, ... ) flesch_kincaid(text.var, grouping.var = NULL, rm.incomplete = FALSE, ...) fry( text.var, grouping.var = NULL, rm.incomplete = FALSE, auto.label = TRUE, grid = FALSE, div.col = "grey85", plot = TRUE, ... ) linsear_write(text.var, grouping.var = NULL, rm.incomplete = FALSE, ...)
text.var |
The text variable. |
grouping.var |
The grouping variables. Default |
rm.incomplete |
logical. If |
output |
A character vector character string indicating output type. One of "valid" (default and congruent with McLaughlin's intent) or "all". |
auto.label |
logical. If |
grid |
logical. If |
div.col |
The color of the grade level division lines. |
plot |
logical. If |
... |
Other arguments passed to |
Returns a list of 2 dataframes: (1) Counts and (2) Readability.
Counts are the raw scores used to calculate readability score and can be
accessed via counts
. Readability is the dataframe
with the selected readability statistic by grouping variable(s) and can be
access via scores
. The fry
function
returns a graphic representation of the readability as the
scores
returns the information for graphing but not a
readability score.
Many of the indices (e.g., Automated Readability Index) are derived from word difficulty (letters per word) and sentence difficulty (words per sentence). If you have not run the sentSplit function on your data the results may not be accurate.
The fry
function is based on Fry's formula that randomly
samples 3 100 word length passages. If a group(s) in does not contain 300+
words they will not be included in the output.
Coleman, M., & Liau, T. L. (1975). A computer readability formula designed for machine scoring. Journal of Applied Psychology, Vol. 60, pp. 283-284.
Fry, E. B. (1968). A readability formula that saves time. Journal of Reading, 11(7), 513-516, 575-578.
Fry, E. B. (1969). The readability graph validated at primary levels. The Reading Teacher, 22(6), 534-538.
Flesch R. (1948). A new readability yardstick. Journal of Applied Psychology. Vol. 32(3), pp. 221-233. doi: 10.1037/h0057532.
Gunning, T. G. (2003). Building Literacy in the Content Areas. Boston: Allyn & Bacon.
McLaughlin, G. H. (1969). SMOG Grading: A New Readability Formula. Journal of Reading, Vol. 12(8), pp. 639-646.
Smith, E. A. & Senter, R. J. (1967) Automated readability index. Technical Report AMRLTR-66-220, University of Cincinnati, Cincinnati, Ohio.
## Not run: AR1 <- with(rajSPLIT, automated_readability_index(dialogue, list(person, act))) ltruncdf(AR1,, 15) scores(AR1) counts(AR1) plot(AR1) plot(counts(AR1)) AR2 <- with(rajSPLIT, automated_readability_index(dialogue, list(sex, fam.aff))) ltruncdf(AR2,, 15) scores(AR2) counts(AR2) plot(AR2) plot(counts(AR2)) AR3 <- with(rajSPLIT, automated_readability_index(dialogue, person)) ltruncdf(AR3,, 15) scores(AR3) head(counts(AR3)) plot(AR3) plot(counts(AR3)) CL1 <- with(rajSPLIT, coleman_liau(dialogue, list(person, act))) ltruncdf(CL1, 20) head(counts(CL1)) plot(CL1) CL2 <- with(rajSPLIT, coleman_liau(dialogue, list(sex, fam.aff))) ltruncdf(CL2) plot(counts(CL2)) (SM1 <- with(rajSPLIT, SMOG(dialogue, list(person, act)))) plot(counts(SM1)) plot(SM1) (SM2 <- with(rajSPLIT, SMOG(dialogue, list(sex, fam.aff)))) (FL1 <- with(rajSPLIT, flesch_kincaid(dialogue, list(person, act)))) plot(scores(FL1)) plot(counts(FL1)) (FL2 <- with(rajSPLIT, flesch_kincaid(dialogue, list(sex, fam.aff)))) plot(scores(FL2)) plot(counts(FL2)) FR1 <- with(rajSPLIT, fry(dialogue, list(sex, fam.aff))) scores(FR1) plot(scores(FR1)) counts(FR1) plot(counts(FR1)) FR2 <- with(rajSPLIT, fry(dialogue, person)) scores(FR2) plot(scores(FR2)) counts(FR2) plot(counts(FR2)) FR3 <- with(pres_debates2012, fry(dialogue, list(time, person))) colsplit2df(scores(FR3)) plot(scores(FR3), auto.label = FALSE) counts(FR3) plot(counts(FR3)) library(ggplot2) ggplot(colsplit2df(counts(FR3)), aes(sent.per.100.wrds, syllables.per.100.wrds)) + geom_point(aes(fill=person), shape=21, size=3) + facet_grid(person~time) LW1 <- with(rajSPLIT, linsear_write(dialogue, list(person, act))) plot(scores(LW1)) plot(counts(LW1)) LW2 <- with(rajSPLIT, linsear_write(dialogue, list(sex, fam.aff))) plot(scores(LW2), method="lm") plot(counts(LW2)) ## End(Not run)
## Not run: AR1 <- with(rajSPLIT, automated_readability_index(dialogue, list(person, act))) ltruncdf(AR1,, 15) scores(AR1) counts(AR1) plot(AR1) plot(counts(AR1)) AR2 <- with(rajSPLIT, automated_readability_index(dialogue, list(sex, fam.aff))) ltruncdf(AR2,, 15) scores(AR2) counts(AR2) plot(AR2) plot(counts(AR2)) AR3 <- with(rajSPLIT, automated_readability_index(dialogue, person)) ltruncdf(AR3,, 15) scores(AR3) head(counts(AR3)) plot(AR3) plot(counts(AR3)) CL1 <- with(rajSPLIT, coleman_liau(dialogue, list(person, act))) ltruncdf(CL1, 20) head(counts(CL1)) plot(CL1) CL2 <- with(rajSPLIT, coleman_liau(dialogue, list(sex, fam.aff))) ltruncdf(CL2) plot(counts(CL2)) (SM1 <- with(rajSPLIT, SMOG(dialogue, list(person, act)))) plot(counts(SM1)) plot(SM1) (SM2 <- with(rajSPLIT, SMOG(dialogue, list(sex, fam.aff)))) (FL1 <- with(rajSPLIT, flesch_kincaid(dialogue, list(person, act)))) plot(scores(FL1)) plot(counts(FL1)) (FL2 <- with(rajSPLIT, flesch_kincaid(dialogue, list(sex, fam.aff)))) plot(scores(FL2)) plot(counts(FL2)) FR1 <- with(rajSPLIT, fry(dialogue, list(sex, fam.aff))) scores(FR1) plot(scores(FR1)) counts(FR1) plot(counts(FR1)) FR2 <- with(rajSPLIT, fry(dialogue, person)) scores(FR2) plot(scores(FR2)) counts(FR2) plot(counts(FR2)) FR3 <- with(pres_debates2012, fry(dialogue, list(time, person))) colsplit2df(scores(FR3)) plot(scores(FR3), auto.label = FALSE) counts(FR3) plot(counts(FR3)) library(ggplot2) ggplot(colsplit2df(counts(FR3)), aes(sent.per.100.wrds, syllables.per.100.wrds)) + geom_point(aes(fill=person), shape=21, size=3) + facet_grid(person~time) LW1 <- with(rajSPLIT, linsear_write(dialogue, list(person, act))) plot(scores(LW1)) plot(counts(LW1)) LW2 <- with(rajSPLIT, linsear_write(dialogue, list(sex, fam.aff))) plot(scores(LW2), method="lm") plot(counts(LW2)) ## End(Not run)
bag_o_words
- Reduces a text column to a bag of words.
unbag
- Wrapper for paste(collapse=" ")
to glue words back into
strings.
breaker
- Reduces a text column to a bag of words and qdap recognized
end marks.
word_split
- Reduces a text column to a list of vectors of bag of
words and qdap recognized end marks (i.e., ".", "!", "?", "*", "-"
).
bag_o_words(text.var, apostrophe.remove = FALSE, ...) unbag(text.var, na.rm = TRUE) breaker(text.var) word_split(text.var)
bag_o_words(text.var, apostrophe.remove = FALSE, ...) unbag(text.var, na.rm = TRUE) breaker(text.var) word_split(text.var)
text.var |
The text variable. |
apostrophe.remove |
logical. If |
na.rm |
logical. If |
... |
Additional arguments passed to strip. |
Returns a vector of stripped words.
unbag
- Returns a string.
breaker
- Returns a vector of striped words and qdap
recognized endmarks (i.e., ".", "!", "?", "*", "-"
).
## Not run: bag_o_words("I'm going home!") bag_o_words("I'm going home!", apostrophe.remove = TRUE) unbag(bag_o_words("I'm going home!")) bag_o_words(DATA$state) by(DATA$state, DATA$person, bag_o_words) lapply(DATA$state, bag_o_words) breaker(DATA$state) by(DATA$state, DATA$person, breaker) lapply(DATA$state, breaker) unbag(breaker(DATA$state)) word_split(c(NA, DATA$state)) unbag(word_split(c(NA, DATA$state))) ## End(Not run)
## Not run: bag_o_words("I'm going home!") bag_o_words("I'm going home!", apostrophe.remove = TRUE) unbag(bag_o_words("I'm going home!")) bag_o_words(DATA$state) by(DATA$state, DATA$person, bag_o_words) lapply(DATA$state, bag_o_words) breaker(DATA$state) by(DATA$state, DATA$person, breaker) lapply(DATA$state, breaker) unbag(breaker(DATA$state)) word_split(c(NA, DATA$state)) unbag(word_split(c(NA, DATA$state))) ## End(Not run)
beg2char
- Grab from beginning of string to a character(s).
char2end
- Grab from character(s) to end of string.
beg2char(text.var, char = " ", noc = 1, include = FALSE) char2end(text.var, char = " ", noc = 1, include = FALSE)
beg2char(text.var, char = " ", noc = 1, include = FALSE) char2end(text.var, char = " ", noc = 1, include = FALSE)
text.var |
A character string |
char |
The character from which to grab until/from. |
noc |
Number of times the character appears before the grab. |
include |
logical. If |
returns a vector of text with char on/forward removed.
Josh O'Brien, Justin Haynes and Tyler Rinker <[email protected]>.
https://stackoverflow.com/q/15909626/1000343
## Not run: x <- c("a_b_c_d", "1_2_3_4", "<_?_._:") beg2char(x, "_") beg2char(x, "_", 2) beg2char(x, "_", 3) beg2char(x, "_", 4) beg2char(x, "_", 3, include=TRUE) char2end(x, "_") char2end(x, "_", 2) char2end(x, "_", 3) char2end(x, "_", 4) char2end(x, "_", 3, include=TRUE) x2 <- gsub("_", " ", x) char2end(x2, " ", 2) beg2char(x2, " ", 2) x3 <- gsub("_", "\\^", x) char2end(x3, "^", 2) beg2char(x3, "^", 2) ## End(Not run)
## Not run: x <- c("a_b_c_d", "1_2_3_4", "<_?_._:") beg2char(x, "_") beg2char(x, "_", 2) beg2char(x, "_", 3) beg2char(x, "_", 4) beg2char(x, "_", 3, include=TRUE) char2end(x, "_") char2end(x, "_", 2) char2end(x, "_", 3) char2end(x, "_", 4) char2end(x, "_", 3, include=TRUE) x2 <- gsub("_", " ", x) char2end(x2, " ", 2) beg2char(x2, " ", 2) x3 <- gsub("_", "\\^", x) char2end(x3, "^", 2) beg2char(x3, "^", 2) ## End(Not run)
Replaces blank (empty) cells in a dataframe. Generally, for internal use.
blank2NA(dataframe, missing = NA)
blank2NA(dataframe, missing = NA)
dataframe |
A dataframe with blank (empty) cells. |
missing |
Value to replace empty cells with. |
Returns a data frame with blank spaces replaced.
## Not run: set.seed(15) dat <- data.frame(matrix(sample(c(month.abb[1:4], ""), 50, TRUE), 10, byrow = TRUE), stringsAsFactors = FALSE) dat blank2NA(dat) ## End(Not run)
## Not run: set.seed(15) dat <- data.frame(matrix(sample(c(month.abb[1:4], ""), 50, TRUE), 10, byrow = TRUE), stringsAsFactors = FALSE) dat blank2NA(dat) ## End(Not run)
bracketX
- Apply bracket removal to character vectors.
bracketXtract
- Apply bracket extraction to character vectors.
genX
- Apply general chunk removal to character vectors. A
generalized version of bracketX
.
genXtract
- Apply general chunk extraction to character vectors. A
generalized version of bracketXtract
.
bracketX( text.var, bracket = "all", missing = NULL, names = FALSE, fix.space = TRUE, scrub = fix.space ) bracketXtract(text.var, bracket = "all", with = FALSE, merge = TRUE) genX( text.var, left, right, missing = NULL, names = FALSE, fix.space = TRUE, scrub = TRUE ) genXtract(text.var, left, right, with = FALSE, merge = TRUE)
bracketX( text.var, bracket = "all", missing = NULL, names = FALSE, fix.space = TRUE, scrub = fix.space ) bracketXtract(text.var, bracket = "all", with = FALSE, merge = TRUE) genX( text.var, left, right, missing = NULL, names = FALSE, fix.space = TRUE, scrub = TRUE ) genXtract(text.var, left, right, with = FALSE, merge = TRUE)
text.var |
The text variable |
bracket |
The type of bracket (and encased text) to remove. This is one
or more of the strings |
missing |
Value to assign to empty cells. |
names |
logical. If |
fix.space |
logical. If |
scrub |
logical. If |
with |
logical. If |
merge |
logical. If |
left |
A vector of character or numeric symbols as the left edge to extract. |
right |
A vector of character or numeric symbols as the right edge to extract. |
bracketX
- returns a vector of text with brackets removed.
bracketXtract
- returns a list of vectors of bracketed text.
genXtract
- returns a vector of text with chunks removed.
genX
- returns a list of vectors of removed text.
Martin Morgan and Tyler Rinker <[email protected]>.
https://stackoverflow.com/q/8621066/1000343
## Not run: examp <- structure(list(person = structure(c(1L, 2L, 1L, 3L), .Label = c("bob", "greg", "sue"), class = "factor"), text = c("I love chicken [unintelligible]!", "Me too! (laughter) It's so good.[interrupting]", "Yep it's awesome {reading}.", "Agreed. {is so much fun}")), .Names = c("person", "text"), row.names = c(NA, -4L), class = "data.frame") examp bracketX(examp$text, "square") bracketX(examp$text, "curly") bracketX(examp$text, c("square", "round")) bracketX(examp$text) bracketXtract(examp$text, "square") bracketXtract(examp$text, "curly") bracketXtract(examp$text, c("square", "round")) bracketXtract(examp$text, c("square", "round"), merge = FALSE) bracketXtract(examp$text) bracketXtract(examp$text, with = TRUE) paste2(bracketXtract(examp$text, "curly"), " ") x <- c("Where is the /big dog#?", "I think he's @arunning@b with /little cat#.") genXtract(x, c("/", "@a"), c("#", "@b")) x <- c("Where is the L1big dogL2?", "I think he's 98running99 with L1little catL2.") genXtract(x, c("L1", 98), c("L2", 99)) DATA$state #notice number 1 and 10 genX(DATA$state, c("is", "we"), c("too", "on")) ## End(Not run)
## Not run: examp <- structure(list(person = structure(c(1L, 2L, 1L, 3L), .Label = c("bob", "greg", "sue"), class = "factor"), text = c("I love chicken [unintelligible]!", "Me too! (laughter) It's so good.[interrupting]", "Yep it's awesome {reading}.", "Agreed. {is so much fun}")), .Names = c("person", "text"), row.names = c(NA, -4L), class = "data.frame") examp bracketX(examp$text, "square") bracketX(examp$text, "curly") bracketX(examp$text, c("square", "round")) bracketX(examp$text) bracketXtract(examp$text, "square") bracketXtract(examp$text, "curly") bracketXtract(examp$text, c("square", "round")) bracketXtract(examp$text, c("square", "round"), merge = FALSE) bracketXtract(examp$text) bracketXtract(examp$text, with = TRUE) paste2(bracketXtract(examp$text, "curly"), " ") x <- c("Where is the /big dog#?", "I think he's @arunning@b with /little cat#.") genXtract(x, c("/", "@a"), c("#", "@b")) x <- c("Where is the L1big dogL2?", "I think he's 98running99 with L1little catL2.") genXtract(x, c("L1", 98), c("L2", 99)) DATA$state #notice number 1 and 10 genX(DATA$state, c("is", "we"), c("too", "on")) ## End(Not run)
Replaces the temporary (place holder) Introduction to qdap Vignette with the actual vignette.
build_qdap_vignette(download.html = FALSE)
build_qdap_vignette(download.html = FALSE)
download.html |
logical. If |
Places the (1) HTML, (2) source, & (3) R code for the Introduction to qdap Vignette in the user's ‘R-VERSION/library/qdap/doc’.
The knitr built HTML approach above takes about 4 minutes. The
user may choose the faster approach (< 30 seconds) that downloads the HTML
file directly from the Internet (this is for the latest CRAN release of
qdap). This choice is controlled via the download.html
argument. The function will ask for the user's permission before writing the
documents. Once the user has run this function
browseVignettes(package = 'qdap')
will allow access to the new
vignette files.
A helper function for word_list
that allows the user to
supply vectors of words to be capitalized.
capitalizer(text, caps.list = NULL, I.list = TRUE, apostrophe.remove = FALSE)
capitalizer(text, caps.list = NULL, I.list = TRUE, apostrophe.remove = FALSE)
text |
A vector of words (generally from |
caps.list |
A list of words to capitalize. |
I.list |
logical. If |
apostrophe.remove |
logical, asking if apostrophes have been removed.
If |
Returns a vector of capitalized words based on supplied capitalization arguments.
Not intended for general use. Acts as a helper function to several qdap functions.
## Not run: capitalizer(bag_o_words("i like it but i'm not certain"), "like") capitalizer(bag_o_words("i like it but i'm not certain"), "like", FALSE) ## End(Not run)
## Not run: capitalizer(bag_o_words("i like it but i'm not certain"), "like") capitalizer(bag_o_words("i like it but i'm not certain"), "like", FALSE) ## End(Not run)
check_spelling
- Check the spelling for an vector of strings. The
function use the following technique:
Separate the words from a string into a bag of words.
Look those words up in a dictionary to find words not recognized/found (considered possibly misspelled).
These misses (possible misspellings) will be what is looked up for suggested replacements.
Optionally, reduce dictionary by assuming the first letter of the misspelled word is correct (dictionary for this letter only).
Reduce dictionary by eliminating words outside of the range of number of characters of the misspelled word.
Use stringdist
to find string distances between possible replacements and the misspelled term.
Select n (n.suggests
) terms from dictionary that are closest to the misspelled term.
which_misspelled
- Check the spelling for a string.
check_spelling_interactive
- Interactively check spelling.
correct
- Access the spell corrector function from a
"check_spelling_interactive"
object for subsequent text character
vector spelling corrections.
check_spelling( text.var, range = 2, assume.first.correct = TRUE, method = "jw", dictionary = qdapDictionaries::GradyAugmented, parallel = TRUE, cores = parallel::detectCores()/2, n.suggests = 8 ) which_misspelled( x, suggest = FALSE, range = 2, assume.first.correct = TRUE, dictionary = qdapDictionaries::GradyAugmented, method = "jw", nchar.dictionary = nchar(dictionary), first.char.dictionary = substring(dictionary, 1, 1), n.suggests = 8 ) check_spelling_interactive( text.var, range = 2, assume.first.correct = TRUE, click = TRUE, method = "jw", dictionary = qdapDictionaries::GradyAugmented, parallel = TRUE, cores = parallel::detectCores()/2, n.suggests = 8, ... ) correct(x, ...)
check_spelling( text.var, range = 2, assume.first.correct = TRUE, method = "jw", dictionary = qdapDictionaries::GradyAugmented, parallel = TRUE, cores = parallel::detectCores()/2, n.suggests = 8 ) which_misspelled( x, suggest = FALSE, range = 2, assume.first.correct = TRUE, dictionary = qdapDictionaries::GradyAugmented, method = "jw", nchar.dictionary = nchar(dictionary), first.char.dictionary = substring(dictionary, 1, 1), n.suggests = 8 ) check_spelling_interactive( text.var, range = 2, assume.first.correct = TRUE, click = TRUE, method = "jw", dictionary = qdapDictionaries::GradyAugmented, parallel = TRUE, cores = parallel::detectCores()/2, n.suggests = 8, ... ) correct(x, ...)
text.var |
The text variable. |
range |
An integer of length 1 to use as a range for number of
characters, beyond the number of characters of a word not found in the
|
assume.first.correct |
logical. If |
method |
Method for distance calculation. The default is "jaccard". It
is assumed that smaller measures indicate closer distance. Measures that do
not adhere to this assumption will result in incorrect output (see
|
dictionary |
A character vector of terms to search for. To reduce overhead it is expected that this dictionary is lower case, unique terms. |
parallel |
logical. If |
cores |
The number of cores to use if |
n.suggests |
The number of terms to suggest. In the case of a tie
(multiple terms have the same distance from misspelled word) all will be provided.
Dictionary reduction may result in less than |
x |
If |
suggest |
logical. If |
nchar.dictionary |
A vector that corresponds in length and content to
|
first.char.dictionary |
A vector that corresponds in length and content
to |
click |
logical. If |
... |
ignored |
check_spelling
- Returns a data.frame
with
row
(row number), not.found
word.no
(number of
misspelled word), not.found
(a word not found in the dictionary),
suggestion
(the most likely replacement for the word), and
more.suggestions
(A list of vectors of up to 10 most likely replacements).
which_misspelled
- Returns either a named vector (names are
the word number) of possible misspelled words (ifsuggestions = FALSE
)
or a data.frame
with word.no
(number of misspelled
word), not.found
(a word not found in the dictionary),
suggestion
(the most likely replacement for the word), and
more.suggestions
(A list of vectors of up to 10 most likely replacements).
check_spelling_interactive
- Returns a character vector with
the corrected text, the replacement list (via an attribute
to the
character vector), and a function to correct the same spelling errors in
subsequent text character vectors.
correct
- Returns a function for correcting spelling errors.
A possible misspelled word is defined as not found in the
dictionary
.
check_spelling_interactive
- The user may go back (undo) by
pressing "TYPE MY OWN"
entering either "!"
(not) or "0"
(similar to a phone system). The second choice in the
"SELECT REPLACEMNT:"
will be the original word and is prefixed with
"IGNORE:"
. Press this to keep the original word.
https://stackoverflow.com/a/24454727/1000343
https://journal.r-project.org/archive/2011-2/RJournal_2011-2_Hornik+Murdoch.pdf
## Not run: x <- "Robots are evl creatres and deserv exterimanitation." which_misspelled(x, suggest=FALSE) which_misspelled(x, suggest=TRUE) check_spelling(DATA$state) ## browseURL("http://stackoverflow.com/a/24454727/1000343") terms <- c("accounts", "account", "accounting", "acounting", "acount", "acounts", "accounnt") set.seed(10) (fake_text <- unlist(lapply(terms, function(x) { unbag(sample(c(x, sample(DICTIONARY[[1]], sample(1:5, 1))))) }))) check_spelling(fake_text) ##============================## ## INTERACTIVE SPELL CHECKING ## ##============================## ## No misspellings found check_spelling_interactive(DATA$state) ## character method approach (minimal example) dat <- DATA$state; dat[1] <- "I likedd the cokie icekream" (o <- check_spelling_interactive(dat)) preprocessed(o) fixit <- attributes(o)$correct fixit(dat) ## character method approach (larger example) m <- check_spelling_interactive(mraja1spl$dialogue[1:75]) preprocessed(m) fixit <- attributes(m)$correct fixit(mraja1spl$dialogue[1:75]) ## check_spelling method approach out <- check_spelling(mraja1spl$dialogue[1:75]) (x <- check_spelling_interactive(out)) preprocessed(x) correct(x)(mraja1spl$dialogue[1:75]) (y <- check_spelling_interactive(out, click=FALSE)) preprocessed(y) ## Examine Methods (?stringdist::stringdist) strings <- c( "Robots are evl creatres and deserv exterimanitation kream.", "I gots me a biggert measrue, tommorrow" ) meths <- c("osa", "lv", "dl", "hamming", "lcs", "qgram", "cosine", "jaccard", "jw") stats::setNames(lapply(meths, function(x) check_spelling(strings, method=x)), meths) ## End(Not run)
## Not run: x <- "Robots are evl creatres and deserv exterimanitation." which_misspelled(x, suggest=FALSE) which_misspelled(x, suggest=TRUE) check_spelling(DATA$state) ## browseURL("http://stackoverflow.com/a/24454727/1000343") terms <- c("accounts", "account", "accounting", "acounting", "acount", "acounts", "accounnt") set.seed(10) (fake_text <- unlist(lapply(terms, function(x) { unbag(sample(c(x, sample(DICTIONARY[[1]], sample(1:5, 1))))) }))) check_spelling(fake_text) ##============================## ## INTERACTIVE SPELL CHECKING ## ##============================## ## No misspellings found check_spelling_interactive(DATA$state) ## character method approach (minimal example) dat <- DATA$state; dat[1] <- "I likedd the cokie icekream" (o <- check_spelling_interactive(dat)) preprocessed(o) fixit <- attributes(o)$correct fixit(dat) ## character method approach (larger example) m <- check_spelling_interactive(mraja1spl$dialogue[1:75]) preprocessed(m) fixit <- attributes(m)$correct fixit(mraja1spl$dialogue[1:75]) ## check_spelling method approach out <- check_spelling(mraja1spl$dialogue[1:75]) (x <- check_spelling_interactive(out)) preprocessed(x) correct(x)(mraja1spl$dialogue[1:75]) (y <- check_spelling_interactive(out, click=FALSE)) preprocessed(y) ## Examine Methods (?stringdist::stringdist) strings <- c( "Robots are evl creatres and deserv exterimanitation kream.", "I gots me a biggert measrue, tommorrow" ) meths <- c("osa", "lv", "dl", "hamming", "lcs", "qgram", "cosine", "jaccard", "jw") stats::setNames(lapply(meths, function(x) check_spelling(strings, method=x)), meths) ## End(Not run)
View character check_spelling_interactive.
## S3 method for class 'character' check_spelling_interactive( text.var, range = 2, assume.first.correct = TRUE, click = TRUE, method = "jw", dictionary = qdapDictionaries::GradyAugmented, parallel = TRUE, cores = parallel::detectCores()/2, n.suggests = 8, ... )
## S3 method for class 'character' check_spelling_interactive( text.var, range = 2, assume.first.correct = TRUE, click = TRUE, method = "jw", dictionary = qdapDictionaries::GradyAugmented, parallel = TRUE, cores = parallel::detectCores()/2, n.suggests = 8, ... )
text.var |
A |
range |
An integer of length 1 to use as a range for number of
characters, beyond the number of characters of a word not found in the
|
assume.first.correct |
logical. If |
click |
logical. If |
method |
Method for distance calculation. The default is "jaccard". It
is assumed that smaller measures indicate closer distance. Measures that do
not adhere to this assumption will result in incorrect output (see
|
dictionary |
A character vector of terms to search for. To reduce overhead it is expected that this dictionary is lower case, unique terms. |
parallel |
logical. If |
cores |
The number of cores to use if |
n.suggests |
The number of terms to suggest. In the case of a tie
(multiple terms have the same distance from misspelled word) all will be provided.
Dictionary reduction may result in less than |
... |
ignored |
character Method for check_spelling_interactive
View check_spelling check_spelling_interactive.
## S3 method for class 'check_spelling' check_spelling_interactive( text.var, range = 2, assume.first.correct = TRUE, click = TRUE, method = "jw", dictionary = qdapDictionaries::GradyAugmented, parallel = TRUE, cores = parallel::detectCores()/2, n.suggests = 8, ... )
## S3 method for class 'check_spelling' check_spelling_interactive( text.var, range = 2, assume.first.correct = TRUE, click = TRUE, method = "jw", dictionary = qdapDictionaries::GradyAugmented, parallel = TRUE, cores = parallel::detectCores()/2, n.suggests = 8, ... )
text.var |
A |
range |
An integer of length 1 to use as a range for number of
characters, beyond the number of characters of a word not found in the
|
assume.first.correct |
logical. If |
click |
logical. If |
method |
Method for distance calculation. The default is "jaccard". It
is assumed that smaller measures indicate closer distance. Measures that do
not adhere to this assumption will result in incorrect output (see
|
dictionary |
A character vector of terms to search for. To reduce overhead it is expected that this dictionary is lower case, unique terms. |
parallel |
logical. If |
cores |
The number of cores to use if |
n.suggests |
The number of terms to suggest. In the case of a tie
(multiple terms have the same distance from misspelled word) all will be provided.
Dictionary reduction may result in less than |
... |
ignored |
check_spelling Method for check_spelling_interactive
View factor check_spelling_interactive.
## S3 method for class 'factor' check_spelling_interactive( text.var, range = 2, assume.first.correct = TRUE, click = TRUE, method = "jw", dictionary = qdapDictionaries::GradyAugmented, parallel = TRUE, cores = parallel::detectCores()/2, n.suggests = 8, ... )
## S3 method for class 'factor' check_spelling_interactive( text.var, range = 2, assume.first.correct = TRUE, click = TRUE, method = "jw", dictionary = qdapDictionaries::GradyAugmented, parallel = TRUE, cores = parallel::detectCores()/2, n.suggests = 8, ... )
text.var |
A |
range |
An integer of length 1 to use as a range for number of
characters, beyond the number of characters of a word not found in the
|
assume.first.correct |
logical. If |
click |
logical. If |
method |
Method for distance calculation. The default is "jaccard". It
is assumed that smaller measures indicate closer distance. Measures that do
not adhere to this assumption will result in incorrect output (see
|
dictionary |
A character vector of terms to search for. To reduce overhead it is expected that this dictionary is lower case, unique terms. |
parallel |
logical. If |
cores |
The number of cores to use if |
n.suggests |
The number of terms to suggest. In the case of a tie
(multiple terms have the same distance from misspelled word) all will be provided.
Dictionary reduction may result in less than |
... |
ignored |
factor Method for check_spelling_interactive
Uncleaned text may result in errors, warnings, and incorrect results in
subsequent analysis. check_text
checks text for potential problems
and suggests possible fixes. Potential text anomalies that are detected
include: factors, missing ending punctuation, empty cells, double punctuation,
non-space after comma, no alphabetic characters, non-ascii, missing value,
and potentially misspelled words.
check_text(text.var, file = NULL)
check_text(text.var, file = NULL)
text.var |
The text variable. |
file |
A connection, or a character string naming the file to print to.
If |
Returns a list with the following potential text faults reports:
non_character- Text that is non-character.
missing_ending_punctuation- Text with no endmark at the end of the string.
empty- Text that contains an empty element (i.e., ""
).
double_punctuation- Text that contains two qdap punctuation marks in the same string.
non_space_after_comma- Text that contains commas with no space after them.
no_alpha- Text that contains string elements with no alphabetic characters.
non_ascii- Text that contains non-ASCII characters.
missing_value- Text that contains missing values (i.e., NA
).
containing_escaped- Text that contains escaped (see ?Quotes
).
containing_digits- Text that contains digits.
indicating_incomplete- Text that contains endmarks that are indicative of incomplete/trailing sentences (e.g., ...
).
potentially_misspelled- Text that contains potentially misspelled words.
The output is a list but prints as a pretty formatted output with potential problem elements, the accompanying text, and possible suggestions to fix the text.
## Not run: x <- c("i like", "i want. thet them .", "I am ! that|", "", NA, "they,were there", ".", " ", "?", "3;", "I like goud eggs!", "i 4like...", "\\tgreat", "She said \"yes\"") check_text(x) print(check_text(x), include.text=FALSE) y <- c("A valid sentence.", "yet another!") check_text(y) ## End(Not run)
## Not run: x <- c("i like", "i want. thet them .", "I am ! that|", "", NA, "they,were there", ".", " ", "?", "3;", "I like goud eggs!", "i 4like...", "\\tgreat", "She said \"yes\"") check_text(x) print(check_text(x), include.text=FALSE) y <- c("A valid sentence.", "yet another!") check_text(y) ## End(Not run)
Some visualizations and algorithms require text to be broken into chunks of
ordered words. chunker
breaks text, optionally by grouping
variables, into equal chunks. The chunk size can be specified by giving
number of words to be in each chunk or the number of chunks.
chunker( text.var, grouping.var = NULL, n.words, n.chunks, as.string = TRUE, rm.unequal = FALSE )
chunker( text.var, grouping.var = NULL, n.words, n.chunks, as.string = TRUE, rm.unequal = FALSE )
text.var |
The text variable |
grouping.var |
The grouping variables. Default |
n.words |
An integer specifying the number of words in each chunk (must specify n.chunks or n.words). |
n.chunks |
An integer specifying the number of chunks (must specify n.chunks or n.words). |
as.string |
logical. If |
rm.unequal |
logical. If |
Returns a list of text chunks.
with(DATA, chunker(state, n.chunks = 10)) with(DATA, chunker(state, n.words = 10)) with(DATA, chunker(state, n.chunks = 10, as.string=FALSE)) with(DATA, chunker(state, n.chunks = 10, rm.unequal=TRUE)) with(DATA, chunker(state, person, n.chunks = 10)) with(DATA, chunker(state, list(sex, adult), n.words = 10)) with(DATA, chunker(state, person, n.words = 10, rm.unequal=TRUE)) ## Bigger data with(hamlet, chunker(dialogue, person, n.chunks = 10)) with(hamlet, chunker(dialogue, person, n.words = 300)) ## Not run: ## with polarity hedonmetrics dat <- with(pres_debates2012[pres_debates2012$person %in% qcv(OBAMA, ROMNEY), ], chunker(dialogue, list(person, time), n.words = 300)) dat2 <- colsplit2df(list2df(dat, "dialogue", "person&time")[, 2:1]) dat3 <- split(dat2[, -2], dat2$time) ltruncdf(dat3, 10, 50) poldat <- lapply(dat3, function(x) with(x, polarity(dialogue, person, constrain = TRUE))) m <- lapply(poldat, function(x) plot(cumulative(x))) m <- Map(function(w, x, y, z) { w + ggtitle(x) + xlab(y) + ylab(z) }, m, paste("Debate", 1:3), list(NULL, NULL, "Duration (300 Word Segment)"), list(NULL, "Cumulative Average Polarity", NULL) ) library(gridExtra) do.call(grid.arrange, m) ## By person ## By person poldat2 <- Map(function(x, x2){ scores <- with(counts(x), split(polarity, person)) setNames(lapply(scores, function(y) { y <- list(cumulative_average_polarity = y) attributes(y)[["constrained"]] <- TRUE qdap:::plot.cumulative_polarity(y) + xlab(NULL) + ylab(x2) }), names(scores)) }, poldat, paste("Debate", 1:3)) poldat2 <- lapply(poldat2, function(x) { x[[2]] <- x[[2]] + ylab(NULL) x }) poldat2[[1]] <- Map(function(x, y) { x + ggtitle(y) }, poldat2[[1]], qcv(Obama, Romney) ) library(gridExtra) do.call(grid.arrange, unlist(poldat2, recursive=FALSE)) ## End(Not run)
with(DATA, chunker(state, n.chunks = 10)) with(DATA, chunker(state, n.words = 10)) with(DATA, chunker(state, n.chunks = 10, as.string=FALSE)) with(DATA, chunker(state, n.chunks = 10, rm.unequal=TRUE)) with(DATA, chunker(state, person, n.chunks = 10)) with(DATA, chunker(state, list(sex, adult), n.words = 10)) with(DATA, chunker(state, person, n.words = 10, rm.unequal=TRUE)) ## Bigger data with(hamlet, chunker(dialogue, person, n.chunks = 10)) with(hamlet, chunker(dialogue, person, n.words = 300)) ## Not run: ## with polarity hedonmetrics dat <- with(pres_debates2012[pres_debates2012$person %in% qcv(OBAMA, ROMNEY), ], chunker(dialogue, list(person, time), n.words = 300)) dat2 <- colsplit2df(list2df(dat, "dialogue", "person&time")[, 2:1]) dat3 <- split(dat2[, -2], dat2$time) ltruncdf(dat3, 10, 50) poldat <- lapply(dat3, function(x) with(x, polarity(dialogue, person, constrain = TRUE))) m <- lapply(poldat, function(x) plot(cumulative(x))) m <- Map(function(w, x, y, z) { w + ggtitle(x) + xlab(y) + ylab(z) }, m, paste("Debate", 1:3), list(NULL, NULL, "Duration (300 Word Segment)"), list(NULL, "Cumulative Average Polarity", NULL) ) library(gridExtra) do.call(grid.arrange, m) ## By person ## By person poldat2 <- Map(function(x, x2){ scores <- with(counts(x), split(polarity, person)) setNames(lapply(scores, function(y) { y <- list(cumulative_average_polarity = y) attributes(y)[["constrained"]] <- TRUE qdap:::plot.cumulative_polarity(y) + xlab(NULL) + ylab(x2) }), names(scores)) }, poldat, paste("Debate", 1:3)) poldat2 <- lapply(poldat2, function(x) { x[[2]] <- x[[2]] + ylab(NULL) x }) poldat2[[1]] <- Map(function(x, y) { x + ggtitle(y) }, poldat2[[1]], qcv(Obama, Romney) ) library(gridExtra) do.call(grid.arrange, unlist(poldat2, recursive=FALSE)) ## End(Not run)
Preprocess data to remove escaped characters
clean(text.var)
clean(text.var)
text.var |
The text variable |
Returns a vector of character strings with escaped characters removed.
## Not run: x <- "I go \\r to the \\tnext line" x clean(x) ## End(Not run)
## Not run: x <- "I go \\r to the \\tnext line" x clean(x) ## End(Not run)
A wrapper for cm_df2long
, cm_range2long
, and cm_time2long
that automatically detects the objects being read and outputs the correct form and class.
cm_2long(..., v.name = "variable", list.var = TRUE, debug = TRUE)
cm_2long(..., v.name = "variable", list.var = TRUE, debug = TRUE)
v.name |
An optional name for the column created for the list.var argument. |
list.var |
logical. If |
debug |
logical. If |
... |
list object(s) in the form generated by
|
Returns a long data.frame of the correct cm_XXX classes.
cm_df2long
,
cm_range2long
,
cm_time2long
## Not run: ## cm_range2long use: foo <- list( person_greg = qcv(terms='7:11, 20:24, 30:33, 49:56'), person_researcher = qcv(terms='42:48'), person_sally = qcv(terms='25:29, 37:41'), person_sam = qcv(terms='1:6, 16:19, 34:36'), person_teacher = qcv(terms='12:15'), adult_0 = qcv(terms='1:11, 16:41, 49:56'), adult_1 = qcv(terms='12:15, 42:48'), AA = qcv(terms="1"), BB = qcv(terms="1:2, 3:10, 19"), CC = qcv(terms="1:9, 100:150") ) foo2 <- list( person_greg = qcv(terms='7:11, 20:24, 30:33, 49:56'), person_researcher = qcv(terms='42:48'), person_sally = qcv(terms='25:29, 37:41'), person_sam = qcv(terms='1:6, 16:19, 34:36'), person_teacher = qcv(terms='12:15'), adult_0 = qcv(terms='1:11, 16:41, 49:56'), adult_1 = qcv(terms='12:15, 42:48'), AA = qcv(terms="40"), BB = qcv(terms="50:90"), CC = qcv(terms="60:90, 100:120, 150"), DD = qcv(terms="") ) cm_2long(foo, foo2, v.name = "time") ## cm_time2long use: x <- list( transcript_time_span = qcv(00:00 - 1:12:00), A = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00"), B = qcv(terms = "2.40, 3.01:3.02, 5.01, 6.02:7.00, 9.00, 1.12.00:1.19.01"), C = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00, 17.01") ) cm_2long(x) ## cm_df2long use: codes <- qcv(dc, sf, wes, pol, rejk, lk, azx, mmm) x1 <- cm_df.temp(DATA, "state", codes) #fill it randomly x1[, 7:14] <- lapply(7:14, function(i) sample(0:1, nrow(x1), TRUE)) out2 <- cm_2long(x1) head(out2, 15) plot(out2) ## End(Not run)
## Not run: ## cm_range2long use: foo <- list( person_greg = qcv(terms='7:11, 20:24, 30:33, 49:56'), person_researcher = qcv(terms='42:48'), person_sally = qcv(terms='25:29, 37:41'), person_sam = qcv(terms='1:6, 16:19, 34:36'), person_teacher = qcv(terms='12:15'), adult_0 = qcv(terms='1:11, 16:41, 49:56'), adult_1 = qcv(terms='12:15, 42:48'), AA = qcv(terms="1"), BB = qcv(terms="1:2, 3:10, 19"), CC = qcv(terms="1:9, 100:150") ) foo2 <- list( person_greg = qcv(terms='7:11, 20:24, 30:33, 49:56'), person_researcher = qcv(terms='42:48'), person_sally = qcv(terms='25:29, 37:41'), person_sam = qcv(terms='1:6, 16:19, 34:36'), person_teacher = qcv(terms='12:15'), adult_0 = qcv(terms='1:11, 16:41, 49:56'), adult_1 = qcv(terms='12:15, 42:48'), AA = qcv(terms="40"), BB = qcv(terms="50:90"), CC = qcv(terms="60:90, 100:120, 150"), DD = qcv(terms="") ) cm_2long(foo, foo2, v.name = "time") ## cm_time2long use: x <- list( transcript_time_span = qcv(00:00 - 1:12:00), A = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00"), B = qcv(terms = "2.40, 3.01:3.02, 5.01, 6.02:7.00, 9.00, 1.12.00:1.19.01"), C = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00, 17.01") ) cm_2long(x) ## cm_df2long use: codes <- qcv(dc, sf, wes, pol, rejk, lk, azx, mmm) x1 <- cm_df.temp(DATA, "state", codes) #fill it randomly x1[, 7:14] <- lapply(7:14, function(i) sample(0:1, nrow(x1), TRUE)) out2 <- cm_2long(x1) head(out2, 15) plot(out2) ## End(Not run)
Transform codes with any binary operator combination.
cm_code.blank(x2long.obj, combine.code.list, rm.var = NULL, overlap = TRUE)
cm_code.blank(x2long.obj, combine.code.list, rm.var = NULL, overlap = TRUE)
x2long.obj |
An object from |
combine.code.list |
A list of named character vectors of at least two code column names to combine. |
rm.var |
Name of the repeated measures column. |
overlap |
logical, integer or character of binary operator + integer.
If |
Returns a dataframe with transformed occurrences of supplied overlapping codes added.
For most jobs cm_code.transform
will work. This
adds a bit of flexibility in exclusion and partial matching. The code column
must be named "code"
and your start and end columns must be named
"start"
and "end"
.
cm_range2long
,
cm_time2long
,
cm_df2long
,
cm_code.overlap
,
cm_code.combine
,
cm_code.exclude
,
cm_code.transform
## Not run: foo <- list( AA = qcv(terms="1:10"), BB = qcv(terms="1:2, 3:10, 19"), CC = qcv(terms="1:3, 5:6") ) foo2 <- list( AA = qcv(terms="4:8"), BB = qcv(terms="1:4, 10:12"), CC = qcv(terms="1, 11, 15:20"), DD = qcv(terms="") ) ## Single occurrence version (x <- cm_range2long(foo)) cm_code.blank(x, combine.code.list = list(ABC=qcv(AA, BB, CC)), overlap = "!=1") ## Repeated measures version (z <- cm_range2long(foo, foo2, v.name="time")) cm_code.blank(z, combine.code.list = list(ABC=qcv(AA, BB, CC)), rm.var = "time", overlap = "!=1") cm_code.blank(z, combine.code.list = list(AB=qcv(AA, BB)), rm.var = "time", overlap = TRUE) cm_code.blank(z, combine.code.list = list(AB=qcv(AA, BB)), rm.var = "time", overlap = FALSE) cm_code.blank(z, combine.code.list = list(AB=qcv(AA, BB)), rm.var = "time", overlap = ">1") cm_code.blank(z, combine.code.list = list(AB=qcv(AA, BB)), rm.var = "time", overlap = "==2") ## Notice `overlap = "==2"` above is identical to `cm_code.overlap` cm_code.overlap(z, overlap.code.list = list(AB=qcv(AA, BB)), rm.var = "time") #WITH cm_time2long x <- list( transcript_time_span = qcv(00:00 - 1:12:00), A = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00"), B = qcv(terms = "2.40, 3.01:3.02, 5.01, 6.02:7.00, 9.00, 1.12.00:1.19.01"), C = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00, 17.01") ) y <- list( transcript_time_span = qcv(00:00 - 1:12:00), A = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00"), B = qcv(terms = "2.40, 3.01:3.02, 5.01, 6.02:7.00, 9.00, 1.12.00:1.19.01"), C = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00, 17.01") ) dat <- cm_time2long(x, y, v.name="time") head(dat, 10) out <- cm_code.blank(dat, combine.code.list = list(ABC=qcv(A, B, C)), rm.var = "time", overlap = "!=1") head(out) plot(out) ## End(Not run)
## Not run: foo <- list( AA = qcv(terms="1:10"), BB = qcv(terms="1:2, 3:10, 19"), CC = qcv(terms="1:3, 5:6") ) foo2 <- list( AA = qcv(terms="4:8"), BB = qcv(terms="1:4, 10:12"), CC = qcv(terms="1, 11, 15:20"), DD = qcv(terms="") ) ## Single occurrence version (x <- cm_range2long(foo)) cm_code.blank(x, combine.code.list = list(ABC=qcv(AA, BB, CC)), overlap = "!=1") ## Repeated measures version (z <- cm_range2long(foo, foo2, v.name="time")) cm_code.blank(z, combine.code.list = list(ABC=qcv(AA, BB, CC)), rm.var = "time", overlap = "!=1") cm_code.blank(z, combine.code.list = list(AB=qcv(AA, BB)), rm.var = "time", overlap = TRUE) cm_code.blank(z, combine.code.list = list(AB=qcv(AA, BB)), rm.var = "time", overlap = FALSE) cm_code.blank(z, combine.code.list = list(AB=qcv(AA, BB)), rm.var = "time", overlap = ">1") cm_code.blank(z, combine.code.list = list(AB=qcv(AA, BB)), rm.var = "time", overlap = "==2") ## Notice `overlap = "==2"` above is identical to `cm_code.overlap` cm_code.overlap(z, overlap.code.list = list(AB=qcv(AA, BB)), rm.var = "time") #WITH cm_time2long x <- list( transcript_time_span = qcv(00:00 - 1:12:00), A = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00"), B = qcv(terms = "2.40, 3.01:3.02, 5.01, 6.02:7.00, 9.00, 1.12.00:1.19.01"), C = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00, 17.01") ) y <- list( transcript_time_span = qcv(00:00 - 1:12:00), A = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00"), B = qcv(terms = "2.40, 3.01:3.02, 5.01, 6.02:7.00, 9.00, 1.12.00:1.19.01"), C = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00, 17.01") ) dat <- cm_time2long(x, y, v.name="time") head(dat, 10) out <- cm_code.blank(dat, combine.code.list = list(ABC=qcv(A, B, C)), rm.var = "time", overlap = "!=1") head(out) plot(out) ## End(Not run)
Combine all occurrences of codes into a new code.
cm_code.combine(x2long.obj, combine.code.list, rm.var = NULL)
cm_code.combine(x2long.obj, combine.code.list, rm.var = NULL)
x2long.obj |
An object from |
combine.code.list |
A list of named character vectors of at least two code column names to combine |
rm.var |
Name of the repeated measures column. |
Returns a dataframe with combined occurrences of supplied overlapping codes added.
The code column must be named "code"
and your start and end
columns must be named "start"
and "end"
.
cm_range2long
,
cm_time2long
,
cm_df2long
,
cm_code.blank
,
cm_code.exclude
,
cm_code.overlap
,
cm_code.transform
## Not run: foo <- list( AA = qcv(terms="1:10"), BB = qcv(terms="1:2, 3:10, 19"), CC = qcv(terms="1:3, 5:6") ) foo2 <- list( AA = qcv(terms="4:8"), BB = qcv(terms="1:4, 10:12"), CC = qcv(terms="1, 11, 15:20"), DD = qcv(terms="") ) (x <- cm_range2long(foo)) (z <- cm_range2long(foo, foo2, v.name="time")) cm_code.combine(x, list(AB=qcv(AA, BB))) cm_code.combine(x, list(ALL=qcv(AA, BB, CC))) combines <- list(AB=qcv(AA, BB), ABC=qcv(AA, BB, CC)) cm_code.combine(z, combines, rm.var = "time") #WITH cm_time2long x <- list( transcript_time_span = qcv(00:00 - 1:12:00), A = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00"), B = qcv(terms = "2.40, 3.01:3.02, 5.01, 6.02:7.00, 9.00, 1.12.00:1.19.01"), C = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00, 17.01") ) y <- list( transcript_time_span = qcv(00:00 - 1:12:00), A = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00"), B = qcv(terms = "2.40, 3.01:3.02, 5.01, 6.02:7.00, 9.00, 1.12.00:1.19.01"), C = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00, 17.01") ) dat <- cm_time2long(x, y) head(dat, 12) cm_code.combine(dat, list(P=qcv(A, B), Q=qcv(B, C), R=qcv(A, B, C)), "variable") ## End(Not run)
## Not run: foo <- list( AA = qcv(terms="1:10"), BB = qcv(terms="1:2, 3:10, 19"), CC = qcv(terms="1:3, 5:6") ) foo2 <- list( AA = qcv(terms="4:8"), BB = qcv(terms="1:4, 10:12"), CC = qcv(terms="1, 11, 15:20"), DD = qcv(terms="") ) (x <- cm_range2long(foo)) (z <- cm_range2long(foo, foo2, v.name="time")) cm_code.combine(x, list(AB=qcv(AA, BB))) cm_code.combine(x, list(ALL=qcv(AA, BB, CC))) combines <- list(AB=qcv(AA, BB), ABC=qcv(AA, BB, CC)) cm_code.combine(z, combines, rm.var = "time") #WITH cm_time2long x <- list( transcript_time_span = qcv(00:00 - 1:12:00), A = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00"), B = qcv(terms = "2.40, 3.01:3.02, 5.01, 6.02:7.00, 9.00, 1.12.00:1.19.01"), C = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00, 17.01") ) y <- list( transcript_time_span = qcv(00:00 - 1:12:00), A = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00"), B = qcv(terms = "2.40, 3.01:3.02, 5.01, 6.02:7.00, 9.00, 1.12.00:1.19.01"), C = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00, 17.01") ) dat <- cm_time2long(x, y) head(dat, 12) cm_code.combine(dat, list(P=qcv(A, B), Q=qcv(B, C), R=qcv(A, B, C)), "variable") ## End(Not run)
Find the occurrences of n codes excluding the nth code. For example you have times/words coded for a teacher and you also have times/words coded for happiness. You can find all the happiness times excluding the teacher times or vice versa.
cm_code.exclude(x2long.obj, exclude.code.list, rm.var = NULL)
cm_code.exclude(x2long.obj, exclude.code.list, rm.var = NULL)
x2long.obj |
An object from |
exclude.code.list |
A list of named character vectors of at least two code column names to compare and exclude. The last column name is the one that will be excluded. |
rm.var |
Name of the repeated measures column. |
Returns a dataframe with n codes excluding the nth code.
The code column must be named "code"
and your start and end
columns must be named "start"
and "end"
.
cm_range2long
,
cm_time2long
,
cm_df2long
,
cm_code.blank
,
cm_code.combine
,
cm_code.overlap
,
cm_code.transform
## Not run: foo <- list( AA = qcv(terms="1:10"), BB = qcv(terms="1:2, 3:10, 19"), CC = qcv(terms="1:3, 5:6") ) foo2 <- list( AA = qcv(terms="4:8"), BB = qcv(terms="1:4, 10:12"), CC = qcv(terms="1, 11, 15:20"), DD = qcv(terms="") ) (x <- cm_range2long(foo)) (z <- cm_range2long(foo, foo2, v.name="time")) cm_code.exclude(x, list(ABnoC=qcv(AA, BB, CC))) cm_code.exclude(z, list(ABnoC=qcv(AA, BB, CC)), rm.var="time") excludes <- list(AnoB=qcv(AA, BB), ABnoC=qcv(AA, BB, CC)) (a <- cm_code.exclude(z, excludes, rm.var="time")) plot(a) #WITH cm_time2long x <- list( transcript_time_span = qcv(00:00 - 1:12:00), A = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00"), B = qcv(terms = "2.40, 3.01:3.02, 5.01, 6.02:7.00, 9.00, 1.12.00:1.19.01"), C = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00, 17.01") ) y <- list( transcript_time_span = qcv(00:00 - 1:12:00), A = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00"), B = qcv(terms = "2.40, 3.01:3.02, 5.01, 6.02:7.00, 9.00, 1.12.00:1.19.01"), C = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00, 17.01") ) dat <- cm_time2long(x, y) head(dat, 10) cm_code.exclude(dat, list(P=qcv(A, B), Q=qcv(B, C), R=qcv(A, B, C)), rm.var = "variable") ## End(Not run)
## Not run: foo <- list( AA = qcv(terms="1:10"), BB = qcv(terms="1:2, 3:10, 19"), CC = qcv(terms="1:3, 5:6") ) foo2 <- list( AA = qcv(terms="4:8"), BB = qcv(terms="1:4, 10:12"), CC = qcv(terms="1, 11, 15:20"), DD = qcv(terms="") ) (x <- cm_range2long(foo)) (z <- cm_range2long(foo, foo2, v.name="time")) cm_code.exclude(x, list(ABnoC=qcv(AA, BB, CC))) cm_code.exclude(z, list(ABnoC=qcv(AA, BB, CC)), rm.var="time") excludes <- list(AnoB=qcv(AA, BB), ABnoC=qcv(AA, BB, CC)) (a <- cm_code.exclude(z, excludes, rm.var="time")) plot(a) #WITH cm_time2long x <- list( transcript_time_span = qcv(00:00 - 1:12:00), A = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00"), B = qcv(terms = "2.40, 3.01:3.02, 5.01, 6.02:7.00, 9.00, 1.12.00:1.19.01"), C = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00, 17.01") ) y <- list( transcript_time_span = qcv(00:00 - 1:12:00), A = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00"), B = qcv(terms = "2.40, 3.01:3.02, 5.01, 6.02:7.00, 9.00, 1.12.00:1.19.01"), C = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00, 17.01") ) dat <- cm_time2long(x, y) head(dat, 10) cm_code.exclude(dat, list(P=qcv(A, B), Q=qcv(B, C), R=qcv(A, B, C)), rm.var = "variable") ## End(Not run)
Combine co-occurrences of codes into a new code.
cm_code.overlap(x2long.obj, overlap.code.list, rm.var = NULL)
cm_code.overlap(x2long.obj, overlap.code.list, rm.var = NULL)
x2long.obj |
An object from |
overlap.code.list |
A list of named character vectors of at least two code column names to aggregate co-occurrences. |
rm.var |
Name of the repeated measures column. |
Returns a dataframe with co-occurrences of supplied overlapping codes added.
The code column must be named code and your start and end columns must
be named "start"
and "end"
.
cm_range2long
,
cm_time2long
,
cm_df2long
,
cm_code.combine
,
cm_code.transform
## Not run: foo <- list( AA = qcv(terms="1:10"), BB = qcv(terms="1:2, 3:10, 19"), CC = qcv(terms="1:3, 5:6") ) foo2 <- list( AA = qcv(terms="4:8"), BB = qcv(terms="1:4, 10:12"), CC = qcv(terms="1, 11, 15:20"), DD = qcv(terms="") ) (x <- cm_range2long(foo)) (z <- cm_range2long(foo, foo2, v.name="time")) cm_code.overlap(x, list(AB=qcv(AA, BB))) cm_code.overlap(x, list(ALL=qcv(AA, BB, CC))) combines <- list(AB=qcv(AA, BB), ABC=qcv(AA, BB, CC)) (a <- cm_code.overlap(z, combines, "time")) plot(a) #WITH cm_time2long x <- list( transcript_time_span = qcv(00:00 - 1:12:00), A = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00"), B = qcv(terms = "2.40, 3.01:3.02, 5.01, 6.02:7.00, 9.00, 1.12.00:1.19.01"), C = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00, 17.01") ) y <- list( transcript_time_span = qcv(00:00 - 1:12:00), A = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00"), B = qcv(terms = "2.40, 3.01:3.02, 5.01, 6.02:7.00, 9.00, 1.12.00:1.19.01"), C = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00, 17.01") ) dat <- cm_time2long(x, y) head(dat, 10) out <- cm_code.overlap(dat, list(P=qcv(A, B), Q=qcv(B, C), R=qcv(A, B, C)), rm.var="variable") head(out, 10) ## End(Not run)
## Not run: foo <- list( AA = qcv(terms="1:10"), BB = qcv(terms="1:2, 3:10, 19"), CC = qcv(terms="1:3, 5:6") ) foo2 <- list( AA = qcv(terms="4:8"), BB = qcv(terms="1:4, 10:12"), CC = qcv(terms="1, 11, 15:20"), DD = qcv(terms="") ) (x <- cm_range2long(foo)) (z <- cm_range2long(foo, foo2, v.name="time")) cm_code.overlap(x, list(AB=qcv(AA, BB))) cm_code.overlap(x, list(ALL=qcv(AA, BB, CC))) combines <- list(AB=qcv(AA, BB), ABC=qcv(AA, BB, CC)) (a <- cm_code.overlap(z, combines, "time")) plot(a) #WITH cm_time2long x <- list( transcript_time_span = qcv(00:00 - 1:12:00), A = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00"), B = qcv(terms = "2.40, 3.01:3.02, 5.01, 6.02:7.00, 9.00, 1.12.00:1.19.01"), C = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00, 17.01") ) y <- list( transcript_time_span = qcv(00:00 - 1:12:00), A = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00"), B = qcv(terms = "2.40, 3.01:3.02, 5.01, 6.02:7.00, 9.00, 1.12.00:1.19.01"), C = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00, 17.01") ) dat <- cm_time2long(x, y) head(dat, 10) out <- cm_code.overlap(dat, list(P=qcv(A, B), Q=qcv(B, C), R=qcv(A, B, C)), rm.var="variable") head(out, 10) ## End(Not run)
Transform co-occurrences and/or combinations of codes into a new code(s).
cm_code.transform( x2long.obj, overlap.code.list = NULL, combine.code.list = NULL, exclude.code.list = NULL, rm.var = NULL )
cm_code.transform( x2long.obj, overlap.code.list = NULL, combine.code.list = NULL, exclude.code.list = NULL, rm.var = NULL )
x2long.obj |
An object from |
overlap.code.list |
A list of named character vectors of at least two code column names to aggregate co-occurrences. |
combine.code.list |
A list of named character vectors of at least two code column names to combine |
exclude.code.list |
A list of named character vectors of at least two code column names to compare and exclude. The last column name is the one that will be excluded. |
rm.var |
Name of the repeated measures column. |
Returns a dataframe with overlapping, combined occurrences, and/or exclusion of supplied overlapping codes added.
The code column must be named "code"
and your start and end
columns must be named "start"
and "end"
.
cm_range2long
,
cm_time2long
,
cm_df2long
,
cm_code.blank
,
cm_code.combine
,
cm_code.exclude
,
cm_code.overlap
## Not run: foo <- list( AA = qcv(terms="1:10"), BB = qcv(terms="1:2, 3:10, 19"), CC = qcv(terms="1:3, 5:6") ) foo2 <- list( AA = qcv(terms="4:8"), BB = qcv(terms="1:4, 10:12"), CC = qcv(terms="1, 11, 15:20"), DD = qcv(terms="") ) bar1 <- list( transcript_time_span = qcv(00:00 - 1:12:00), A = qcv(terms = "0.00:3.00, 5.01, 6.02:7.00, 9.00"), B = qcv(terms = "2.40, 3.01:3.02, 5.01, 6.02:7.00, 9.00, 1.12.00:1.19.01"), C = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00, 16.25:17.01") ) (x <- cm_range2long(foo)) (z <- cm_range2long(foo, foo2, v.name="time")) (dat <- cm_time2long(bar1)) cm_code.transform(x, overlap.code.list = list(ABC=qcv(AA, BB, CC)), combine.code.list = list(oABC=qcv(AA, BB, CC)), exclude.code.list = list(ABnoC=qcv(AA, BB, CC)) ) cm_code.transform(z, overlap.code.list = list(ABC=qcv(AA, BB, CC)), combine.code.list = list(oABC=qcv(AA, BB, CC)), exclude.code.list = list(ABnoC=qcv(AA, BB, CC)), "time" ) cm_code.transform(dat, overlap.code.list = list(ABC=qcv(A, B, C)), combine.code.list = list(oABC=qcv(A, B, C)), exclude.code.list = list(ABnoC=qcv(A, B, C)) ) ## End(Not run)
## Not run: foo <- list( AA = qcv(terms="1:10"), BB = qcv(terms="1:2, 3:10, 19"), CC = qcv(terms="1:3, 5:6") ) foo2 <- list( AA = qcv(terms="4:8"), BB = qcv(terms="1:4, 10:12"), CC = qcv(terms="1, 11, 15:20"), DD = qcv(terms="") ) bar1 <- list( transcript_time_span = qcv(00:00 - 1:12:00), A = qcv(terms = "0.00:3.00, 5.01, 6.02:7.00, 9.00"), B = qcv(terms = "2.40, 3.01:3.02, 5.01, 6.02:7.00, 9.00, 1.12.00:1.19.01"), C = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00, 16.25:17.01") ) (x <- cm_range2long(foo)) (z <- cm_range2long(foo, foo2, v.name="time")) (dat <- cm_time2long(bar1)) cm_code.transform(x, overlap.code.list = list(ABC=qcv(AA, BB, CC)), combine.code.list = list(oABC=qcv(AA, BB, CC)), exclude.code.list = list(ABnoC=qcv(AA, BB, CC)) ) cm_code.transform(z, overlap.code.list = list(ABC=qcv(AA, BB, CC)), combine.code.list = list(oABC=qcv(AA, BB, CC)), exclude.code.list = list(ABnoC=qcv(AA, BB, CC)), "time" ) cm_code.transform(dat, overlap.code.list = list(ABC=qcv(A, B, C)), combine.code.list = list(oABC=qcv(A, B, C)), exclude.code.list = list(ABnoC=qcv(A, B, C)) ) ## End(Not run)
Combine code columns where they co-occur.
cm_combine.dummy(cm.l2d.obj, combine.code, rm.var = "time", overlap = TRUE)
cm_combine.dummy(cm.l2d.obj, combine.code, rm.var = "time", overlap = TRUE)
cm.l2d.obj |
An object from |
combine.code |
A list of named character vectors of at least two code column names to combine |
rm.var |
Name of the repeated measures column. Default is "time". |
overlap |
logical, integer or character of binary operator + integer.
If |
Returns a dataframe with co-occurrences of provided code columns.
## Not run: foo <- list( AA = qcv(terms="1:10"), BB = qcv(terms="1:2, 3:10, 19"), CC = qcv(terms="1:3, 5:6") ) foo2 <- list( AA = qcv(terms="4:8"), BB = qcv(terms="1:4, 10:12"), CC = qcv(terms="1, 11, 15:20"), DD = qcv(terms="") ) (x <- cm_range2long(foo)) (D1 <- cm_long2dummy(x)) (z <- cm_range2long(foo, foo2, v.name="time")) (D2 <- cm_long2dummy(z, "time")) cm_combine.dummy(D1, combine.code = list(AB=qcv(AA, BB))) cm_combine.dummy(D1, combine.code = list(AB=qcv(AA, BB)), overlap="==1") cm_combine.dummy(D1, combine.code = list(AB=qcv(AA, BB)), overlap="!=1") D1 <- cm_combine.dummy(D1, combine.code = list(AB=qcv(AA, BB)), overlap=0) D1 <- cm_combine.dummy(D1, combine.code = list(CAB=qcv(AB, CC)), overlap=FALSE) combines <- list(AB=qcv(AA, BB), ABC=qcv(AA, BB, CC)) cm_combine.dummy(D1, combine.code = combines) cm_combine.dummy(D2, combine.code = combines) ## End(Not run)
## Not run: foo <- list( AA = qcv(terms="1:10"), BB = qcv(terms="1:2, 3:10, 19"), CC = qcv(terms="1:3, 5:6") ) foo2 <- list( AA = qcv(terms="4:8"), BB = qcv(terms="1:4, 10:12"), CC = qcv(terms="1, 11, 15:20"), DD = qcv(terms="") ) (x <- cm_range2long(foo)) (D1 <- cm_long2dummy(x)) (z <- cm_range2long(foo, foo2, v.name="time")) (D2 <- cm_long2dummy(z, "time")) cm_combine.dummy(D1, combine.code = list(AB=qcv(AA, BB))) cm_combine.dummy(D1, combine.code = list(AB=qcv(AA, BB)), overlap="==1") cm_combine.dummy(D1, combine.code = list(AB=qcv(AA, BB)), overlap="!=1") D1 <- cm_combine.dummy(D1, combine.code = list(AB=qcv(AA, BB)), overlap=0) D1 <- cm_combine.dummy(D1, combine.code = list(CAB=qcv(AB, CC)), overlap=FALSE) combines <- list(AB=qcv(AA, BB), ABC=qcv(AA, BB, CC)) cm_combine.dummy(D1, combine.code = combines) cm_combine.dummy(D2, combine.code = combines) ## End(Not run)
Allows range coding of words for efficient coding.
cm_df.fill( dataframe, ranges, value = 1, text.var = NULL, code.vars = NULL, transform = FALSE )
cm_df.fill( dataframe, ranges, value = 1, text.var = NULL, code.vars = NULL, transform = FALSE )
dataframe |
A dataframe containing a text variable. |
ranges |
A named list of ranges to recode. Names correspond to code names in dataframe. |
value |
The recode value. Takes a vector of length one or a vector of length equal to the number of code columns. |
text.var |
The name of the text variable. |
code.vars |
Optional vector of codes. |
transform |
logical. If |
After ranging coding transcripts via (cm_df.temp
) or
the blank code matrix via (cm_df.transcript
),cm_df.fill
is used to create a matrix of what codes occurred at what words (a filled code
matrix). A list of range codes (word number spans) is fed to
cm_df.fill
. A single number indicates a single word with that coding
scheme whereas the colon is used as a separator that indicates the range of
words from x to y are that particular code.
Generates a dummy coded dataframe.
Miles, M. B. & Huberman, A. M. (1994). An expanded sourcebook: Qualitative data analysis. 2nd ed. Thousand Oaks, CA: SAGE Publications.
cm_df.temp
,
cm_df.transcript
,
cm_df2long
## Not run: codes <- qcv(dc, sf, wes, pol, rejk, lk, azx, mmm) X <- cm_df.temp(DATA, "state", codes) head(X, 10) #recommended structure cds1 <- list( dc=c(1:3, 5), sf=c(4, 6:9, 11), wes=0, pol=0, rejk=0, lk=0, azx=1:30, mmm=5 ) out1 <- cm_df.fill(X, cds1) head(out1) #recommended structure cds2 <- list( sf=c(4, 6:9, 11), dc=c(1:3, 5), azx=1:30, mmm=5 ) out2 <- cm_df.fill(X, cds2) head(out2) ## End(Not run)
## Not run: codes <- qcv(dc, sf, wes, pol, rejk, lk, azx, mmm) X <- cm_df.temp(DATA, "state", codes) head(X, 10) #recommended structure cds1 <- list( dc=c(1:3, 5), sf=c(4, 6:9, 11), wes=0, pol=0, rejk=0, lk=0, azx=1:30, mmm=5 ) out1 <- cm_df.fill(X, cds1) head(out1) #recommended structure cds2 <- list( sf=c(4, 6:9, 11), dc=c(1:3, 5), azx=1:30, mmm=5 ) out2 <- cm_df.fill(X, cds2) head(out2) ## End(Not run)
Breaks transcript dialogue into words while retaining the demographic factors associate with each word. The codes argument provides a matrix of zeros that can serve as a dummy coded matrix of codes per word.
cm_df.temp( dataframe, text.var, codes = NULL, file = NULL, transpose = FALSE, strip = FALSE, ... )
cm_df.temp( dataframe, text.var, codes = NULL, file = NULL, transpose = FALSE, strip = FALSE, ... )
dataframe |
A dataframe containing a text variable. |
text.var |
The name of the text variable. |
codes |
Optional list of codes. |
file |
The name of the file (csv is recommended file type). If
|
transpose |
logical. If |
strip |
logical. If |
... |
Other arguments passed to strip. |
Generates a dataframe, and optional csv file, of individual words while maintaining demographic information. If a vector of codes is provided the outcome is a matrix of words used by codes filled with zeros. This dataframe is useful for dummy coded (1-yes code exists; 0-no it does not) representation of data and can be used for visualizations and statistical analysis.
Miles, M. B. & Huberman, A. M. (1994). An expanded sourcebook: Qualitative data analysis. 2nd ed. Thousand Oaks, CA: SAGE Publications.
cm_range2long
,
cm_df.transcript
,
cm_df.fill
## Not run: codes <- qcv(dc, sf, wes, pol, rejk, lk, azx, mmm) out1 <- cm_df.temp(DATA, "state", codes) head(out1, 15) out2 <- cm_df.temp(DATA, "state", codes, transpose = TRUE) out2[, 1:10] out3 <- cm_df.temp(raj.act.1, "dialogue", codes) head(out3, 15) out4 <- cm_df.temp(raj.act.1, "dialogue", codes, transpose = TRUE) out4 [, 1:8] ## End(Not run)
## Not run: codes <- qcv(dc, sf, wes, pol, rejk, lk, azx, mmm) out1 <- cm_df.temp(DATA, "state", codes) head(out1, 15) out2 <- cm_df.temp(DATA, "state", codes, transpose = TRUE) out2[, 1:10] out3 <- cm_df.temp(raj.act.1, "dialogue", codes) head(out3, 15) out4 <- cm_df.temp(raj.act.1, "dialogue", codes, transpose = TRUE) out4 [, 1:8] ## End(Not run)
Output a transcript with word number/index above for easy input back into qdap after coding.
cm_df.transcript( text.var, grouping.var, file = NULL, indent = 4, width = 70, space = 2, ... )
cm_df.transcript( text.var, grouping.var, file = NULL, indent = 4, width = 70, space = 2, ... )
text.var |
The text variable. |
grouping.var |
The grouping variables. Default |
file |
A connection, or a character string naming the file to print to (e.g., .doc, .txt). |
indent |
Number of spaces to indent. |
width |
Width to output the file (defaults to 70; this is generally a good width and indent for a .docx file). |
space |
An integer value denoting the vertical spacing between the
|
... |
Other arguments passed to strip. |
Returns a transcript by grouping variable with word number above each
word. This makes use with cm_df2long
transfer/usage
easier because the researcher has coded on a transcript with the numeric word
index already.
It is recommended that the researcher actually codes on the output
from this file. The codes can then be transferred to via a list. If a file
already exists cm_df.transcript
will append to that file.
BondedDust (stackoverflow.com), Gavin Simpson and Tyler Rinker <[email protected]>
## Not run: with(DATA, cm_df.transcript(state, person)) with(DATA, cm_df.transcript(state, list(sex, adult))) #use it with nested variables just to keep track of demographic info with(DATA, cm_df.transcript(state, list(person, sex, adult))) #use double tilde "~~" to keep word group as one word DATA$state <- mgsub("be certain", "be~~certain", DATA$state, fixed = TRUE) with(DATA, cm_df.transcript(state, person)) DATA <- qdap::DATA ## with(mraja1spl, cm_df.transcript(dialogue, list(person))) ## with(mraja1spl, cm_df.transcript(dialogue, list(sex, fam.aff, died))) ## with(mraja1spl, cm_df.transcript(dialogue, list(person), file="foo.doc")) ## delete("foo.doc") #delete the file just created ## End(Not run)
## Not run: with(DATA, cm_df.transcript(state, person)) with(DATA, cm_df.transcript(state, list(sex, adult))) #use it with nested variables just to keep track of demographic info with(DATA, cm_df.transcript(state, list(person, sex, adult))) #use double tilde "~~" to keep word group as one word DATA$state <- mgsub("be certain", "be~~certain", DATA$state, fixed = TRUE) with(DATA, cm_df.transcript(state, person)) DATA <- qdap::DATA ## with(mraja1spl, cm_df.transcript(dialogue, list(person))) ## with(mraja1spl, cm_df.transcript(dialogue, list(sex, fam.aff, died))) ## with(mraja1spl, cm_df.transcript(dialogue, list(person), file="foo.doc")) ## delete("foo.doc") #delete the file just created ## End(Not run)
Transforms the range coding structure(s) from cm_df.temp
(in list format) into a data frame of start and end durations in long format.
cm_df2long( df.temp.obj, v.name = "variable", list.var = TRUE, code.vars = NULL, no.code = NA, add.start.end = TRUE, repeat.vars = NULL, rev.code = FALSE )
cm_df2long( df.temp.obj, v.name = "variable", list.var = TRUE, code.vars = NULL, no.code = NA, add.start.end = TRUE, repeat.vars = NULL, rev.code = FALSE )
df.temp.obj |
A character vector of names of object(s) created by
|
v.name |
An optional name for the column created for the list.var argument. |
list.var |
logical. If |
code.vars |
A character vector of code variables. If |
no.code |
The value to assign to no code; default is |
add.start.end |
logical. If |
repeat.vars |
A character vector of repeated/stacked variables. If
|
rev.code |
logical. If |
Generates a data frame of start and end times for each code.
Miles, M. B. & Huberman, A. M. (1994). An expanded sourcebook: Qualitative data analysis. 2nd ed. Thousand Oaks, CA: SAGE Publications.
cm_time2long
,
cm_range2long
,
cm_df.temp
## Not run: codes <- qcv(dc, sf, wes, pol, rejk, lk, azx, mmm) x1 <- cm_df.temp(DATA, "state", codes) head(x1) #empty code matrix out1 <- cm_df2long(x1, code.vars = codes) head(out1, 15) #fill it randomly x1[, 7:14] <- lapply(7:14, function(i) sample(0:1, nrow(x1), TRUE)) out2 <- cm_df2long(x1, code.vars = codes) head(out2, 15) plot(out2) ## End(Not run)
## Not run: codes <- qcv(dc, sf, wes, pol, rejk, lk, azx, mmm) x1 <- cm_df.temp(DATA, "state", codes) head(x1) #empty code matrix out1 <- cm_df2long(x1, code.vars = codes) head(out1, 15) #fill it randomly x1[, 7:14] <- lapply(7:14, function(i) sample(0:1, nrow(x1), TRUE)) out2 <- cm_df2long(x1, code.vars = codes) head(out2, 15) plot(out2) ## End(Not run)
Generate distance measures to ascertain a mean distance measure between codes.
cm_distance( dataframe, pvals = c(TRUE, FALSE), replications = 1000, parallel = TRUE, extended.output = TRUE, time.var = TRUE, code.var = "code", causal = FALSE, start.var = "start", end.var = "end", cores = detectCores()/2 )
cm_distance( dataframe, pvals = c(TRUE, FALSE), replications = 1000, parallel = TRUE, extended.output = TRUE, time.var = TRUE, code.var = "code", causal = FALSE, start.var = "start", end.var = "end", cores = detectCores()/2 )
dataframe |
A data frame from the cm_x2long family
( |
pvals |
A logical vector of length 1 or 2. If element 2 is blank
element 1 will be recycled. If the first element is |
replications |
An integer value for the number of replications used in
resampling the data if any |
parallel |
logical. If |
extended.output |
logical. If |
time.var |
An optional variable to split the dataframe by (if you have data that is by various times this must be supplied). |
code.var |
The name of the code variable column. Defaults to "codes" as out putted by x2long family. |
causal |
logical. If |
start.var |
The name of the start variable column. Defaults to "start" as out putted by x2long family. |
end.var |
The name of the end variable column. Defaults to "end" as out putted by x2long family. |
cores |
An integer value describing the number of cores to use if
|
Note that row names are the first code and column names are the
second comparison code. The values for Code A compared to Code B will not be
the same as Code B compared to Code A. This is because, unlike a true
distance measure, cm_distance's matrix is asymmetrical. cm_distance
computes the distance by taking each span (start and end) for Code A and
comparing it to the nearest start or end for Code B.
An object of the class "cm_distance"
. This is a list with the
following components:
pvals |
A logical indication of whether pvalues were calculated |
replications |
Integer value of number of replications used |
extended.output |
An optional list of individual repeated measures information |
main.output |
A list of aggregated repeated measures information |
adj.alpha |
An adjusted alpha level (based on |
Within the lists of extended.output and list of the main.output are the following items:
mean |
A distance matrix of average distances between codes |
sd |
A matrix of standard deviations of distances between codes |
n |
A matrix of counts of distances between codes |
stan.mean |
A matrix of standardized values of distances between codes. The closer a value is to zero the closer two codes relate. |
pvalue |
A n optional matrix of simulated pvalues associated with the mean distances |
p-values are estimated and thus subject to error. More replications decreases the error. Use:
to adjust the confidence in the estimated p-values based on the number of replications.
https://stats.stackexchange.com/a/22333/7482
## Not run: foo <- list( AA = qcv(terms="02:03, 05"), BB = qcv(terms="1:2, 3:10"), CC = qcv(terms="1:9, 100:150") ) foo2 <- list( AA = qcv(terms="40"), BB = qcv(terms="50:90"), CC = qcv(terms="60:90, 100:120, 150"), DD = qcv(terms="") ) (dat <- cm_2long(foo, foo2, v.name = "time")) plot(dat) (out <- cm_distance(dat, replications=100)) names(out) names(out$main.output) out$main.output out$extended.output print(out, new.order = c(3, 2, 1)) print(out, new.order = 3:2) #======================================== x <- list( transcript_time_span = qcv(00:00 - 1:12:00), A = qcv(terms = "2.40:3.00, 6.32:7.00, 9.00, 10.00:11.00, 59.56"), B = qcv(terms = "3.01:3.02, 5.01, 19.00, 1.12.00:1.19.01"), C = qcv(terms = "2.40:3.00, 5.01, 6.32:7.00, 9.00, 17.01") ) (dat <- cm_2long(x)) plot(dat) (a <- cm_distance(dat, causal=TRUE, replications=100)) ## Plotting as a network graph datA <- list( A = qcv(terms="02:03, 05"), B = qcv(terms="1:2, 3:10, 45, 60, 200:206, 250, 289:299, 330"), C = qcv(terms="1:9, 47, 62, 100:150, 202, 260, 292:299, 332"), D = qcv(terms="10:20, 30, 38:44, 138:145"), E = qcv(terms="10:15, 32, 36:43, 132:140"), F = qcv(terms="1:2, 3:9, 10:15, 32, 36:43, 45, 60, 132:140, 250, 289:299"), G = qcv(terms="1:2, 3:9, 10:15, 32, 36:43, 45, 60, 132:140, 250, 289:299"), H = qcv(terms="20, 40, 60, 150, 190, 222, 255, 277"), I = qcv(terms="20, 40, 60, 150, 190, 222, 255, 277") ) datB <- list( A = qcv(terms="40"), B = qcv(terms="50:90, 110, 148, 177, 200:206, 250, 289:299"), C = qcv(terms="60:90, 100:120, 150, 201, 244, 292"), D = qcv(terms="10:20, 30, 38:44, 138:145"), E = qcv(terms="10:15, 32, 36:43, 132:140"), F = qcv(terms="10:15, 32, 36:43, 132:140, 148, 177, 200:206, 250, 289:299"), G = qcv(terms="10:15, 32, 36:43, 132:140, 148, 177, 200:206, 250, 289:299"), I = qcv(terms="20, 40, 60, 150, 190, 222, 255, 277") ) (datC <- cm_2long(datA, datB, v.name = "time")) plot(datC) (out2 <- cm_distance(datC, replications=1250)) plot(out2) plot(out2, label.cex=2, label.dist=TRUE, digits=5) ## End(Not run)
## Not run: foo <- list( AA = qcv(terms="02:03, 05"), BB = qcv(terms="1:2, 3:10"), CC = qcv(terms="1:9, 100:150") ) foo2 <- list( AA = qcv(terms="40"), BB = qcv(terms="50:90"), CC = qcv(terms="60:90, 100:120, 150"), DD = qcv(terms="") ) (dat <- cm_2long(foo, foo2, v.name = "time")) plot(dat) (out <- cm_distance(dat, replications=100)) names(out) names(out$main.output) out$main.output out$extended.output print(out, new.order = c(3, 2, 1)) print(out, new.order = 3:2) #======================================== x <- list( transcript_time_span = qcv(00:00 - 1:12:00), A = qcv(terms = "2.40:3.00, 6.32:7.00, 9.00, 10.00:11.00, 59.56"), B = qcv(terms = "3.01:3.02, 5.01, 19.00, 1.12.00:1.19.01"), C = qcv(terms = "2.40:3.00, 5.01, 6.32:7.00, 9.00, 17.01") ) (dat <- cm_2long(x)) plot(dat) (a <- cm_distance(dat, causal=TRUE, replications=100)) ## Plotting as a network graph datA <- list( A = qcv(terms="02:03, 05"), B = qcv(terms="1:2, 3:10, 45, 60, 200:206, 250, 289:299, 330"), C = qcv(terms="1:9, 47, 62, 100:150, 202, 260, 292:299, 332"), D = qcv(terms="10:20, 30, 38:44, 138:145"), E = qcv(terms="10:15, 32, 36:43, 132:140"), F = qcv(terms="1:2, 3:9, 10:15, 32, 36:43, 45, 60, 132:140, 250, 289:299"), G = qcv(terms="1:2, 3:9, 10:15, 32, 36:43, 45, 60, 132:140, 250, 289:299"), H = qcv(terms="20, 40, 60, 150, 190, 222, 255, 277"), I = qcv(terms="20, 40, 60, 150, 190, 222, 255, 277") ) datB <- list( A = qcv(terms="40"), B = qcv(terms="50:90, 110, 148, 177, 200:206, 250, 289:299"), C = qcv(terms="60:90, 100:120, 150, 201, 244, 292"), D = qcv(terms="10:20, 30, 38:44, 138:145"), E = qcv(terms="10:15, 32, 36:43, 132:140"), F = qcv(terms="10:15, 32, 36:43, 132:140, 148, 177, 200:206, 250, 289:299"), G = qcv(terms="10:15, 32, 36:43, 132:140, 148, 177, 200:206, 250, 289:299"), I = qcv(terms="20, 40, 60, 150, 190, 222, 255, 277") ) (datC <- cm_2long(datA, datB, v.name = "time")) plot(datC) (out2 <- cm_distance(datC, replications=1250)) plot(out2) plot(out2, label.cex=2, label.dist=TRUE, digits=5) ## End(Not run)
cm_combine.dummy
back to long.
cm_dummy2long(cm_long2dummy_obj, rm.var = "time")
cm_dummy2long(cm_long2dummy_obj, rm.var = "time")
cm_long2dummy_obj |
An object from cm_combine.dummy |
rm.var |
Name of the repeated measures column. Default is
|
Returns a dataframe with co-occurrences of provided code columns.
cm_long2dummy
,
cm_combine.dummy
## Not run: foo <- list( AA = qcv(terms="1:10"), BB = qcv(terms="1:2, 3:10, 19"), CC = qcv(terms="1:3, 5:6") ) foo2 <- list( AA = qcv(terms="4:8"), BB = qcv(terms="1:4, 10:12"), CC = qcv(terms="1, 11, 15:20"), DD = qcv(terms="") ) (x <- cm_range2long(foo)) (out1 <- cm_long2dummy(x)) (z <- cm_range2long(foo, foo2, v.name="time")) out2 <- cm_long2dummy(z, "time") lapply(out2, head) cm_combine.dummy(out1, combine.code = list(AB=qcv(AA, BB))) combines <- list(AB=qcv(AA, BB), ABC=qcv(AA, BB, CC)) A <- cm_combine.dummy(out2, combine.code = combines) head(A, 10) B <- cm_combine.dummy(out1, combine.code = combines) head(B, 10) cm_dummy2long(A) cm_dummy2long(B) plot(cm_dummy2long(A)) ## End(Not run)
## Not run: foo <- list( AA = qcv(terms="1:10"), BB = qcv(terms="1:2, 3:10, 19"), CC = qcv(terms="1:3, 5:6") ) foo2 <- list( AA = qcv(terms="4:8"), BB = qcv(terms="1:4, 10:12"), CC = qcv(terms="1, 11, 15:20"), DD = qcv(terms="") ) (x <- cm_range2long(foo)) (out1 <- cm_long2dummy(x)) (z <- cm_range2long(foo, foo2, v.name="time")) out2 <- cm_long2dummy(z, "time") lapply(out2, head) cm_combine.dummy(out1, combine.code = list(AB=qcv(AA, BB))) combines <- list(AB=qcv(AA, BB), ABC=qcv(AA, BB, CC)) A <- cm_combine.dummy(out2, combine.code = combines) head(A, 10) B <- cm_combine.dummy(out1, combine.code = combines) head(B, 10) cm_dummy2long(A) cm_dummy2long(B) plot(cm_dummy2long(A)) ## End(Not run)
Stretches and dummy codes a cm_xxx2long dataframe to allow for combining columns.
cm_long2dummy( dataframe, rm.var = NULL, code = "code", start = "start", end = "end" )
cm_long2dummy( dataframe, rm.var = NULL, code = "code", start = "start", end = "end" )
dataframe |
A dataframe that contains the person variable. |
rm.var |
An optional character argument of the name of a repeated measures column. |
code |
A character argument of the name of a repeated measures column.
Default is |
start |
A character argument of the name of a repeated measures column.
Default is |
end |
A character argument of the name of a repeated measures column.
Default is |
Returns a dataframe or a list of stretched and dummy coded dataframe(s).
cm_range2long
,
cm_time2long
,
cm_df2long
## Not run: foo <- list( AA = qcv(terms="1:10"), BB = qcv(terms="1:2, 3:10, 19"), CC = qcv(terms="1:3, 5:6") ) foo2 <- list( AA = qcv(terms="4:8"), BB = qcv(terms="1:4, 10:12"), CC = qcv(terms="1, 11, 15:20"), DD = qcv(terms="") ) (x <- cm_range2long(foo)) cm_long2dummy(x) (z <- cm_range2long(foo, foo2, v.name="time")) out <- cm_long2dummy(z, "time") ltruncdf(out) ## End(Not run)
## Not run: foo <- list( AA = qcv(terms="1:10"), BB = qcv(terms="1:2, 3:10, 19"), CC = qcv(terms="1:3, 5:6") ) foo2 <- list( AA = qcv(terms="4:8"), BB = qcv(terms="1:4, 10:12"), CC = qcv(terms="1, 11, 15:20"), DD = qcv(terms="") ) (x <- cm_range2long(foo)) cm_long2dummy(x) (z <- cm_range2long(foo, foo2, v.name="time")) out <- cm_long2dummy(z, "time") ltruncdf(out) ## End(Not run)
Generates a range coding sheet for coding words.
cm_range.temp(codes, text.var = NULL, grouping.var = NULL, file = NULL)
cm_range.temp(codes, text.var = NULL, grouping.var = NULL, file = NULL)
codes |
Character vector of codes. |
text.var |
The text variable. |
grouping.var |
The grouping variables. Also takes a single grouping variable or a list of 1 or more grouping variables. |
file |
A connection, or a character string naming the file to print to (.txt or .doc is recommended). |
Miles, M. B. & Huberman, A. M. (1994). An expanded sourcebook: Qualitative data analysis. 2nd ed. Thousand Oaks, CA: SAGE Publications.
## Not run: cm_range.temp(qcv(AA, BB, CC)) with(DATA, cm_range.temp(qcv(AA, BB, CC), state, list(person, adult))) ## cm_range.temp(qcv(AA, BB, CC), file = "foo.txt") ## delete("foo.txt") ## End(Not run)
## Not run: cm_range.temp(qcv(AA, BB, CC)) with(DATA, cm_range.temp(qcv(AA, BB, CC), state, list(person, adult))) ## cm_range.temp(qcv(AA, BB, CC), file = "foo.txt") ## delete("foo.txt") ## End(Not run)
Transforms the range coding structure(s) from cm_range.temp (in list format) into a data frame of start and end durations in long format.
cm_range2long( ..., v.name = "variable", list.var = TRUE, debug = TRUE, object = NULL )
cm_range2long( ..., v.name = "variable", list.var = TRUE, debug = TRUE, object = NULL )
v.name |
An optional name for the column created for the list.var argument. |
list.var |
logical. If |
debug |
logical. If |
object |
A list of list object(s) generated by
|
... |
list object(s) in the form generated by
|
Generates a data frame of start and end spans for each code.
Miles, M. B. & Huberman, A. M. (1994). An expanded sourcebook: Qualitative data analysis. 2nd ed. Thousand Oaks, CA: SAGE Publications.
cm_df2long
,
cm_time.temp
,
cm_df.transcript
## Not run: foo <- list( person_greg = qcv(terms='7:11, 20:24, 30:33, 49:56'), person_researcher = qcv(terms='42:48'), person_sally = qcv(terms='25:29, 37:41'), person_sam = qcv(terms='1:6, 16:19, 34:36'), person_teacher = qcv(terms='12:15'), adult_0 = qcv(terms='1:11, 16:41, 49:56'), adult_1 = qcv(terms='12:15, 42:48'), AA = qcv(terms="1"), BB = qcv(terms="1:2, 3:10, 19"), CC = qcv(terms="1:9, 100:150") ) foo2 <- list( person_greg = qcv(terms='7:11, 20:24, 30:33, 49:56'), person_researcher = qcv(terms='42:48'), person_sally = qcv(terms='25:29, 37:41'), person_sam = qcv(terms='1:6, 16:19, 34:36'), person_teacher = qcv(terms='12:15'), adult_0 = qcv(terms='1:11, 16:41, 49:56'), adult_1 = qcv(terms='12:15, 42:48'), AA = qcv(terms="40"), BB = qcv(terms="50:90"), CC = qcv(terms="60:90, 100:120, 150"), DD = qcv(terms="") ) ## General ldots Approach (dat <- cm_range2long(foo, foo2, v.name = "time")) plot(dat) ## Specify `object` Approach cm_range2long(object=list(foo=foo)) cm_range2long(object=list(foo=foo, foo2=foo2), v.name="time") cm_range2long(object=list(a=foo, b=foo2), v.name="time") ## End(Not run)
## Not run: foo <- list( person_greg = qcv(terms='7:11, 20:24, 30:33, 49:56'), person_researcher = qcv(terms='42:48'), person_sally = qcv(terms='25:29, 37:41'), person_sam = qcv(terms='1:6, 16:19, 34:36'), person_teacher = qcv(terms='12:15'), adult_0 = qcv(terms='1:11, 16:41, 49:56'), adult_1 = qcv(terms='12:15, 42:48'), AA = qcv(terms="1"), BB = qcv(terms="1:2, 3:10, 19"), CC = qcv(terms="1:9, 100:150") ) foo2 <- list( person_greg = qcv(terms='7:11, 20:24, 30:33, 49:56'), person_researcher = qcv(terms='42:48'), person_sally = qcv(terms='25:29, 37:41'), person_sam = qcv(terms='1:6, 16:19, 34:36'), person_teacher = qcv(terms='12:15'), adult_0 = qcv(terms='1:11, 16:41, 49:56'), adult_1 = qcv(terms='12:15, 42:48'), AA = qcv(terms="40"), BB = qcv(terms="50:90"), CC = qcv(terms="60:90, 100:120, 150"), DD = qcv(terms="") ) ## General ldots Approach (dat <- cm_range2long(foo, foo2, v.name = "time")) plot(dat) ## Specify `object` Approach cm_range2long(object=list(foo=foo)) cm_range2long(object=list(foo=foo, foo2=foo2), v.name="time") cm_range2long(object=list(a=foo, b=foo2), v.name="time") ## End(Not run)
Generates a time span coding sheet and coding format sheet.
cm_time.temp( codes, grouping.var = NULL, start = ":00", end = NULL, file = NULL, coding = FALSE, print = TRUE )
cm_time.temp( codes, grouping.var = NULL, start = ":00", end = NULL, file = NULL, coding = FALSE, print = TRUE )
codes |
List of codes. |
grouping.var |
The grouping variables. Also takes a single grouping variable or a list of 1 or more grouping variables. |
start |
A character string in the form of "00:00" indicating start time (default is ":00"). |
end |
A character string in the form of "00:00" indicating end time. |
file |
A connection, or a character string naming the file to print to (.txt or .doc is recommended). |
coding |
logical. If |
print |
logical. If |
Miles, M. B. & Huberman, A. M. (1994). An expanded sourcebook: Qualitative data analysis. 2nd ed. Thousand Oaks, CA: SAGE Publications.
## Not run: ## cm_time.temp(qcv(AA, BB, CC), ":30", "7:40", file = "foo.txt") ## delete("foo.txt") cm_time.temp(qcv(AA, BB, CC), ":30", "7:40") x <- list( transcript_time_span = qcv(terms="00:00 - 1:12:00"), A = qcv(terms="2.40:3.00, 5.01, 6.52:7.00, 9.00"), B = qcv(terms="2.40, 3.01:3.02, 5.01, 6.52:7.00, 9.00, 1.12.00:1.19.01"), C = qcv(terms="2.40:3.00, 5.01, 6.52:7.00, 9.00, 17.01") ) cm_time2long(x) cm_time.temp(qcv(AA, BB, CC)) ## End(Not run)
## Not run: ## cm_time.temp(qcv(AA, BB, CC), ":30", "7:40", file = "foo.txt") ## delete("foo.txt") cm_time.temp(qcv(AA, BB, CC), ":30", "7:40") x <- list( transcript_time_span = qcv(terms="00:00 - 1:12:00"), A = qcv(terms="2.40:3.00, 5.01, 6.52:7.00, 9.00"), B = qcv(terms="2.40, 3.01:3.02, 5.01, 6.52:7.00, 9.00, 1.12.00:1.19.01"), C = qcv(terms="2.40:3.00, 5.01, 6.52:7.00, 9.00, 17.01") ) cm_time2long(x) cm_time.temp(qcv(AA, BB, CC)) ## End(Not run)
Transforms the range coding structure(s) from cm_time.temp
(in list format) into a data frame of start and end times in long format.
cm_time2long( ..., v.name = "variable", list.var = TRUE, debug = TRUE, object = NULL )
cm_time2long( ..., v.name = "variable", list.var = TRUE, debug = TRUE, object = NULL )
v.name |
An optional name for the column created for the list.var argument |
list.var |
logical. If |
debug |
logical. If |
object |
A list of list object(s) generated by
|
... |
List object(s) in the form generated by
|
Generates a dataframe of start and end times for each code.
Miles, M. B. & Huberman, A. M. (1994). An expanded sourcebook: Qualitative data analysis. 2nd ed. Thousand Oaks, CA: SAGE Publications.
## Not run: x <- list( transcript_time_span = qcv(00:00 - 1:12:00), A = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00"), B = qcv(terms = "2.40, 3.01:3.02, 5.01, 6.02:7.00, 9.00, 1.12.00:1.19.01"), C = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00, 17.01") ) (dat <- cm_time2long(x)) plot(dat) bar1 <- list( transcript_time_span = qcv(00:00 - 1:12:00), A = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00"), B = qcv(terms = "2.40, 3.01:3.02, 5.01, 6.02:7.00, 9.00, 1.12.00:1.19.01"), C = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00, 16.25:17.01") ) bar2 <- list( transcript_time_span = qcv(00:00 - 1:12:00), A = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00"), B = qcv(terms = "2.40, 3.01:3.02, 5.01, 6.02:7.00, 9.00, 1.12.00:1.19.01"), C = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00, 17.01") ) ## General ldots Approach cm_time2long(bar1) cm_time2long(bar1, bar2, v.name="time") ## Specify `object` Approach cm_time2long(object=list(bar1=bar1)) cm_time2long(object=list(bar1=bar1, bar2=bar2), v.name="time") cm_time2long(object=list(a=bar1, b=bar2), v.name="time") ## End(Not run)
## Not run: x <- list( transcript_time_span = qcv(00:00 - 1:12:00), A = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00"), B = qcv(terms = "2.40, 3.01:3.02, 5.01, 6.02:7.00, 9.00, 1.12.00:1.19.01"), C = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00, 17.01") ) (dat <- cm_time2long(x)) plot(dat) bar1 <- list( transcript_time_span = qcv(00:00 - 1:12:00), A = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00"), B = qcv(terms = "2.40, 3.01:3.02, 5.01, 6.02:7.00, 9.00, 1.12.00:1.19.01"), C = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00, 16.25:17.01") ) bar2 <- list( transcript_time_span = qcv(00:00 - 1:12:00), A = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00"), B = qcv(terms = "2.40, 3.01:3.02, 5.01, 6.02:7.00, 9.00, 1.12.00:1.19.01"), C = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00, 17.01") ) ## General ldots Approach cm_time2long(bar1) cm_time2long(bar1, bar2, v.name="time") ## Specify `object` Approach cm_time2long(object=list(bar1=bar1)) cm_time2long(object=list(bar1=bar1, bar2=bar2), v.name="time") cm_time2long(object=list(a=bar1, b=bar2), v.name="time") ## End(Not run)
Combine columns from qdap classes or a data.frame
.
colcomb2class( dataframe, combined.columns, class = "list", percent = TRUE, digits = 2, elim.old = TRUE, zero.replace = 0, override = FALSE )
colcomb2class( dataframe, combined.columns, class = "list", percent = TRUE, digits = 2, elim.old = TRUE, zero.replace = 0, override = FALSE )
dataframe |
A dataframe or qdap class (e.g.,
|
combined.columns |
A list of named vectors of the colnames/indexes of the numeric columns to be combined (summed). If a vector is unnamed a name will be assigned. |
class |
The class to assign to the output. |
percent |
logical. If |
digits |
Integer; number of decimal places to round when printing. |
elim.old |
logical. If |
zero.replace |
Value to replace 0 values with. |
override |
logical. If |
Returns a list with raw counts, percents and combined raw and percents.
## Not run: ## `termco` example ml <- list( cat1 = c(" the ", " a ", " an "), cat2 = c(" I'" ), "good", the = c("the", " the ", " the", "the") ) dat1 <- with(raj.act.1, termco(dialogue, person, ml)) colcomb2class(dat1, list(cats = c("cat1", "cat2"))) ## `question_type` example dat2 <- question_type(DATA.SPLIT$state, DATA.SPLIT$person) combs <- list( `wh/how` = c("what", "how"), oth = c("shall", "implied_do/does/did") ) colcomb2class(dat2, combs) ## `pos_by` example dat3 <- with(DATA, pos_by(state, list(adult, sex))) colcomb2class(dat3, qcv(DT, EX, FW)) ## data.frame example dat4 <- data.frame(X=LETTERS[1:5], matrix(sample(0:5, 20, TRUE), ncol = 4)) colcomb2class(dat4, list(new = c("X1", "X4"))) ## End(Not run)
## Not run: ## `termco` example ml <- list( cat1 = c(" the ", " a ", " an "), cat2 = c(" I'" ), "good", the = c("the", " the ", " the", "the") ) dat1 <- with(raj.act.1, termco(dialogue, person, ml)) colcomb2class(dat1, list(cats = c("cat1", "cat2"))) ## `question_type` example dat2 <- question_type(DATA.SPLIT$state, DATA.SPLIT$person) combs <- list( `wh/how` = c("what", "how"), oth = c("shall", "implied_do/does/did") ) colcomb2class(dat2, combs) ## `pos_by` example dat3 <- with(DATA, pos_by(state, list(adult, sex))) colcomb2class(dat3, qcv(DT, EX, FW)) ## data.frame example dat4 <- data.frame(X=LETTERS[1:5], matrix(sample(0:5, 20, TRUE), ncol = 4)) colcomb2class(dat4, list(new = c("X1", "X4"))) ## End(Not run)
Separates a paste2
column into separate columns.
colSplit(column, col.sep = ".", name.sep = "&")
colSplit(column, col.sep = ".", name.sep = "&")
column |
The pasted vector. |
col.sep |
The column separator used in |
name.sep |
Name separator used in the column (generally for internal use
with |
Returns a dataframe of split columns.
## Not run: foo1 <- paste2(CO2[, 1:3]) head(foo1, 12) bar1 <- colSplit(foo1) head(bar1, 10) foo2 <- paste2(mtcars[, 1:3], sep="|") head(foo2, 12) bar2 <- colSplit(foo2, col.sep = "|") head(bar2, 10) ## End(Not run)
## Not run: foo1 <- paste2(CO2[, 1:3]) head(foo1, 12) bar1 <- colSplit(foo1) head(bar1, 10) foo2 <- paste2(mtcars[, 1:3], sep="|") head(foo2, 12) bar2 <- colSplit(foo2, col.sep = "|") head(bar2, 10) ## End(Not run)
colsplit2df
- Wrapper for colSplit
that returns a
dataframe.
lcolsplit2df
- Wrapper for colsplit2df
designed for qdap lists
that returns a list dataframes.
colsplit2df( dataframe, splitcols = 1, new.names = NULL, sep = ".", keep.orig = FALSE, name.sep = "&", index.names = FALSE ) lcolsplit2df(qdap.list, keep.orig = FALSE)
colsplit2df( dataframe, splitcols = 1, new.names = NULL, sep = ".", keep.orig = FALSE, name.sep = "&", index.names = FALSE ) lcolsplit2df(qdap.list, keep.orig = FALSE)
dataframe |
A dataframe with a column that has been pasted together. |
splitcols |
The name/index of the column(s) that has been pasted together. |
new.names |
A character vector of new names to assign to the columns (or list of names if multiple columns are being split). Default attempts to extract the original names before the paste. |
sep |
The character(s) that was used in |
keep.orig |
logical. If |
name.sep |
The character(s) that was used to paste the column names. |
index.names |
logical. If |
qdap.list |
A qdap list object that contains dataframes with a leading
|
colsplit2df
- returns a dataframe with the paste2
column split into new columns.
lcolsplit2df
- returns a list of dataframes with the
paste2
column split into new columns.
This will strip the class of the qdap object.
lcolsplit2df
is a convenience function that is less
flexible than colsplit2df
but operates on multiple
dataframes at once.
## Not run: CO2$`Plant&Type&Treatment` <- paste2(CO2[, 1:3]) CO2 <- CO2[, -c(1:3)] head(CO2) head(colsplit2df(CO2, 3)) head(colsplit2df(CO2, 3, qcv(A, B, C))) head(colsplit2df(CO2, 3, qcv(A, B, C), keep.orig=TRUE)) head(colsplit2df(CO2, "Plant&Type&Treatment")) CO2 <- datasets::CO2 (dat <- colpaste2df(head(mtcars), list(1:3), sep = "|")) colsplit2df(dat, 12, sep = "|") ## Multiple split example E <- list( c(1, 2, 3, 4, 5), qcv(mpg, hp), c("disp", "am") ) (dat2 <- colpaste2df(head(mtcars), E, sep ="|")) cols <- c("mpg&cyl&disp&hp&drat", "mpg&hp", "disp&am") colsplit2df(dat2, cols, sep = "|") ## lcolsplit2df example (x <- with(DATA.SPLIT, question_type(state, list(sex, adult)))) ltruncdf(x) z <- lcolsplit2df(x) ltruncdf(z) ## End(Not run)
## Not run: CO2$`Plant&Type&Treatment` <- paste2(CO2[, 1:3]) CO2 <- CO2[, -c(1:3)] head(CO2) head(colsplit2df(CO2, 3)) head(colsplit2df(CO2, 3, qcv(A, B, C))) head(colsplit2df(CO2, 3, qcv(A, B, C), keep.orig=TRUE)) head(colsplit2df(CO2, "Plant&Type&Treatment")) CO2 <- datasets::CO2 (dat <- colpaste2df(head(mtcars), list(1:3), sep = "|")) colsplit2df(dat, 12, sep = "|") ## Multiple split example E <- list( c(1, 2, 3, 4, 5), qcv(mpg, hp), c("disp", "am") ) (dat2 <- colpaste2df(head(mtcars), E, sep ="|")) cols <- c("mpg&cyl&disp&hp&drat", "mpg&hp", "disp&am") colsplit2df(dat2, cols, sep = "|") ## lcolsplit2df example (x <- with(DATA.SPLIT, question_type(state, list(sex, adult)))) ltruncdf(x) z <- lcolsplit2df(x) ltruncdf(z) ## End(Not run)
Adds a space after a comma as strip and many other functions may consider a
comma separated string as one word (i.e., "one,two,three"
becomes
"onetwothree"
rather than "one two three"
).
comma_spacer(text.var)
comma_spacer(text.var)
text.var |
The text variable. |
Returns a vector of strings with commas that have a space after them.
## Not run: x <- c("the, dog,went", "I,like,it", "where are you", NA, "why", ",", ",f") comma_spacer(x) ## End(Not run)
## Not run: x <- c("the, dog,went", "I,like,it", "where are you", NA, "why", ",", ",f") comma_spacer(x) ## End(Not run)
Find common words between grouping variables (e.g., people).
common(word.list, overlap = "all", equal.or = "more", ...)
common(word.list, overlap = "all", equal.or = "more", ...)
word.list |
A list of named character vectors. |
overlap |
Minimum/exact amount of overlap. |
equal.or |
A character vector of c( |
... |
In lieu of |
Returns a dataframe of all words that match the criteria set by
overlap
and equal.or
.
list Method for common
## S3 method for class 'list' common(word.list, overlap = "all", equal.or = "more", ...)
## S3 method for class 'list' common(word.list, overlap = "all", equal.or = "more", ...)
word.list |
A list of names character vectors. |
overlap |
Minimum/exact amount of overlap. |
equal.or |
A character vector of c( |
... |
In lieu of word.list the user may input n number of character vectors. |
Condense dataframe columns that are a list of vectors to a single vector of strings.
condense(dataframe, sep = ", ")
condense(dataframe, sep = ", ")
dataframe |
A dataframe with a column(s) that are a list of vectors. |
sep |
A character string to separate the terms. |
Returns a dataframe with condensed columns that can be wrote to csv/xlsx.
## Not run: library(qdap) poldat <- with(DATA.SPLIT, polarity(state, person)) write.csv(x = condense(counts(poldat)), file = "foo.csv") ## End(Not run)
## Not run: library(qdap) poldat <- with(DATA.SPLIT, polarity(state, person)) write.csv(x = condense(counts(poldat)), file = "foo.csv") ## End(Not run)
Access the count dataframes from select qdap outputs.
counts(x, ...)
counts(x, ...)
x |
A qdap object (list) with a count dataframe (e.g.,
|
... |
Arguments passed to counts method of other classes. |
Returns a data.frame of counts.
scores
,
proportions
,
preprocessed
,
visual
counts.automated_readability_index
- View counts from automated_readability_index
.
## S3 method for class 'automated_readability_index' counts(x, ...)
## S3 method for class 'automated_readability_index' counts(x, ...)
x |
The automated_readability_index object. |
... |
ignored automated_readability_index Method for counts. |
View character_table counts.
## S3 method for class 'character_table' counts(x, ...)
## S3 method for class 'character_table' counts(x, ...)
x |
The |
... |
ignored |
character_table Method for counts
counts.coleman_liau
- View counts from coleman_liau
.
## S3 method for class 'coleman_liau' counts(x, ...)
## S3 method for class 'coleman_liau' counts(x, ...)
x |
The coleman_liau object. |
... |
ignored |
coleman_liau Method for counts.
View end_mark_by counts.
## S3 method for class 'end_mark_by' counts(x, ...)
## S3 method for class 'end_mark_by' counts(x, ...)
x |
The |
... |
ignored |
end_mark_by Method for counts
counts.flesch_kincaid
- View counts from flesch_kincaid
.
## S3 method for class 'flesch_kincaid' counts(x, ...)
## S3 method for class 'flesch_kincaid' counts(x, ...)
x |
The flesch_kincaid object. |
... |
ignored |
flesch_kincaid Method for counts.
counts.fry
- View counts from fry
.
## S3 method for class 'fry' counts(x, ...)
## S3 method for class 'fry' counts(x, ...)
x |
The fry object. |
... |
ignored |
fry Method for counts.
counts.linsear_write
- View counts from linsear_write
.
## S3 method for class 'linsear_write' counts(x, ...)
## S3 method for class 'linsear_write' counts(x, ...)
x |
The linsear_write object. |
... |
ignored |
linsear_write Method for counts.
View object_pronoun_type counts.
## S3 method for class 'object_pronoun_type' counts(x, ...)
## S3 method for class 'object_pronoun_type' counts(x, ...)
x |
The |
... |
ignored |
object_pronoun_type Method for counts
View pos counts.
## S3 method for class 'pos' counts(x, ...)
## S3 method for class 'pos' counts(x, ...)
x |
The |
... |
ignored |
pos Method for counts
View pos_by counts.
## S3 method for class 'pos_by' counts(x, ...)
## S3 method for class 'pos_by' counts(x, ...)
x |
The |
... |
ignored |
pos_by Method for counts
View pronoun_type counts.
## S3 method for class 'pronoun_type' counts(x, ...)
## S3 method for class 'pronoun_type' counts(x, ...)
x |
The |
... |
ignored |
pronoun_type Method for counts
View question_type counts.
## S3 method for class 'question_type' counts(x, ...)
## S3 method for class 'question_type' counts(x, ...)
x |
The |
... |
ignored |
question_type Method for counts
counts.SMOG
- View counts from SMOG
.
## S3 method for class 'SMOG' counts(x, ...)
## S3 method for class 'SMOG' counts(x, ...)
x |
The SMOG object. |
... |
ignored |
SMOG Method for counts.
View subject_pronoun_type counts.
## S3 method for class 'subject_pronoun_type' counts(x, ...)
## S3 method for class 'subject_pronoun_type' counts(x, ...)
x |
The |
... |
ignored |
subject_pronoun_type Method for counts
View termco counts.
## S3 method for class 'termco' counts(x, ...)
## S3 method for class 'termco' counts(x, ...)
x |
The |
... |
ignored |
termco Method for counts
View word_length counts.
## S3 method for class 'word_length' counts(x, ...)
## S3 method for class 'word_length' counts(x, ...)
x |
The |
... |
ignored |
word_length Method for counts
View word_position counts.
## S3 method for class 'word_position' counts(x, ...)
## S3 method for class 'word_position' counts(x, ...)
x |
The |
... |
ignored |
word_position Method for counts
View word_stats counts.
## S3 method for class 'word_stats' counts(x, ...)
## S3 method for class 'word_stats' counts(x, ...)
x |
The |
... |
ignored |
word_stats Method for counts
cumulative
- Generate rolling/cumulative scores for select qdap
objects.
cumulative(x, ...) ## S3 method for class 'end_mark' cumulative(x, ...) ## S3 method for class 'formality' cumulative(x, ...) ## S3 method for class 'pos' cumulative(x, ...) ## S3 method for class 'pos_by' cumulative(x, ...) ## S3 method for class 'animated_formality' cumulative(x, ...) ## S3 method for class 'lexical_classification' cumulative(x, ...) ## S3 method for class 'animated_lexical_classification' cumulative(x, ...) ## S3 method for class 'polarity' cumulative(x, ...) ## S3 method for class 'animated_polarity' cumulative(x, ...) ## S3 method for class 'syllable_freq' cumulative(x, ...) ## S3 method for class 'combo_syllable_sum' cumulative(x, ...)
cumulative(x, ...) ## S3 method for class 'end_mark' cumulative(x, ...) ## S3 method for class 'formality' cumulative(x, ...) ## S3 method for class 'pos' cumulative(x, ...) ## S3 method for class 'pos_by' cumulative(x, ...) ## S3 method for class 'animated_formality' cumulative(x, ...) ## S3 method for class 'lexical_classification' cumulative(x, ...) ## S3 method for class 'animated_lexical_classification' cumulative(x, ...) ## S3 method for class 'polarity' cumulative(x, ...) ## S3 method for class 'animated_polarity' cumulative(x, ...) ## S3 method for class 'syllable_freq' cumulative(x, ...) ## S3 method for class 'combo_syllable_sum' cumulative(x, ...)
x |
A qdap object with an accompanying |
... |
ignored |
A fictitious dataset useful for small demonstrations.
data(DATA)
data(DATA)
A data frame with 11 rows and 5 variables
person. Speaker
sex. Gender
adult. Dummy coded adult (0-no; 1-yes)
state. Statement (dialogue)
code. Dialogue coding scheme
A sentSplit
version of the DATA
dataset.
data(DATA.SPLIT)
data(DATA.SPLIT)
A data frame with 15 rows and 8 variables
person. Speaker
tot. Turn of talk with sub sentences
TOT. Turn of talk
sex. Gender
adult. Dummy coded adult (0-no; 1-yes)
code. Dialogue coding scheme
state. Statement (dialogue)
stem.text. A stemmed version of the text.var
A repeated measures version of the DATA
dataset.
data(DATA2)
data(DATA2)
A data frame with 74 rows and 7 variables
day. Day of observation
class. Class period/subject of observation
person. Speaker
sex. Gender
adult. Dummy coded adult (0-no; 1-yes)
state. Statement (dialogue)
code. Dialogue coding scheme
delete
- Deletes files and directories.
folder
- Create a folder/directory.
delete(file = NULL) folder(..., folder.name = NULL)
delete(file = NULL) folder(..., folder.name = NULL)
file |
The name of the file in the working directory or the path to the
file to be deleted. If |
folder.name |
A character vector of the name(s) of the folder to be
created. Default |
... |
The name(s) of the folder to be created. If both ... and
|
delete
permanently removes a file/directory.
folder
creates a folder/directory.
unlink
,
file.remove
,
dir.create
## Not run: (x <- folder("DELETE.ME")) which(dir() == "DELETE.ME") delete("DELETE.ME") which(dir() == "DELETE.ME") folder("the/next/big/thing", "hello world", "now/is/the/time") folder(cat, dog) lapply(c("cat", "dog"), delete) ## End(Not run)
## Not run: (x <- folder("DELETE.ME")) which(dir() == "DELETE.ME") delete("DELETE.ME") which(dir() == "DELETE.ME") folder("the/next/big/thing", "hello world", "now/is/the/time") folder(cat, dog) lapply(c("cat", "dog"), delete) ## End(Not run)
Generate script text (and optionally output it to the clipboard and/or an external file) that can be used to individually read in every file in a directory and assign it to an object.
dir_map( loc = "DATA/TRANSCRIPTS/CLEANED_TRANSCRIPTS", obj.prefix = "dat", use.path = TRUE, col.names = c("person", "dialogue"), file = NULL, copy2clip = interactive() )
dir_map( loc = "DATA/TRANSCRIPTS/CLEANED_TRANSCRIPTS", obj.prefix = "dat", use.path = TRUE, col.names = c("person", "dialogue"), file = NULL, copy2clip = interactive() )
loc |
The path/location of the transcript data files. |
obj.prefix |
A character string that will be used as the prefix (followed by a unique digit) as the assignment object. |
use.path |
logical. If |
col.names |
Supplies a vector of column names to the transcript columns. |
file |
A connection, or a character string naming the file to print to. |
copy2clip |
logical. If |
Generally, the researcher will want to read in and parse every transcript document separately. The task of writing the script for multiple transcript documents can be tedious. This function is designed to make the process more efficient and less prone to errors.
Prints a read in script text to the console, optionally copies the wrapped text to the clipboard on a Mac or Windows machine and optionally prints to an outside file.
skip
is set to 0, however, it is likely that this value will
need to be changed for each transcript.
## Not run: (DIR <- system.file("extdata/transcripts", package = "qdap")) dir_map(DIR) ## End(Not run)
## Not run: (DIR <- system.file("extdata/transcripts", package = "qdap")) dir_map(DIR) ## End(Not run)
View the flow of discourse from social actors.
discourse_map( text.var, grouping.var, edge.constant, sep = "_", condense = TRUE, ... )
discourse_map( text.var, grouping.var, edge.constant, sep = "_", condense = TRUE, ... )
text.var |
The text variable or a |
grouping.var |
The grouping variables. Also takes a single grouping variable or a list of 1 or more grouping variables. |
edge.constant |
A constant to multiple the edges by. Defaults (if
|
sep |
The separator character to use between grouping variables. |
condense |
logical. If |
... |
ignored |
For an example of the video generated from the Animate
output of discourse_map
see:
https://www.youtube.com/watch?v=7LcqFZODXNo&feature=youtu.be. An HTML
output can be viewed:
http://trinker.github.io/qdap_examples/animation_dialogue/.
Returns a list:
raw |
The dataframe with to and from columns (the edges) + word counts |
edge_word_count |
A dataframe of edges and word counts + proportional word count |
vertex_word_count |
A dataframe of vertices and word counts + proportional word count |
plot |
An igraph object |
## Not run: discourse_map(DATA$state, list(DATA$person, DATA$sex)) x <- with(mraja1, discourse_map(dialogue, person)) x lview(x) library(igraph) plot(visual(x), edge.curved=FALSE) ## Quickly add/remove a title Title(x) <- "Act 1" x Title(x) <- NULL x ## Augmenting the plot library(qdapTools) mygraph <- visual(x) plot(mygraph, edge.curved=TRUE) V(mygraph)$sex <- V(mygraph)$name %lc% raj.demographics[, 1:2] V(mygraph)$color <- ifelse(V(mygraph)$sex=="f", "pink", "lightblue") plot(mygraph, edge.curved=TRUE) V(mygraph)$family <- V(mygraph)$name %l+% raj.demographics[, c(1, 3)] cols <- qcv(blue, red, brown, darkgreen, grey10) V(mygraph)$label.color <- lookup(V(mygraph)$family, unique(V(mygraph)$family), cols) plot(mygraph, edge.curved=TRUE) ## Community detection x <- with(mraja1, discourse_map(dialogue, person)) wc <- walktrap.community(visual(x)) colors <- grDevices::rainbow(max(membership(wc))) plot(x, vertex.color=colors[membership(wc)]) ## Repeated Measures (BASIC EXAMPLE) ##------------------------------ ## First merge data and map to discourse per act ## to separate networks dat <- key_merge(raj, raj.demographics) list_dat <- split(dat, dat$act) plot_dat <- lapply(list_dat, function(x) with(x, discourse_map(dialogue, person))) opar <- par()$mar par(mfrow=c(3, 2), mar=c(0, 0, 3, 0)) lapply(seq_along(plot_dat), function(i){ plot(plot_dat[[i]]) graphics::mtext(paste("Act", names(plot_dat)[i]), side=3) }) ## Repeated Measures (EXTENDED EXAMPLE) ##------------------------------ fam_key <- data.frame(fam=unique(raj.demographics$fam.aff), cols=qcv(blue, grey10, red, orange), stringsAsFactors = FALSE) par(mfrow=c(3, 2), mar=c(0, 1, 3, 1)) lapply(seq_along(plot_dat), function(i){ THE_PLOT <- visual(plot_dat[[i]]) V(THE_PLOT)$sex <- V(THE_PLOT)$name %l% raj.demographics[, 1:2] V(THE_PLOT)$color <- ifelse(V(THE_PLOT)$sex=="f", "pink", "lightblue") V(THE_PLOT)$family <- V(THE_PLOT)$name %lc+% raj.demographics[, c(1, 3)] V(THE_PLOT)$label.color <- lookup(V(THE_PLOT)$family, fam_key) plot(THE_PLOT, edge.curved=TRUE) graphics::mtext(paste("Act", names(plot_dat)[i]), side=3) }) frame() bords <- rep("black", 7) bords[3] <- "white" legend(.29, .95, c("Female", "Male", NA, as.character(fam_key[, 1])), fill=c("pink", "lightblue", NA, fam_key[, 2]), border=bords, cex=1.5) ## Reset graphics margins par(mar=opar) ## ANIMATION #=========== test <- discourse_map(DATA$state, list(DATA$person)) ## Very quick, hard to see Animate(test) pdf("test.pdf") par(mar=c(0, 0, 1, 0)) Animate(test, title="Test Plot") dev.off() ## Animate it ##----------- library(animation) library(igraph) loc <- folder(animation_dialogue) ans <- Animate(test) ## Set up the plotting function oopt <- animation::ani.options(interval = 0.1) FUN <- function() { lapply(seq_along(ans), function(i) { par(mar=c(0, 0, 1, 0)) set.seed(10) plot.igraph(ans[[i]], edge.curved=TRUE, layout=layout.circle) graphics::mtext("Discourse Map", side=3) animation::ani.pause() }) } ## Detect OS type <- if(.Platform$OS.type == "windows") shell else system saveGIF(FUN(), interval = 0.1, outdir = loc, cmd.fun = type) saveVideo(FUN(), video.name = "discourse_map.avi", interval = 0.1, outdir = loc) saveLatex(FUN(), autoplay = TRUE, loop = FALSE, latex.filename = "tester.tex", caption = "animated dialogue", outdir = loc, ani.type = "pdf", ani.dev = "pdf", ani.width = 5, ani.height = 5.5, interval = 0.1) saveHTML(FUN(), autoplay = FALSE, loop = TRUE, verbose = FALSE, outdir = file.path(loc, "new"), single.opts = "'controls': ['first', 'previous', 'play', 'next', 'last', 'loop', 'speed'], 'delayMin': 0") ## More Elaborate Layout test2 <- with(mraja1, discourse_map(dialogue, person)) loc2 <- folder(animation_dialogue2) ans2 <- Animate(test2) ## Set up the plotting function oopt <- animation::ani.options(interval = 0.1) FUN3 <- function() { lapply(seq_along(ans2), function(i) { par(mar=c(0, 0, 1, 0)) set.seed(10) plot.igraph(ans2[[i]], edge.curved=TRUE, layout=layout.auto) graphics::mtext("Discourse Map\nRomeo and Juliet: Act 1", side=3) animation::ani.pause() }) } saveHTML(FUN3(), autoplay = FALSE, loop = FALSE, verbose = FALSE, outdir = file.path(loc2, "new"), single.opts = "'controls': ['first', 'play', 'loop', 'speed'], 'delayMin': 0") saveVideo(FUN3(), video.name = "discourse_map.avi", interval = 0.2, outdir = loc2) ## End(Not run)
## Not run: discourse_map(DATA$state, list(DATA$person, DATA$sex)) x <- with(mraja1, discourse_map(dialogue, person)) x lview(x) library(igraph) plot(visual(x), edge.curved=FALSE) ## Quickly add/remove a title Title(x) <- "Act 1" x Title(x) <- NULL x ## Augmenting the plot library(qdapTools) mygraph <- visual(x) plot(mygraph, edge.curved=TRUE) V(mygraph)$sex <- V(mygraph)$name %lc% raj.demographics[, 1:2] V(mygraph)$color <- ifelse(V(mygraph)$sex=="f", "pink", "lightblue") plot(mygraph, edge.curved=TRUE) V(mygraph)$family <- V(mygraph)$name %l+% raj.demographics[, c(1, 3)] cols <- qcv(blue, red, brown, darkgreen, grey10) V(mygraph)$label.color <- lookup(V(mygraph)$family, unique(V(mygraph)$family), cols) plot(mygraph, edge.curved=TRUE) ## Community detection x <- with(mraja1, discourse_map(dialogue, person)) wc <- walktrap.community(visual(x)) colors <- grDevices::rainbow(max(membership(wc))) plot(x, vertex.color=colors[membership(wc)]) ## Repeated Measures (BASIC EXAMPLE) ##------------------------------ ## First merge data and map to discourse per act ## to separate networks dat <- key_merge(raj, raj.demographics) list_dat <- split(dat, dat$act) plot_dat <- lapply(list_dat, function(x) with(x, discourse_map(dialogue, person))) opar <- par()$mar par(mfrow=c(3, 2), mar=c(0, 0, 3, 0)) lapply(seq_along(plot_dat), function(i){ plot(plot_dat[[i]]) graphics::mtext(paste("Act", names(plot_dat)[i]), side=3) }) ## Repeated Measures (EXTENDED EXAMPLE) ##------------------------------ fam_key <- data.frame(fam=unique(raj.demographics$fam.aff), cols=qcv(blue, grey10, red, orange), stringsAsFactors = FALSE) par(mfrow=c(3, 2), mar=c(0, 1, 3, 1)) lapply(seq_along(plot_dat), function(i){ THE_PLOT <- visual(plot_dat[[i]]) V(THE_PLOT)$sex <- V(THE_PLOT)$name %l% raj.demographics[, 1:2] V(THE_PLOT)$color <- ifelse(V(THE_PLOT)$sex=="f", "pink", "lightblue") V(THE_PLOT)$family <- V(THE_PLOT)$name %lc+% raj.demographics[, c(1, 3)] V(THE_PLOT)$label.color <- lookup(V(THE_PLOT)$family, fam_key) plot(THE_PLOT, edge.curved=TRUE) graphics::mtext(paste("Act", names(plot_dat)[i]), side=3) }) frame() bords <- rep("black", 7) bords[3] <- "white" legend(.29, .95, c("Female", "Male", NA, as.character(fam_key[, 1])), fill=c("pink", "lightblue", NA, fam_key[, 2]), border=bords, cex=1.5) ## Reset graphics margins par(mar=opar) ## ANIMATION #=========== test <- discourse_map(DATA$state, list(DATA$person)) ## Very quick, hard to see Animate(test) pdf("test.pdf") par(mar=c(0, 0, 1, 0)) Animate(test, title="Test Plot") dev.off() ## Animate it ##----------- library(animation) library(igraph) loc <- folder(animation_dialogue) ans <- Animate(test) ## Set up the plotting function oopt <- animation::ani.options(interval = 0.1) FUN <- function() { lapply(seq_along(ans), function(i) { par(mar=c(0, 0, 1, 0)) set.seed(10) plot.igraph(ans[[i]], edge.curved=TRUE, layout=layout.circle) graphics::mtext("Discourse Map", side=3) animation::ani.pause() }) } ## Detect OS type <- if(.Platform$OS.type == "windows") shell else system saveGIF(FUN(), interval = 0.1, outdir = loc, cmd.fun = type) saveVideo(FUN(), video.name = "discourse_map.avi", interval = 0.1, outdir = loc) saveLatex(FUN(), autoplay = TRUE, loop = FALSE, latex.filename = "tester.tex", caption = "animated dialogue", outdir = loc, ani.type = "pdf", ani.dev = "pdf", ani.width = 5, ani.height = 5.5, interval = 0.1) saveHTML(FUN(), autoplay = FALSE, loop = TRUE, verbose = FALSE, outdir = file.path(loc, "new"), single.opts = "'controls': ['first', 'previous', 'play', 'next', 'last', 'loop', 'speed'], 'delayMin': 0") ## More Elaborate Layout test2 <- with(mraja1, discourse_map(dialogue, person)) loc2 <- folder(animation_dialogue2) ans2 <- Animate(test2) ## Set up the plotting function oopt <- animation::ani.options(interval = 0.1) FUN3 <- function() { lapply(seq_along(ans2), function(i) { par(mar=c(0, 0, 1, 0)) set.seed(10) plot.igraph(ans2[[i]], edge.curved=TRUE, layout=layout.auto) graphics::mtext("Discourse Map\nRomeo and Juliet: Act 1", side=3) animation::ani.pause() }) } saveHTML(FUN3(), autoplay = FALSE, loop = FALSE, verbose = FALSE, outdir = file.path(loc2, "new"), single.opts = "'controls': ['first', 'play', 'loop', 'speed'], 'delayMin': 0") saveVideo(FUN3(), video.name = "discourse_map.avi", interval = 0.2, outdir = loc2) ## End(Not run)
Generate a lexical dispersion plot of terms.
dispersion_plot( text.var, match.terms, grouping.var = NULL, rm.vars = NULL, color = "blue", bg.color = "grey90", horiz.color = "grey85", total.color = "black", symbol = "|", title = "Lexical Dispersion Plot", rev.factor = TRUE, wrap = "'", xlab = "Dialogue (Words)", ylab = NULL, size = 4, plot = TRUE, char2space = "~~", apostrophe.remove = FALSE, scales = "free", space = "free", ... )
dispersion_plot( text.var, match.terms, grouping.var = NULL, rm.vars = NULL, color = "blue", bg.color = "grey90", horiz.color = "grey85", total.color = "black", symbol = "|", title = "Lexical Dispersion Plot", rev.factor = TRUE, wrap = "'", xlab = "Dialogue (Words)", ylab = NULL, size = 4, plot = TRUE, char2space = "~~", apostrophe.remove = FALSE, scales = "free", space = "free", ... )
text.var |
The text variable. |
match.terms |
A vector of quoted terms or a named list of quoted terms. If the latter terms will be combined into a single unified theme named according to the list names. Note that terms within the vectors of the list cannot be duplicated. |
grouping.var |
The grouping variables. Default |
rm.vars |
The repeated measures variables. Default |
color |
The color of the word symbols. |
bg.color |
The background color. |
horiz.color |
The color of the horizontal tracking stripe. Use
|
total.color |
The color to use for summary 'all' group. If |
symbol |
The word symbol. Default is |
title |
Title of the plot |
rev.factor |
logical. If |
wrap |
a character to wrap around the words (enables the reader to
visualize spaces). Default is |
xlab |
The x label. |
ylab |
The y label. |
size |
The size of the plotting symbol. |
plot |
logical. If |
char2space |
A vector of characters to be turned into spaces. |
apostrophe.remove |
logical. If |
scales |
Should scales be fixed ( |
space |
If |
... |
Other argument supplied to |
Plots a dispersion plot and invisibly returns the ggplot2 object.
The match.terms is character sensitive. Spacing is an important way to grab specific words and requires careful thought. Using "read" will find the words "bread", "read" "reading", and "ready". If you want to search for just the word "read" you'd supply a vector of c(" read ", " reads", " reading", " reader").
## Not run: term_match(raj$dialogue, c(" love ", "love", " night ", "night")) dispersion_plot(raj$dialogue, c(" love ", "love", " night ", "night")) dispersion_plot(raj$dialogue, c("love", "night"), rm.vars = raj$act) with(rajSPLIT , dispersion_plot(dialogue, c("love", "night"), grouping.var = list(fam.aff, sex), rm.vars = act)) ## With grouping variables with(rajSPLIT , dispersion_plot(dialogue, c("love", "night"), grouping.var = sex, rm.vars = act)) ## Drop total with `total.color = NULL` with(rajSPLIT , dispersion_plot(dialogue, c("love", "night"), grouping.var = sex, rm.vars = act, total.color = NULL)) ## Change color scheme with(rajSPLIT, dispersion_plot(dialogue, c("love", "night"), bg.color = "black", grouping.var = list(fam.aff, sex), color = "yellow", total.color = "white", horiz.color="grey20")) ## Use `word_list` ## Presidential debates by all wrds <- word_list(pres_debates2012$dialogue, stopwords = Top200Words) wrds2 <- spaste(wrds[["rfswl"]][["all"]][, "WORD"]) wrds2 <- c(" governor~~romney ", wrds2[-c(3, 12)]) with(pres_debates2012 , dispersion_plot(dialogue, wrds2, rm.vars = time)) ## Presidential debates by person dat <- pres_debates2012 dat <- dat[dat$person %in% qcv(ROMNEY, OBAMA), ] wordlist <- c(" tax", " health", " rich ", "america", " truth", " money", "cost", " governnor", " president", " we ", " job", " i ", " you ", " because ", " our ", " years ") with(dat, dispersion_plot(dialogue, wordlist, total.color = NULL, bg.color = "white", grouping.var = person, rm.vars = time, color = "black", horiz.color="grey80")) wordlist2 <- c(" i'd ", " i'll ", " i'm ", " i've ", " i ", " we'd ", " we'll ", " we're ", " we've ", " we ", " you'd ", " you'll ", " you're ", " you've ", " you ", " your ", " he'd ", " he'll ", " he's ", " he ") with(dat, dispersion_plot(dialogue, wordlist2, bg.color = "black", grouping.var = person, rm.vars = time, color = "yellow", total.color = NULL, horiz.color="grey20")) with(dat, dispersion_plot(dialogue, wordlist2, bg.color = "black", grouping.var = person, rm.vars = time, color = "red", total.color = "white", horiz.color="grey20")) ## `match.terms` as a named list wordlist3 <- list( I = c(" i'd ", " i'll ", " i'm ", " i've ", " i "), we = c(" we'd ", " we'll ", " we're ", " we've ", " we "), you = c(" you'd ", " you'll ", " you're ", " you've ", " you ", " your "), he = c(" he'd ", " he'll ", " he's ", " he ") ) with(dat, dispersion_plot(dialogue, wordlist3, bg.color = "grey60", grouping.var = person, rm.vars = time, color = "blue", total.color = "grey40", horiz.color="grey20")) colsplit2df(scores(with(dat, termco(dialogue, list(time, person), wordlist3)))) ## Extras: ## Reverse facets x <- with(pres_debates2012 , dispersion_plot(dialogue, wrds2, rm.vars = time)) ## function to reverse ggplot2 facets rev_facet <- function(x) { names(x$facet)[1:2] <- names(x$facet)[2:1] print(x) } rev_facet(x) ## Discourse Markers: See... ## Schiffrin, D. (2001). Discourse markers: Language, meaning, and context. ## In D. Schiffrin, D. Tannen, & H. E. Hamilton (Eds.), The handbook of ## discourse analysis (pp. 54-75). Malden, MA: Blackwell Publishing. discoure_markers <- list( response_cries = c(" oh ", " ah ", " aha ", " ouch ", " yuk "), back_channels = c(" uh-huh ", " uhuh ", " yeah "), summons = " hey ", justification = " because " ) (markers <- with(pres_debates2012, termco(dialogue, list(person, time), discoure_markers) )) plot(markers, high="red") with(pres_debates2012, termco(dialogue, list(person, time), discoure_markers, elim.old = FALSE) ) with(pres_debates2012, dispersion_plot(dialogue, unlist(discoure_markers), person, time) ) ## End(Not run)
## Not run: term_match(raj$dialogue, c(" love ", "love", " night ", "night")) dispersion_plot(raj$dialogue, c(" love ", "love", " night ", "night")) dispersion_plot(raj$dialogue, c("love", "night"), rm.vars = raj$act) with(rajSPLIT , dispersion_plot(dialogue, c("love", "night"), grouping.var = list(fam.aff, sex), rm.vars = act)) ## With grouping variables with(rajSPLIT , dispersion_plot(dialogue, c("love", "night"), grouping.var = sex, rm.vars = act)) ## Drop total with `total.color = NULL` with(rajSPLIT , dispersion_plot(dialogue, c("love", "night"), grouping.var = sex, rm.vars = act, total.color = NULL)) ## Change color scheme with(rajSPLIT, dispersion_plot(dialogue, c("love", "night"), bg.color = "black", grouping.var = list(fam.aff, sex), color = "yellow", total.color = "white", horiz.color="grey20")) ## Use `word_list` ## Presidential debates by all wrds <- word_list(pres_debates2012$dialogue, stopwords = Top200Words) wrds2 <- spaste(wrds[["rfswl"]][["all"]][, "WORD"]) wrds2 <- c(" governor~~romney ", wrds2[-c(3, 12)]) with(pres_debates2012 , dispersion_plot(dialogue, wrds2, rm.vars = time)) ## Presidential debates by person dat <- pres_debates2012 dat <- dat[dat$person %in% qcv(ROMNEY, OBAMA), ] wordlist <- c(" tax", " health", " rich ", "america", " truth", " money", "cost", " governnor", " president", " we ", " job", " i ", " you ", " because ", " our ", " years ") with(dat, dispersion_plot(dialogue, wordlist, total.color = NULL, bg.color = "white", grouping.var = person, rm.vars = time, color = "black", horiz.color="grey80")) wordlist2 <- c(" i'd ", " i'll ", " i'm ", " i've ", " i ", " we'd ", " we'll ", " we're ", " we've ", " we ", " you'd ", " you'll ", " you're ", " you've ", " you ", " your ", " he'd ", " he'll ", " he's ", " he ") with(dat, dispersion_plot(dialogue, wordlist2, bg.color = "black", grouping.var = person, rm.vars = time, color = "yellow", total.color = NULL, horiz.color="grey20")) with(dat, dispersion_plot(dialogue, wordlist2, bg.color = "black", grouping.var = person, rm.vars = time, color = "red", total.color = "white", horiz.color="grey20")) ## `match.terms` as a named list wordlist3 <- list( I = c(" i'd ", " i'll ", " i'm ", " i've ", " i "), we = c(" we'd ", " we'll ", " we're ", " we've ", " we "), you = c(" you'd ", " you'll ", " you're ", " you've ", " you ", " your "), he = c(" he'd ", " he'll ", " he's ", " he ") ) with(dat, dispersion_plot(dialogue, wordlist3, bg.color = "grey60", grouping.var = person, rm.vars = time, color = "blue", total.color = "grey40", horiz.color="grey20")) colsplit2df(scores(with(dat, termco(dialogue, list(time, person), wordlist3)))) ## Extras: ## Reverse facets x <- with(pres_debates2012 , dispersion_plot(dialogue, wrds2, rm.vars = time)) ## function to reverse ggplot2 facets rev_facet <- function(x) { names(x$facet)[1:2] <- names(x$facet)[2:1] print(x) } rev_facet(x) ## Discourse Markers: See... ## Schiffrin, D. (2001). Discourse markers: Language, meaning, and context. ## In D. Schiffrin, D. Tannen, & H. E. Hamilton (Eds.), The handbook of ## discourse analysis (pp. 54-75). Malden, MA: Blackwell Publishing. discoure_markers <- list( response_cries = c(" oh ", " ah ", " aha ", " ouch ", " yuk "), back_channels = c(" uh-huh ", " uhuh ", " yeah "), summons = " hey ", justification = " because " ) (markers <- with(pres_debates2012, termco(dialogue, list(person, time), discoure_markers) )) plot(markers, high="red") with(pres_debates2012, termco(dialogue, list(person, time), discoure_markers, elim.old = FALSE) ) with(pres_debates2012, dispersion_plot(dialogue, unlist(discoure_markers), person, time) ) ## End(Not run)
Uses the distance function to calculate dissimilarity statistics by grouping variables.
Dissimilarity( text.var, grouping.var = NULL, method = "prop", diag = FALSE, upper = FALSE, p = 2, ... )
Dissimilarity( text.var, grouping.var = NULL, method = "prop", diag = FALSE, upper = FALSE, p = 2, ... )
text.var |
A text variable or word frequency matrix object. |
grouping.var |
The grouping variables. Default |
method |
Distance methods (see |
diag |
logical. If |
upper |
logical. If |
p |
The power of the Minkowski distance. |
... |
Other arguments passed to |
Returns a matrix of dissimilarity values (the agreement between text).
## Not run: with(DATA, Dissimilarity(state, list(sex, adult))) with(DATA, Dissimilarity(state, person, diag = TRUE)) ## Clustering: Dendrogram (x <- with(pres_debates2012, Dissimilarity(dialogue, list(person, time)))) fit <- hclust(x) plot(fit) ## draw dendrogram with red borders around the 3 clusters rect.hclust(fit, k=3, border=c("red", "purple", "seagreen")) ## Clustering: Dendrogram with p.values library(pvclust) wfm.mod <- with(pres_debates2012, wfm(dialogue, list(person, time))) fit <- suppressMessages(pvclust(wfm.mod, method.hclust="ward", method.dist="euclidean")) plot(fit) pvrect(fit, alpha=.95) ## Multidimentional Scaling ## Based on blog post from Bodong Chen ## http://bodongchen.com/blog/?p=301 ## Fit it: 2-D (diss <- with(pres_debates2012, Dissimilarity(dialogue, list(person, time), method = "euclidean"))) fit <- cmdscale(diss, eig = TRUE, k = 2) ## Plot it 2-D points <- data.frame(x = fit$points[, 1], y = fit$points[, 2]) ggplot(points, aes(x = x, y = y)) + geom_point(data = points, aes(x = x, y = y, color = rownames(points))) + geom_text(data = points, aes(x = x, y = y - 0.2, label = row.names(points))) ## Fit it: 3-D library(scatterplot3d) fit <- cmdscale(diss, eig = TRUE, k = 3) points <- data.frame(colSplit(names(fit$points[, 1]))) library(qdapTools) points$colors <- points$X1 %l% data.frame(levels(points$X1), qcv(yellow, yellow, blue, yellow, red, yellow)) points$shape <- points$X2 %l% data.frame(levels(points$X2), c(15, 17, 19)) ## Plot it: 3-D scatterplot3d(fit$points[, 1], fit$points[, 2], fit$points[, 3], color = points$colors, pch = points$shape, main = "Semantic Space Scaled to 3D", xlab = "x", ylab = "y", zlab = "z", type = "h") legend("bottomright", title="Person", qcv(Obama, Romney, Other), fill=qcv(blue, red, yellow)) legend("topleft", paste("Time", 1:3), pch=c(15, 17, 19)) ## Compare to Cosine Similarity cos_sim <- function(x, y) x %*% y / sqrt(x%*%x * y%*%y) mat <- matrix(rbinom(500, 0:1, .45), ncol=10) v_outer(mat, cos_sim) v_outer(with(DATA, wfm(state, person)), cos_sim) with(DATA, Dissimilarity(state, person)) ## End(Not run)
## Not run: with(DATA, Dissimilarity(state, list(sex, adult))) with(DATA, Dissimilarity(state, person, diag = TRUE)) ## Clustering: Dendrogram (x <- with(pres_debates2012, Dissimilarity(dialogue, list(person, time)))) fit <- hclust(x) plot(fit) ## draw dendrogram with red borders around the 3 clusters rect.hclust(fit, k=3, border=c("red", "purple", "seagreen")) ## Clustering: Dendrogram with p.values library(pvclust) wfm.mod <- with(pres_debates2012, wfm(dialogue, list(person, time))) fit <- suppressMessages(pvclust(wfm.mod, method.hclust="ward", method.dist="euclidean")) plot(fit) pvrect(fit, alpha=.95) ## Multidimentional Scaling ## Based on blog post from Bodong Chen ## http://bodongchen.com/blog/?p=301 ## Fit it: 2-D (diss <- with(pres_debates2012, Dissimilarity(dialogue, list(person, time), method = "euclidean"))) fit <- cmdscale(diss, eig = TRUE, k = 2) ## Plot it 2-D points <- data.frame(x = fit$points[, 1], y = fit$points[, 2]) ggplot(points, aes(x = x, y = y)) + geom_point(data = points, aes(x = x, y = y, color = rownames(points))) + geom_text(data = points, aes(x = x, y = y - 0.2, label = row.names(points))) ## Fit it: 3-D library(scatterplot3d) fit <- cmdscale(diss, eig = TRUE, k = 3) points <- data.frame(colSplit(names(fit$points[, 1]))) library(qdapTools) points$colors <- points$X1 %l% data.frame(levels(points$X1), qcv(yellow, yellow, blue, yellow, red, yellow)) points$shape <- points$X2 %l% data.frame(levels(points$X2), c(15, 17, 19)) ## Plot it: 3-D scatterplot3d(fit$points[, 1], fit$points[, 2], fit$points[, 3], color = points$colors, pch = points$shape, main = "Semantic Space Scaled to 3D", xlab = "x", ylab = "y", zlab = "z", type = "h") legend("bottomright", title="Person", qcv(Obama, Romney, Other), fill=qcv(blue, red, yellow)) legend("topleft", paste("Time", 1:3), pch=c(15, 17, 19)) ## Compare to Cosine Similarity cos_sim <- function(x, y) x %*% y / sqrt(x%*%x * y%*%y) mat <- matrix(rbinom(500, 0:1, .45), ncol=10) v_outer(mat, cos_sim) v_outer(with(DATA, wfm(state, person)), cos_sim) with(DATA, Dissimilarity(state, person)) ## End(Not run)
Generates a distribution table for vectors, matrices and dataframes.
dist_tab(dataframe, breaks = NULL, digits = 2, ...)
dist_tab(dataframe, breaks = NULL, digits = 2, ...)
dataframe |
A vector or data.frame object. |
breaks |
Either a numeric vector of two or more cut points or a single number (greater than or equal to 2) giving the number of intervals into which x is to be cut. |
digits |
Integer indicating the number of decimal places (round) or significant digits (signif.) to be used. Negative values are allowed |
... |
Other variables passed to cut. |
Returns a list of data frames (or singular data frame for a vector) of frequencies, cumulative frequencies, percentages and cumulative percentages for each interval.
## Not run: dist_tab(rnorm(10000), 10) dist_tab(sample(c("red", "blue", "gray"), 100, T), right = FALSE) dist_tab(CO2, 4) out1 <- dist_tab(mtcars[, 1:3]) ltruncdf(out1, 4) out2 <- dist_tab(mtcars[, 1:3], 4) ltruncdf(out2, 4) wdst <- with(mraja1spl, word_stats(dialogue, list(sex, fam.aff, died))) out3 <- dist_tab(wdst$gts[1:4]) ltruncdf(out3, 4) ## End(Not run)
## Not run: dist_tab(rnorm(10000), 10) dist_tab(sample(c("red", "blue", "gray"), 100, T), right = FALSE) dist_tab(CO2, 4) out1 <- dist_tab(mtcars[, 1:3]) ltruncdf(out1, 4) out2 <- dist_tab(mtcars[, 1:3], 4) ltruncdf(out2, 4) wdst <- with(mraja1spl, word_stats(dialogue, list(sex, fam.aff, died))) out3 <- dist_tab(wdst$gts[1:4]) ltruncdf(out3, 4) ## End(Not run)
Transcript apply diversity/richness indices.
diversity(text.var, grouping.var = NULL)
diversity(text.var, grouping.var = NULL)
text.var |
The text variable. |
grouping.var |
The grouping variables. Default |
These are the formulas used to calculate the indices:
Shannon index:
Shannon, C. E. (1948). A mathematical theory of communication. Bell System
Simpson index:
Simpson, E. H. (1949). Measurement of diversity. Nature 163, p. 688
Collision entropy:
Renyi, A. (1961). On measures of information and entropy. Proceedings of the
4th Berkeley Symposium on Mathematics, Statistics and Probability, 1960.
pp. 547-5661.
Berger Parker index:
Berger, W. H., & Parker, F. L.(1970). Diversity of planktonic Foramenifera in
deep sea sediments. Science 168, pp. 1345-1347.
Brillouin index:
Magurran, A. E. (2004). Measuring biological diversity. Blackwell.
Returns a dataframe of various diversity related indices for Shannon, collision, Berger Parker and Brillouin.
https://arxiv.org/abs/physics/0512106
## Not run: div.mod <- with(mraja1spl, diversity(dialogue, list(sex, died, fam.aff))) colsplit2df(div.mod) plot(div.mod, high = "red", low = "yellow") plot(div.mod, high = "red", low = "yellow", values = TRUE) ## End(Not run)
## Not run: div.mod <- with(mraja1spl, diversity(dialogue, list(sex, died, fam.aff))) colsplit2df(div.mod) plot(div.mod, high = "red", low = "yellow") plot(div.mod, high = "red", low = "yellow", values = TRUE) ## End(Not run)
Find duplicated word/word chunks in a string. Intended for internal use.
duplicates(string, threshold = 1)
duplicates(string, threshold = 1)
string |
A character string. |
threshold |
An integer of the minimal number of repeats. |
Returns a vector of all duplicated words/chunks.
## Not run: duplicates(DATA$state) duplicates(DATA$state[1]) ## End(Not run)
## Not run: duplicates(DATA$state) duplicates(DATA$state[1]) ## End(Not run)
Test for incomplete sentences and optionally remove them.
end_inc(dataframe, text.var, warning.report = TRUE, which.mode = FALSE)
end_inc(dataframe, text.var, warning.report = TRUE, which.mode = FALSE)
dataframe |
A dataframe that contains the person and text variable. |
text.var |
A character string of the text variable. |
warning.report |
logical. If |
which.mode |
logical. If |
Generates a dataframe with incomplete sentences removed.
## Not run: dat <- sentSplit(DATA, "state", stem.col = FALSE) dat$state[c(2, 5)] <- paste(strip(dat$state[c(2, 5)]), "|") end_inc(dat, "state") end_inc(dat, "state", warning.report = FALSE) end_inc(dat, "state", which.mode = TRUE) ## End(Not run)
## Not run: dat <- sentSplit(DATA, "state", stem.col = FALSE) dat$state[c(2, 5)] <- paste(strip(dat$state[c(2, 5)]), "|") end_inc(dat, "state") end_inc(dat, "state", warning.report = FALSE) end_inc(dat, "state", which.mode = TRUE) ## End(Not run)
end_mark
- Grab the sentence end marks for a transcript. This can be
useful to categorize based on sentence type.
end_mark_by
- Grab the sentence end marks for a transcript by grouping
variable(s).
end_mark( text.var, missing.end.mark = "_", missing.text = NA, other.endmarks = NULL ) end_mark_by( text.var, grouping.var, digits = 3, percent = FALSE, zero.replace = 0, ... )
end_mark( text.var, missing.end.mark = "_", missing.text = NA, other.endmarks = NULL ) end_mark_by( text.var, grouping.var, digits = 3, percent = FALSE, zero.replace = 0, ... )
text.var |
The text variable. |
missing.end.mark |
A value to use for sentences with missing endmarks. |
missing.text |
A value to use for sentences with missing ( |
other.endmarks |
Other 1-2 character endmarks to search for. |
grouping.var |
The grouping variables. Default |
digits |
Integer; number of decimal places to round when printing. |
percent |
logical. If |
zero.replace |
Value to replace 0 values with. |
... |
Other arguments passed to |
Returns a character vector of qdap end marks for each sentence. End marks include:
"." |
Declarative sentence. |
"?" |
Question sentence. |
"!" |
Exclamatory sentence. |
"|" |
Incomplete sentence. |
"*." |
Imperative-declarative sentence. |
"*?" |
Imperative-question sentence (unlikely to occur) |
"*!" |
Imperative-exclamatory sentence. |
"*|" |
Imperative-incomplete sentence. |
"no.em" |
No end mark. |
"blank" |
Empty cell/NA. |
## Not run: end_mark(DATA.SPLIT$state) end_mark(mraja1spl$dialogue) table(end_mark(mraja1spl$dialogue)) plot(end_mark(mraja1spl$dialogue)) ques <- mraja1spl[end_mark(mraja1spl$dialogue) == "?", ] #grab questions htruncdf(ques) non.ques <- mraja1spl[end_mark(mraja1spl$dialogue) != "?", ] #non questions htruncdf(non.ques, 20) ques.per <- mraja1spl[end_mark(mraja1spl$dialogue) %in% c(".", "?"), ] #grab ? and . htruncdf(ques.per, 20) (x_by <- end_mark_by(DATA.SPLIT$state, DATA.SPLIT$person)) scores(x_by) counts(x_by) proportions(x_by) preprocessed(x_by) plot(scores(x_by)) plot(counts(x_by)) plot(proportions(x_by)) plot(preprocessed(x_by)) #================================# ## End Marks Over Time Examples ## #================================# ##EXAMPLE 1 sentpres <- lapply(with(pres_debates2012, split(dialogue, time)), function(x) { end_mark(x) }) sentplots <- lapply(seq_along(sentpres), function(i) { m <- plot(cumulative(sentpres[[i]])) if (i != 2) m <- m + ylab("") if (i != 3) m <- m + xlab(NULL) m + ggtitle(paste("Debate", i)) }) library(grid) library(gridExtra) do.call(grid.arrange, sentplots) ##EXAMPLE 2 sentraj <- lapply(with(rajSPLIT, split(dialogue, act)), function(x) { end_mark(x) }) sentplots2 <- lapply(seq_along(sentraj), function(i) { m <- plot(cumulative(sentraj[[i]])) if (i != 2) m <- m + ylab("") if (i != 3) m <- m + xlab(NULL) act <- qcv(I, II, III, IV, V) m + ggtitle(paste("Act", act[i])) }) ## ggplot2 function to extract legend g_legend <- function(a.gplot){ tmp <- ggplot_gtable(ggplot_build(a.gplot)) leg <- which(sapply(tmp[["grobs"]], function(x) x[["name"]]) == "guide-box") legend <- tmp[["grobs"]][[leg]] legend } ## remove legends from plots sentplots3 <- lapply(sentplots2, function(x){ x + theme(legend.position="none") + xlab(NULL) + ylab(NULL) }) sentplots3[[6]] <- g_legend(sentplots2[[1]]) do.call(grid.arrange, sentplots3) ## End(Not run)
## Not run: end_mark(DATA.SPLIT$state) end_mark(mraja1spl$dialogue) table(end_mark(mraja1spl$dialogue)) plot(end_mark(mraja1spl$dialogue)) ques <- mraja1spl[end_mark(mraja1spl$dialogue) == "?", ] #grab questions htruncdf(ques) non.ques <- mraja1spl[end_mark(mraja1spl$dialogue) != "?", ] #non questions htruncdf(non.ques, 20) ques.per <- mraja1spl[end_mark(mraja1spl$dialogue) %in% c(".", "?"), ] #grab ? and . htruncdf(ques.per, 20) (x_by <- end_mark_by(DATA.SPLIT$state, DATA.SPLIT$person)) scores(x_by) counts(x_by) proportions(x_by) preprocessed(x_by) plot(scores(x_by)) plot(counts(x_by)) plot(proportions(x_by)) plot(preprocessed(x_by)) #================================# ## End Marks Over Time Examples ## #================================# ##EXAMPLE 1 sentpres <- lapply(with(pres_debates2012, split(dialogue, time)), function(x) { end_mark(x) }) sentplots <- lapply(seq_along(sentpres), function(i) { m <- plot(cumulative(sentpres[[i]])) if (i != 2) m <- m + ylab("") if (i != 3) m <- m + xlab(NULL) m + ggtitle(paste("Debate", i)) }) library(grid) library(gridExtra) do.call(grid.arrange, sentplots) ##EXAMPLE 2 sentraj <- lapply(with(rajSPLIT, split(dialogue, act)), function(x) { end_mark(x) }) sentplots2 <- lapply(seq_along(sentraj), function(i) { m <- plot(cumulative(sentraj[[i]])) if (i != 2) m <- m + ylab("") if (i != 3) m <- m + xlab(NULL) act <- qcv(I, II, III, IV, V) m + ggtitle(paste("Act", act[i])) }) ## ggplot2 function to extract legend g_legend <- function(a.gplot){ tmp <- ggplot_gtable(ggplot_build(a.gplot)) leg <- which(sapply(tmp[["grobs"]], function(x) x[["name"]]) == "guide-box") legend <- tmp[["grobs"]][[leg]] legend } ## remove legends from plots sentplots3 <- lapply(sentplots2, function(x){ x + theme(legend.position="none") + xlab(NULL) + ylab(NULL) }) sentplots3[[6]] <- g_legend(sentplots2[[1]]) do.call(grid.arrange, sentplots3) ## End(Not run)
A dataset containing a syllable lookup environment (see DICTIONARY
).
data(env.syl)
data(env.syl)
A environment with the DICTIONARY data set.
For internal use.
UCI Machine Learning Repository website
exclude
- Quickly exclude words from a word list
%ex%
- Binary operator version of exclude
.
exclude(word.list, ...) ## S3 method for class 'TermDocumentMatrix' exclude(word.list, ...) ## S3 method for class 'DocumentTermMatrix' exclude(word.list, ...) ## S3 method for class 'wfm' exclude(word.list, ...) ## S3 method for class 'list' exclude(word.list, ...) ## Default S3 method: exclude(word.list, ...) word.list %ex% ...
exclude(word.list, ...) ## S3 method for class 'TermDocumentMatrix' exclude(word.list, ...) ## S3 method for class 'DocumentTermMatrix' exclude(word.list, ...) ## S3 method for class 'wfm' exclude(word.list, ...) ## S3 method for class 'list' exclude(word.list, ...) ## Default S3 method: exclude(word.list, ...) word.list %ex% ...
word.list |
A list/vector of words/terms, a |
... |
A vector (character/numeric) if element(s) to be excluded from
the |
Returns a vector with the excluded terms removed.
## Not run: exclude(1:10, 3, 4) exclude(1:10, 3:4) Top25Words exclude(Top25Words, qcv(the, of, and)) exclude(Top25Words, "the", "of", "an") #Using with term_match and termco terms <- term_match(DATA$state, qcv(th), FALSE) exclude(terms, "truth") #all together termco(DATA$state, DATA$person, exclude(term_match(DATA$state, qcv(th), FALSE), "truth")) MTCH.LST <- exclude(term_match(DATA$state, qcv(th, i)), qcv(truth, stinks)) termco(DATA$state, DATA$person, MTCH.LST) ## Works with wfm dat <- wfm(DATA$state, DATA$person) the.no <- term_match(DATA$state, c("the", "no")) exclude(dat, unlist(the.no)) ## Works with tm's TermDocumentMatrix/DocumentTermMatrix dat2 <- as.dtm(DATA$state, DATA$person) out.dtm <- exclude(dat2, unlist(the.no)) tm::inspect(out.dtm) dat3 <- as.tdm(DATA$state, DATA$person) out.tdm <- exclude(dat3, unlist(the.no)) tm::inspect(out.tdm) ## End(Not run)
## Not run: exclude(1:10, 3, 4) exclude(1:10, 3:4) Top25Words exclude(Top25Words, qcv(the, of, and)) exclude(Top25Words, "the", "of", "an") #Using with term_match and termco terms <- term_match(DATA$state, qcv(th), FALSE) exclude(terms, "truth") #all together termco(DATA$state, DATA$person, exclude(term_match(DATA$state, qcv(th), FALSE), "truth")) MTCH.LST <- exclude(term_match(DATA$state, qcv(th, i)), qcv(truth, stinks)) termco(DATA$state, DATA$person, MTCH.LST) ## Works with wfm dat <- wfm(DATA$state, DATA$person) the.no <- term_match(DATA$state, c("the", "no")) exclude(dat, unlist(the.no)) ## Works with tm's TermDocumentMatrix/DocumentTermMatrix dat2 <- as.dtm(DATA$state, DATA$person) out.dtm <- exclude(dat2, unlist(the.no)) tm::inspect(out.dtm) dat3 <- as.tdm(DATA$state, DATA$person) out.tdm <- exclude(dat3, unlist(the.no)) tm::inspect(out.tdm) ## End(Not run)
Filter.all_words
- Filter words from a all_words
that meet max/min word length criteria.
Filter.TermDocumentMatrix
- Filter words from a TermDocumentMatrix vector that meet
max/min word length criteria.
Filter.DocumentTermMatrix
- Filter words from a DocumentTermMatrix
that meet max/min word length criteria.
Filter
- Filter words from various objects that meet max/min word
length criteria.
Filter.wfm
- Filter words from a wfm that meet max/min word length
criteria.
Filter.character
- Filter words from a character vector that meet
max/min word length criteria.
Filter.fwl
- Filter words from a fwl
that meet max/min word length criteria.
Filter.fswl
- Filter words from a fswl
that meet max/min word length criteria.
Filter.rfswl
- Filter words from a rfswl
that meet max/min word length criteria.
## S3 method for class 'all_words' Filter( x, min = 1, max = Inf, count.apostrophe = TRUE, stopwords = NULL, ignore.case = TRUE, ... ) ## S3 method for class 'TermDocumentMatrix' Filter( x, min = 1, max = Inf, count.apostrophe = TRUE, stopwords = NULL, ignore.case = TRUE, ... ) ## S3 method for class 'DocumentTermMatrix' Filter( x, min = 1, max = Inf, count.apostrophe = TRUE, stopwords = NULL, ignore.case = TRUE, ... ) Filter( x, min = 1, max = Inf, count.apostrophe = TRUE, stopwords = NULL, ignore.case = TRUE, ... ) ## S3 method for class 'wfm' Filter(x, min = 1, max = Inf, count.apostrophe = TRUE, stopwords = NULL, ...) ## S3 method for class 'character' Filter( x, min = 1, max = Inf, count.apostrophe = TRUE, stopwords = NULL, ignore.case = TRUE, ... ) ## S3 method for class 'fwl' Filter( x, min = 1, max = Inf, count.apostrophe = TRUE, stopwords = NULL, ignore.case = TRUE, ... ) ## S3 method for class 'fswl' Filter( x, min = 1, max = Inf, count.apostrophe = TRUE, stopwords = NULL, ignore.case = TRUE, ... ) ## S3 method for class 'rfswl' Filter( x, min = 1, max = Inf, count.apostrophe = TRUE, stopwords = NULL, ignore.case = TRUE, ... )
## S3 method for class 'all_words' Filter( x, min = 1, max = Inf, count.apostrophe = TRUE, stopwords = NULL, ignore.case = TRUE, ... ) ## S3 method for class 'TermDocumentMatrix' Filter( x, min = 1, max = Inf, count.apostrophe = TRUE, stopwords = NULL, ignore.case = TRUE, ... ) ## S3 method for class 'DocumentTermMatrix' Filter( x, min = 1, max = Inf, count.apostrophe = TRUE, stopwords = NULL, ignore.case = TRUE, ... ) Filter( x, min = 1, max = Inf, count.apostrophe = TRUE, stopwords = NULL, ignore.case = TRUE, ... ) ## S3 method for class 'wfm' Filter(x, min = 1, max = Inf, count.apostrophe = TRUE, stopwords = NULL, ...) ## S3 method for class 'character' Filter( x, min = 1, max = Inf, count.apostrophe = TRUE, stopwords = NULL, ignore.case = TRUE, ... ) ## S3 method for class 'fwl' Filter( x, min = 1, max = Inf, count.apostrophe = TRUE, stopwords = NULL, ignore.case = TRUE, ... ) ## S3 method for class 'fswl' Filter( x, min = 1, max = Inf, count.apostrophe = TRUE, stopwords = NULL, ignore.case = TRUE, ... ) ## S3 method for class 'rfswl' Filter( x, min = 1, max = Inf, count.apostrophe = TRUE, stopwords = NULL, ignore.case = TRUE, ... )
x |
|
min |
Minimum word length. |
max |
Maximum word length. |
count.apostrophe |
logical. If |
stopwords |
A vector of stop words to remove. |
ignore.case |
logical. If |
... |
Other arguments passed to specific Filter methods. |
all_words Method for Filter
TermDocumentMatrix Method for Filter
DocumentTermMatrix Method for Filter
character Method for Filter
fwl Method for Filter
fswl Method for Filter
rfswl Method for Filter
Filter.all_words
- Returns a matrix of the class "all_words".
Filter.TermDocumentMatrix
- Returns a matrix of the class "TermDocumentMatrix".
Filter.DocumentTermMatrix
- Returns a matrix of the class "DocumentTermMatrix".
Filter
- Returns a matrix of the class "wfm".
Filter.character
- Returns a vector of the class "character".
Filter.wfm
- Returns a matrix of the class "wfm".
Filter.fwl
- Returns a matrix of the class "fwl".
Filter.fswl
- Returns a matrix of the class "fswl".
Filter.rfswl
- Returns a matrix of the class "rfswl".
The name and idea behind this function is inspired by the dplyr
package's filter
function and has a similar meaning in that you are
grabbing rows (or elements) meeting a particular criteria.
## Not run: Filter(with(DATA, wfm(state, list(sex, adult))), 5) with(DATA, wfm(state, list(sex, adult))) ## Filter particular words based on max/min values in wfm v <- with(DATA, wfm(state, list(sex, adult))) Filter(v, 5) Filter(v, 5, count.apostrophe = FALSE) Filter(v, 5, 7) Filter(v, 4, 4) Filter(v, 3, 4) Filter(v, 3, 4, stopwords = Top25Words) ## Filter works on character strings too... x <- c("Raptors don't like robots!", "I'd pay $500.00 to rid them.") Filter(x, 3) Filter(x, 4) Filter(x, 4, count.apostrophe = FALSE) Filter(x, 4, count.apostrophe = FALSE, stopwords="raptors") Filter(x, 4, stopwords="raptors") Filter(x, 4, stopwords="raptors", ignore.case = FALSE) DATA[, "state"] <- Filter(DATA[, "state"], 4) DATA <- qdap::DATA ## Filter `all_words` head(all_words(raj$dialogue)) Filter(head(all_words(raj$dialogue)), min = 3) ## End(Not run)
## Not run: Filter(with(DATA, wfm(state, list(sex, adult))), 5) with(DATA, wfm(state, list(sex, adult))) ## Filter particular words based on max/min values in wfm v <- with(DATA, wfm(state, list(sex, adult))) Filter(v, 5) Filter(v, 5, count.apostrophe = FALSE) Filter(v, 5, 7) Filter(v, 4, 4) Filter(v, 3, 4) Filter(v, 3, 4, stopwords = Top25Words) ## Filter works on character strings too... x <- c("Raptors don't like robots!", "I'd pay $500.00 to rid them.") Filter(x, 3) Filter(x, 4) Filter(x, 4, count.apostrophe = FALSE) Filter(x, 4, count.apostrophe = FALSE, stopwords="raptors") Filter(x, 4, stopwords="raptors") Filter(x, 4, stopwords="raptors", ignore.case = FALSE) DATA[, "state"] <- Filter(DATA[, "state"], 4) DATA <- qdap::DATA ## Filter `all_words` head(all_words(raj$dialogue)) Filter(head(all_words(raj$dialogue)), min = 3) ## End(Not run)
Transcript apply formality score by grouping variable(s) and optionally plot the breakdown of the model.
formality( text.var, grouping.var = NULL, order.by.formality = TRUE, digits = 2, ... )
formality( text.var, grouping.var = NULL, order.by.formality = TRUE, digits = 2, ... )
text.var |
The text variable (or an object from |
grouping.var |
The grouping variables. Default |
order.by.formality |
logical. If |
digits |
The number of digits displayed. |
... |
Other arguments passed to |
Heylighen & Dewaele(2002)'s formality score is calculated as:
Where:
A list containing at the following components:
text |
The text variable |
POStagged |
Raw part of speech for every word of the text variable |
POSprop |
Part of speech proportion for every word of the text variable |
POSfreq |
Part of speech count for every word of the text variable |
pos.by.freq |
The part of speech count for every word of the text variable by grouping variable(s) |
pos.by.prop |
The part of speech proportion for every word of the text variable by grouping variable(s) |
form.freq.by |
The nine broad part of speech categories count for every word of the text variable by grouping variable(s) |
form.prop.by |
The nine broad part of speech categories proportion for every word of the text variable by grouping variable(s) |
formality |
Formality scores by grouping variable(s) |
pos.reshaped |
An expanded formality scores output (grouping, word.count, pos & form.class) by word |
Heylighen & Dewaele (2002) state, "At present, a sample would probably need to contain a few hundred words for the measure to be minimally reliable. For single sentences, the F-value should only be computed for purposes of illustration" (p. 24).
Heylighen, F., & Dewaele, J.M. (2002). Variation in the contextuality of language: An empirical measure. Context in Context, Special issue of Foundations of Science, 7 (3), 293-340.
## Not run: with(DATA, formality(state, person)) (x1 <- with(DATA, formality(state, list(sex, adult)))) plot(x1) plot(x1, short.names = FALSE) scores(x1) counts(x1) proportions(x1) preprocessed(x1) plot(scores(x1)) plot(counts(x1)) plot(proportions(x1), high="darkgreen") plot(preprocessed(x1)) data(rajPOS) #A data set consisting of a pos list object x2 <- with(raj, formality(rajPOS, act)) plot(x2) cumulative(x2) x3 <- with(raj, formality(rajPOS, person)) plot(x3, bar.colors="Dark2") plot(x3, bar.colors=c("Dark2", "Set1")) x4 <- with(raj, formality(rajPOS, list(person, act))) plot(x4, bar.colors=c("Dark2", "Set1")) rajDEM <- key_merge(raj, raj.demographics) #merge demographics with transcript. x5 <- with(rajDEM, formality(rajPOS, sex)) plot(x5, bar.colors="RdBu") x6 <- with(rajDEM, formality(rajPOS, list(fam.aff, sex))) plot(x6, bar.colors="RdBu") x7 <- with(rajDEM, formality(rajPOS, list(died, fam.aff))) plot(x7, bar.colors="RdBu", point.cex=2, point.pch = 3) x8 <- with(rajDEM, formality(rajPOS, list(died, sex))) plot(x8, bar.colors="RdBu", point.cex=2, point.pch = "|") names(x8) colsplit2df(x8$formality) #pass an object from pos or pos_by ltruncdf(with(raj, formality(x8 , list(act, person))), 6, 4) #=============# ## ANIMATION ## #=============# ## EXAMPLE 1 form_ani <- formality(DATA.SPLIT$state, DATA.SPLIT$person) forma <- Animate(form_ani, contextual="white", formal="blue", current.color = "yellow", current.speaker.color="grey70") bgb <- vertex_apply(forma, label.color="grey80", size=20, color="grey40") bgb <- edge_apply(bgb, label.color="yellow") print(bgb, bg="black", net.legend.color ="white", pause=1) ## EXAMPLE 2 form_ani2 <- formality(raj.act.1POS, mraja1spl$person) forma2 <- Animate(form_ani2, contextual="white", formal="blue", current.color = "yellow", current.speaker.color="grey70") bgb2 <- vertex_apply(forma2, label.color="grey80", size=17, color="grey40") bgb2 <- edge_apply(bgb2, label.color="yellow") print(bgb2, bg="black", pause=.75, net.legend.color = "white") ## EXAMPLE 3 (bar plot) Animate(form_ani2, as.network=FALSE) #=====================# ## Complex Animation ## #=====================# library(animation) library(grid) library(gridBase) library(qdap) library(igraph) library(plotrix) form_ani2 <- formality(raj.act.1POS, mraja1spl$person) ## Set up the network version form_net <- Animate(form_ani2, contextual="white", formal="blue", current.color = "yellow", current.speaker.color="grey70") bgb <- vertex_apply(form_net, label.color="grey80", size=17, color="grey40") bgb <- edge_apply(bgb, label.color="yellow") ## Set up the bar version form_bar <- Animate(form_ani2, as.network=FALSE) ## Generate a folder loc <- folder(animation_formality) ## Set up the plotting function oopt <- animation::ani.options(interval = 0.1) FUN <- function(follow=FALSE, theseq = seq_along(bgb)) { Title <- "Animated Formality: Romeo and Juliet Act 1" Legend <- c(.2, -1, 1.5, -.95) Legend.cex <- 1 lapply(theseq, function(i) { if (follow) { png(file=sprintf("%s/images/Rplot%s.png", loc, i), width=650, height=725) } ## Set up the layout layout(matrix(c(rep(1, 9), rep(2, 4)), 13, 1, byrow = TRUE)) ## Plot 1 par(mar=c(2, 0, 2, 0), bg="black") #par(mar=c(2, 0, 2, 0)) set.seed(22) plot.igraph(bgb[[i]], edge.curved=TRUE) graphics::mtext(Title, side=3, col="white") color.legend(Legend[1], Legend[2], Legend[3], Legend[4], c("Contextual", "Formal"), attributes(bgb)[["legend"]], cex = Legend.cex, col="white") ## Plot2 plot.new() vps <- baseViewports() uns <- unit(c(-1.3,.5,-.75,.25), "cm") p <- form_bar[[i]] + theme(plot.margin = uns, text=element_text(color="white"), legend.text=element_text(color="white"), legend.background = element_rect(fill = "black"), plot.background = element_rect(fill = "black", color="black")) print(p,vp = vpStack(vps$figure,vps$plot)) animation::ani.pause() if (follow) { dev.off() } }) } FUN() ## Detect OS type <- if(.Platform$OS.type == "windows") shell else system saveHTML(FUN(, 1:20), autoplay = FALSE, loop = TRUE, verbose = FALSE, ani.height = 1000, ani.width=650, outdir = loc, single.opts = "'controls': ['first', 'play', 'loop', 'speed'], 'delayMin': 0") FUN(TRUE) #==================# ## Static Network ## #==================# (formdat <- with(sentSplit(DATA, 4), formality(state, person))) m <- Network(formdat) m print(m, bg="grey97", vertex.color="grey75") print(m, title="Formality Discourse Map", title.color="white", bg="black", legend.text.color="white", vertex.label.color = "grey70", edge.label.color="yellow") ## or use themes: dev.off() m + qtheme() m + theme_nightheat dev.off() m + theme_nightheat(title="Formality Discourse Map", vertex.label.color = "grey50") #===============================# ## Formality Over Time Example ## #===============================# formpres <- lapply(with( pres_debates2012, split(dialogue, time)), function(x) { formality(x) }) formplots <- lapply(seq_along(formpres), function(i) { m <- plot(cumulative(formpres[[i]])) if (i != 2) m <- m + ylab("") if (i != 3) m <- m + xlab(NULL) m + ggtitle(paste("Debate", i)) }) library(grid) library(gridExtra) do.call(grid.arrange, formplots) ## End(Not run)
## Not run: with(DATA, formality(state, person)) (x1 <- with(DATA, formality(state, list(sex, adult)))) plot(x1) plot(x1, short.names = FALSE) scores(x1) counts(x1) proportions(x1) preprocessed(x1) plot(scores(x1)) plot(counts(x1)) plot(proportions(x1), high="darkgreen") plot(preprocessed(x1)) data(rajPOS) #A data set consisting of a pos list object x2 <- with(raj, formality(rajPOS, act)) plot(x2) cumulative(x2) x3 <- with(raj, formality(rajPOS, person)) plot(x3, bar.colors="Dark2") plot(x3, bar.colors=c("Dark2", "Set1")) x4 <- with(raj, formality(rajPOS, list(person, act))) plot(x4, bar.colors=c("Dark2", "Set1")) rajDEM <- key_merge(raj, raj.demographics) #merge demographics with transcript. x5 <- with(rajDEM, formality(rajPOS, sex)) plot(x5, bar.colors="RdBu") x6 <- with(rajDEM, formality(rajPOS, list(fam.aff, sex))) plot(x6, bar.colors="RdBu") x7 <- with(rajDEM, formality(rajPOS, list(died, fam.aff))) plot(x7, bar.colors="RdBu", point.cex=2, point.pch = 3) x8 <- with(rajDEM, formality(rajPOS, list(died, sex))) plot(x8, bar.colors="RdBu", point.cex=2, point.pch = "|") names(x8) colsplit2df(x8$formality) #pass an object from pos or pos_by ltruncdf(with(raj, formality(x8 , list(act, person))), 6, 4) #=============# ## ANIMATION ## #=============# ## EXAMPLE 1 form_ani <- formality(DATA.SPLIT$state, DATA.SPLIT$person) forma <- Animate(form_ani, contextual="white", formal="blue", current.color = "yellow", current.speaker.color="grey70") bgb <- vertex_apply(forma, label.color="grey80", size=20, color="grey40") bgb <- edge_apply(bgb, label.color="yellow") print(bgb, bg="black", net.legend.color ="white", pause=1) ## EXAMPLE 2 form_ani2 <- formality(raj.act.1POS, mraja1spl$person) forma2 <- Animate(form_ani2, contextual="white", formal="blue", current.color = "yellow", current.speaker.color="grey70") bgb2 <- vertex_apply(forma2, label.color="grey80", size=17, color="grey40") bgb2 <- edge_apply(bgb2, label.color="yellow") print(bgb2, bg="black", pause=.75, net.legend.color = "white") ## EXAMPLE 3 (bar plot) Animate(form_ani2, as.network=FALSE) #=====================# ## Complex Animation ## #=====================# library(animation) library(grid) library(gridBase) library(qdap) library(igraph) library(plotrix) form_ani2 <- formality(raj.act.1POS, mraja1spl$person) ## Set up the network version form_net <- Animate(form_ani2, contextual="white", formal="blue", current.color = "yellow", current.speaker.color="grey70") bgb <- vertex_apply(form_net, label.color="grey80", size=17, color="grey40") bgb <- edge_apply(bgb, label.color="yellow") ## Set up the bar version form_bar <- Animate(form_ani2, as.network=FALSE) ## Generate a folder loc <- folder(animation_formality) ## Set up the plotting function oopt <- animation::ani.options(interval = 0.1) FUN <- function(follow=FALSE, theseq = seq_along(bgb)) { Title <- "Animated Formality: Romeo and Juliet Act 1" Legend <- c(.2, -1, 1.5, -.95) Legend.cex <- 1 lapply(theseq, function(i) { if (follow) { png(file=sprintf("%s/images/Rplot%s.png", loc, i), width=650, height=725) } ## Set up the layout layout(matrix(c(rep(1, 9), rep(2, 4)), 13, 1, byrow = TRUE)) ## Plot 1 par(mar=c(2, 0, 2, 0), bg="black") #par(mar=c(2, 0, 2, 0)) set.seed(22) plot.igraph(bgb[[i]], edge.curved=TRUE) graphics::mtext(Title, side=3, col="white") color.legend(Legend[1], Legend[2], Legend[3], Legend[4], c("Contextual", "Formal"), attributes(bgb)[["legend"]], cex = Legend.cex, col="white") ## Plot2 plot.new() vps <- baseViewports() uns <- unit(c(-1.3,.5,-.75,.25), "cm") p <- form_bar[[i]] + theme(plot.margin = uns, text=element_text(color="white"), legend.text=element_text(color="white"), legend.background = element_rect(fill = "black"), plot.background = element_rect(fill = "black", color="black")) print(p,vp = vpStack(vps$figure,vps$plot)) animation::ani.pause() if (follow) { dev.off() } }) } FUN() ## Detect OS type <- if(.Platform$OS.type == "windows") shell else system saveHTML(FUN(, 1:20), autoplay = FALSE, loop = TRUE, verbose = FALSE, ani.height = 1000, ani.width=650, outdir = loc, single.opts = "'controls': ['first', 'play', 'loop', 'speed'], 'delayMin': 0") FUN(TRUE) #==================# ## Static Network ## #==================# (formdat <- with(sentSplit(DATA, 4), formality(state, person))) m <- Network(formdat) m print(m, bg="grey97", vertex.color="grey75") print(m, title="Formality Discourse Map", title.color="white", bg="black", legend.text.color="white", vertex.label.color = "grey70", edge.label.color="yellow") ## or use themes: dev.off() m + qtheme() m + theme_nightheat dev.off() m + theme_nightheat(title="Formality Discourse Map", vertex.label.color = "grey50") #===============================# ## Formality Over Time Example ## #===============================# formpres <- lapply(with( pres_debates2012, split(dialogue, time)), function(x) { formality(x) }) formplots <- lapply(seq_along(formpres), function(i) { m <- plot(cumulative(formpres[[i]])) if (i != 2) m <- m + ylab("") if (i != 3) m <- m + xlab(NULL) m + ggtitle(paste("Debate", i)) }) library(grid) library(gridExtra) do.call(grid.arrange, formplots) ## End(Not run)
Find the most frequently occurring terms in a text vector.
freq_terms( text.var, top = 20, at.least = 1, stopwords = NULL, extend = TRUE, ... )
freq_terms( text.var, top = 20, at.least = 1, stopwords = NULL, extend = TRUE, ... )
text.var |
The text variable. |
top |
Top number of terms to show. |
at.least |
An integer indicating at least how many letters a word must be to be included in the output. |
stopwords |
A character vector of words to remove from the text. qdap
has a number of data sets that can be used as stop words including:
|
extend |
logical. If |
... |
Other arguments passed to |
Returns a dataframe with the top occurring words.
## Not run: freq_terms(DATA$state, 5) freq_terms(DATA$state) freq_terms(DATA$state, extend = FALSE) freq_terms(DATA$state, at.least = 4) (out <- freq_terms(pres_debates2012$dialogue, stopwords = Top200Words)) plot(out) ## All words by sentence (row) library(qdapTools) x <- raj$dialogue list_df2df(setNames(lapply(x, freq_terms, top=Inf), seq_along(x)), "row") list_df2df(setNames(lapply(x, freq_terms, top=10, stopwords = Dolch), seq_along(x)), "Title") ## All words by person FUN <- function(x, n=Inf) freq_terms(paste(x, collapse=" "), top=n) list_df2df(lapply(split(x, raj$person), FUN), "person") ## Plot it out <- lapply(split(x, raj$person), FUN, n=10) pdf("Freq Terms by Person.pdf", width=13) lapply(seq_along(out), function(i) { ## dev.new() plot(out[[i]], plot=FALSE) + ggtitle(names(out)[i]) }) dev.off() ## Keep spaces freq_terms(space_fill(DATA$state, "are you"), 500, char.keep="~~") ## End(Not run)
## Not run: freq_terms(DATA$state, 5) freq_terms(DATA$state) freq_terms(DATA$state, extend = FALSE) freq_terms(DATA$state, at.least = 4) (out <- freq_terms(pres_debates2012$dialogue, stopwords = Top200Words)) plot(out) ## All words by sentence (row) library(qdapTools) x <- raj$dialogue list_df2df(setNames(lapply(x, freq_terms, top=Inf), seq_along(x)), "row") list_df2df(setNames(lapply(x, freq_terms, top=10, stopwords = Dolch), seq_along(x)), "Title") ## All words by person FUN <- function(x, n=Inf) freq_terms(paste(x, collapse=" "), top=n) list_df2df(lapply(split(x, raj$person), FUN), "person") ## Plot it out <- lapply(split(x, raj$person), FUN, n=10) pdf("Freq Terms by Person.pdf", width=13) lapply(seq_along(out), function(i) { ## dev.new() plot(out[[i]], plot=FALSE) + ggtitle(names(out)[i]) }) dev.off() ## Keep spaces freq_terms(space_fill(DATA$state, "are you"), 500, char.keep="~~") ## End(Not run)
gantt
- Generates start and end times of supplied text selections
(i.e., text selections are determined by any number of grouping variables).
plot_gantt_base
- For internal use.
gantt(text.var, grouping.var, units = "words", sums = FALSE, col.sep = "_") plot_gantt_base( x, sums = NULL, fill.colors = NULL, box.color = "white", title = NULL )
gantt(text.var, grouping.var, units = "words", sums = FALSE, col.sep = "_") plot_gantt_base( x, sums = NULL, fill.colors = NULL, box.color = "white", title = NULL )
text.var |
The text variable |
grouping.var |
The grouping variables. Also takes a single grouping variable or a list of 1 or more grouping variables. |
units |
The unit of measurement to analyze. One of the strings
|
sums |
logical. If |
col.sep |
The character string to use to separate pasted variables in the merged grouping variable header/name. |
x |
n object of the class "gantt". |
fill.colors |
The colors of the Gantt plot bars. Either a single color
or a length equal to the number of grouping variable(s). If |
box.color |
A color to wrap the boxes with. |
title |
An optional title. |
Returns a data frame of start and end times by grouping variable(s) or optionally returns a list of two: (1) A data frame of the total units used by grouping variable(s) and (2) a data frame of start and end times by grouping variable(s).
For non-repeated measures data use gantt
. For
more flexible plotting needs use gantt_wrap
over the
generic plotting method.
DigEmAll (stackoverflow.com) and Tyler Rinker <[email protected]>.
Clark, W. & Gantt, H. (1922) The Gantt chart, a working tool of management. New York, Ronald Press.
gantt_rep
,
gantt_wrap
,
gantt_plot
## Not run: (a <- gantt(DATA$state, DATA$person)) plot(a) plot(a, base = TRUE) (b <- gantt(DATA$state, DATA$person, sums = TRUE)) plot(b) plot(b, base = FALSE) (d <- gantt(DATA$state, list(DATA$sex, DATA$adult))) plot(d) x <- gantt(mraja1$dialogue, mraja1$person) plot(x, base = TRUE) plot(x, , base = TRUE, box.color = "black") z <- gantt(mraja1$dialogue, mraja1$sex) plot(z) e <- with(mraja1, gantt(dialogue, list(fam.aff, sex, died), units = "characters", sums = TRUE)) plot(e) f <- gantt(mraja1$dialogue, mraja1$person, units = "syllables", sums = TRUE) plot(f, box.color = "red") plot(f, base = FALSE) dat <- gantt(mraja1$dialogue, list(mraja1$fam.aff, mraja1$sex), units = "sentences", col.sep = "_") ## Animate It ##================= ani_gannt <- with(DATA.SPLIT, gantt(state, person)) Animate(ani_gannt) Animate(plot(ani_gannt)) library(animation) loc <- folder(animation_gantt) ## Set up the plotting function oopt <- animation::ani.options(interval = 0.1) FUN <- function() { out <- Animate(ani_gannt) lapply(out, function(x) { print(x) animation::ani.pause() }) } type <- if(.Platform$OS.type == "windows") shell else system saveGIF(FUN(), interval = 0.1, outdir = loc, cmd.fun = type) ## End(Not run)
## Not run: (a <- gantt(DATA$state, DATA$person)) plot(a) plot(a, base = TRUE) (b <- gantt(DATA$state, DATA$person, sums = TRUE)) plot(b) plot(b, base = FALSE) (d <- gantt(DATA$state, list(DATA$sex, DATA$adult))) plot(d) x <- gantt(mraja1$dialogue, mraja1$person) plot(x, base = TRUE) plot(x, , base = TRUE, box.color = "black") z <- gantt(mraja1$dialogue, mraja1$sex) plot(z) e <- with(mraja1, gantt(dialogue, list(fam.aff, sex, died), units = "characters", sums = TRUE)) plot(e) f <- gantt(mraja1$dialogue, mraja1$person, units = "syllables", sums = TRUE) plot(f, box.color = "red") plot(f, base = FALSE) dat <- gantt(mraja1$dialogue, list(mraja1$fam.aff, mraja1$sex), units = "sentences", col.sep = "_") ## Animate It ##================= ani_gannt <- with(DATA.SPLIT, gantt(state, person)) Animate(ani_gannt) Animate(plot(ani_gannt)) library(animation) loc <- folder(animation_gantt) ## Set up the plotting function oopt <- animation::ani.options(interval = 0.1) FUN <- function() { out <- Animate(ani_gannt) lapply(out, function(x) { print(x) animation::ani.pause() }) } type <- if(.Platform$OS.type == "windows") shell else system saveGIF(FUN(), interval = 0.1, outdir = loc, cmd.fun = type) ## End(Not run)
A convenience function that wraps gantt
,
gantt_rep
and gantt_wrap
into a single
plotting function.
gantt_plot( text.var, grouping.var = NULL, rm.var = NULL, fill.var = NULL, xlab = "duration (in words)", units = "words", col.sep = "__", ... )
gantt_plot( text.var, grouping.var = NULL, rm.var = NULL, fill.var = NULL, xlab = "duration (in words)", units = "words", col.sep = "__", ... )
text.var |
The text variable. |
grouping.var |
The grouping variables. Also takes a single grouping variable or a list of 1 or more grouping variables. |
rm.var |
An optional single vector or list of 1 or 2 of repeated measures to facet by |
fill.var |
An optional variable to fill the code strips by. |
xlab |
The name of the x-axis label. |
units |
The unit of measurement. |
col.sep |
The column separator. |
... |
Other arguments passed to |
Returns a Gantt style visualization. Invisibly returns the ggplot2 list object.
For non-repeated measures data/plotting use gantt
;
for repeated measures data output use gantt_rep
; and for
a flexible gantt plot that words with code matrix functions (cm) use
gantt_wrap
.
Clark, W. & Gantt, H. (1922) The Gantt chart, a working tool of management. New York, Ronald Press.
## Not run: with(rajSPLIT, gantt_plot(text.var = dialogue, grouping.var = person, size=4)) with(rajSPLIT, gantt_plot(text.var = dialogue, grouping.var = list(fam.aff, sex), rm.var = act, title = "Romeo and Juliet's dialogue")) with(rajSPLIT, gantt_plot(dialogue, list(fam.aff, sex), act, transform=T)) rajSPLIT2 <- rajSPLIT rajSPLIT2$newb <- as.factor(sample(LETTERS[1:2], nrow(rajSPLIT2), replace=TRUE)) z <- with(rajSPLIT2, gantt_plot(dialogue, list(fam.aff, sex), list(act, newb), size = 4)) library(ggplot2); library(scales); library(RColorBrewer); library(grid) z + theme(panel.spacing = unit(1, "lines")) + scale_colour_grey() z + scale_colour_brewer(palette="Dark2") ## Fill Variable Example dat <- rajSPLIT[rajSPLIT$act == 1, ] dat$end_mark <- factor(end_mark(dat$dialogue)) with(dat, gantt_plot(text.var = dialogue, grouping.var = list(person, sex), fill.var=end_mark)) ## Repeated Measures with Fill Example rajSPLIT$end_mark <- end_mark(rajSPLIT$dialogue) with(rajSPLIT, gantt_plot(text.var = dialogue, grouping.var = list(fam.aff), rm.var = list(act), fill.var=end_mark, title = "Romeo and Juliet's dialogue")) ## Repeated Measures Sentence Type Example with(rajSPLIT, gantt_plot(text.var = dialogue, grouping.var = list(fam.aff, sex), rm.var = list(end_mark, act), title = "Romeo and Juliet's dialogue")) ## Reset rajSPLIT rajSPLIT <- qdap::rajSPLIT ## Animate It ##================= ani_gantt <- with(mraja1, gantt_plot(dialogue, person)) library(animation) loc <- folder(animation_gantt) ## Set up the plotting function oopt <- animation::ani.options(interval = 0.1) FUN <- function() { out <- Animate(ani_gantt) lapply(out, function(x) { print(x) animation::ani.pause() }) } type <- if(.Platform$OS.type == "windows") shell else system saveVideo(FUN(), video.name = "animation.avi", interval = 0.1, outdir = loc) saveLatex(FUN(), autoplay = TRUE, loop = FALSE, latex.filename = "tester.tex", caption = "animated dialogue", outdir = loc, ani.type = "pdf", ani.dev = "pdf", ani.width = 5, ani.height = 5.5, interval = 0.1) saveHTML(FUN(), autoplay = FALSE, loop = TRUE, verbose = FALSE, ani.width=600, ani.height=280, outdir = file.path(loc, "new"), single.opts = "'controls': ['first', 'play', 'loop', 'speed'], 'delayMin': 0") ## End(Not run)
## Not run: with(rajSPLIT, gantt_plot(text.var = dialogue, grouping.var = person, size=4)) with(rajSPLIT, gantt_plot(text.var = dialogue, grouping.var = list(fam.aff, sex), rm.var = act, title = "Romeo and Juliet's dialogue")) with(rajSPLIT, gantt_plot(dialogue, list(fam.aff, sex), act, transform=T)) rajSPLIT2 <- rajSPLIT rajSPLIT2$newb <- as.factor(sample(LETTERS[1:2], nrow(rajSPLIT2), replace=TRUE)) z <- with(rajSPLIT2, gantt_plot(dialogue, list(fam.aff, sex), list(act, newb), size = 4)) library(ggplot2); library(scales); library(RColorBrewer); library(grid) z + theme(panel.spacing = unit(1, "lines")) + scale_colour_grey() z + scale_colour_brewer(palette="Dark2") ## Fill Variable Example dat <- rajSPLIT[rajSPLIT$act == 1, ] dat$end_mark <- factor(end_mark(dat$dialogue)) with(dat, gantt_plot(text.var = dialogue, grouping.var = list(person, sex), fill.var=end_mark)) ## Repeated Measures with Fill Example rajSPLIT$end_mark <- end_mark(rajSPLIT$dialogue) with(rajSPLIT, gantt_plot(text.var = dialogue, grouping.var = list(fam.aff), rm.var = list(act), fill.var=end_mark, title = "Romeo and Juliet's dialogue")) ## Repeated Measures Sentence Type Example with(rajSPLIT, gantt_plot(text.var = dialogue, grouping.var = list(fam.aff, sex), rm.var = list(end_mark, act), title = "Romeo and Juliet's dialogue")) ## Reset rajSPLIT rajSPLIT <- qdap::rajSPLIT ## Animate It ##================= ani_gantt <- with(mraja1, gantt_plot(dialogue, person)) library(animation) loc <- folder(animation_gantt) ## Set up the plotting function oopt <- animation::ani.options(interval = 0.1) FUN <- function() { out <- Animate(ani_gantt) lapply(out, function(x) { print(x) animation::ani.pause() }) } type <- if(.Platform$OS.type == "windows") shell else system saveVideo(FUN(), video.name = "animation.avi", interval = 0.1, outdir = loc) saveLatex(FUN(), autoplay = TRUE, loop = FALSE, latex.filename = "tester.tex", caption = "animated dialogue", outdir = loc, ani.type = "pdf", ani.dev = "pdf", ani.width = 5, ani.height = 5.5, interval = 0.1) saveHTML(FUN(), autoplay = FALSE, loop = TRUE, verbose = FALSE, ani.width=600, ani.height=280, outdir = file.path(loc, "new"), single.opts = "'controls': ['first', 'play', 'loop', 'speed'], 'delayMin': 0") ## End(Not run)
Produces start and end times for occurrences for each repeated measure condition.
gantt_rep( rm.var, text.var, grouping.var = NULL, units = "words", col.sep = "_", name.sep = "_" )
gantt_rep( rm.var, text.var, grouping.var = NULL, units = "words", col.sep = "_", name.sep = "_" )
rm.var |
An optional single vector or list of 1 or 2 of repeated measures to facet by. |
text.var |
The text variable. |
grouping.var |
The grouping variables. Also takes a single grouping variable or a list of 1 or more grouping variables. |
units |
The unit of measurement to analyze. One of the strings
|
col.sep |
The character string to use to separate pasted variables in the pasted columns. |
name.sep |
The character string to use to separate column names of the pasted columns. |
Returns a data frame of start and end times by repeated measure and grouping variable(s)
For non-repeated measures data use gantt
. For
more flexible plotting needs use gantt_wrap
over the
generic plotting method.
Clark, W. & Gantt, H. (1922) The Gantt chart, a working tool of management. New York, Ronald Press.
## Not run: dat <- with(rajSPLIT, gantt_rep(act, dialogue, list(fam.aff, sex), units = "words", col.sep = "_")) head(dat, 20) plot(dat) gantt_wrap(dat, "fam.aff_sex", facet.vars = "act", title = "Repeated Measures Gantt Plot", minor.line.freq = 25, major.line.freq = 100) ## Two facets variables dat2 <- with(DATA2, gantt_rep(list(day, class), state, person, units = "words", col.sep = "_")) head(dat2, 20) plot(dat2) ## End(Not run)
## Not run: dat <- with(rajSPLIT, gantt_rep(act, dialogue, list(fam.aff, sex), units = "words", col.sep = "_")) head(dat, 20) plot(dat) gantt_wrap(dat, "fam.aff_sex", facet.vars = "act", title = "Repeated Measures Gantt Plot", minor.line.freq = 25, major.line.freq = 100) ## Two facets variables dat2 <- with(DATA2, gantt_rep(list(day, class), state, person, units = "words", col.sep = "_")) head(dat2, 20) plot(dat2) ## End(Not run)
A ggplot2 wrapper that produces a Gantt plot.
gantt_wrap( dataframe, plot.var, facet.vars = NULL, fill.var = NULL, title = NULL, ylab = plot.var, xlab = "duration.default", rev.factor = TRUE, transform = FALSE, ncol = NULL, minor.line.freq = NULL, major.line.freq = NULL, sig.dig.line.freq = 1, hms.scale = NULL, scale = NULL, space = NULL, size = 3, rm.horiz.lines = FALSE, x.ticks = TRUE, y.ticks = TRUE, legend.position = NULL, bar.color = NULL, border.color = NULL, border.size = 2, border.width = 0.1, constrain = TRUE, plot = TRUE )
gantt_wrap( dataframe, plot.var, facet.vars = NULL, fill.var = NULL, title = NULL, ylab = plot.var, xlab = "duration.default", rev.factor = TRUE, transform = FALSE, ncol = NULL, minor.line.freq = NULL, major.line.freq = NULL, sig.dig.line.freq = 1, hms.scale = NULL, scale = NULL, space = NULL, size = 3, rm.horiz.lines = FALSE, x.ticks = TRUE, y.ticks = TRUE, legend.position = NULL, bar.color = NULL, border.color = NULL, border.size = 2, border.width = 0.1, constrain = TRUE, plot = TRUE )
dataframe |
A data frame with plotting variable(s) and a column of start and end times. |
plot.var |
A factor plotting variable (y axis). |
facet.vars |
An optional single vector or list of 1 or 2 to facet by. |
fill.var |
An optional variable to fill the code strips by. |
title |
An optional title for the plot. |
ylab |
An optional y label. |
xlab |
An optional x label. |
rev.factor |
logical. If |
transform |
logical. If |
ncol |
if an integer value is passed to this
|
minor.line.freq |
A numeric value for frequency of minor grid lines. |
major.line.freq |
A numeric value for frequency of major grid lines. |
sig.dig.line.freq |
An internal rounding factor for minor and major line freq. Generally, default value of 1 suffices for larger range of x scale may need to be set to -2. |
hms.scale |
logical. If |
scale |
Should scales be fixed ( |
space |
If |
size |
The width of the plot bars. |
rm.horiz.lines |
logical. If |
x.ticks |
logical. If |
y.ticks |
logical. If |
legend.position |
The position of legends. ( |
bar.color |
Optional color to constrain all bars. |
border.color |
The color to plot border around Gantt bars (default is
|
border.size |
An integer value for the size to plot borders around Gantt bars. Controls length (width also controlled if not specified). |
border.width |
Controls border width around Gantt bars. Use a numeric value in addition to border size if plot borders appear disproportional. |
constrain |
logical. If |
plot |
logical. If |
Returns a Gantt style visualization. Invisibly returns the ggplot2 list object.
For non-repeated measures data/plotting use gantt
;
for repeated measures data output use gantt_rep
; and for
a convenient wrapper that takes text and generates plots use
gantt_plot
.
Andrie de Vries and Tyler Rinker <[email protected]>.
Clark, W. & Gantt, H. (1922) The Gantt chart, a working tool of management. New York, Ronald Press.
gantt
,
gantt_plot
,
gantt_rep
,
facet_grid
,
facet_wrap
## Not run: dat <- gantt(mraja1$dialogue, list(mraja1$fam.aff, mraja1$sex), units = "sentences", col.sep = "_") htruncdf(dat) gantt_wrap(dat, "fam.aff_sex", title = "Gantt Plot") dat$codes <- sample(LETTERS[1:3], nrow(dat), TRUE) gantt_wrap(dat, "fam.aff_sex", fill.var = "codes", legend.position = "bottom") dat2 <- with(rajSPLIT, gantt_rep(act, dialogue, list(fam.aff, sex), units = "words", col.sep = "_")) htruncdf(dat2) x <- gantt_wrap(dat2, "fam.aff_sex", facet.vars = "act", title = "Repeated Measures Gantt Plot") library(ggplot2); library(scales); library(RColorBrewer) x + scale_color_manual(values=rep("black", length(levels(dat2$fam.aff_sex)))) ## End(Not run)
## Not run: dat <- gantt(mraja1$dialogue, list(mraja1$fam.aff, mraja1$sex), units = "sentences", col.sep = "_") htruncdf(dat) gantt_wrap(dat, "fam.aff_sex", title = "Gantt Plot") dat$codes <- sample(LETTERS[1:3], nrow(dat), TRUE) gantt_wrap(dat, "fam.aff_sex", fill.var = "codes", legend.position = "bottom") dat2 <- with(rajSPLIT, gantt_rep(act, dialogue, list(fam.aff, sex), units = "words", col.sep = "_")) htruncdf(dat2) x <- gantt_wrap(dat2, "fam.aff_sex", facet.vars = "act", title = "Repeated Measures Gantt Plot") library(ggplot2); library(scales); library(RColorBrewer) x + scale_color_manual(values=rep("black", length(levels(dat2$fam.aff_sex)))) ## End(Not run)
Produces a gradient word cloud colored by a binary grouping variable.
gradient_cloud( text.var, bigroup.var, rev.binary = FALSE, X = "red", Y = "blue", stem = FALSE, stopwords = NULL, caps = TRUE, caps.list = NULL, I.list = TRUE, random.order = FALSE, rot.per = 0, min.freq = 1, max.word.size = NULL, min.word.size = 0.5, breaks = 10, cloud.font = NULL, title = NULL, title.font = NULL, title.color = "black", title.padj = 0.25, title.location = 3, title.cex = NULL, legend.cex = 0.8, legend.location = c(0.025, 0.025, 0.25, 0.04), char2space = "~~" )
gradient_cloud( text.var, bigroup.var, rev.binary = FALSE, X = "red", Y = "blue", stem = FALSE, stopwords = NULL, caps = TRUE, caps.list = NULL, I.list = TRUE, random.order = FALSE, rot.per = 0, min.freq = 1, max.word.size = NULL, min.word.size = 0.5, breaks = 10, cloud.font = NULL, title = NULL, title.font = NULL, title.color = "black", title.padj = 0.25, title.location = 3, title.cex = NULL, legend.cex = 0.8, legend.location = c(0.025, 0.025, 0.25, 0.04), char2space = "~~" )
text.var |
The text variable. |
bigroup.var |
A binary grouping variable. |
rev.binary |
logical. If |
X |
The first gradient color for variable X. |
Y |
The second gradient color for variable Y. |
stem |
logical. If |
stopwords |
Words to exclude from the cloud. Words will be removed after determining proportional word usage. |
caps |
logical. If |
caps.list |
A vector of words to capitalize ( |
I.list |
logical. If |
random.order |
Plot words in random order. If |
rot.per |
Proportion words with 90 degree rotation. |
min.freq |
An integer value indicating the minimum frequency a word must appear to be included. |
max.word.size |
A size argument to control the minimum size of the words. |
min.word.size |
A size argument to control the maximum size of the words. |
breaks |
An integer describing the number of breaks (odd numbers will be rounded up). |
cloud.font |
The font family of the cloud text. |
title |
A character string used as the plot title. |
title.font |
The font family of the cloud title. |
title.color |
A character vector of length one corresponding to the color of the title. |
title.padj |
Adjustment for the title. For strings parallel to the axes, padj = 0 means right or top alignment, and padj = 1 means left or bottom alignment. |
title.location |
On which side of the plot (1=bottom, 2=left, 3=top, 4=right). |
title.cex |
Character expansion factor for the title. |
legend.cex |
Character expansion factor for the legend. |
legend.location |
A vector of length 4 denoting the lower left (x and y left) and upper right (x and y right) coordinates of the rectangle of colors in user coordinates. |
char2space |
A vector of characters to be turned into spaces. |
Breaking is done using quantile
. This will
ensure a certain percentage of words will be colored at each bin.
Plots a gradient word cloud and invisibly returns the dataframe used to make the cloud.
trans_cloud
,
wordcloud
,
color.legend
## Not run: DATA$state <- space_fill(DATA$state, c("is fun", "too fun", "you liar")) gradient_cloud(DATA$state, DATA$sex, title="fun") gradient_cloud(DATA$state, DATA$sex, title="fun", rev.binary = TRUE) gradient_cloud(DATA$state, DATA$sex, title="fun", max.word.size = 5, min.word.size = .025) with(mraja1, gradient_cloud(dialogue, died, stopwords = Top25Words, rot.per = .5, title="Heatcloud", title.color="orange", title.cex=1.75)) x <- with(subset(mraja1, fam.aff %in% qcv(cap, mont)), gradient_cloud(dialogue, fam.aff)) head(x) ## 2012 U.S. Presidential Debates invisible(lapply(split(pres_debates2012, pres_debates2012$time), function(x) { x <- x[x$person %in% qcv(ROMNEY, OBAMA), ] dev.new() gradient_cloud(x$dialogue, x$person, title = paste("Debate", char2end(x$time[1])), stopwords = BuckleySaltonSWL, X = "blue", Y = "red", max.word.size = 2.2, min.word.size = 0.55 ) })) ## End(Not run)
## Not run: DATA$state <- space_fill(DATA$state, c("is fun", "too fun", "you liar")) gradient_cloud(DATA$state, DATA$sex, title="fun") gradient_cloud(DATA$state, DATA$sex, title="fun", rev.binary = TRUE) gradient_cloud(DATA$state, DATA$sex, title="fun", max.word.size = 5, min.word.size = .025) with(mraja1, gradient_cloud(dialogue, died, stopwords = Top25Words, rot.per = .5, title="Heatcloud", title.color="orange", title.cex=1.75)) x <- with(subset(mraja1, fam.aff %in% qcv(cap, mont)), gradient_cloud(dialogue, fam.aff)) head(x) ## 2012 U.S. Presidential Debates invisible(lapply(split(pres_debates2012, pres_debates2012$time), function(x) { x <- x[x$person %in% qcv(ROMNEY, OBAMA), ] dev.new() gradient_cloud(x$dialogue, x$person, title = paste("Debate", char2end(x$time[1])), stopwords = BuckleySaltonSWL, X = "blue", Y = "red", max.word.size = 2.2, min.word.size = 0.55 ) })) ## End(Not run)
A dataset containing the complete dialogue of Hamlet with turns of talk split into sentences.
data(hamlet)
data(hamlet)
A data frame with 2007 rows and 7 variables
act. The act (akin to repeated measures)
tot. The turn of talk
scene. The scene (nested within an act)
location. Location of the scene
person. Character in the play
died. Logical coded death variable if yes the character dies in the play
dialogue. The spoken dialogue
http://www.gutenberg.org
htruncdf
- Convenience function to view the head of a truncated
dataframe.
truncdf
- Convenience function to view a truncated dataframe.
ltruncdf
- Convenience function to view the head of a list of
truncated dataframes.
qview
- Convenience function to view a summary and head of a dataframe.
lview
- Convenience function to view the list (list view) of qdap
objects that have print methods that print a single dataframe.
htruncdf(dataframe, n = 10, width = 10, ...) truncdf(dataframe, end = 10, begin = 1) ltruncdf(dat.list, n = 6, width = 10, ...) qview(dataframe, ...) lview(x, print = TRUE)
htruncdf(dataframe, n = 10, width = 10, ...) truncdf(dataframe, end = 10, begin = 1) ltruncdf(dat.list, n = 6, width = 10, ...) qview(dataframe, ...) lview(x, print = TRUE)
dataframe |
A data.frame object. |
n |
Number of rows to display. |
width |
The width of the columns to be displayed. |
end |
The last character to be displayed (width). |
begin |
The first character to be displayed (width). |
dat.list |
A list of data.frame objects. |
x |
A class qdap object that is a list which prints as a dataframe. |
print |
logical. If |
... |
Other arguments passed to |
htrundf
- returns n number of rows of a truncated dataframe.
trundf
- returns a truncated dataframe.
ltruncdf
- returns a list of n number of rows of a truncated
dataframes.
qview
- returns a dataframe head with summary statistics.
lview
- prints a list of the qdap object and invisibly returns
the unclassed object.
## Not run: truncdf(raj[1:10, ]) truncdf(raj[1:10, ], 40) htruncdf(raj) htruncdf(raj, 20) htruncdf(raj, ,20) ltruncdf(rajPOS, width = 4) qview(raj) qview(CO2) lview(question_type(DATA.SPLIT$state, DATA.SPLIT$person)) lview(rajPOS) lview(lm(mpg~hp, data = mtcars)) ## End(Not run)
## Not run: truncdf(raj[1:10, ]) truncdf(raj[1:10, ], 40) htruncdf(raj) htruncdf(raj, 20) htruncdf(raj, ,20) ltruncdf(rajPOS, width = 4) qview(raj) qview(CO2) lview(question_type(DATA.SPLIT$state, DATA.SPLIT$person)) lview(rajPOS) lview(lm(mpg~hp, data = mtcars)) ## End(Not run)
Automatic imperative remarking.
imperative( dataframe, person.var, text.var, lock.incomplete = FALSE, additional.names = NULL, parallel = FALSE, warning = FALSE )
imperative( dataframe, person.var, text.var, lock.incomplete = FALSE, additional.names = NULL, parallel = FALSE, warning = FALSE )
dataframe |
A data.frame object. |
person.var |
The person variable. |
text.var |
The text variable. |
lock.incomplete |
logical. If |
additional.names |
Additional names that may be used in a command (people in the context that do not speak). |
parallel |
logical. If |
warning |
logical. If |
Returns a dataframe with a text variable indicating imperative sentences. Imperative sentences are marked with * followed by the original end mark.
The algorithm used by imperative
is
sensitive to English language dialects and types. Commas can indicate a
choppy sentence and may indicate a false positive. Sentences marked with
'AAVE' may be the use of African American Vernacular English and not an
imperative sentence.
## Not run: dat <- data.frame(name=c("sue", rep(c("greg", "tyler", "phil", "sue"), 2)), statement=c("go get it|", "I hate to read.", "Stop running!", "I like it!", "You are terrible!", "Don't!", "Greg, go to the red, brick office.", "Tyler go to the gym.", "Alex don't run."), stringsAsFactors = FALSE) imperative(dat, "name", "statement", , c("Alex")) imperative(dat, "name", "statement", lock.incomplete = TRUE, c("Alex")) imperative(dat, "name", "statement", , c("Alex"), warning=TRUE) imperative(dat, "name", "statement", , c("Alex"), warning=TRUE, parallel = TRUE) ## End(Not run)
## Not run: dat <- data.frame(name=c("sue", rep(c("greg", "tyler", "phil", "sue"), 2)), statement=c("go get it|", "I hate to read.", "Stop running!", "I like it!", "You are terrible!", "Don't!", "Greg, go to the red, brick office.", "Tyler go to the gym.", "Alex don't run."), stringsAsFactors = FALSE) imperative(dat, "name", "statement", , c("Alex")) imperative(dat, "name", "statement", lock.incomplete = TRUE, c("Alex")) imperative(dat, "name", "statement", , c("Alex"), warning=TRUE) imperative(dat, "name", "statement", , c("Alex"), warning=TRUE, parallel = TRUE) ## End(Not run)
Replaces incomplete sentence end marks (.., ..., .?, ..?, en & em dash etc.)
with "|"
.
incomplete_replace(text.var, scan.mode = FALSE) incomp(text.var, scan.mode = FALSE)
incomplete_replace(text.var, scan.mode = FALSE) incomp(text.var, scan.mode = FALSE)
text.var |
The text variable. |
scan.mode |
logical. If |
Returns a text variable (character sting) with incomplete sentence
marks (.., ..., .?, ..?, en & em dash etc.) replaced with "|". If scan mode
is TRUE
returns a data frame with incomplete sentence location.
## Not run: x <- c("the...", "I.?", "you.", "threw..", "we?") incomplete_replace(x) incomp(x) incomp(x, scan.mode = TRUE) ## End(Not run)
## Not run: x <- c("the...", "I.?", "you.", "threw..", "we?") incomplete_replace(x) incomp(x) incomp(x, scan.mode = TRUE) ## End(Not run)
inspect_text
- Inspect a text vector with adjustable string wrapping;
created a pretty printed named list.
inspect_text(text.var, grouping.var = NULL, ...) ## Default S3 method: inspect_text(text.var, grouping.var = NULL, ...) ## S3 method for class 'Corpus' inspect_text(text.var, ...)
inspect_text(text.var, grouping.var = NULL, ...) ## Default S3 method: inspect_text(text.var, grouping.var = NULL, ...) ## S3 method for class 'Corpus' inspect_text(text.var, ...)
text.var |
The text variable or a |
grouping.var |
The grouping variables. Default |
... |
ignored. |
Returns a named list (prints pretty).
## Not run: with(raj, inspect_text(dialogue)) with(raj, inspect_text(dialogue, person)) with(raj, inspect_text(dialogue, list(paste("Act", act), person))) ## With a tm Corpus object library(tm) data(crude) inspect_text(crude) ## End(Not run)
## Not run: with(raj, inspect_text(dialogue)) with(raj, inspect_text(dialogue, person)) with(raj, inspect_text(dialogue, list(paste("Act", act), person))) ## With a tm Corpus object library(tm) data(crude) inspect_text(crude) ## End(Not run)
A logical test to determine if the current environment is the global environment.
is.global(n = 1)
is.global(n = 1)
n |
The number of generations to go back. If used as a function argument n should be set to 2. |
A logical response.
Simon O'Hanlon and Tyler Rinker <[email protected]>
http://stackoverflow.com/questions/18637656/detect-if-environment-is-global-enviroment
is.global() lapply(1:3, function(i) is.global()) FUN <- function() is.global(); FUN() FUN2 <- function(x = is.global(2)) x FUN2() FUN3 <- function() FUN2(); FUN3()
is.global() lapply(1:3, function(i) is.global()) FUN <- function() is.global(); FUN() FUN2 <- function(x = is.global(2)) x FUN2() FUN3 <- function() FUN2(); FUN3()
Wrapper function (merge
) for merging demographic
information with a person/text transcript.
key_merge(transcript.df, key.df, common.column = NULL, defualt.arrange = TRUE)
key_merge(transcript.df, key.df, common.column = NULL, defualt.arrange = TRUE)
transcript.df |
The text/person transcript dataframe |
key.df |
The demographic dataframe. |
common.column |
The column(s) shared by |
defualt.arrange |
logical. If |
Outputs a merged transcript dataframe with demographic information.
## Not run: #First view transcript dataframe and demographics dataframe. ltruncdf(list(raj, raj.demographics), 10, 50) merged.raj <- key_merge(raj, raj.demographics) htruncdf(merged.raj, 10, 40) ## End(Not run)
## Not run: #First view transcript dataframe and demographics dataframe. ltruncdf(list(raj, raj.demographics), 10, 50) merged.raj <- key_merge(raj, raj.demographics) htruncdf(merged.raj, 10, 40) ## End(Not run)
A proximity measure between two probability distributions applied to speech.
kullback_leibler(x, y = NULL)
kullback_leibler(x, y = NULL)
x |
A numeric vector, matrix or data frame. |
y |
A second numeric vector if x is also a vector. Default is
|
Uses Kullback & Leibler's (1951) formula:
Returns a matrix of the Kullback Leibler measure between each vector of probabilities.
The kullback_leibler
function generally receives the output of
either wfm
or wfdf
functions.
Kullback, S., & Leibler, R.A. (1951). On Information and sufficiency. Annals of Mathematical Statistics 22 (1): 79-86. doi:10.1214/aoms/1177729694
## Not run: p.df <- wfdf(DATA$state, DATA$person) p.mat <- wfm(text.var = DATA$state, grouping.var = DATA$person) kullback_leibler(p.mat) (x <- kullback_leibler(p.df)) print(x, digits = 5) kullback_leibler(p.df$greg, p.df$sam) ## p.df2 <- wfdf(raj$dialogue, raj$person) ## x <- kullback_leibler(p.df2) ## End(Not run)
## Not run: p.df <- wfdf(DATA$state, DATA$person) p.mat <- wfm(text.var = DATA$state, grouping.var = DATA$person) kullback_leibler(p.mat) (x <- kullback_leibler(p.df)) print(x, digits = 5) kullback_leibler(p.df$greg, p.df$sam) ## p.df2 <- wfdf(raj$dialogue, raj$person) ## x <- kullback_leibler(p.df2) ## End(Not run)
left_just
- Left justifies a text/character column.
right_just
- A means of undoing a left justification.
left_just(dataframe, column = NULL, keep.class = FALSE) right_just(dataframe)
left_just(dataframe, column = NULL, keep.class = FALSE) right_just(dataframe)
dataframe |
A data.frame object with the text column. |
column |
The column to be justified. If |
keep.class |
logical. If |
Returns a dataframe with selected text column left/right justified.
left_just
inserts spaces to achieve the
justification. This could interfere with analysis and therefore the output
from left_just
should only be used for visualization
purposes, not analysis.
## Not run: left_just(DATA) left_just(DATA, "state") left_just(CO2[1:15,]) right_just(left_just(CO2[1:15,])) ## End(Not run)
## Not run: left_just(DATA) left_just(DATA, "state") left_just(CO2[1:15,]) right_just(left_just(CO2[1:15,])) ## End(Not run)
Transcript apply lexical classification score (content to functional word proportion) by grouping variable(s) and optionally plot the breakdown of the model.
lexical_classification( text.var, grouping.var = NULL, order.by.lexical_classification = TRUE, function.words = qdapDictionaries::function.words, bracket = "all", ... )
lexical_classification( text.var, grouping.var = NULL, order.by.lexical_classification = TRUE, function.words = qdapDictionaries::function.words, bracket = "all", ... )
text.var |
The text variable. |
grouping.var |
The grouping variables. Default |
order.by.lexical_classification |
logical. If |
function.words |
A vector of function words. Default is
|
bracket |
The bracket type to remove. Use |
... |
Other arguments passed to |
Content words (i.e., nouns, verbs, adjectives, and adverbs) tend to be the words speakers stresses in language use. Whereas, functional words are the "glue" that holds the content together. Speakers devote much less time and stress to these words (i.e., pronouns, articles, conjunctions, quantifiers, and prepositions).
A list containing at the following components:
content |
A |
functional |
A |
raw |
Sentence level descriptive statistics on content vs. functional word use (ave.content.rate is also nown as lexical density |
lexical_classification |
Summarized (grouping variable level) descriptive statistics for content vs. functional word use |
Chung, C. & Pennebaker, J. (2007). The Psychological Functions of Function Words. In K. Fiedler (Ed.) Social Communication (pp. 343-359). New York: Psychology Press.
Pulvermuller, F. (1999). Words in the brain's language. Behavioral and Brain Sciences, 22, pp. 253-279. doi:10.1017/S0140525X9900182X
Segalowitz, S. J. & Lane, K. (2004). Perceptual fluency and lexical access for function versus content words. Behavioral and Brain Sciences, 27, 307-308. doi:10.1017/S0140525X04310071
Bell, A., Brenier, J. M., Gregory, M., Girand, C. & Jurafsky, D. (2009). Predictability Effects on Durations of Content and Function Words in Conversational English. Journal of Memory and Language, 60(1), 92-111. doi:10.1016/j.jml.2008.06.003
## Not run: lexical_classification("I did not like the dog.") lexical_classification(DATA.SPLIT$state, DATA.SPLIT$person) (out <- with(pres_debates2012, lexical_classification(dialogue, list(person, time)))) plot(out) scores(out) out2 <- preprocessed(out) htruncdf(out2) plot(out2) plot(out[["content"]]) dev.new() plot(out[["functional"]]) ## cloud of functional vs. content ## Highlight Content Words set.seed(10) par(mar = c(0,0,0,0)) list( content = out[["content"]], functional = out[["functional"]] ) %>% list_df2df("type") %>% dplyr::mutate(colors = ifelse(type == "functional", "gray80", "blue")) %>% with(., wordcloud::wordcloud( word, freq, min.freq = 8, random.order=FALSE, ordered.colors = TRUE, colors = colors )) mtext("2012 Presidential Debates:\nFunctional vs. Content Word Use", padj=1.25) legend( .05, .12, bty = "n", legend = c("functional", "content"), fill = c("gray80", "blue"), cex = .7 ) ## Highlight Functional Words set.seed(10) par(mar = c(0,0,0,0)) list( content = out[["content"]], functional = out[["functional"]] ) %>% list_df2df("type") %>% dplyr::mutate(colors = ifelse(type == "functional", "red", "gray80")) %>% with(., wordcloud::wordcloud( word, freq, min.freq = 8, random.order=FALSE, ordered.colors = TRUE, colors = colors )) mtext("2012 Presidential Debates:\nFunctional vs. Content Word Use", padj=1.25) legend( .05, .12, bty = "n", legend = c("functional", "content"), fill = c("red", "gray80"), cex = .7 ) #=============# ## ANIMATION ## #=============# ## EXAMPLE 1 lex_ani <- lexical_classification(DATA.SPLIT$state, DATA.SPLIT$person) lexa <- Animate(lex_ani, content="white", functional="blue", current.color = "yellow", current.speaker.color="grey70") bgb <- vertex_apply(lexa, label.color="grey80", size=20, color="grey40") bgb <- edge_apply(bgb, label.color="yellow") print(bgb, bg="black", net.legend.color ="white", pause=1) ## EXAMPLE 2 lex_ani2 <- lexical_classification(mraja1spl$dialogue, mraja1spl$person) lexa2 <- Animate(lex_ani2, content="white", functional="blue", current.color = "yellow", current.speaker.color="grey70") bgb2 <- vertex_apply(lexa2, label.color="grey80", size=17, color="grey40") bgb2 <- edge_apply(bgb2, label.color="yellow") print(bgb2, bg="black", pause=.75, net.legend.color = "white") ## EXAMPLE 3 (bar plot) Animate(lex_ani2, type="bar") ## EXAMPLE 4 (text plot) Animate(lex_ani2, type="text") #======================# ## Complex Animations ## #======================# ## EXAMPLE 1: Network + Text + Bar library(animation) library(grid) library(gridBase) library(qdap) library(igraph) library(plotrix) lex_ani2 <- lexical_classification(mraja1spl$dialogue, mraja1spl$person) ## Set up the network version lex_net <- Animate(lex_ani2, contextual="white", lexal="blue", current.color = "yellow", current.speaker.color="grey70") bgb <- vertex_apply(lex_net, label.color="grey80", size=17, color="grey40") bgb <- edge_apply(bgb, label.color="yellow") ## Set up the bar version lex_bar <- Animate(lex_ani2, type="bar") ## Set up the text lex_text <- Animate(lex_ani2, type="text", size = 3, width=125, color="white") ## Generate a folder loc <- folder(animation_lexical_classification) setwd(loc) ## Set up the plotting function oopt <- animation::ani.options(interval = 0.1) lex_text_bar <- Map(function(x, y){ uns <- unit(c(-1.6,.5,-.2,.25), "cm") x <- x + theme(plot.margin = uns, text=element_text(color="white"), legend.text=element_text(color="white"), legend.background = element_rect(fill = "black"), panel.border = element_rect(color = "black"), panel.background = element_rect(fill = "black"), plot.background = element_rect(fill = "black", color="black")) uns2 <- unit(c(-.5,.5,-.45,.25), "cm") y <- y + theme(plot.margin = uns2, text=element_text(color="white"), legend.text=element_text(color="white"), legend.background = element_rect(fill = "black"), plot.background = element_rect(fill = "black", color="black")) gA <- ggplotGrob(x) gB <- ggplotGrob(y) maxWidth <- grid::unit.pmax(gA$widths[2:5], gB$widths[2:5]) gA$widths[2:5] <- as.list(maxWidth) gB$widths[2:5] <- as.list(maxWidth) out <- arrangeGrob(gA, gB, ncol=1, heights = grid::unit(c(.3, .7), "native")) ## grid.draw(out) invisible(out) }, lex_text, lex_bar) FUN <- function(follow=FALSE, theseq = seq_along(bgb)) { Title <- "Animated Content Rate: Romeo and Juliet Act 1" Legend <- c(.2, -1, 1.5, -.95) Legend.cex <- 1 lapply(theseq, function(i) { if (follow) { png(file=sprintf("%s/images/Rplot%s.png", loc, i), width=750, height=875) } ## Set up the layout layout(matrix(c(rep(1, 7), rep(2, 6)), 13, 1, byrow = TRUE)) ## Plot 1 par(mar=c(2, 0, 2, 0), bg="black") #par(mar=c(2, 0, 2, 0)) set.seed(22) plot.igraph(bgb[[i]], edge.curved=TRUE) mtext(Title, side=3, col="white") color.legend(Legend[1], Legend[2], Legend[3], Legend[4], c("Functional", "Content"), attributes(bgb)[["legend"]], cex = Legend.cex, col="white") ## Plot2 plot.new() vps <- baseViewports() print(lex_text_bar[[i]], vp = vpStack(vps$figure,vps$plot)) animation::ani.pause() if (follow) { dev.off() } }) } FUN() ## Detect OS type <- if(.Platform$OS.type == "windows") shell else system saveHTML(FUN(), autoplay = FALSE, loop = TRUE, verbose = FALSE, ani.height = 1000, ani.width=750, outdir = loc, single.opts = "'controls': ['first', 'previous', 'play', 'next', 'last', 'loop', 'speed'], 'delayMin': 0") FUN(TRUE) ## EXAMPLE 2: Line + Text + Bar ## Generate a folder loc2 <- folder(animation_lexical_classification2) setwd(loc2) lex_ani2 <- lexical_classification(mraja1spl$dialogue, mraja1spl$person) ## Set up the bar version lex_bar <- Animate(lex_ani2, type="bar") cumline <- cumulative(lex_bar) lex_line <- plot(cumline) ylims <- range(cumline[[1]][-c(1:100)]) + c(-.1, .1) ## Set up the text lex_text <- Animate(lex_ani2, type="text", size = 4, width = 80) lex_line_text_bar <- Map(function(x, y, z){ mar <- theme(plot.margin = unit(c(0, .5, 0, .25), "cm")) gA <- ggplotGrob(x + mar + theme(panel.background = element_rect(fill = NA, colour = NA), panel.border = element_rect(fill = NA, colour = NA), plot.background = element_rect(fill = NA, colour = NA))) gB <- ggplotGrob(y + mar) gC <- ggplotGrob(z + mar + ylab("Average Content Rate") + coord_cartesian(ylim = ylims) + ggtitle("Average Content Rate: Romeo & Juliet Act 1")) maxWidth <- grid::unit.pmax(gA$widths[2:5], gB$widths[2:5], gC$widths[2:5]) gA$widths[2:5] <- as.list(maxWidth) gB$widths[2:5] <- as.list(maxWidth) gC$widths[2:5] <- as.list(maxWidth) out <- arrangeGrob(gC, gA, gB, ncol=1, heights = grid::unit(c(.38, .25, .37), "native")) ## grid.draw(out) invisible(out) }, lex_text, lex_bar, lex_line) FUN2 <- function(follow=FALSE, theseq = seq_along(lex_line_text_bar)) { lapply(theseq, function(i) { if (follow) { png(file=sprintf("%s/images/Rplot%s.png", loc2, i), width=750, height=875) } print(lex_line_text_bar[[i]]) animation::ani.pause() if (follow) { dev.off() } }) } FUN2() ## Detect OS type <- if(.Platform$OS.type == "windows") shell else system library(animation) saveHTML(FUN2(), autoplay = FALSE, loop = TRUE, verbose = FALSE, ani.height = 1000, ani.width=750, outdir = loc2, single.opts = "'controls': ['first', 'previous', 'play', 'next', 'last', 'loop', 'speed'], 'delayMin': 0") FUN2(TRUE) #==================# ## Static Network ## #==================# (lexdat <- with(sentSplit(DATA, 4), lexical_classification(state, person))) m <- Network(lexdat) m print(m, bg="grey97", vertex.color="grey75") print(m, title="Lexical Content Discourse Map", title.color="white", bg="black", legend.text.color="white", vertex.label.color = "grey70", edge.label.color="yellow") ## or use themes: dev.off() m + qtheme() m + theme_nightheat dev.off() m + theme_nightheat(title="Lexical Content Discourse Map", vertex.label.color = "grey50") #==================================# ## Content Rate Over Time Example ## #==================================# lexpres <- lapply(with( pres_debates2012, split(dialogue, time)), function(x) { lexical_classification(x) }) lexplots <- lapply(seq_along(lexpres), function(i) { dat <- cumulative(lexpres[[i]]) m <- plot(dat) if (i != 2) m <- m + ylab("") if (i == 2) m <- m + ylab("Average Content Rate") if (i != 3) m <- m + xlab(NULL) if (i != 1) m <- m + theme(plot.margin=unit(c(0, 1, 0, .5) + .1, "lines")) m + ggtitle(paste("Debate", i)) + coord_cartesian(xlim = c(300, length(dat[[1]])), ylim = unlist(range(dat[[1]][-c(1:300)]) + c(-.25, .25))) }) library(grid) library(gridExtra) do.call(grid.arrange, lexplots) ## End(Not run)
## Not run: lexical_classification("I did not like the dog.") lexical_classification(DATA.SPLIT$state, DATA.SPLIT$person) (out <- with(pres_debates2012, lexical_classification(dialogue, list(person, time)))) plot(out) scores(out) out2 <- preprocessed(out) htruncdf(out2) plot(out2) plot(out[["content"]]) dev.new() plot(out[["functional"]]) ## cloud of functional vs. content ## Highlight Content Words set.seed(10) par(mar = c(0,0,0,0)) list( content = out[["content"]], functional = out[["functional"]] ) %>% list_df2df("type") %>% dplyr::mutate(colors = ifelse(type == "functional", "gray80", "blue")) %>% with(., wordcloud::wordcloud( word, freq, min.freq = 8, random.order=FALSE, ordered.colors = TRUE, colors = colors )) mtext("2012 Presidential Debates:\nFunctional vs. Content Word Use", padj=1.25) legend( .05, .12, bty = "n", legend = c("functional", "content"), fill = c("gray80", "blue"), cex = .7 ) ## Highlight Functional Words set.seed(10) par(mar = c(0,0,0,0)) list( content = out[["content"]], functional = out[["functional"]] ) %>% list_df2df("type") %>% dplyr::mutate(colors = ifelse(type == "functional", "red", "gray80")) %>% with(., wordcloud::wordcloud( word, freq, min.freq = 8, random.order=FALSE, ordered.colors = TRUE, colors = colors )) mtext("2012 Presidential Debates:\nFunctional vs. Content Word Use", padj=1.25) legend( .05, .12, bty = "n", legend = c("functional", "content"), fill = c("red", "gray80"), cex = .7 ) #=============# ## ANIMATION ## #=============# ## EXAMPLE 1 lex_ani <- lexical_classification(DATA.SPLIT$state, DATA.SPLIT$person) lexa <- Animate(lex_ani, content="white", functional="blue", current.color = "yellow", current.speaker.color="grey70") bgb <- vertex_apply(lexa, label.color="grey80", size=20, color="grey40") bgb <- edge_apply(bgb, label.color="yellow") print(bgb, bg="black", net.legend.color ="white", pause=1) ## EXAMPLE 2 lex_ani2 <- lexical_classification(mraja1spl$dialogue, mraja1spl$person) lexa2 <- Animate(lex_ani2, content="white", functional="blue", current.color = "yellow", current.speaker.color="grey70") bgb2 <- vertex_apply(lexa2, label.color="grey80", size=17, color="grey40") bgb2 <- edge_apply(bgb2, label.color="yellow") print(bgb2, bg="black", pause=.75, net.legend.color = "white") ## EXAMPLE 3 (bar plot) Animate(lex_ani2, type="bar") ## EXAMPLE 4 (text plot) Animate(lex_ani2, type="text") #======================# ## Complex Animations ## #======================# ## EXAMPLE 1: Network + Text + Bar library(animation) library(grid) library(gridBase) library(qdap) library(igraph) library(plotrix) lex_ani2 <- lexical_classification(mraja1spl$dialogue, mraja1spl$person) ## Set up the network version lex_net <- Animate(lex_ani2, contextual="white", lexal="blue", current.color = "yellow", current.speaker.color="grey70") bgb <- vertex_apply(lex_net, label.color="grey80", size=17, color="grey40") bgb <- edge_apply(bgb, label.color="yellow") ## Set up the bar version lex_bar <- Animate(lex_ani2, type="bar") ## Set up the text lex_text <- Animate(lex_ani2, type="text", size = 3, width=125, color="white") ## Generate a folder loc <- folder(animation_lexical_classification) setwd(loc) ## Set up the plotting function oopt <- animation::ani.options(interval = 0.1) lex_text_bar <- Map(function(x, y){ uns <- unit(c(-1.6,.5,-.2,.25), "cm") x <- x + theme(plot.margin = uns, text=element_text(color="white"), legend.text=element_text(color="white"), legend.background = element_rect(fill = "black"), panel.border = element_rect(color = "black"), panel.background = element_rect(fill = "black"), plot.background = element_rect(fill = "black", color="black")) uns2 <- unit(c(-.5,.5,-.45,.25), "cm") y <- y + theme(plot.margin = uns2, text=element_text(color="white"), legend.text=element_text(color="white"), legend.background = element_rect(fill = "black"), plot.background = element_rect(fill = "black", color="black")) gA <- ggplotGrob(x) gB <- ggplotGrob(y) maxWidth <- grid::unit.pmax(gA$widths[2:5], gB$widths[2:5]) gA$widths[2:5] <- as.list(maxWidth) gB$widths[2:5] <- as.list(maxWidth) out <- arrangeGrob(gA, gB, ncol=1, heights = grid::unit(c(.3, .7), "native")) ## grid.draw(out) invisible(out) }, lex_text, lex_bar) FUN <- function(follow=FALSE, theseq = seq_along(bgb)) { Title <- "Animated Content Rate: Romeo and Juliet Act 1" Legend <- c(.2, -1, 1.5, -.95) Legend.cex <- 1 lapply(theseq, function(i) { if (follow) { png(file=sprintf("%s/images/Rplot%s.png", loc, i), width=750, height=875) } ## Set up the layout layout(matrix(c(rep(1, 7), rep(2, 6)), 13, 1, byrow = TRUE)) ## Plot 1 par(mar=c(2, 0, 2, 0), bg="black") #par(mar=c(2, 0, 2, 0)) set.seed(22) plot.igraph(bgb[[i]], edge.curved=TRUE) mtext(Title, side=3, col="white") color.legend(Legend[1], Legend[2], Legend[3], Legend[4], c("Functional", "Content"), attributes(bgb)[["legend"]], cex = Legend.cex, col="white") ## Plot2 plot.new() vps <- baseViewports() print(lex_text_bar[[i]], vp = vpStack(vps$figure,vps$plot)) animation::ani.pause() if (follow) { dev.off() } }) } FUN() ## Detect OS type <- if(.Platform$OS.type == "windows") shell else system saveHTML(FUN(), autoplay = FALSE, loop = TRUE, verbose = FALSE, ani.height = 1000, ani.width=750, outdir = loc, single.opts = "'controls': ['first', 'previous', 'play', 'next', 'last', 'loop', 'speed'], 'delayMin': 0") FUN(TRUE) ## EXAMPLE 2: Line + Text + Bar ## Generate a folder loc2 <- folder(animation_lexical_classification2) setwd(loc2) lex_ani2 <- lexical_classification(mraja1spl$dialogue, mraja1spl$person) ## Set up the bar version lex_bar <- Animate(lex_ani2, type="bar") cumline <- cumulative(lex_bar) lex_line <- plot(cumline) ylims <- range(cumline[[1]][-c(1:100)]) + c(-.1, .1) ## Set up the text lex_text <- Animate(lex_ani2, type="text", size = 4, width = 80) lex_line_text_bar <- Map(function(x, y, z){ mar <- theme(plot.margin = unit(c(0, .5, 0, .25), "cm")) gA <- ggplotGrob(x + mar + theme(panel.background = element_rect(fill = NA, colour = NA), panel.border = element_rect(fill = NA, colour = NA), plot.background = element_rect(fill = NA, colour = NA))) gB <- ggplotGrob(y + mar) gC <- ggplotGrob(z + mar + ylab("Average Content Rate") + coord_cartesian(ylim = ylims) + ggtitle("Average Content Rate: Romeo & Juliet Act 1")) maxWidth <- grid::unit.pmax(gA$widths[2:5], gB$widths[2:5], gC$widths[2:5]) gA$widths[2:5] <- as.list(maxWidth) gB$widths[2:5] <- as.list(maxWidth) gC$widths[2:5] <- as.list(maxWidth) out <- arrangeGrob(gC, gA, gB, ncol=1, heights = grid::unit(c(.38, .25, .37), "native")) ## grid.draw(out) invisible(out) }, lex_text, lex_bar, lex_line) FUN2 <- function(follow=FALSE, theseq = seq_along(lex_line_text_bar)) { lapply(theseq, function(i) { if (follow) { png(file=sprintf("%s/images/Rplot%s.png", loc2, i), width=750, height=875) } print(lex_line_text_bar[[i]]) animation::ani.pause() if (follow) { dev.off() } }) } FUN2() ## Detect OS type <- if(.Platform$OS.type == "windows") shell else system library(animation) saveHTML(FUN2(), autoplay = FALSE, loop = TRUE, verbose = FALSE, ani.height = 1000, ani.width=750, outdir = loc2, single.opts = "'controls': ['first', 'previous', 'play', 'next', 'last', 'loop', 'speed'], 'delayMin': 0") FUN2(TRUE) #==================# ## Static Network ## #==================# (lexdat <- with(sentSplit(DATA, 4), lexical_classification(state, person))) m <- Network(lexdat) m print(m, bg="grey97", vertex.color="grey75") print(m, title="Lexical Content Discourse Map", title.color="white", bg="black", legend.text.color="white", vertex.label.color = "grey70", edge.label.color="yellow") ## or use themes: dev.off() m + qtheme() m + theme_nightheat dev.off() m + theme_nightheat(title="Lexical Content Discourse Map", vertex.label.color = "grey50") #==================================# ## Content Rate Over Time Example ## #==================================# lexpres <- lapply(with( pres_debates2012, split(dialogue, time)), function(x) { lexical_classification(x) }) lexplots <- lapply(seq_along(lexpres), function(i) { dat <- cumulative(lexpres[[i]]) m <- plot(dat) if (i != 2) m <- m + ylab("") if (i == 2) m <- m + ylab("Average Content Rate") if (i != 3) m <- m + xlab(NULL) if (i != 1) m <- m + theme(plot.margin=unit(c(0, 1, 0, .5) + .1, "lines")) m + ggtitle(paste("Debate", i)) + coord_cartesian(xlim = c(300, length(dat[[1]])), ylim = unlist(range(dat[[1]][-c(1:300)]) + c(-.25, .25))) }) library(grid) library(gridExtra) do.call(grid.arrange, lexplots) ## End(Not run)
mcsv_r
- Read and assign multiple csv files at the same time.
mcsv_w
- Write multiple csv files into a file at the same time.
mcsv_r( files, a.names = NULL, l.name = NULL, list = TRUE, pos = 1, envir = as.environment(pos) ) mcsv_w( ..., dir = NULL, open = FALSE, sep = ", ", dataframes = NULL, pos = 1, envir = as.environment(pos) )
mcsv_r( files, a.names = NULL, l.name = NULL, list = TRUE, pos = 1, envir = as.environment(pos) ) mcsv_w( ..., dir = NULL, open = FALSE, sep = ", ", dataframes = NULL, pos = 1, envir = as.environment(pos) )
files |
csv file(s) to read. |
a.names |
object names to assign the csv file(s) to. If |
l.name |
A single character string of a name to assign to the list if
dataframes created by the csv files being read in. Default ( |
list |
logical. If |
pos |
where to do the removal. By default, uses the current environment. |
envir |
the environment to use. |
... |
data.frame object(s) to write to a file or a list of data.frame
objects. If the objects in a list are unnamed V + digit will be assigned.
Lists of dataframes (e.g., the output from |
dir |
optional directory names. If |
open |
logical. If |
sep |
A character string to separate the terms. |
dataframes |
An optional character vector of dataframes in lieu of ... argument. |
mcsv is short for "multiple csv" and the suffix c(_r, _w) stands for "read" (r) or "write" (w).
mcsv_r
- reads in multiple csv files at once.
mcsv_w
- creates a directory with multiple csv files.
Silently returns the path of the directory.
mcsv_r
is useful for reading in multiple csv files
from cm_df.temp
for interaction with
cm_range2long
.
cm_range2long
,
cm_df.temp
,
condense
,
assign
## Not run: ## mcsv_r EXAMPLE: mtcarsb <- mtcars[1:5, ]; CO2b <- CO2[1:5, ] (a <- mcsv_w(mtcarsb, CO2b, dir="foo")) rm("mtcarsb", "CO2b") # gone from .GlobalEnv (nms <- dir(a)) mcsv_r(file.path(a, nms)) mtcarsb; CO2b rm("mtcarsb", "CO2b") # gone from .GlobalEnv mcsv_r(file.path(a, nms), paste0("foo.dat", 1:2)) foo.dat1; foo.dat2 rm("foo.dat1", "foo.dat2") # gone from .GlobalEnv delete("foo") ## mcsv_w EXAMPLES: (a <- mcsv_w(mtcars, CO2, dir="foo")) delete("foo") ## Write lists of dataframes as well poldat <- with(DATA.SPLIT, polarity(state, person)) term <- c("the ", "she", " wh") termdat <- with(raj.act.1, termco(dialogue, person, term)) mcsv_w(poldat, termdat, mtcars, CO2, dir="foo2") delete("foo2") ## End(Not run)
## Not run: ## mcsv_r EXAMPLE: mtcarsb <- mtcars[1:5, ]; CO2b <- CO2[1:5, ] (a <- mcsv_w(mtcarsb, CO2b, dir="foo")) rm("mtcarsb", "CO2b") # gone from .GlobalEnv (nms <- dir(a)) mcsv_r(file.path(a, nms)) mtcarsb; CO2b rm("mtcarsb", "CO2b") # gone from .GlobalEnv mcsv_r(file.path(a, nms), paste0("foo.dat", 1:2)) foo.dat1; foo.dat2 rm("foo.dat1", "foo.dat2") # gone from .GlobalEnv delete("foo") ## mcsv_w EXAMPLES: (a <- mcsv_w(mtcars, CO2, dir="foo")) delete("foo") ## Write lists of dataframes as well poldat <- with(DATA.SPLIT, polarity(state, person)) term <- c("the ", "she", " wh") termdat <- with(raj.act.1, termco(dialogue, person, term)) mcsv_w(poldat, termdat, mtcars, CO2, dir="foo2") delete("foo2") ## End(Not run)
A dataset containing act 1 of Romeo and Juliet with demographic information.
data(mraja1)
data(mraja1)
A data frame with 235 rows and 5 variables
person. Character in the play
sex. Gender
fam.aff. Family affiliation of character
died. Dummy coded death variable (0-no; 1-yes); if yes the character dies in the play
dialogue. The spoken dialogue
http://shakespeare.mit.edu/romeo_juliet/full.html
A dataset containing act 1 of Romeo and Juliet with demographic information and turns of talk split into sentences.
data(mraja1spl)
data(mraja1spl)
A data frame with 508 rows and 7 variables
person. Character in the play
tot.
sex. Gender
fam.aff. Family affiliation of character
died. Dummy coded death variable (0-no; 1-yes); if yes the character dies in the play
dialogue. The spoken dialogue
stem.text.
http://shakespeare.mit.edu/romeo_juliet/full.html
multigsub
- A wrapper for gsub
that takes a vector
of search terms and a vector or single value of replacements.
sub_holder
- This function holds the place for particular character
values, allowing the user to manipulate the vector and then revert the place
holders back to the original values.
multigsub( pattern, replacement, text.var, leadspace = FALSE, trailspace = FALSE, fixed = TRUE, trim = TRUE, order.pattern = fixed, ... ) mgsub( pattern, replacement, text.var, leadspace = FALSE, trailspace = FALSE, fixed = TRUE, trim = TRUE, order.pattern = fixed, ... ) sub_holder(pattern, text.var, alpha.type = TRUE, ...)
multigsub( pattern, replacement, text.var, leadspace = FALSE, trailspace = FALSE, fixed = TRUE, trim = TRUE, order.pattern = fixed, ... ) mgsub( pattern, replacement, text.var, leadspace = FALSE, trailspace = FALSE, fixed = TRUE, trim = TRUE, order.pattern = fixed, ... ) sub_holder(pattern, text.var, alpha.type = TRUE, ...)
pattern |
Character string to be matched in the given character vector. |
replacement |
Character string equal in length to pattern or of length one which are a replacement for matched pattern. |
text.var |
The text variable. |
leadspace |
logical. If |
trailspace |
logical. If |
fixed |
logical. If |
trim |
logical. If |
order.pattern |
logical. If |
... |
Additional arguments passed to |
alpha.type |
logical. If |
multigsub
- Returns a vector with the pattern replaced.
sub_holder
- Returns a list with the following:
output |
keyed place holder character vector |
unhold |
A function used to revert back to the original values |
The unhold
function for sub_holder
will only work on keys
that have not been disturbed by subsequent alterations. The key follows the
pattern of 'qdapplaceholder' followed by lower case letter keys followed by
'qdap'.
## Not run: ## ====================== ## `mgsub` Function ## ====================== multigsub(c("it's", "I'm"), c("it is", "I am"), DATA$state) mgsub(c("it's", "I'm"), c("it is", "I am"), DATA$state) mgsub("[[:punct:]]", "PUNC", DATA$state, fixed = FALSE) ## ====================== ## `sub_holder` Function ## ====================== ## `alpha.type` as TRUE (fake_dat <- paste(emoticon[1:11,2], DATA$state)) (m <- sub_holder(emoticon[,2], fake_dat)) m$unhold(strip(m$output)) # With Stemming m$unhold(stemmer(strip(m$output), capitalize = FALSE)) ## `alpha.type` as FALSE (numeric keys) vowels <- LETTERS[c(1, 5, 9, 15, 21)] (m2 <- sub_holder(vowels, toupper(DATA$state), alpha.type = FALSE)) m2$unhold(gsub("[^0-9]", "", m2$output)) mtabulate(strsplit(m2$unhold(gsub("[^0-9]", "", m2$output)), "")) ## End(Not run)
## Not run: ## ====================== ## `mgsub` Function ## ====================== multigsub(c("it's", "I'm"), c("it is", "I am"), DATA$state) mgsub(c("it's", "I'm"), c("it is", "I am"), DATA$state) mgsub("[[:punct:]]", "PUNC", DATA$state, fixed = FALSE) ## ====================== ## `sub_holder` Function ## ====================== ## `alpha.type` as TRUE (fake_dat <- paste(emoticon[1:11,2], DATA$state)) (m <- sub_holder(emoticon[,2], fake_dat)) m$unhold(strip(m$output)) # With Stemming m$unhold(stemmer(strip(m$output), capitalize = FALSE)) ## `alpha.type` as FALSE (numeric keys) vowels <- LETTERS[c(1, 5, 9, 15, 21)] (m2 <- sub_holder(vowels, toupper(DATA$state), alpha.type = FALSE)) m2$unhold(gsub("[^0-9]", "", m2$output)) mtabulate(strsplit(m2$unhold(gsub("[^0-9]", "", m2$output)), "")) ## End(Not run)
Standardize within a subgroup and then within a group.
multiscale(numeric.var, grouping.var, original_order = TRUE, digits = 2)
multiscale(numeric.var, grouping.var, original_order = TRUE, digits = 2)
numeric.var |
A numeric variable. |
grouping.var |
The grouping variables. Default |
original_order |
logical. IF |
digits |
Integer; number of decimal places to round. |
Returns a list of two:
SCALED_OBSERVATIONS |
A dataframe of scaled observations at level one and two of the nesting with possible outliers. |
DESCRIPTIVES_BY_GROUP |
A data frame of descriptives by group. |
## Not run: dat <- with(mraja1spl, word_stats(dialogue, list(person, sex, fam.aff))) htruncdf(colsplit2df(dat$ts), ,4) out1 <- with(colsplit2df(dat$ts), multiscale(word.count, person)) ltruncdf(out1, 10) out2 <- with(colsplit2df(dat$ts), multiscale(word.count, list(fam.aff, sex))) ltruncdf(out2, 10) out3 <- with(colsplit2df(dat$ts), multiscale(word.count, list(fam.aff, sex), original_order = FALSE)) ltruncdf(out3, 10) ## End(Not run)
## Not run: dat <- with(mraja1spl, word_stats(dialogue, list(person, sex, fam.aff))) htruncdf(colsplit2df(dat$ts), ,4) out1 <- with(colsplit2df(dat$ts), multiscale(word.count, person)) ltruncdf(out1, 10) out2 <- with(colsplit2df(dat$ts), multiscale(word.count, list(fam.aff, sex))) ltruncdf(out2, 10) out3 <- with(colsplit2df(dat$ts), multiscale(word.count, list(fam.aff, sex), original_order = FALSE)) ltruncdf(out3, 10) ## End(Not run)
Replace missing values (NA
) in a vector or dataframe.
NAer(x, replace = 0)
NAer(x, replace = 0)
x |
A vector or dataframe with missing values ( |
replace |
The value to replace missing values ( |
Returns a vector or dataframe with missing values replaced.
## Not run: set.seed(10) (x <- sample(c(rep(NA, 4), 1:10), 20, rep=T)) NAer(x) set.seed(10) (y <- data.frame(matrix(x, 5, 4)) ) NAer(y) NAer(y, "MISSING") ## End(Not run)
## Not run: set.seed(10) (x <- sample(c(rep(NA, 4), 1:10), 20, rep=T)) NAer(x) set.seed(10) (y <- data.frame(matrix(x, 5, 4)) ) NAer(y) NAer(y, "MISSING") ## End(Not run)
A wrapper for the gender
function used to predict
gender based on first name.
name2sex(names.list, USE.NAMES = FALSE, ...)
name2sex(names.list, USE.NAMES = FALSE, ...)
names.list |
Character vector containing first names. |
USE.NAMES |
logical. If |
... |
Other arguments passed to |
Returns a vector of predicted gender (M/F) based on first name.
## Not run: name2sex(qcv(mary, jenn, linda, JAME, GABRIEL, OLIVA, tyler, jamie, JAMES, tyrone, cheryl, drew)) ## End(Not run)
## Not run: name2sex(qcv(mary, jenn, linda, JAME, GABRIEL, OLIVA, tyler, jamie, JAMES, tyrone, cheryl, drew)) ## End(Not run)
Create a network plot for select qdap outputs.
Network(x, ...)
Network(x, ...)
x |
A select qdap object. |
... |
Arguments passed to Network method of other classes. |
Returns a network plot.
Network.formality
- Network a formality
object.
## S3 method for class 'formality' Network( x, contextual = "yellow", formal = "red", edge.constant, title = NULL, digits = 3, plus.300.color = "grey40", under.300.color = "grey88", missing.color = "purple", ... )
## S3 method for class 'formality' Network( x, contextual = "yellow", formal = "red", edge.constant, title = NULL, digits = 3, plus.300.color = "grey40", under.300.color = "grey88", missing.color = "purple", ... )
x |
A |
contextual |
The color to use for 0% formality (purely contextual). |
formal |
The color to use for 100% formality (purely formal). |
edge.constant |
A constant to multiple edge width by. |
title |
The title to apply to the |
digits |
The number of digits to use in the current turn of talk formality. |
plus.300.color |
The bar color to use for grouping variables exceeding 299 words per Heylighen & Dewaele's (2002) minimum word recommendations. |
under.300.color |
The bar color to use for grouping variables less than 300 words per Heylighen & Dewaele's (2002) minimum word recommendations. |
missing.color |
The color to use in a network plot for edges
corresponding to missing text data. Use |
... |
Other arguments passed to |
formality Method for Network
Network.lexical_classification
- Network a
lexical_classification
object.
## S3 method for class 'lexical_classification' Network( x, functional = "yellow", content = "red", edge.constant, title = NULL, digits = 2, ... )
## S3 method for class 'lexical_classification' Network( x, functional = "yellow", content = "red", edge.constant, title = NULL, digits = 2, ... )
x |
A |
functional |
The color to use for 0% lexical_classification (purely functional). |
content |
The color to use for 100% lexical_classification (purely content). |
edge.constant |
A constant to multiple edge width by. |
title |
The title to apply to the Networked image(s). |
digits |
The number of digits to use in the current turn of talk lexical_classification. |
... |
Other arguments passed to |
lexical_classification Method for Network
Network.polarity
- Network a polarity
object.
## S3 method for class 'polarity' Network( x, negative = "blue", positive = "red", neutral = "yellow", edge.constant, title = NULL, digits = 3, ... )
## S3 method for class 'polarity' Network( x, negative = "blue", positive = "red", neutral = "yellow", edge.constant, title = NULL, digits = 3, ... )
x |
A |
negative |
The color to use for negative polarity. |
positive |
The color to use for positive polarity. |
neutral |
The color to use for neutral polarity. |
edge.constant |
A constant to multiple edge width by. |
title |
The title to apply to the Networked image(s). |
digits |
The number of digits to use in the current turn of talk polarity. |
... |
Other arguments passed to |
polarity Method for Network
Generate a project template to increase efficiency.
new_project(project = "new", path = getwd(), open = is.global(2), ...)
new_project(project = "new", path = getwd(), open = is.global(2), ...)
project |
A character vector of the project name. |
path |
The path to where the project should be created. Default is the current working directory. |
open |
logical. If |
... |
ignored. |
The project template includes these main directories and scripts:
CODEBOOK - A directory to store coding conventions or demographics data:
KEY.csv - A blank template for demographic information
CORRESPONDENCE - A directory to store correspondence and agreements with the client:
CONTACT_INFO.txt - A text file to put research team members' contact information
DATA - A directory to store data:
CLEANED_TRANSCRIPTS - A directory to store the cleaned transcripts (If the transcripts are already cleaned you may choose to not utilize the RAW_TRANSCRIPTS directory)
CM_DATA - A directory to export/import scripts for cm_xxx family of functions
DATA_FOR_REVIEW - A directory to put data that may need to be altered or needs to be inspected more closely
RAW_DATA - A directory to store non-transcript data related to the project:
ANALYTIC_MEMOS - A directory to put audio files (or shortcuts)
AUDIO - A directory to put audio files (or shortcuts)
FIELD_NOTES - A directory to put audio files (or shortcuts)
PAPER_ARTIFACTS - A directory to put paper artifacts
PHOTOGRAPHS - A directory to put photographs
VIDEO - A directory to put video files (or shortcuts)
TRANSCRIPTS - A directory to put transcription data:
CLEANED_TRANSCRIPTS - A directory to store the cleaned transcripts (If the transcripts are already cleaned you may choose to not utilize the RAW_TRANSCRIPTS directory)
RAW_TRANSCRIPTS - A directory to store the raw transcripts
DOCUMENTATION - A directory to store documents related to the project
PLOTS - A directory to store plots
REPORTS - A directory with report and presentation related tools.
SCRIPTS - A directory to store scripts; already contains the following:
01_clean_data.R - initial cleaning of raw transcripts
02_analysis_I.R - initial analysis
03_plots.R - plotting script
TABLES - A directory to export tables to
WORD_LISTS - A directory to store word lists that can be sourced and supplied to functions
extra_functions.R - A script to store user made functions related to the project
email - A function to view, and optionally copy to the clipboard, emails for the client/lead researcher, analyst and/or other project members (information taking from ~/CORRESPONDENCE/CONTACT_INFO.txt file)
todo - A function to view, and optionally copy to the clipboard, non-completed tasks from the TO_DO.txt
file
LOG - A text file documenting project changes/needs etc.
PROJECT_WORKFLOW_GUIDE.pdf - A pdf explaining the structure of the project template
xxx.Rproj - A project file used by RRtudio; clicking this will open the project in RStudio.
TO_DO - A text file documenting project tasks
The template comes with a .Rproj file. This makes operating in RStudio very easy. The file can be kept on the desktop or a git application such as github, bitbucket or dropbox, depending on what the client/research team is comfortable utilizing.
Creates a project template.
Transcript apply ngrams.
ngrams(text.var, grouping.var = NULL, n = 2, ...)
ngrams(text.var, grouping.var = NULL, n = 2, ...)
text.var |
The text variable |
grouping.var |
The grouping variables. Default |
n |
The max number of grams calculate |
... |
Further arguments passed to strip function. |
Returns a list of:
raw |
A list of pasted single vectors of the ngrams per row. |
group |
A list of pasted vectors of ngrams grouped by grouping.var. |
unlist1 |
A list of a single vector of pasted ngrams per grouping.var in the order used. |
unlist2 |
A list of a single vector of pasted ngrams per grouping.var in alphabetical order. |
group_n |
A list of a list of vectors of ngrams per grouping.var & n (not pasted). |
all |
A single vector of pasted ngrams sorted alphabetically. |
all_n |
A list of lists a single vectors of ngrams sorted alphabetically (not pasted). |
## Not run: ngrams(DATA$state, DATA$person, 2) ngrams(DATA$state, DATA$person, 3) ngrams(DATA$state, , 3) with(mraja1, ngrams(dialogue, list(sex, fam.aff), 3)) ## Alternative ngram analysis: n_gram <- function(x, n = 2, sep = " "){ m <- qdap::bag_o_words(x) if (length(m) < n) return(character(0)) starts <- 1:(length(m) - (n - 1)) ends <- n:length(m) Map(function(x, y){ paste(m[x:y], collapse=sep) }, starts, ends ) } dat <- sentSplit(DATA, "state") dat[["grams"]] <- sapply(dat[["state"]], function(x) { unbag(n_gram(x, sep = "~~")) }) m <- with(dat, as.tdm(grams, person)) rownames(m) <- gsub("~~", " ", rownames(m)) as.matrix(m) rowSums(as.matrix(m)) dat2 <- sentSplit(raj, "dialogue") dat2[["grams"]] <- sapply(dat2[["dialogue"]], function(x) { unbag(n_gram(x, sep = "~~")) }) m2 <- with(dat2, as.tdm(grams, person)) rownames(m2) <- gsub("~~", " ", rownames(m2)) qheat(t(as.matrix(tm:::weightTfIdf(tm::removeSparseTerms(m2, .7)))), high="red") sort(rowSums(as.matrix(m2))) ## End(Not run)
## Not run: ngrams(DATA$state, DATA$person, 2) ngrams(DATA$state, DATA$person, 3) ngrams(DATA$state, , 3) with(mraja1, ngrams(dialogue, list(sex, fam.aff), 3)) ## Alternative ngram analysis: n_gram <- function(x, n = 2, sep = " "){ m <- qdap::bag_o_words(x) if (length(m) < n) return(character(0)) starts <- 1:(length(m) - (n - 1)) ends <- n:length(m) Map(function(x, y){ paste(m[x:y], collapse=sep) }, starts, ends ) } dat <- sentSplit(DATA, "state") dat[["grams"]] <- sapply(dat[["state"]], function(x) { unbag(n_gram(x, sep = "~~")) }) m <- with(dat, as.tdm(grams, person)) rownames(m) <- gsub("~~", " ", rownames(m)) as.matrix(m) rowSums(as.matrix(m)) dat2 <- sentSplit(raj, "dialogue") dat2[["grams"]] <- sapply(dat2[["dialogue"]], function(x) { unbag(n_gram(x, sep = "~~")) }) m2 <- with(dat2, as.tdm(grams, person)) rownames(m2) <- gsub("~~", " ", rownames(m2)) qheat(t(as.matrix(tm:::weightTfIdf(tm::removeSparseTerms(m2, .7)))), high="red") sort(rowSums(as.matrix(m2))) ## End(Not run)
Count the number of object pronouns per grouping variables.
object_pronoun_type( text.var, grouping.var = NULL, object.pronoun.list = NULL, ... )
object_pronoun_type( text.var, grouping.var = NULL, object.pronoun.list = NULL, ... )
text.var |
The text variable |
grouping.var |
The grouping variables. Default |
object.pronoun.list |
A named list of object pronouns. See Details for more. |
... |
Other arguments passed to |
The following object pronoun categories are the default searched terms:
me = c(" me ", " my ", " mine ")
us = c(" us ", " our ", " ours ")
you = c(" you'd ", " you'll ", " you're ", " you've ", " you ", " your ")
him = c(" him ", " his ")
her = c(" her ", " hers ")
them = c(" them ")
their = c(" their ", "theirs ")
it = c(" it'd ", " it'll ", " it's ", " it ")
Returns a list, of class "object_pronoun_type", of data frames regarding object pronoun word counts:
preprocessed |
List of uncollapsed dataframes (raw, prop, rnp) of the class "termco" that contain all searchable object pronouns. |
raw |
raw word counts by grouping variable |
prop |
proportional word counts by grouping variable; proportional to each individual's object pronoun use |
rnp |
a character combination data frame of raw and proportional object pronoun use |
subject_pronoun_type
,
pronoun_type
## Not run: dat <- pres_debates2012 dat <- dat[dat$person %in% qcv(ROMNEY, OBAMA), ] (out <- object_pronoun_type(dat$dialogue, dat$person)) plot(out) plot(out, 2) plot(out, 3) plot(out, 3, ncol=2) scores(out) counts(out) proportions(out) preprocessed(out) plot(scores(out)) plot(counts(out)) plot(proportions(out)) ## End(Not run)
## Not run: dat <- pres_debates2012 dat <- dat[dat$person %in% qcv(ROMNEY, OBAMA), ] (out <- object_pronoun_type(dat$dialogue, dat$person)) plot(out) plot(out, 2) plot(out, 3) plot(out, 3, ncol=2) scores(out) counts(out) proportions(out) preprocessed(out) plot(scores(out)) plot(counts(out)) plot(proportions(out)) ## End(Not run)
Locate possible outliers for text variables given numeric word function.
outlier_detect( text.var, grouping.var = NULL, FUN = word_count, scale.by = "grouping" )
outlier_detect( text.var, grouping.var = NULL, FUN = word_count, scale.by = "grouping" )
text.var |
The text variable. |
grouping.var |
The grouping variables. Default |
FUN |
A word function with a numeric vector output (e.g.,
|
scale.by |
A character string indicating which dimensions to scale by.
One of |
Returns a dataframe with possible outliers.
## Not run: with(DATA, outlier_detect(state)) with(DATA, outlier_detect(state, FUN = character_count)) with(DATA, outlier_detect(state, person, FUN = character_count)) with(DATA, outlier_detect(state, list(sex, adult), FUN = character_count)) with(DATA, outlier_detect(state, FUN = syllable_sum)) htruncdf(with(raj, outlier_detect(dialogue, person)), 15, 45) ## End(Not run)
## Not run: with(DATA, outlier_detect(state)) with(DATA, outlier_detect(state, FUN = character_count)) with(DATA, outlier_detect(state, person, FUN = character_count)) with(DATA, outlier_detect(state, list(sex, adult), FUN = character_count)) with(DATA, outlier_detect(state, FUN = syllable_sum)) htruncdf(with(raj, outlier_detect(dialogue, person)), 15, 45) ## End(Not run)
Locate and label possible outliers in a string.
outlier_labeler(x, standardize = TRUE, ...)
outlier_labeler(x, standardize = TRUE, ...)
x |
A numeric vector. |
standardize |
logical. If |
... |
Other arguments passed to |
Returns a matrix (one column) of possible outliers coded as
"3sd"
, "2sd"
and "1.5sd"
, corresponding to >= to 3, 2,
or 1.5 standard deviations.
## Not run: outlier_labeler(mtcars$hp)[20:32] by(mtcars$mpg, mtcars$cyl, outlier_labeler) tapply(mtcars$mpg, mtcars$cyl, outlier_labeler) ## End(Not run)
## Not run: outlier_labeler(mtcars$hp)[20:32] by(mtcars$mpg, mtcars$cyl, outlier_labeler) tapply(mtcars$mpg, mtcars$cyl, outlier_labeler) ## End(Not run)
paste2
- Paste unspecified columns or a list of vectors together.
colpaste2df
- Wrapper for paste2
that returns a
dataframe with columns pasted together.
paste2(multi.columns, sep = ".", handle.na = TRUE, trim = TRUE) colpaste2df( mat, combined.columns, sep = ".", name.sep = "&", keep.orig = TRUE, ... )
paste2(multi.columns, sep = ".", handle.na = TRUE, trim = TRUE) colpaste2df( mat, combined.columns, sep = ".", name.sep = "&", keep.orig = TRUE, ... )
multi.columns |
The multiple columns or a list of vectors to paste together. |
sep |
The character to be used in |
handle.na |
logical. If |
trim |
logical. If |
mat |
A matrix or dataframe. |
combined.columns |
A list of named vectors of the colnames/indexes of the numeric columns to be pasted. If a vector is unnamed a name will be assigned. |
name.sep |
The character to be used to paste the column names. |
keep.orig |
logical. If |
... |
Other arguments passed to |
paste2
- Returns a vector with row-wise elements pasted together.
colpaste2df
- Returns a dataframe with pasted columns.
paste
differs from paste2
because paste
does not allowed an unspecified number of columns to be
pasted. This behavior can be convenient for inside of functions when the
number of columns being pasted is unknown.
## Not run: ## paste2 examples v <- rep(list(state.abb[1:8], month.abb[1:8]) , 5) n <- sample(5:10, 1) paste(v[1:n]) #odd looking return paste2(v[1:n]) paste2(v[1:n], sep="|") paste2(mtcars[1:10,], sep="|") paste(mtcars[1:10,], sep="|") #odd looking return paste2(CO2[1:10,], sep="|-|") ## colpaste2df examples A <- list( a = c(1, 2, 3), b = qcv(mpg, hp), c = c("disp", "am") ) B <- list( c(1, 2, 3), new.col = qcv(mpg, hp), c("disp", "am") ) E <- list( c(1, 2, 3, 4, 5), qcv(mpg, hp), c("disp", "am") ) colpaste2df(head(mtcars), A) colpaste2df(head(mtcars), B) colpaste2df(head(mtcars), E) colpaste2df(head(mtcars), qcv(am, disp, drat), sep ="_", name.sep = "|") colpaste2df(head(CO2), list(c(1, 2, 3, 4, 5), qcv("conc", "uptake"))) ## End(Not run)
## Not run: ## paste2 examples v <- rep(list(state.abb[1:8], month.abb[1:8]) , 5) n <- sample(5:10, 1) paste(v[1:n]) #odd looking return paste2(v[1:n]) paste2(v[1:n], sep="|") paste2(mtcars[1:10,], sep="|") paste(mtcars[1:10,], sep="|") #odd looking return paste2(CO2[1:10,], sep="|-|") ## colpaste2df examples A <- list( a = c(1, 2, 3), b = qcv(mpg, hp), c = c("disp", "am") ) B <- list( c(1, 2, 3), new.col = qcv(mpg, hp), c("disp", "am") ) E <- list( c(1, 2, 3, 4, 5), qcv(mpg, hp), c("disp", "am") ) colpaste2df(head(mtcars), A) colpaste2df(head(mtcars), B) colpaste2df(head(mtcars), E) colpaste2df(head(mtcars), qcv(am, disp, drat), sep ="_", name.sep = "|") colpaste2df(head(CO2), list(c(1, 2, 3, 4, 5), qcv("conc", "uptake"))) ## End(Not run)
Create Many Eyes style phrase nets.
phrase_net( text.var, freq = 4, r = 0.35, edge.constant = 6, vertex.constant = 3, ... )
phrase_net( text.var, freq = 4, r = 0.35, edge.constant = 6, vertex.constant = 3, ... )
text.var |
The text variable. |
freq |
The minimum word frequency occurrence. |
r |
The minimum correlation value |
edge.constant |
A constant to multiple the edges by. |
vertex.constant |
A constant to multiple the vertex label sizes by. |
... |
Other arguments passed to |
Returns an igraph object.
While Many Eyes
phrase nets inspired this function the two outputs are not identical. The
phrase_net
function operates off of correlations between
words in sentences.
http://trinker.github.io/many-eye/
## Not run: x <- "Questions must be at least 2 days old to be eligible for a bounty. There can only be 1 active bounty per question at any given time. Users must have at least 75 reputation to offer a bounty, and may only have a maximum of 3 active bounties at any given time. The bounty period lasts 7 days. Bounties must have a minimum duration of at least 1 day. After the bounty ends, there is a grace period of 24 hours to manually award the bounty. If you do not award your bounty within 7 days (plus the grace period), the highest voted answer created after the bounty started with at least 2 upvotes will be awarded half the bounty amount. If there's no answer meeting that criteria, the bounty is not awarded to anyone. If the bounty was started by the question owner, and the question owner accepts an answer during the bounty period, and the bounty expires without an explicit award - we assume the bounty owner liked the answer they accepted and award it the full bounty amount at the time of bounty expiration. In any case, you will always give up the amount of reputation specified in the bounty, so if you start a bounty, be sure to follow up and award your bounty to the best answer! As an additional bonus, bounty awards are immune to the daily reputation cap and community wiki mode." phrase_net(sent_detect(x), r=.5) library(igraph) plot(phrase_net(sent_detect(x), r=.5), edge.curved = FALSE) ## Declaration of Independence Example y <- readLines("http://www.constitution.org/usdeclar.txt") y <- paste(y[grep("When, in the", y):length(y)], collapse=" ") phrase_net(sent_detect(y), r=.7) ## Multiple grouping variables z <- lapply(split(raj.act.1$dialogue, raj.act.1$person), paste, collapse = " ") par(mfrow=c(2, 5), mai = c(.05, 0.15, 0.15, 0.15)) lapply(seq_along(z), function(i) { x <- try(phrase_net(sent_detect(z[i]), r=.6)) if (!inherits(x, "try-error")) { print(x) box() mtext(names(z)[i]) } }) lapply(seq_along(z), function(i) { x <- try(phrase_net(sent_detect(z[i]), r=.6)) if (!inherits(x, "try-error")) { dev.new() print(x) mtext(names(z)[i], padj=-1, cex=1.7, col="red") } }) ## End(Not run)
## Not run: x <- "Questions must be at least 2 days old to be eligible for a bounty. There can only be 1 active bounty per question at any given time. Users must have at least 75 reputation to offer a bounty, and may only have a maximum of 3 active bounties at any given time. The bounty period lasts 7 days. Bounties must have a minimum duration of at least 1 day. After the bounty ends, there is a grace period of 24 hours to manually award the bounty. If you do not award your bounty within 7 days (plus the grace period), the highest voted answer created after the bounty started with at least 2 upvotes will be awarded half the bounty amount. If there's no answer meeting that criteria, the bounty is not awarded to anyone. If the bounty was started by the question owner, and the question owner accepts an answer during the bounty period, and the bounty expires without an explicit award - we assume the bounty owner liked the answer they accepted and award it the full bounty amount at the time of bounty expiration. In any case, you will always give up the amount of reputation specified in the bounty, so if you start a bounty, be sure to follow up and award your bounty to the best answer! As an additional bonus, bounty awards are immune to the daily reputation cap and community wiki mode." phrase_net(sent_detect(x), r=.5) library(igraph) plot(phrase_net(sent_detect(x), r=.5), edge.curved = FALSE) ## Declaration of Independence Example y <- readLines("http://www.constitution.org/usdeclar.txt") y <- paste(y[grep("When, in the", y):length(y)], collapse=" ") phrase_net(sent_detect(y), r=.7) ## Multiple grouping variables z <- lapply(split(raj.act.1$dialogue, raj.act.1$person), paste, collapse = " ") par(mfrow=c(2, 5), mai = c(.05, 0.15, 0.15, 0.15)) lapply(seq_along(z), function(i) { x <- try(phrase_net(sent_detect(z[i]), r=.6)) if (!inherits(x, "try-error")) { print(x) box() mtext(names(z)[i]) } }) lapply(seq_along(z), function(i) { x <- try(phrase_net(sent_detect(z[i]), r=.6)) if (!inherits(x, "try-error")) { dev.new() print(x) mtext(names(z)[i], padj=-1, cex=1.7, col="red") } }) ## End(Not run)
Plots an animated_character object.
## S3 method for class 'animated_character' plot(x, ...)
## S3 method for class 'animated_character' plot(x, ...)
x |
The animated_character object. |
... |
Other arguments passed to |
Plots an animated_discourse_map object.
## S3 method for class 'animated_discourse_map' plot(x, ...)
## S3 method for class 'animated_discourse_map' plot(x, ...)
x |
The animated_discourse_map object. |
... |
Other arguments passed to |
Plots a animated_formality object.
## S3 method for class 'animated_formality' plot(x, ...)
## S3 method for class 'animated_formality' plot(x, ...)
x |
The animated_formality object. |
... |
Other arguments passed to |
Plots an animated_lexical_classification object.
## S3 method for class 'animated_lexical_classification' plot(x, ...)
## S3 method for class 'animated_lexical_classification' plot(x, ...)
x |
The animated_lexical_classification object. |
... |
Other arguments passed to |
Plots an animated_polarity object.
## S3 method for class 'animated_polarity' plot(x, ...)
## S3 method for class 'animated_polarity' plot(x, ...)
x |
The animated_polarity object. |
... |
Other arguments passed to |
Plots a automated_readability_index object.
## S3 method for class 'automated_readability_index' plot(x, ...)
## S3 method for class 'automated_readability_index' plot(x, ...)
x |
The readability_score object. |
... |
ignored |
Plots a character_table object.
## S3 method for class 'character_table' plot( x, label = FALSE, lab.digits = 1, percent = NULL, zero.replace = NULL, ... )
## S3 method for class 'character_table' plot( x, label = FALSE, lab.digits = 1, percent = NULL, zero.replace = NULL, ... )
x |
The character_table object |
label |
logical. If |
lab.digits |
Integer values specifying the number of digits to be
printed if |
percent |
logical. If |
zero.replace |
Value to replace 0 values with. If |
... |
Other arguments passed to |
Plots a cm_distance object.
## S3 method for class 'cm_distance' plot( x, digits = 3, constant = 1, label.dist = FALSE, layout = igraph::layout.fruchterman.reingold, label.cex = 1, label.cex.scale.by.n = FALSE, alpha = NULL, label.color = "black", use.vertex.shape = FALSE, arrow.size = 0.6, ... )
## S3 method for class 'cm_distance' plot( x, digits = 3, constant = 1, label.dist = FALSE, layout = igraph::layout.fruchterman.reingold, label.cex = 1, label.cex.scale.by.n = FALSE, alpha = NULL, label.color = "black", use.vertex.shape = FALSE, arrow.size = 0.6, ... )
x |
A cm_distance object. |
digits |
The number of digits to use if distance labels are included on the edges. |
constant |
A constant to weight the edges by. |
label.dist |
logical. If |
layout |
A layout; see |
label.cex |
A constant to use for the label size. |
label.cex.scale.by.n |
logical. If |
alpha |
The cut off value for pvalue inclusion of edges. |
label.color |
Color of the vertex labels. |
use.vertex.shape |
logical. If |
arrow.size |
The size of the arrows. Currently this is a constant, so it is the same for every edge. |
... |
Further arguments passed to the chosen |
Returns the igraph object.
This plotting method is not particularly well developed. It is suggested that the user further develop the graph via direct use of the igraph package.
Plots a cmspans object.
## S3 method for class 'cmspans' plot(x, plot.var = NULL, facet.vars = NULL, title = "Gantt Plot", ...)
## S3 method for class 'cmspans' plot(x, plot.var = NULL, facet.vars = NULL, title = "Gantt Plot", ...)
x |
The sums_cmspans object |
plot.var |
A factor plotting variable (y axis). |
facet.vars |
An optional single vector or list of 1 or 2 to facet by. |
title |
An optional title. |
... |
Other arguments passed to |
Plots a coleman_liau object.
## S3 method for class 'coleman_liau' plot(x, ...)
## S3 method for class 'coleman_liau' plot(x, ...)
x |
The readability_score object. |
... |
ignored |
Plots a combo_syllable_sum object.
## S3 method for class 'combo_syllable_sum' plot(x, ...)
## S3 method for class 'combo_syllable_sum' plot(x, ...)
x |
The combo_syllable_sum object. |
... |
ignored |
Plots a cumulative_animated_formality object.
## S3 method for class 'cumulative_animated_formality' plot(x, ...)
## S3 method for class 'cumulative_animated_formality' plot(x, ...)
x |
The cumulative_animated_formality object. |
... |
ignored |
Plots a cumulative_animated_lexical_classification object.
## S3 method for class 'cumulative_animated_lexical_classification' plot(x, ...)
## S3 method for class 'cumulative_animated_lexical_classification' plot(x, ...)
x |
The cumulative_animated_lexical_classification object. |
... |
ignored |
Plots a cumulative_animated_polarity object.
## S3 method for class 'cumulative_animated_polarity' plot(x, ...)
## S3 method for class 'cumulative_animated_polarity' plot(x, ...)
x |
The cumulative_animated_polarity object. |
... |
ignored |
Plots a cumulative_combo_syllable_sum object.
## S3 method for class 'cumulative_combo_syllable_sum' plot(x, ...)
## S3 method for class 'cumulative_combo_syllable_sum' plot(x, ...)
x |
The cumulative_combo_syllable_sum object. |
... |
ignored |
Plots a cumulative_end_mark object.
## S3 method for class 'cumulative_end_mark' plot(x, ...)
## S3 method for class 'cumulative_end_mark' plot(x, ...)
x |
The cumulative_end_mark object. |
... |
ignored |
Plots a cumulative_formality object.
## S3 method for class 'cumulative_formality' plot(x, ...)
## S3 method for class 'cumulative_formality' plot(x, ...)
x |
The cumulative_formality object. |
... |
ignored |
Plots a cumulative_lexical_classification object.
## S3 method for class 'cumulative_lexical_classification' plot(x, ...)
## S3 method for class 'cumulative_lexical_classification' plot(x, ...)
x |
The cumulative_lexical_classification object. |
... |
ignored |
Plots a cumulative_polarity object.
## S3 method for class 'cumulative_polarity' plot(x, ...)
## S3 method for class 'cumulative_polarity' plot(x, ...)
x |
The cumulative_polarity object. |
... |
ignored |
Plots a cumulative_syllable_freq object.
## S3 method for class 'cumulative_syllable_freq' plot(x, ...)
## S3 method for class 'cumulative_syllable_freq' plot(x, ...)
x |
The cumulative_syllable_freq object. |
... |
ignored |
Plots a discourse_map object.
## S3 method for class 'discourse_map' plot(x, ...)
## S3 method for class 'discourse_map' plot(x, ...)
x |
The discourse_map object. |
... |
Other arguments passed to |
Plots a diversity object.
## S3 method for class 'diversity' plot(x, ...)
## S3 method for class 'diversity' plot(x, ...)
x |
The diversity object |
... |
Other arguments passed to |
Plots an end_mark object.
## S3 method for class 'end_mark' plot(x, ...)
## S3 method for class 'end_mark' plot(x, ...)
x |
The end_mark object. |
... |
ignored |
Plots a end_mark_by object.
## S3 method for class 'end_mark_by' plot(x, values = FALSE, ...)
## S3 method for class 'end_mark_by' plot(x, values = FALSE, ...)
x |
The end_mark_by object. |
values |
logical. If |
... |
Other arguments passed to |
Plots a end_mark_by_count object.
## S3 method for class 'end_mark_by_count' plot(x, values = TRUE, ...)
## S3 method for class 'end_mark_by_count' plot(x, values = TRUE, ...)
x |
The end_mark_by_count object. |
values |
logical. If |
... |
Arguments passed to |
Plots a end_mark_by_preprocessed object.
## S3 method for class 'end_mark_by_preprocessed' plot(x, ncol = 1, ...)
## S3 method for class 'end_mark_by_preprocessed' plot(x, ncol = 1, ...)
x |
The end_mark_by_preprocessed object. |
ncol |
The number of columns to use for |
... |
ignored |
Plots a end_mark_by_proportion object.
## S3 method for class 'end_mark_by_proportion' plot(x, values = TRUE, ...)
## S3 method for class 'end_mark_by_proportion' plot(x, values = TRUE, ...)
x |
The end_mark_by_proportion object. |
values |
logical. If |
... |
Arguments passed to |
Plots a end_mark_by_score object.
## S3 method for class 'end_mark_by_score' plot(x, values = TRUE, ...)
## S3 method for class 'end_mark_by_score' plot(x, values = TRUE, ...)
x |
The end_mark_by_score object. |
values |
logical. If |
... |
Arguments passed to |
Plots a flesch_kincaid object.
## S3 method for class 'flesch_kincaid' plot(x, ...)
## S3 method for class 'flesch_kincaid' plot(x, ...)
x |
The readability_score object. |
... |
ignored |
Plots a formality object including the parts of speech used to calculate contextual/formal speech.
## S3 method for class 'formality' plot( x, point.pch = 20, point.cex = 0.5, point.colors = c("gray65", "red"), bar.colors = NULL, short.names = TRUE, min.wrdcnt = NULL, order.by.formality = TRUE, plot = TRUE, ... )
## S3 method for class 'formality' plot( x, point.pch = 20, point.cex = 0.5, point.colors = c("gray65", "red"), bar.colors = NULL, short.names = TRUE, min.wrdcnt = NULL, order.by.formality = TRUE, plot = TRUE, ... )
x |
The formality object. |
point.pch |
The plotting symbol. |
point.cex |
The plotting symbol size. |
point.colors |
A vector of colors (length of two) to plot word count and formality score. |
bar.colors |
A palette of colors to supply to the bars in the visualization. If two palettes are provided to the two bar plots respectively. |
short.names |
logical. If TRUE shortens the length of legend and label names for more compact plot width. |
min.wrdcnt |
A minimum word count threshold that must be achieved to be considered in the results. Default includes all subgroups. |
order.by.formality |
logical. If |
plot |
logical. If |
... |
ignored |
Invisibly returns the ggplot2
objects that form the larger
plot.
Plots a formality_scores object.
## S3 method for class 'formality_scores' plot(x, ...)
## S3 method for class 'formality_scores' plot(x, ...)
x |
The formality_scores object. |
... |
ignored |
Plots a freq_terms object.
## S3 method for class 'freq_terms' plot(x, plot = TRUE, ...)
## S3 method for class 'freq_terms' plot(x, plot = TRUE, ...)
x |
The freq_terms object. |
plot |
logical. If |
... |
ignored. |
Plots a gantt object.
## S3 method for class 'gantt' plot(x, base = FALSE, title = NULL, ...)
## S3 method for class 'gantt' plot(x, base = FALSE, title = NULL, ...)
x |
The sums_gantt object |
base |
logical. If |
title |
An optional title. |
... |
Other arguments passed to |
Plots a kullback_leibler object.
## S3 method for class 'kullback_leibler' plot(x, digits = 3, ...)
## S3 method for class 'kullback_leibler' plot(x, digits = 3, ...)
x |
The kullback_leibler object |
digits |
Number of decimal places to print. |
... |
Other arguments passed to |
Plots a lexical object.
## S3 method for class 'lexical' plot( x, min.freq = 1, rot.per = 0, random.order = FALSE, title = TRUE, title.color = "blue", ... )
## S3 method for class 'lexical' plot( x, min.freq = 1, rot.per = 0, random.order = FALSE, title = TRUE, title.color = "blue", ... )
x |
The lexical object. |
min.freq |
Words with frequency below |
rot.per |
Proportion words with 90 degree rotation. |
random.order |
logical. If codeTRUE plot words in random order. If |
title |
The title of the plot. Use |
title.color |
The color of the title. |
... |
Other arguments passed to |
Plots a lexical_classification object as a heat map Gantt plot with lexical_classification over time (measured in words) and lexical_classification scores per sentence. In the dotplot plot the black dots are the average lexical_classification per grouping variable.
## S3 method for class 'lexical_classification' plot( x, bar.size = 5, low = "blue", mid = "grey99", high = "red", ave.lexical_classification.shape = "+", alpha = 1/4, shape = 19, point.size = 2.5, jitter = 0.1, nrow = NULL, na.rm = TRUE, order.by.lexical_classification = TRUE, plot = TRUE, error.bars = TRUE, error.bar.height = 0.5, error.bar.size = 0.5, error.bar.color = "black", error.bar.alpha = 0.6, ... )
## S3 method for class 'lexical_classification' plot( x, bar.size = 5, low = "blue", mid = "grey99", high = "red", ave.lexical_classification.shape = "+", alpha = 1/4, shape = 19, point.size = 2.5, jitter = 0.1, nrow = NULL, na.rm = TRUE, order.by.lexical_classification = TRUE, plot = TRUE, error.bars = TRUE, error.bar.height = 0.5, error.bar.size = 0.5, error.bar.color = "black", error.bar.alpha = 0.6, ... )
x |
The lexical_classification object. |
bar.size |
The size of the bars used in the Gantt plot. |
low |
The color to be used for lower values. |
mid |
The color to be used for mid-range values (default is a less striking color). |
high |
The color to be used for higher values. |
ave.lexical_classification.shape |
The shape of the average lexical_classification score used in the dot plot. |
alpha |
Transparency level of points (ranges between 0 and 1). |
shape |
The shape of the points used in the dot plot. |
point.size |
The size of the points used in the dot plot. |
jitter |
Amount of vertical jitter to add to the points. |
nrow |
The number of rows in the dotplot legend (used when the number of
grouping variables makes the legend too wide). If |
na.rm |
logical. Should missing values be removed? |
order.by.lexical_classification |
logical. If |
plot |
logical. If |
error.bars |
logical. If |
error.bar.height |
The height of the error bar ends. |
error.bar.size |
The size/thickness of the error bars. |
error.bar.color |
The color of the error bars. If |
error.bar.alpha |
The alpha level of the error bars. |
... |
ignored |
Invisibly returns the ggplot2
objects that form the larger
plot.
Plots a lexical_classification_preprocessed object.
## S3 method for class 'lexical_classification_preprocessed' plot(x, jitter = 0.1, text.size = 3.5, alpha = 0.3, ncol = 3, ...)
## S3 method for class 'lexical_classification_preprocessed' plot(x, jitter = 0.1, text.size = 3.5, alpha = 0.3, ncol = 3, ...)
x |
The lexical_classification_preprocessed object. |
jitter |
The amount to jitter the points by in the bocplots. |
text.size |
The text size to use for plotting the mean in the boxplots. |
alpha |
The alpha level to use for points. |
ncol |
The number of columns to use for |
... |
ignored |
Plots a lexical_classification_score object.
## S3 method for class 'lexical_classification_score' plot( x, error.bar.height = 0.35, error.bar.size = 0.5, error.bar.alpha = 0.3, ... )
## S3 method for class 'lexical_classification_score' plot( x, error.bar.height = 0.35, error.bar.size = 0.5, error.bar.alpha = 0.3, ... )
x |
The lexical_classification_score object. |
error.bar.height |
The height of the error bar ends. |
error.bar.size |
The size/thickness of the error bars. |
error.bar.alpha |
The alpha level of the error bars. |
... |
ignored |
Plots a linsear_write object.
## S3 method for class 'linsear_write' plot(x, alpha = 0.4, ...)
## S3 method for class 'linsear_write' plot(x, alpha = 0.4, ...)
x |
The readability_score object. |
alpha |
The alpha level for the points and smooth fill in the scatterplot (length one or two; if two 1-points, 2-smooth fill). |
... |
ignored |
Plots a linsear_write_count object.
## S3 method for class 'linsear_write_count' plot(x, ...)
## S3 method for class 'linsear_write_count' plot(x, ...)
x |
The linsear_write_count object. |
... |
ignored |
Plots a linsear_write_scores object.
## S3 method for class 'linsear_write_scores' plot(x, alpha = c(0.4, 0.08), ...)
## S3 method for class 'linsear_write_scores' plot(x, alpha = c(0.4, 0.08), ...)
x |
The readability_score object. |
alpha |
The alpha level for the points and smooth fill in the scatterplot (length one or two; if two 1-points, 2-smooth fill). |
... |
Other arguments passed to |
Plots a Network object.
## S3 method for class 'Network' plot(x, ...)
## S3 method for class 'Network' plot(x, ...)
x |
The Network object. |
... |
Other arguments passed to |
Plots an object_pronoun_type object.
## S3 method for class 'object_pronoun_type' plot(x, type = 1, ...)
## S3 method for class 'object_pronoun_type' plot(x, type = 1, ...)
x |
The object_pronoun_type object. |
type |
An integer of |
... |
Other arguments passed to |
Plots a polarity object as a heat map Gantt plot with polarity over time (measured in words) and polarity scores per sentence. In the dotplot plot the black dots are the average polarity per grouping variable.
## S3 method for class 'polarity' plot( x, bar.size = 5, low = "blue", mid = "grey99", high = "red", ave.polarity.shape = "+", alpha = 1/4, shape = 19, point.size = 2.5, jitter = 0.1, nrow = NULL, na.rm = TRUE, order.by.polarity = TRUE, plot = TRUE, error.bars = TRUE, error.bar.height = 0.5, error.bar.size = 0.5, error.bar.color = "black", ... )
## S3 method for class 'polarity' plot( x, bar.size = 5, low = "blue", mid = "grey99", high = "red", ave.polarity.shape = "+", alpha = 1/4, shape = 19, point.size = 2.5, jitter = 0.1, nrow = NULL, na.rm = TRUE, order.by.polarity = TRUE, plot = TRUE, error.bars = TRUE, error.bar.height = 0.5, error.bar.size = 0.5, error.bar.color = "black", ... )
x |
The polarity object. |
bar.size |
The size of the bars used in the Gantt plot. |
low |
The color to be used for lower values. |
mid |
The color to be used for mid-range values (default is a less striking color). |
high |
The color to be used for higher values. |
ave.polarity.shape |
The shape of the average polarity score used in the dot plot. |
alpha |
Transparency level of points (ranges between 0 and 1). |
shape |
The shape of the points used in the dot plot. |
point.size |
The size of the points used in the dot plot. |
jitter |
Amount of vertical jitter to add to the points. |
nrow |
The number of rows in the dotplot legend (used when the number of
grouping variables makes the legend too wide). If |
na.rm |
logical. Should missing values be removed? |
order.by.polarity |
logical. If |
plot |
logical. If |
error.bars |
logical. If |
error.bar.height |
The height of the error bar ends. |
error.bar.size |
The size/thickness of the error bars. |
error.bar.color |
The color of the error bars. If |
... |
ignored |
Invisibly returns the ggplot2
objects that form the larger
plot.
Plots a polarity_count object as a heat map Gantt plot with polarity over time (measured in words) and polarity scores per sentence. In the dotplot plot the black dots are the average polarity per grouping variable.
## S3 method for class 'polarity_count' plot( x, bar.size = 5, low = "blue", mid = "grey99", high = "red", ave.polarity.shape = "+", alpha = 1/4, shape = 19, point.size = 2.5, jitter = 0.1, nrow = NULL, na.rm = TRUE, order.by.polarity = TRUE, plot = TRUE, error.bars = TRUE, error.bar.height = 0.5, error.bar.size = 0.5, error.bar.color = "black", ... )
## S3 method for class 'polarity_count' plot( x, bar.size = 5, low = "blue", mid = "grey99", high = "red", ave.polarity.shape = "+", alpha = 1/4, shape = 19, point.size = 2.5, jitter = 0.1, nrow = NULL, na.rm = TRUE, order.by.polarity = TRUE, plot = TRUE, error.bars = TRUE, error.bar.height = 0.5, error.bar.size = 0.5, error.bar.color = "black", ... )
x |
The polarity_count object. |
bar.size |
The size of the bars used in the Gantt plot. |
low |
The color to be used for lower values. |
mid |
The color to be used for mid-range values (default is a less striking color). |
high |
The color to be used for higher values. |
ave.polarity.shape |
The shape of the average polarity score used in the dot plot. |
alpha |
Transparency level of points (ranges between 0 and 1). |
shape |
The shape of the points used in the dot plot. |
point.size |
The size of the points used in the dot plot. |
jitter |
Amount of vertical jitter to add to the points. |
nrow |
The number of rows in the dotplot legend (used when the number of
grouping variables makes the legend too wide). If |
na.rm |
logical. Should missing values be removed? |
order.by.polarity |
logical. If |
plot |
logical. If |
error.bars |
logical. If |
error.bar.height |
The height of the error bar ends. |
error.bar.size |
The size/thickness of the error bars. |
error.bar.color |
The color of the error bars. If |
... |
ignored |
Invisibly returns the ggplot2
objects that form the larger
plot.
Plots a polarity_score object.
## S3 method for class 'polarity_score' plot( x, error.bar.height = 0.35, error.bar.size = 0.5, error.bar.alpha = 0.3, ... )
## S3 method for class 'polarity_score' plot( x, error.bar.height = 0.35, error.bar.size = 0.5, error.bar.alpha = 0.3, ... )
x |
The polarity_score object. |
error.bar.height |
The height of the error bar ends. |
error.bar.size |
The size/thickness of the error bars. |
error.bar.alpha |
The alpha level of the error bars. |
... |
ignored |
Plots a pos object.
## S3 method for class 'pos' plot(x, ...)
## S3 method for class 'pos' plot(x, ...)
x |
The pos object |
... |
ignored |
Plots a pos_by object.
## S3 method for class 'pos_by' plot( x, label = FALSE, lab.digits = 1, percent = NULL, zero.replace = NULL, ... )
## S3 method for class 'pos_by' plot( x, label = FALSE, lab.digits = 1, percent = NULL, zero.replace = NULL, ... )
x |
The pos_by object |
label |
logical. If TRUE the cells of the heat map plot will be labeled with count and proportional values. |
lab.digits |
Integer values specifying the number of digits to be
printed if |
percent |
logical. If TRUE output given as percent. If FALSE the
output is proportion. If NULL uses the value from
|
zero.replace |
Value to replace 0 values with. If NULL uses the value
from |
... |
Other arguments passed to qheat. |
Plots a pos_preprocessed object.
## S3 method for class 'pos_preprocessed' plot(x, ...)
## S3 method for class 'pos_preprocessed' plot(x, ...)
x |
The pos_preprocessed object. |
... |
ignored |
Plots an pronoun_type object.
## S3 method for class 'pronoun_type' plot(x, type = 1, ...)
## S3 method for class 'pronoun_type' plot(x, type = 1, ...)
x |
The pronoun_type object. |
type |
An integer of |
... |
Other arguments passed to |
Plots a question_type object.
## S3 method for class 'question_type' plot( x, label = FALSE, lab.digits = 1, percent = NULL, zero.replace = NULL, ... )
## S3 method for class 'question_type' plot( x, label = FALSE, lab.digits = 1, percent = NULL, zero.replace = NULL, ... )
x |
The question_type object. |
label |
logical. If TRUE the cells of the heat map plot will be labeled with count and proportional values. |
lab.digits |
Integer values specifying the number of digits to be
printed if |
percent |
logical. If TRUE output given as percent. If FALSE the
output is proportion. If NULL uses the value from
|
zero.replace |
Value to replace 0 values with. If NULL uses the value
from |
... |
Other arguments passed to qheat. |
Plots a question_type_preprocessed object.
## S3 method for class 'question_type_preprocessed' plot(x, ...)
## S3 method for class 'question_type_preprocessed' plot(x, ...)
x |
The question_type_preprocessed object. |
... |
Arguments passed to |
Plots a readability_count object.
## S3 method for class 'readability_count' plot(x, alpha = 0.3, ...)
## S3 method for class 'readability_count' plot(x, alpha = 0.3, ...)
x |
The readability_count object. |
alpha |
The alpha level to use for points. |
... |
ignored |
Plots a readability_score object.
## S3 method for class 'readability_score' plot(x, alpha = 0.3, auto.label, grid, div.col, ...)
## S3 method for class 'readability_score' plot(x, alpha = 0.3, auto.label, grid, div.col, ...)
x |
The readability_score object. |
alpha |
The alpha level to be used for the points. |
auto.label |
logical. For plotting |
grid |
logical. For plotting |
div.col |
For plotting |
... |
ignored |
Plots a rmgantt object.
## S3 method for class 'rmgantt' plot(x, title, transform = FALSE, ...)
## S3 method for class 'rmgantt' plot(x, title, transform = FALSE, ...)
x |
The sums_rmgantt object |
title |
An optional title. |
transform |
logical. If |
... |
Other arguments passed to |
Plots a sent_split object.
## S3 method for class 'sent_split' plot(x, text.var = NULL, rm.var = NULL, ...)
## S3 method for class 'sent_split' plot(x, text.var = NULL, rm.var = NULL, ...)
x |
The sent_split object. |
text.var |
The text variable (character string). |
rm.var |
An optional repeated measures character vector of 1 or 2 to
facet by. If |
... |
Other arguments passed to |
Plots a SMOG object.
## S3 method for class 'SMOG' plot(x, ...)
## S3 method for class 'SMOG' plot(x, ...)
x |
The readability_score object. |
... |
ignored |
Plots an subject_pronoun_type object.
## S3 method for class 'subject_pronoun_type' plot(x, type = 1, ...)
## S3 method for class 'subject_pronoun_type' plot(x, type = 1, ...)
x |
The subject_pronoun_type object. |
type |
An integer of |
... |
Other arguments passed to |
Plots a heat map of summary statistics for
sum_cmspans objects (the object produced by calling summary
on a
cmspans object).
## S3 method for class 'sum_cmspans' plot( x, digits = 3, sep = ".", name.sep = "&", values = TRUE, high = "red", transpose = TRUE, plot = TRUE, facet.vars = "time", rev.codes = !transpose, rev.stats = !transpose, ... )
## S3 method for class 'sum_cmspans' plot( x, digits = 3, sep = ".", name.sep = "&", values = TRUE, high = "red", transpose = TRUE, plot = TRUE, facet.vars = "time", rev.codes = !transpose, rev.stats = !transpose, ... )
x |
The sum_cmspans object (the object produced by calling
|
digits |
The number of digits displayed if |
sep |
The character that was used in |
name.sep |
The character that was used to paste the column names. |
values |
logical. If |
high |
The color to be used for higher values. |
transpose |
logical. If |
plot |
logical. If |
facet.vars |
A character vector of names to facet by. Default is
|
rev.codes |
logical If |
rev.stats |
logical If |
... |
Other arguments passed to qheat. |
Plots a sums_gantt object.
## S3 method for class 'sums_gantt' plot(x, base = TRUE, title = NULL, ...)
## S3 method for class 'sums_gantt' plot(x, base = TRUE, title = NULL, ...)
x |
The sums_gantt object |
base |
logical. If |
title |
An optional title. |
... |
Other arguments passed to |
Plots a syllable_freq object.
## S3 method for class 'syllable_freq' plot(x, ...)
## S3 method for class 'syllable_freq' plot(x, ...)
x |
The syllable_freq object. |
... |
ignored |
Plots a table_count object.
## S3 method for class 'table_count' plot(x, values = TRUE, high = "red", ...)
## S3 method for class 'table_count' plot(x, values = TRUE, high = "red", ...)
x |
The table_count object. |
values |
logical. If |
high |
The color to be used for higher values. |
... |
Other arguments passed to |
Plots a table_proportion object.
## S3 method for class 'table_proportion' plot(x, values = TRUE, high = "red", ...)
## S3 method for class 'table_proportion' plot(x, values = TRUE, high = "red", ...)
x |
The table_proportion object. |
values |
logical. If |
high |
The color to be used for higher values. |
... |
Other arguments passed to |
Plots a table_score object.
## S3 method for class 'table_score' plot(x, values = TRUE, high = "red", ...)
## S3 method for class 'table_score' plot(x, values = TRUE, high = "red", ...)
x |
The table_score object. |
values |
logical. If |
high |
The color to be used for higher values. |
... |
Other arguments passed to |
Plots a termco object.
## S3 method for class 'termco' plot( x, label = FALSE, lab.digits = 1, percent = NULL, zero.replace = NULL, ... )
## S3 method for class 'termco' plot( x, label = FALSE, lab.digits = 1, percent = NULL, zero.replace = NULL, ... )
x |
The termco object. |
label |
logical. If TRUE the cells of the heat map plot will be labeled with count and proportional values. |
lab.digits |
Integer values specifying the number of digits to be
printed if |
percent |
logical. If TRUE output given as percent. If FALSE the
output is proportion. If NULL uses the value from
|
zero.replace |
Value to replace 0 values with. If NULL uses the value
from |
... |
Other arguments passed to qheat. |
Plots a type_token_ratio object.
## S3 method for class 'type_token_ratio' plot(x, ...)
## S3 method for class 'type_token_ratio' plot(x, ...)
x |
The type_token_ratio object. |
... |
ignored. |
Plots a weighted_wfm object.
## S3 method for class 'weighted_wfm' plot( x, non.zero = FALSE, digits = 0, by.column = NULL, high = ifelse(non.zero, "black", "blue"), grid = ifelse(non.zero, "black", "white"), plot = TRUE, ... )
## S3 method for class 'weighted_wfm' plot( x, non.zero = FALSE, digits = 0, by.column = NULL, high = ifelse(non.zero, "black", "blue"), grid = ifelse(non.zero, "black", "white"), plot = TRUE, ... )
x |
The weighted_wfm object |
non.zero |
logical. If |
digits |
The number of digits displayed if |
by.column |
logical. If |
high |
The color to be used for higher values. |
grid |
The color of the grid (Use |
plot |
logical. If |
... |
Other arguments passed to qheat. |
Plots a wfdf object.
## S3 method for class 'wfdf' plot(x, ...)
## S3 method for class 'wfdf' plot(x, ...)
x |
The wfdf object |
... |
Other arguments passed to |
Plots a wfm object.
## S3 method for class 'wfm' plot( x, non.zero = FALSE, digits = 0, by.column = NULL, high = ifelse(non.zero, "black", "blue"), grid = ifelse(non.zero, "black", "white"), plot = TRUE, ... )
## S3 method for class 'wfm' plot( x, non.zero = FALSE, digits = 0, by.column = NULL, high = ifelse(non.zero, "black", "blue"), grid = ifelse(non.zero, "black", "white"), plot = TRUE, ... )
x |
The wfm object |
non.zero |
logical. If |
digits |
The number of digits displayed if |
by.column |
logical. If |
high |
The color to be used for higher values. |
grid |
The color of the grid (Use |
plot |
logical. If |
... |
Other arguments passed to qheat. |
Plots a word_cor object.
## S3 method for class 'word_cor' plot( x, label = TRUE, lab.digits = 3, high = "red", low = "white", grid = NULL, ncol = NULL, ... )
## S3 method for class 'word_cor' plot( x, label = TRUE, lab.digits = 3, high = "red", low = "white", grid = NULL, ncol = NULL, ... )
x |
The word_cor object |
label |
logical. If |
lab.digits |
Integer values specifying the number of digits to be
printed if |
high |
The color to be used for higher values. |
low |
The color to be used for lower values. |
grid |
The color of the grid (Use |
ncol |
The number of columns to arrange the facets in (specifying an
integer results in the use of |
... |
Other arguments passed to qheat if matrix and other arguments
passed to |
Plots a word_length object.
## S3 method for class 'word_length' plot( x, label = FALSE, lab.digits = 1, percent = NULL, zero.replace = NULL, ... )
## S3 method for class 'word_length' plot( x, label = FALSE, lab.digits = 1, percent = NULL, zero.replace = NULL, ... )
x |
The word_length object. |
label |
logical. If TRUE the cells of the heat map plot will be labeled with count and proportional values. |
lab.digits |
Integer values specifying the number of digits to be
printed if |
percent |
logical. If TRUE output given as percent. If FALSE the
output is proportion. If NULL uses the value from
|
zero.replace |
Value to replace 0 values with. If NULL uses the value
from |
... |
Other arguments passed to qheat. |
Plots a word_position object.
## S3 method for class 'word_position' plot(x, qheat = TRUE, scale = TRUE, ...)
## S3 method for class 'word_position' plot(x, qheat = TRUE, scale = TRUE, ...)
x |
The word_position object. |
qheat |
logical. If |
scale |
logical. If |
... |
Plots a word_proximity object.
## S3 method for class 'word_proximity' plot( x, label = TRUE, lab.digits = NULL, high = "red", low = "white", grid = NULL, ... )
## S3 method for class 'word_proximity' plot( x, label = TRUE, lab.digits = NULL, high = "red", low = "white", grid = NULL, ... )
x |
The word_proximity object |
label |
logical. If |
lab.digits |
Integer values specifying the number of digits to be
printed if |
high |
The color to be used for higher values. |
low |
The color to be used for lower values. |
grid |
The color of the grid (Use |
... |
Other arguments passed to qheat. |
Plots a word_stats object.
## S3 method for class 'word_stats' plot(x, label = FALSE, lab.digits = NULL, ...)
## S3 method for class 'word_stats' plot(x, label = FALSE, lab.digits = NULL, ...)
x |
The word_stats object |
label |
logical. If |
lab.digits |
Integer values specifying the number of digits to be
printed if |
... |
Other arguments passed to qheat. |
Plots a word_stats_counts object.
## S3 method for class 'word_stats_counts' plot(x, alpha = 0.3, ...)
## S3 method for class 'word_stats_counts' plot(x, alpha = 0.3, ...)
x |
The word_stats_counts object. |
alpha |
The alpha level to use for points. |
... |
ignored |
polarity
- Approximate the sentiment (polarity) of text by grouping
variable(s).
polarity( text.var, grouping.var = NULL, polarity.frame = qdapDictionaries::key.pol, constrain = FALSE, negators = qdapDictionaries::negation.words, amplifiers = qdapDictionaries::amplification.words, deamplifiers = qdapDictionaries::deamplification.words, question.weight = 0, amplifier.weight = 0.8, n.before = 4, n.after = 2, rm.incomplete = FALSE, digits = 3, ... )
polarity( text.var, grouping.var = NULL, polarity.frame = qdapDictionaries::key.pol, constrain = FALSE, negators = qdapDictionaries::negation.words, amplifiers = qdapDictionaries::amplification.words, deamplifiers = qdapDictionaries::deamplification.words, question.weight = 0, amplifier.weight = 0.8, n.before = 4, n.after = 2, rm.incomplete = FALSE, digits = 3, ... )
text.var |
The text variable. |
grouping.var |
The grouping variables. Default |
polarity.frame |
A dataframe or hash key of positive/negative words and weights. |
constrain |
logical. If
|
negators |
A character vector of terms reversing the intent of a positive or negative word. |
amplifiers |
A character vector of terms that increase the intensity of a positive or negative word. |
deamplifiers |
A character vector of terms that decrease the intensity of a positive or negative word. |
question.weight |
The weighting of questions (values from 0 to 1). Default 0 corresponds with the belief that questions (pure questions) are not polarized. A weight may be applied based on the evidence that the questions function with polarity. |
amplifier.weight |
The weight to apply to amplifiers/deamplifiers (values from 0 to 1). This value will multiply the polarized terms by 1 + this value. |
n.before |
The number of words to consider as valence shifters before the polarized word. |
n.after |
The number of words to consider as valence shifters after the polarized word. |
rm.incomplete |
logical. If |
digits |
Integer; number of decimal places to round when printing. |
... |
Other arguments supplied to |
The equation used by the algorithm to assign value to polarity of
each sentence fist utilizes the sentiment dictionary (Hu and Liu, 2004) to
tag polarized words. A context cluster () of words is
pulled from around this polarized word (default 4 words before and two words
after) to be considered as valence shifters. The words in this context
cluster are tagged as neutral (
), negator
(
), amplifier (
), or de-amplifier
(
). Neutral words hold no value
in the equation but do affect word count (
). Each polarized word is
then weighted
based on the weights from the
polarity.frame
argument and then further weighted by the number and position of the valence
shifters directly surrounding the positive or negative word. The researcher
may provide a weight to be utilized with amplifiers/de-amplifiers
(default is .8; deamplifier weight is constrained to -1 lower bound). Last,
these context cluster (
) are summed and divided by the
square root of the word count (
) yielding an unbounded
polarity score (
). Note that context clusters containing a
comma before the polarized word will only consider words found after the
comma.
Where:
Returns a list of:
all |
A dataframe of scores per row with:
|
group |
A dataframe with the average polarity score by grouping variable:
|
digits |
integer value od number of digits to display; mostly internal use |
The polarity score is dependent upon the polarity dictionary used.
This function defaults to the word polarity dictionary used by Hu, M., &
Liu, B. (2004), however, this may not be appropriate for the context of
children in a classroom. The user may (is encouraged) to provide/augment the
dictionary (see the sentiment_frame
function). For instance the word
"sick" in a high school setting may mean that something is good, whereas
"sick" used by a typical adult indicates something is not right or negative
connotation (deixis).
Also note that polarity
assumes you've run
sentSplit
.
Hu, M., & Liu, B. (2004). Mining opinion features in customer reviews. National Conference on Artificial Intelligence.
https://www.slideshare.net/jeffreybreen/r-by-example-mining-twitter-for
http://hedonometer.org/papers.html Links to papers on hedonometrics
https://github.com/trestletech/Sermon-Sentiment-Analysis
## Not run: with(DATA, polarity(state, list(sex, adult))) (poldat <- with(sentSplit(DATA, 4), polarity(state, person))) counts(poldat) scores(poldat) plot(poldat) poldat2 <- with(mraja1spl, polarity(dialogue, list(sex, fam.aff, died))) colsplit2df(scores(poldat2)) plot(poldat2) plot(scores(poldat2)) cumulative(poldat2) poldat3 <- with(rajSPLIT, polarity(dialogue, person)) poldat3[["group"]][, "OL"] <- outlier_labeler(scores(poldat3)[, "ave.polarity"]) poldat3[["all"]][, "OL"] <- outlier_labeler(counts(poldat3)[, "polarity"]) htruncdf(scores(poldat3), 10) htruncdf(counts(poldat3), 15, 8) plot(poldat3) plot(poldat3, nrow=4) qheat(scores(poldat3)[, -7], high="red", order.b="ave.polarity") ## Create researcher defined sentiment.frame POLKEY <- sentiment_frame(positive.words, negative.words) POLKEY c("abrasive", "abrupt", "happy") %hl% POLKEY # Augmenting the sentiment.frame mycorpus <- c("Wow that's a raw move.", "His jokes are so corny") counts(polarity(mycorpus)) POLKEY <- sentiment_frame(c(positive.words, "raw"), c(negative.words, "corny")) counts(polarity(mycorpus, polarity.frame=POLKEY)) ## ANIMATION #=========== (deb2 <- with(subset(pres_debates2012, time=="time 2"), polarity(dialogue, person))) bg_black <- Animate(deb2, neutral="white", current.speaker.color="grey70") print(bg_black, pause=.75) bgb <- vertex_apply(bg_black, label.color="grey80", size=20, color="grey40") bgb <- edge_apply(bgb, label.color="yellow") print(bgb, bg="black", pause=.75) ## Save it library(animation) library(igraph) library(plotrix) loc <- folder(animation_polarity) ## Set up the plotting function oopt <- animation::ani.options(interval = 0.1) FUN <- function() { Title <- "Animated Polarity: 2012 Presidential Debate 2" Legend <- c(-1.1, -1.25, -.2, -1.2) Legend.cex <- 1 lapply(seq_along(bgb), function(i) { par(mar=c(2, 0, 1, 0), bg="black") set.seed(10) plot.igraph(bgb[[i]], edge.curved=TRUE) mtext(Title, side=3, col="white") color.legend(Legend[1], Legend[2], Legend[3], Legend[4], c("Negative", "Neutral", "Positive"), attributes(bgb)[["legend"]], cex = Legend.cex, col="white") animation::ani.pause() }) } FUN() ## Detect OS type <- if(.Platform$OS.type == "windows") shell else system saveHTML(FUN(), autoplay = FALSE, loop = TRUE, verbose = FALSE, ani.height = 500, ani.width=500, outdir = file.path(loc, "new"), single.opts = "'controls': ['first', 'play', 'loop', 'speed'], 'delayMin': 0") ## Detect OS type <- if(.Platform$OS.type == "windows") shell else system saveHTML(FUN(), autoplay = FALSE, loop = TRUE, verbose = FALSE, ani.height = 1000, ani.width=650, outdir = loc, single.opts = "'controls': ['first', 'play', 'loop', 'speed'], 'delayMin': 0") ## Animated corresponding text plot Animate(deb2, type="text") #=====================# ## Complex Animation ## #=====================# library(animation) library(grid) library(gridBase) library(qdap) library(qdapTools) library(igraph) library(plotrix) library(gridExtra) deb2dat <- subset(pres_debates2012, time=="time 2") deb2dat[, "person"] <- factor(deb2dat[, "person"]) (deb2 <- with(deb2dat, polarity(dialogue, person))) ## Set up the network version bg_black <- Animate(deb2, neutral="white", current.speaker.color="grey70") bgb <- vertex_apply(bg_black, label.color="grey80", size=30, label.size=22, color="grey40") bgb <- edge_apply(bgb, label.color="yellow") ## Set up the bar version deb2_bar <- Animate(deb2, as.network=FALSE) ## Generate a folder loc2 <- folder(animation_polarity2) ## Set up the plotting function oopt <- animation::ani.options(interval = 0.1) FUN2 <- function(follow=FALSE, theseq = seq_along(bgb)) { Title <- "Animated Polarity: 2012 Presidential Debate 2" Legend <- c(.2, -1.075, 1.5, -1.005) Legend.cex <- 1 lapply(theseq, function(i) { if (follow) { png(file=sprintf("%s/images/Rplot%s.png", loc2, i), width=650, height=725) } ## Set up the layout layout(matrix(c(rep(1, 9), rep(2, 4)), 13, 1, byrow = TRUE)) ## Plot 1 par(mar=c(2, 0, 2, 0), bg="black") #par(mar=c(2, 0, 2, 0)) set.seed(20) plot.igraph(bgb[[i]], edge.curved=TRUE) mtext(Title, side=3, col="white") color.legend(Legend[1], Legend[2], Legend[3], Legend[4], c("Negative", "Neutral", "Positive"), attributes(bgb)[["legend"]], cex = Legend.cex, col="white") ## Plot2 plot.new() vps <- baseViewports() uns <- unit(c(-1.3,.5,-.75,.25), "cm") p <- deb2_bar[[i]] + theme(plot.margin = uns, text=element_text(color="white"), plot.background = element_rect(fill = "black", color="black")) print(p,vp = vpStack(vps$figure,vps$plot)) animation::ani.pause() if (follow) { dev.off() } }) } FUN2() ## Detect OS type <- if(.Platform$OS.type == "windows") shell else system saveHTML(FUN2(), autoplay = FALSE, loop = TRUE, verbose = FALSE, ani.height = 1000, ani.width=650, outdir = loc2, single.opts = "'controls': ['first', 'play', 'loop', 'speed'], 'delayMin': 0") FUN2(TRUE) #=====================# library(animation) library(grid) library(gridBase) library(qdap) library(qdapTools) library(igraph) library(plotrix) library(gplots) deb2dat <- subset(pres_debates2012, time=="time 2") deb2dat[, "person"] <- factor(deb2dat[, "person"]) (deb2 <- with(deb2dat, polarity(dialogue, person))) ## Set up the network version bg_black <- Animate(deb2, neutral="white", current.speaker.color="grey70") bgb <- vertex_apply(bg_black, label.color="grey80", size=30, label.size=22, color="grey40") bgb <- edge_apply(bgb, label.color="yellow") ## Set up the bar version deb2_bar <- Animate(deb2, as.network=FALSE) ## Set up the line version deb2_line <- plot(cumulative(deb2_bar)) ## Generate a folder loc2b <- folder(animation_polarity2) ## Set up the plotting function oopt <- animation::ani.options(interval = 0.1) FUN2 <- function(follow=FALSE, theseq = seq_along(bgb)) { Title <- "Animated Polarity: 2012 Presidential Debate 2" Legend <- c(.2, -1.075, 1.5, -1.005) Legend.cex <- 1 lapply(theseq, function(i) { if (follow) { png(file=sprintf("%s/images/Rplot%s.png", loc2b, i), width=650, height=725) } ## Set up the layout layout(matrix(c(rep(1, 9), rep(2, 4)), 13, 1, byrow = TRUE)) ## Plot 1 par(mar=c(2, 0, 2, 0), bg="black") #par(mar=c(2, 0, 2, 0)) set.seed(20) plot.igraph(bgb[[i]], edge.curved=TRUE) mtext(Title, side=3, col="white") color.legend(Legend[1], Legend[2], Legend[3], Legend[4], c("Negative", "Neutral", "Positive"), attributes(bgb)[["legend"]], cex = Legend.cex, col="white") ## Plot2 plot.new() vps <- baseViewports() uns <- unit(c(-1.3,.5,-.75,.25), "cm") p <- deb2_bar[[i]] + theme(plot.margin = uns, text=element_text(color="white"), plot.background = element_rect(fill = "black", color="black")) print(p,vp = vpStack(vps$figure,vps$plot)) animation::ani.pause() if (follow) { dev.off() } }) } FUN2() ## Detect OS type <- if(.Platform$OS.type == "windows") shell else system saveHTML(FUN2(), autoplay = FALSE, loop = TRUE, verbose = FALSE, ani.height = 1000, ani.width=650, outdir = loc2b, single.opts = "'controls': ['first', 'play', 'loop', 'speed'], 'delayMin': 0") FUN2(TRUE) ## Increased complexity ## -------------------- ## Helper function to cbind ggplots cbinder <- function(x, y){ uns_x <- unit(c(-1.3,.15,-.75,.25), "cm") uns_y <- unit(c(-1.3,.5,-.75,.15), "cm") x <- x + theme(plot.margin = uns_x, text=element_text(color="white"), plot.background = element_rect(fill = "black", color="black") ) y <- y + theme(plot.margin = uns_y, text=element_text(color="white"), plot.background = element_rect(fill = "black", color="black") ) plots <- list(x, y) grobs <- list() heights <- list() for (i in 1:length(plots)){ grobs[[i]] <- ggplotGrob(plots[[i]]) heights[[i]] <- grobs[[i]]$heights[2:5] } maxheight <- do.call(grid::unit.pmax, heights) for (i in 1:length(grobs)){ grobs[[i]]$heights[2:5] <- as.list(maxheight) } do.call("arrangeGrob", c(grobs, ncol = 2)) } deb2_combo <- Map(cbinder, deb2_bar, deb2_line) ## Generate a folder loc3 <- folder(animation_polarity3) FUN3 <- function(follow=FALSE, theseq = seq_along(bgb)) { Title <- "Animated Polarity: 2012 Presidential Debate 2" Legend <- c(.2, -1.075, 1.5, -1.005) Legend.cex <- 1 lapply(theseq, function(i) { if (follow) { png(file=sprintf("%s/images/Rplot%s.png", loc3, i), width=650, height=725) } ## Set up the layout layout(matrix(c(rep(1, 9), rep(2, 4)), 13, 1, byrow = TRUE)) ## Plot 1 par(mar=c(2, 0, 2, 0), bg="black") #par(mar=c(2, 0, 2, 0)) set.seed(20) plot.igraph(bgb[[i]], edge.curved=TRUE) mtext(Title, side=3, col="white") color.legend(Legend[1], Legend[2], Legend[3], Legend[4], c("Negative", "Neutral", "Positive"), attributes(bgb)[["legend"]], cex = Legend.cex, col="white") ## Plot2 plot.new() vps <- baseViewports() p <- deb2_combo[[i]] print(p,vp = vpStack(vps$figure,vps$plot)) animation::ani.pause() if (follow) { dev.off() } }) } FUN3() type <- if(.Platform$OS.type == "windows") shell else system saveHTML(FUN3(), autoplay = FALSE, loop = TRUE, verbose = FALSE, ani.height = 1000, ani.width=650, outdir = loc3, single.opts = "'controls': ['first', 'play', 'loop', 'speed'], 'delayMin': 0") FUN3(TRUE) ##-----------------------------## ## Constraining between -1 & 1 ## ##-----------------------------## ## The old behavior of polarity constrained the output to be between -1 and 1 ## this can be replicated via the `constrain = TRUE` argument: polarity("really hate anger") polarity("really hate anger", constrain=TRUE) #==================# ## Static Network ## #==================# (poldat <- with(sentSplit(DATA, 4), polarity(state, person))) m <- Network(poldat) m print(m, bg="grey97", vertex.color="grey75") print(m, title="Polarity Discourse Map", title.color="white", bg="black", legend.text.color="white", vertex.label.color = "grey70", edge.label.color="yellow") ## or use themes: dev.off() m + qtheme() m + theme_nightheat dev.off() m+ theme_nightheat(title="Polarity Discourse Map") #===============================# ## CUMULATIVE POLARITY EXAMPLE ## #===============================# # Hedonometrics # #===============================# poldat4 <- with(rajSPLIT, polarity(dialogue, act, constrain = TRUE)) polcount <- na.omit(counts(poldat4)$polarity) len <- length(polcount) cummean <- function(x){cumsum(x)/seq_along(x)} cumpolarity <- data.frame(cum_mean = cummean(polcount), Time=1:len) ## Calculate background rectangles ends <- cumsum(rle(counts(poldat4)$act)$lengths) starts <- c(1, head(ends + 1, -1)) rects <- data.frame(xstart = starts, xend = ends + 1, Act = c("I", "II", "III", "IV", "V")) library(ggplot2) ggplot() + theme_bw() + geom_rect(data = rects, aes(xmin = xstart, xmax = xend, ymin = -Inf, ymax = Inf, fill = Act), alpha = 0.17) + geom_smooth(data = cumpolarity, aes(y=cum_mean, x = Time)) + geom_hline(y=mean(polcount), color="grey30", size=1, alpha=.3, linetype=2) + annotate("text", x = mean(ends[1:2]), y = mean(polcount), color="grey30", label = "Average Polarity", vjust = .3, size=3) + geom_line(data = cumpolarity, aes(y=cum_mean, x = Time), size=1) + ylab("Cumulative Average Polarity") + xlab("Duration") + scale_x_continuous(expand = c(0,0)) + geom_text(data=rects, aes(x=(xstart + xend)/2, y=-.04, label=paste("Act", Act)), size=3) + guides(fill=FALSE) + scale_fill_brewer(palette="Set1") ## End(Not run)
## Not run: with(DATA, polarity(state, list(sex, adult))) (poldat <- with(sentSplit(DATA, 4), polarity(state, person))) counts(poldat) scores(poldat) plot(poldat) poldat2 <- with(mraja1spl, polarity(dialogue, list(sex, fam.aff, died))) colsplit2df(scores(poldat2)) plot(poldat2) plot(scores(poldat2)) cumulative(poldat2) poldat3 <- with(rajSPLIT, polarity(dialogue, person)) poldat3[["group"]][, "OL"] <- outlier_labeler(scores(poldat3)[, "ave.polarity"]) poldat3[["all"]][, "OL"] <- outlier_labeler(counts(poldat3)[, "polarity"]) htruncdf(scores(poldat3), 10) htruncdf(counts(poldat3), 15, 8) plot(poldat3) plot(poldat3, nrow=4) qheat(scores(poldat3)[, -7], high="red", order.b="ave.polarity") ## Create researcher defined sentiment.frame POLKEY <- sentiment_frame(positive.words, negative.words) POLKEY c("abrasive", "abrupt", "happy") %hl% POLKEY # Augmenting the sentiment.frame mycorpus <- c("Wow that's a raw move.", "His jokes are so corny") counts(polarity(mycorpus)) POLKEY <- sentiment_frame(c(positive.words, "raw"), c(negative.words, "corny")) counts(polarity(mycorpus, polarity.frame=POLKEY)) ## ANIMATION #=========== (deb2 <- with(subset(pres_debates2012, time=="time 2"), polarity(dialogue, person))) bg_black <- Animate(deb2, neutral="white", current.speaker.color="grey70") print(bg_black, pause=.75) bgb <- vertex_apply(bg_black, label.color="grey80", size=20, color="grey40") bgb <- edge_apply(bgb, label.color="yellow") print(bgb, bg="black", pause=.75) ## Save it library(animation) library(igraph) library(plotrix) loc <- folder(animation_polarity) ## Set up the plotting function oopt <- animation::ani.options(interval = 0.1) FUN <- function() { Title <- "Animated Polarity: 2012 Presidential Debate 2" Legend <- c(-1.1, -1.25, -.2, -1.2) Legend.cex <- 1 lapply(seq_along(bgb), function(i) { par(mar=c(2, 0, 1, 0), bg="black") set.seed(10) plot.igraph(bgb[[i]], edge.curved=TRUE) mtext(Title, side=3, col="white") color.legend(Legend[1], Legend[2], Legend[3], Legend[4], c("Negative", "Neutral", "Positive"), attributes(bgb)[["legend"]], cex = Legend.cex, col="white") animation::ani.pause() }) } FUN() ## Detect OS type <- if(.Platform$OS.type == "windows") shell else system saveHTML(FUN(), autoplay = FALSE, loop = TRUE, verbose = FALSE, ani.height = 500, ani.width=500, outdir = file.path(loc, "new"), single.opts = "'controls': ['first', 'play', 'loop', 'speed'], 'delayMin': 0") ## Detect OS type <- if(.Platform$OS.type == "windows") shell else system saveHTML(FUN(), autoplay = FALSE, loop = TRUE, verbose = FALSE, ani.height = 1000, ani.width=650, outdir = loc, single.opts = "'controls': ['first', 'play', 'loop', 'speed'], 'delayMin': 0") ## Animated corresponding text plot Animate(deb2, type="text") #=====================# ## Complex Animation ## #=====================# library(animation) library(grid) library(gridBase) library(qdap) library(qdapTools) library(igraph) library(plotrix) library(gridExtra) deb2dat <- subset(pres_debates2012, time=="time 2") deb2dat[, "person"] <- factor(deb2dat[, "person"]) (deb2 <- with(deb2dat, polarity(dialogue, person))) ## Set up the network version bg_black <- Animate(deb2, neutral="white", current.speaker.color="grey70") bgb <- vertex_apply(bg_black, label.color="grey80", size=30, label.size=22, color="grey40") bgb <- edge_apply(bgb, label.color="yellow") ## Set up the bar version deb2_bar <- Animate(deb2, as.network=FALSE) ## Generate a folder loc2 <- folder(animation_polarity2) ## Set up the plotting function oopt <- animation::ani.options(interval = 0.1) FUN2 <- function(follow=FALSE, theseq = seq_along(bgb)) { Title <- "Animated Polarity: 2012 Presidential Debate 2" Legend <- c(.2, -1.075, 1.5, -1.005) Legend.cex <- 1 lapply(theseq, function(i) { if (follow) { png(file=sprintf("%s/images/Rplot%s.png", loc2, i), width=650, height=725) } ## Set up the layout layout(matrix(c(rep(1, 9), rep(2, 4)), 13, 1, byrow = TRUE)) ## Plot 1 par(mar=c(2, 0, 2, 0), bg="black") #par(mar=c(2, 0, 2, 0)) set.seed(20) plot.igraph(bgb[[i]], edge.curved=TRUE) mtext(Title, side=3, col="white") color.legend(Legend[1], Legend[2], Legend[3], Legend[4], c("Negative", "Neutral", "Positive"), attributes(bgb)[["legend"]], cex = Legend.cex, col="white") ## Plot2 plot.new() vps <- baseViewports() uns <- unit(c(-1.3,.5,-.75,.25), "cm") p <- deb2_bar[[i]] + theme(plot.margin = uns, text=element_text(color="white"), plot.background = element_rect(fill = "black", color="black")) print(p,vp = vpStack(vps$figure,vps$plot)) animation::ani.pause() if (follow) { dev.off() } }) } FUN2() ## Detect OS type <- if(.Platform$OS.type == "windows") shell else system saveHTML(FUN2(), autoplay = FALSE, loop = TRUE, verbose = FALSE, ani.height = 1000, ani.width=650, outdir = loc2, single.opts = "'controls': ['first', 'play', 'loop', 'speed'], 'delayMin': 0") FUN2(TRUE) #=====================# library(animation) library(grid) library(gridBase) library(qdap) library(qdapTools) library(igraph) library(plotrix) library(gplots) deb2dat <- subset(pres_debates2012, time=="time 2") deb2dat[, "person"] <- factor(deb2dat[, "person"]) (deb2 <- with(deb2dat, polarity(dialogue, person))) ## Set up the network version bg_black <- Animate(deb2, neutral="white", current.speaker.color="grey70") bgb <- vertex_apply(bg_black, label.color="grey80", size=30, label.size=22, color="grey40") bgb <- edge_apply(bgb, label.color="yellow") ## Set up the bar version deb2_bar <- Animate(deb2, as.network=FALSE) ## Set up the line version deb2_line <- plot(cumulative(deb2_bar)) ## Generate a folder loc2b <- folder(animation_polarity2) ## Set up the plotting function oopt <- animation::ani.options(interval = 0.1) FUN2 <- function(follow=FALSE, theseq = seq_along(bgb)) { Title <- "Animated Polarity: 2012 Presidential Debate 2" Legend <- c(.2, -1.075, 1.5, -1.005) Legend.cex <- 1 lapply(theseq, function(i) { if (follow) { png(file=sprintf("%s/images/Rplot%s.png", loc2b, i), width=650, height=725) } ## Set up the layout layout(matrix(c(rep(1, 9), rep(2, 4)), 13, 1, byrow = TRUE)) ## Plot 1 par(mar=c(2, 0, 2, 0), bg="black") #par(mar=c(2, 0, 2, 0)) set.seed(20) plot.igraph(bgb[[i]], edge.curved=TRUE) mtext(Title, side=3, col="white") color.legend(Legend[1], Legend[2], Legend[3], Legend[4], c("Negative", "Neutral", "Positive"), attributes(bgb)[["legend"]], cex = Legend.cex, col="white") ## Plot2 plot.new() vps <- baseViewports() uns <- unit(c(-1.3,.5,-.75,.25), "cm") p <- deb2_bar[[i]] + theme(plot.margin = uns, text=element_text(color="white"), plot.background = element_rect(fill = "black", color="black")) print(p,vp = vpStack(vps$figure,vps$plot)) animation::ani.pause() if (follow) { dev.off() } }) } FUN2() ## Detect OS type <- if(.Platform$OS.type == "windows") shell else system saveHTML(FUN2(), autoplay = FALSE, loop = TRUE, verbose = FALSE, ani.height = 1000, ani.width=650, outdir = loc2b, single.opts = "'controls': ['first', 'play', 'loop', 'speed'], 'delayMin': 0") FUN2(TRUE) ## Increased complexity ## -------------------- ## Helper function to cbind ggplots cbinder <- function(x, y){ uns_x <- unit(c(-1.3,.15,-.75,.25), "cm") uns_y <- unit(c(-1.3,.5,-.75,.15), "cm") x <- x + theme(plot.margin = uns_x, text=element_text(color="white"), plot.background = element_rect(fill = "black", color="black") ) y <- y + theme(plot.margin = uns_y, text=element_text(color="white"), plot.background = element_rect(fill = "black", color="black") ) plots <- list(x, y) grobs <- list() heights <- list() for (i in 1:length(plots)){ grobs[[i]] <- ggplotGrob(plots[[i]]) heights[[i]] <- grobs[[i]]$heights[2:5] } maxheight <- do.call(grid::unit.pmax, heights) for (i in 1:length(grobs)){ grobs[[i]]$heights[2:5] <- as.list(maxheight) } do.call("arrangeGrob", c(grobs, ncol = 2)) } deb2_combo <- Map(cbinder, deb2_bar, deb2_line) ## Generate a folder loc3 <- folder(animation_polarity3) FUN3 <- function(follow=FALSE, theseq = seq_along(bgb)) { Title <- "Animated Polarity: 2012 Presidential Debate 2" Legend <- c(.2, -1.075, 1.5, -1.005) Legend.cex <- 1 lapply(theseq, function(i) { if (follow) { png(file=sprintf("%s/images/Rplot%s.png", loc3, i), width=650, height=725) } ## Set up the layout layout(matrix(c(rep(1, 9), rep(2, 4)), 13, 1, byrow = TRUE)) ## Plot 1 par(mar=c(2, 0, 2, 0), bg="black") #par(mar=c(2, 0, 2, 0)) set.seed(20) plot.igraph(bgb[[i]], edge.curved=TRUE) mtext(Title, side=3, col="white") color.legend(Legend[1], Legend[2], Legend[3], Legend[4], c("Negative", "Neutral", "Positive"), attributes(bgb)[["legend"]], cex = Legend.cex, col="white") ## Plot2 plot.new() vps <- baseViewports() p <- deb2_combo[[i]] print(p,vp = vpStack(vps$figure,vps$plot)) animation::ani.pause() if (follow) { dev.off() } }) } FUN3() type <- if(.Platform$OS.type == "windows") shell else system saveHTML(FUN3(), autoplay = FALSE, loop = TRUE, verbose = FALSE, ani.height = 1000, ani.width=650, outdir = loc3, single.opts = "'controls': ['first', 'play', 'loop', 'speed'], 'delayMin': 0") FUN3(TRUE) ##-----------------------------## ## Constraining between -1 & 1 ## ##-----------------------------## ## The old behavior of polarity constrained the output to be between -1 and 1 ## this can be replicated via the `constrain = TRUE` argument: polarity("really hate anger") polarity("really hate anger", constrain=TRUE) #==================# ## Static Network ## #==================# (poldat <- with(sentSplit(DATA, 4), polarity(state, person))) m <- Network(poldat) m print(m, bg="grey97", vertex.color="grey75") print(m, title="Polarity Discourse Map", title.color="white", bg="black", legend.text.color="white", vertex.label.color = "grey70", edge.label.color="yellow") ## or use themes: dev.off() m + qtheme() m + theme_nightheat dev.off() m+ theme_nightheat(title="Polarity Discourse Map") #===============================# ## CUMULATIVE POLARITY EXAMPLE ## #===============================# # Hedonometrics # #===============================# poldat4 <- with(rajSPLIT, polarity(dialogue, act, constrain = TRUE)) polcount <- na.omit(counts(poldat4)$polarity) len <- length(polcount) cummean <- function(x){cumsum(x)/seq_along(x)} cumpolarity <- data.frame(cum_mean = cummean(polcount), Time=1:len) ## Calculate background rectangles ends <- cumsum(rle(counts(poldat4)$act)$lengths) starts <- c(1, head(ends + 1, -1)) rects <- data.frame(xstart = starts, xend = ends + 1, Act = c("I", "II", "III", "IV", "V")) library(ggplot2) ggplot() + theme_bw() + geom_rect(data = rects, aes(xmin = xstart, xmax = xend, ymin = -Inf, ymax = Inf, fill = Act), alpha = 0.17) + geom_smooth(data = cumpolarity, aes(y=cum_mean, x = Time)) + geom_hline(y=mean(polcount), color="grey30", size=1, alpha=.3, linetype=2) + annotate("text", x = mean(ends[1:2]), y = mean(polcount), color="grey30", label = "Average Polarity", vjust = .3, size=3) + geom_line(data = cumpolarity, aes(y=cum_mean, x = Time), size=1) + ylab("Cumulative Average Polarity") + xlab("Duration") + scale_x_continuous(expand = c(0,0)) + geom_text(data=rects, aes(x=(xstart + xend)/2, y=-.04, label=paste("Act", Act)), size=3) + guides(fill=FALSE) + scale_fill_brewer(palette="Set1") ## End(Not run)
pos
- Apply part of speech tagger to transcript(s).
pos_by
- Apply part of speech tagger to transcript(s) by zero or more
grouping variable(s).
pos_tags
- Useful for interpreting the parts of speech tags created by
pos and pos_by.
pos( text.var, parallel = FALSE, cores = detectCores()/2, progress.bar = TRUE, na.omit = FALSE, digits = 1, percent = TRUE, zero.replace = 0, gc.rate = 10 ) pos_by( text.var, grouping.var = NULL, digits = 1, percent = TRUE, zero.replace = 0, ... ) pos_tags(type = "pretty")
pos( text.var, parallel = FALSE, cores = detectCores()/2, progress.bar = TRUE, na.omit = FALSE, digits = 1, percent = TRUE, zero.replace = 0, gc.rate = 10 ) pos_by( text.var, grouping.var = NULL, digits = 1, percent = TRUE, zero.replace = 0, ... ) pos_tags(type = "pretty")
text.var |
The text variable. |
parallel |
logical. If |
cores |
The number of cores to use if |
progress.bar |
logical. If |
na.omit |
logical. If |
digits |
Integer; number of decimal places to round when printing. |
percent |
logical. If |
zero.replace |
Value to replace 0 values with. |
gc.rate |
An integer value. This is a necessary argument because of a
problem with the garbage collection in the openNLP function that
|
grouping.var |
The grouping variables. Default |
type |
An optional character string giving the output of the pos tags.
This must be one of the strings |
... |
Other argument supplied to |
pos
- returns a list of 4:
text |
The original text |
POStagged |
The original words replaced with parts of speech in context. |
POSprop |
Dataframe of the proportion of parts of speech by row. |
POSfreq |
Dataframe of the frequency of parts of speech by row. |
POSrnp |
Dataframe of the frequency and proportions of parts of speech by row. |
percent |
The value of percent used for plotting purposes. |
zero.replace |
The value of zero.replace used for plotting purposes. |
pos_by
- returns a list of 6:
text |
The original text |
POStagged |
The original words replaced with parts of speech in context. |
POSprop |
Dataframe of the proportion of parts of speech by row. |
POSfreq |
Dataframe of the frequency of parts of speech by row. |
POSrnp |
Dataframe of the frequency and proportions of parts of speech by row. |
pos.by.prop |
Dataframe of the proportion of parts of speech by grouping variable. |
pos.by.freq |
Dataframe of the frequency of parts of speech by grouping variable. |
pos.by.rnp |
Dataframe of the frequency and proportions of parts of speech by grouping variable. |
percent |
The value of percent used for plotting purposes. |
zero.replace |
The value of zero.replace used for plotting purposes. |
Note that contractions are treated as two words; for example the word
count on "what's" is 2 for "what + is". This is not consistent
with the word_count
treatment of contractions but makes
sense in a part of speech framework where a phrase such as "She's cool" is
treated as a pronoun, verb and adjective respectively for "She + is + cool".
http:/opennlp.apache.org
Maxent_POS_Tag_Annotator
,
colcomb2class
## Not run: posdat <- pos(DATA$state) ltruncdf(posdat, 7, 4) ## str(posdat) names(posdat) posdat$text #original text ## Methods preprocessed(posdat) #words replaced with parts of speech counts(posdat) #frequency of parts of speech by row proportions(posdat) #proportion of parts of speech by row ## Methods Plotting plot(preprocessed(posdat)) plot(counts(posdat)) plot(proportions(posdat)) plot(posdat) out1 <- pos(DATA$state, parallel = TRUE) # not always useful ltruncdf(out1, 7, 4) #use pos_tags to interpret part of speech tags used by pos & pos_by pos_tags()[1:10, ] pos_tags("matrix")[1:10, ] pos_tags("dataframe")[1:10, ] pos_tags("df")[1:10, ] ltruncdf(pos_tags("all"), 3) posbydat <- with(DATA, pos_by(state, sex)) names(posbydat) ## Methods scores(posbydat) preprocessed(posbydat) counts(posbydat) proportions(posbydat) ## Methods Plotting plot(preprocessed(posbydat)) plot(counts(posbydat)) plot(proportions(posbydat)) plot(posbydat) ltruncdf(posbydat, 7, 4) truncdf(posbydat$pos.by.prop, 4) POSby <- with(DATA, pos_by(state, list(adult, sex))) plot(POSby, values = TRUE, digits = 2) #or more quickly - reuse the output from before out2 <- with(DATA, pos_by(posbydat, list(adult, sex))) ## Definite/Indefinite Noun ## 2 approached compared... ## The later is more efficient but less accurate ## ------------------------## ## Part off speech tagging ## ## ------------------------## pos_after <- function(text.var, words, pos){ posses <- strsplit(as.character(text.var[["POStagged"]][["POStagged"]]), "\\s+") namespos <- lapply(posses, function(x) { y <- unlist(strsplit(x, "/")) setNames(y[c(TRUE, FALSE)], y[c(FALSE, TRUE)]) }) lapply(namespos, function(x, thewords = words, thepos = pos){ locs <- which(x %in% thewords) locs <- locs[!is.na(locs)] if (identical(unclass(locs), integer(0))) return(NA_character_) nounlocs <- which(names(x) %in% thepos) unname(x[unique(sapply(locs, function(x){ min(nounlocs[nounlocs - x > 0]) }))]) }) } out2 <- setNames(lapply(list(a=c("a", "an"), the="the"), function(x) { o <- pos_after(rajPOS, x, c("NN", "NNS", "NNP", "NNPS")) m <- stats::setNames(data.frame(sort(table(unlist(o))), stringsAsFactors = FALSE), c("word", "freq")) m[m$freq> 3, ] }), c("a", "the")) dat2 <- setNames(Reduce(function(x, y) { merge(x, y, by = "word", all = TRUE)}, out2), c("Word", "A", "THE")) dat2 <- reshape2::melt(dat2, id="Word", variable.name="Article", value.name="freq") dat2 <- dat2[order(dat2$freq, dat2$Word), ] ord2 <- aggregate(freq ~ Word, dat2, sum) dat2$Word <- factor(dat2$Word, levels=ord2[order(ord2[[2]]), 1]) rownames(dat2) <- NULL ggplot(dat2, aes(x=freq, y=Word)) + geom_point()+ facet_grid(~Article) + ggtitle("Part Of Speech Parsing Approach") dev.new() ## --------------------## ## Regular Expressions ## ## --------------------## library(qdapRegex);library(ggplot2);library(reshape2) out <- setNames(lapply(c("@after_a", "@after_the"), function(x) { o <- rm_default(stringi:::stri_trans_tolower(raj$dialogue), pattern = x, extract=TRUE) m <- stats::setNames(data.frame(sort(table(unlist(o))), stringsAsFactors = FALSE), c("word", "freq")) m[m$freq> 3, ] }), c("a", "the")) dat <- setNames(Reduce(function(x, y) { merge(x, y, by = "word", all = TRUE)}, out), c("Word", "A", "THE")) dat <- reshape2::melt(dat, id="Word", variable.name="Article", value.name="freq") dat <- dat[order(dat$freq, dat$Word), ] ord <- aggregate(freq ~ Word, dat, sum) dat$Word <- factor(dat$Word, levels=ord[order(ord[[2]]), 1]) rownames(dat) <- NULL ggplot(dat, aes(x=freq, y=Word)) + geom_point()+ facet_grid(~Article) + ggtitle("Regex Approach") ## End(Not run)
## Not run: posdat <- pos(DATA$state) ltruncdf(posdat, 7, 4) ## str(posdat) names(posdat) posdat$text #original text ## Methods preprocessed(posdat) #words replaced with parts of speech counts(posdat) #frequency of parts of speech by row proportions(posdat) #proportion of parts of speech by row ## Methods Plotting plot(preprocessed(posdat)) plot(counts(posdat)) plot(proportions(posdat)) plot(posdat) out1 <- pos(DATA$state, parallel = TRUE) # not always useful ltruncdf(out1, 7, 4) #use pos_tags to interpret part of speech tags used by pos & pos_by pos_tags()[1:10, ] pos_tags("matrix")[1:10, ] pos_tags("dataframe")[1:10, ] pos_tags("df")[1:10, ] ltruncdf(pos_tags("all"), 3) posbydat <- with(DATA, pos_by(state, sex)) names(posbydat) ## Methods scores(posbydat) preprocessed(posbydat) counts(posbydat) proportions(posbydat) ## Methods Plotting plot(preprocessed(posbydat)) plot(counts(posbydat)) plot(proportions(posbydat)) plot(posbydat) ltruncdf(posbydat, 7, 4) truncdf(posbydat$pos.by.prop, 4) POSby <- with(DATA, pos_by(state, list(adult, sex))) plot(POSby, values = TRUE, digits = 2) #or more quickly - reuse the output from before out2 <- with(DATA, pos_by(posbydat, list(adult, sex))) ## Definite/Indefinite Noun ## 2 approached compared... ## The later is more efficient but less accurate ## ------------------------## ## Part off speech tagging ## ## ------------------------## pos_after <- function(text.var, words, pos){ posses <- strsplit(as.character(text.var[["POStagged"]][["POStagged"]]), "\\s+") namespos <- lapply(posses, function(x) { y <- unlist(strsplit(x, "/")) setNames(y[c(TRUE, FALSE)], y[c(FALSE, TRUE)]) }) lapply(namespos, function(x, thewords = words, thepos = pos){ locs <- which(x %in% thewords) locs <- locs[!is.na(locs)] if (identical(unclass(locs), integer(0))) return(NA_character_) nounlocs <- which(names(x) %in% thepos) unname(x[unique(sapply(locs, function(x){ min(nounlocs[nounlocs - x > 0]) }))]) }) } out2 <- setNames(lapply(list(a=c("a", "an"), the="the"), function(x) { o <- pos_after(rajPOS, x, c("NN", "NNS", "NNP", "NNPS")) m <- stats::setNames(data.frame(sort(table(unlist(o))), stringsAsFactors = FALSE), c("word", "freq")) m[m$freq> 3, ] }), c("a", "the")) dat2 <- setNames(Reduce(function(x, y) { merge(x, y, by = "word", all = TRUE)}, out2), c("Word", "A", "THE")) dat2 <- reshape2::melt(dat2, id="Word", variable.name="Article", value.name="freq") dat2 <- dat2[order(dat2$freq, dat2$Word), ] ord2 <- aggregate(freq ~ Word, dat2, sum) dat2$Word <- factor(dat2$Word, levels=ord2[order(ord2[[2]]), 1]) rownames(dat2) <- NULL ggplot(dat2, aes(x=freq, y=Word)) + geom_point()+ facet_grid(~Article) + ggtitle("Part Of Speech Parsing Approach") dev.new() ## --------------------## ## Regular Expressions ## ## --------------------## library(qdapRegex);library(ggplot2);library(reshape2) out <- setNames(lapply(c("@after_a", "@after_the"), function(x) { o <- rm_default(stringi:::stri_trans_tolower(raj$dialogue), pattern = x, extract=TRUE) m <- stats::setNames(data.frame(sort(table(unlist(o))), stringsAsFactors = FALSE), c("word", "freq")) m[m$freq> 3, ] }), c("a", "the")) dat <- setNames(Reduce(function(x, y) { merge(x, y, by = "word", all = TRUE)}, out), c("Word", "A", "THE")) dat <- reshape2::melt(dat, id="Word", variable.name="Article", value.name="freq") dat <- dat[order(dat$freq, dat$Word), ] ord <- aggregate(freq ~ Word, dat, sum) dat$Word <- factor(dat$Word, levels=ord[order(ord[[2]]), 1]) rownames(dat) <- NULL ggplot(dat, aes(x=freq, y=Word)) + geom_point()+ facet_grid(~Article) + ggtitle("Regex Approach") ## End(Not run)
Search for potential missing values (i.e., sentences that are merely a
punctuation mark) and optionally replace with missing value (NA
).
Useful in the initial cleaning process.
potential_NA(text.var, n = 3)
potential_NA(text.var, n = 3)
text.var |
The text variable. |
n |
Number of characters to consider for missing (default is 3). |
Returns a dataframe of potential missing values row numbers and text.
## Not run: DATA$state[c(3, 7)] <- "." potential_NA(DATA$state, 20) potential_NA(DATA$state) # USE TO SELCTIVELY REPLACE CELLS WITH MISSING VALUES DATA$state[potential_NA(DATA$state, 20)$row[-c(3)]] <- NA DATA DATA <- qdap::DATA ## End(Not run)
## Not run: DATA$state[c(3, 7)] <- "." potential_NA(DATA$state, 20) potential_NA(DATA$state) # USE TO SELCTIVELY REPLACE CELLS WITH MISSING VALUES DATA$state[potential_NA(DATA$state, 20)$row[-c(3)]] <- NA DATA DATA <- qdap::DATA ## End(Not run)
Access the preprocessed dataframes/lists from select qdap outputs.
preprocessed(x, ...)
preprocessed(x, ...)
x |
A qdap object (list) with a dataframe/list of preprocessed data
(e.g., |
... |
Arguments passed to preprocessed method of other classes. |
Returns a data.frame or list of preprocessed data.
scores
,
counts
,
proportions
,
visual
View check_spelling_interactive preprocessed.
## S3 method for class 'check_spelling_interactive' preprocessed(x, ...)
## S3 method for class 'check_spelling_interactive' preprocessed(x, ...)
x |
The |
... |
ignored |
check_spelling_interactive Method for preprocessed
View end_mark_by
preprocessed.
## S3 method for class 'end_mark_by' preprocessed(x, ...)
## S3 method for class 'end_mark_by' preprocessed(x, ...)
x |
The end_mark_by object. |
... |
ignored |
end_mark_by Method for preprocessed
preprocessed.lexical_classification
- View preprocessed from lexical_classification
.
## S3 method for class 'lexical_classification' preprocessed(x, ...)
## S3 method for class 'lexical_classification' preprocessed(x, ...)
x |
The lexical_classification object. |
... |
ignored |
lexical_classification Method for preprocessed.
View object_pronoun_type
preprocessed.
## S3 method for class 'object_pronoun_type' preprocessed(x, ...)
## S3 method for class 'object_pronoun_type' preprocessed(x, ...)
x |
The object_pronoun_type object. |
... |
ignored |
object_pronoun_type Method for preprocessed
View pos preprocessed.
## S3 method for class 'pos' preprocessed(x, ...)
## S3 method for class 'pos' preprocessed(x, ...)
x |
The |
... |
ignored |
pos Method for preprocessed
View pos_by preprocessed.
## S3 method for class 'pos_by' preprocessed(x, ...)
## S3 method for class 'pos_by' preprocessed(x, ...)
x |
The |
... |
ignored |
pos_by Method for preprocessed
View pronoun_type
preprocessed.
## S3 method for class 'pronoun_type' preprocessed(x, ...)
## S3 method for class 'pronoun_type' preprocessed(x, ...)
x |
The pronoun_type object. |
... |
ignored |
pronoun_type Method for preprocessed
View question_type
preprocessed.
## S3 method for class 'question_type' preprocessed(x, ...)
## S3 method for class 'question_type' preprocessed(x, ...)
x |
The question_type object. |
... |
ignored |
question_type Method for preprocessed
View subject_pronoun_type
preprocessed.
## S3 method for class 'subject_pronoun_type' preprocessed(x, ...)
## S3 method for class 'subject_pronoun_type' preprocessed(x, ...)
x |
The subject_pronoun_type object. |
... |
ignored |
subject_pronoun_type Method for preprocessed
View word_position
preprocessed.
## S3 method for class 'word_position' preprocessed(x, ...)
## S3 method for class 'word_position' preprocessed(x, ...)
x |
The word_position object. |
... |
ignored |
word_position Method for preprocessed
A dataset containing the raw version of the first presidential debate.
data(pres_debate_raw2012)
data(pres_debate_raw2012)
A data frame with 94 rows and 2 variables
person. The speaker
dialogue. The words spoken
A dataset containing a cleaned version of all three presidential debates for the 2012 election.
data(pres_debates2012)
data(pres_debates2012)
A data frame with 2912 rows and 4 variables
person. The speaker
tot. Turn of talk
dialogue. The words spoken
time. Variable indicating which of the three debates the dialogue is from
Prints an adjacency_matrix object.
## S3 method for class 'adjacency_matrix' print(x, ...)
## S3 method for class 'adjacency_matrix' print(x, ...)
x |
The adjacency_matrix object. |
... |
ignored |
Prints an all_words object.
## S3 method for class 'all_words' print(x, ...)
## S3 method for class 'all_words' print(x, ...)
x |
The all_words object. |
... |
ignored |
Prints an animated_character object.
## S3 method for class 'animated_character' print(x, pause = 0, ...)
## S3 method for class 'animated_character' print(x, pause = 0, ...)
x |
The animated_character object. |
pause |
The length of time to pause between plots. |
... |
ignored. |
Prints an animated_discourse_map object.
## S3 method for class 'animated_discourse_map' print( x, title = NULL, seed = sample(1:10000, 1), layout = layout.auto, pause = 0, ... )
## S3 method for class 'animated_discourse_map' print( x, title = NULL, seed = sample(1:10000, 1), layout = layout.auto, pause = 0, ... )
x |
The animated_discourse_map object. |
title |
The title of the plot. |
seed |
The seed to use in plotting the graph. |
layout |
igraph |
pause |
The length of time to pause between plots. |
... |
Other Arguments passed to |
Prints a animated_formality object.
## S3 method for class 'animated_formality' print( x, title = NULL, seed = sample(1:10000, 1), layout = layout.auto, pause = 0, legend = c(-0.5, -1.5, 0.5, -1.45), legend.cex = 1, bg = NULL, net.legend.color = "black", ... )
## S3 method for class 'animated_formality' print( x, title = NULL, seed = sample(1:10000, 1), layout = layout.auto, pause = 0, legend = c(-0.5, -1.5, 0.5, -1.45), legend.cex = 1, bg = NULL, net.legend.color = "black", ... )
x |
The animated_formality object. |
title |
The title of the plot. |
seed |
The seed to use in plotting the graph. |
layout |
igraph |
pause |
The length of time to pause between plots. |
legend |
The coordinates of the legend. See
|
legend.cex |
character expansion factor. |
bg |
The color to be used for the background of the device region. See
|
net.legend.color |
The text legend color for the network plot. |
... |
Other Arguments passed to |
Prints an animated_lexical_classification object.
## S3 method for class 'animated_lexical_classification' print( x, title = NULL, seed = sample(1:10000, 1), layout = layout.auto, pause = 0, legend = c(-0.5, -1.5, 0.5, -1.45), legend.cex = 1, bg = NULL, net.legend.color = "black", ... )
## S3 method for class 'animated_lexical_classification' print( x, title = NULL, seed = sample(1:10000, 1), layout = layout.auto, pause = 0, legend = c(-0.5, -1.5, 0.5, -1.45), legend.cex = 1, bg = NULL, net.legend.color = "black", ... )
x |
The animated_lexical_classification object. |
title |
The title of the plot. |
seed |
The seed to use in plotting the graph. |
layout |
igraph |
pause |
The length of time to pause between plots. |
legend |
The coordinates of the legend. See
|
legend.cex |
character expansion factor. |
bg |
The color to be used for the background of the device region. See
|
net.legend.color |
The text legend color for the network plot. |
... |
Other Arguments passed to |
Prints an animated_polarity object.
## S3 method for class 'animated_polarity' print( x, title = NULL, seed = sample(1:10000, 1), layout = layout.auto, pause = 0, legend = c(-0.5, -1.5, 0.5, -1.45), legend.cex = 1, bg = NULL, net.legend.color = "black", ... )
## S3 method for class 'animated_polarity' print( x, title = NULL, seed = sample(1:10000, 1), layout = layout.auto, pause = 0, legend = c(-0.5, -1.5, 0.5, -1.45), legend.cex = 1, bg = NULL, net.legend.color = "black", ... )
x |
The animated_polarity object. |
title |
The title of the plot. |
seed |
The seed to use in plotting the graph. |
layout |
igraph |
pause |
The length of time to pause between plots. |
legend |
The coordinates of the legend. See
|
legend.cex |
character expansion factor. |
bg |
The color to be used for the background of the device region. See
|
net.legend.color |
The text legend color for the network plot. |
... |
Other Arguments passed to |
Prints an automated_readability_index object.
## S3 method for class 'automated_readability_index' print(x, digits = 3, ...)
## S3 method for class 'automated_readability_index' print(x, digits = 3, ...)
x |
The automated_readability_index object. |
digits |
The number of digits displayed if |
... |
ignored |
Prints a boolean_qdap object
## S3 method for class 'boolean_qdap' print(x, ...)
## S3 method for class 'boolean_qdap' print(x, ...)
x |
The boolean_qdap object |
... |
ignored |
Prints a character_table object.
## S3 method for class 'character_table' print(x, digits = 2, percent = NULL, zero.replace = NULL, ...)
## S3 method for class 'character_table' print(x, digits = 2, percent = NULL, zero.replace = NULL, ...)
x |
The character_table object |
digits |
Integer values specifying the number of digits to be printed. |
percent |
logical. If |
zero.replace |
Value to replace 0 values with. If |
... |
ignored |
Prints a check_spelling object.
## S3 method for class 'check_spelling' print(x, ...)
## S3 method for class 'check_spelling' print(x, ...)
x |
The check_spelling object. |
... |
ignored |
Prints a check_spelling_interactive object.
## S3 method for class 'check_spelling_interactive' print(x, ...)
## S3 method for class 'check_spelling_interactive' print(x, ...)
x |
The check_spelling_interactive object. |
... |
ignored |
Prints a check_text object.
## S3 method for class 'check_text' print(x, include.text = TRUE, file = NULL, ...)
## S3 method for class 'check_text' print(x, include.text = TRUE, file = NULL, ...)
x |
The check_text object. |
include.text |
logical. If |
file |
A connection, or a character string naming the file to print to.
If |
... |
ignored |
Prints a cm_distance object.
## S3 method for class 'cm_distance' print( x, mean.digits = 0, sd.digits = 2, sd.mean.digits = 3, pval.digits = 3, new.order = NULL, na.replace = "-", diag.replace = na.replace, print = TRUE, ... )
## S3 method for class 'cm_distance' print( x, mean.digits = 0, sd.digits = 2, sd.mean.digits = 3, pval.digits = 3, new.order = NULL, na.replace = "-", diag.replace = na.replace, print = TRUE, ... )
x |
The cm_distance object. |
mean.digits |
The number of digits to print for the mean code distances. |
sd.digits |
The number of digits to print for the standard deviations of the code distances. |
sd.mean.digits |
The number of digits to print for the standardized mean distances. |
pval.digits |
The number of digits to print for the p-values. |
new.order |
An integer vector reordering the columns and rows of the output. Omission of a column number will result in omission from the output. |
na.replace |
A character to replace |
diag.replace |
A character to replace the diagonal of the mean distance matrix. |
print |
logical. If |
... |
ignored |
Prints an coleman_liau object.
## S3 method for class 'coleman_liau' print(x, digits = 3, ...)
## S3 method for class 'coleman_liau' print(x, digits = 3, ...)
x |
The coleman_liau object. |
digits |
The number of digits displayed if |
... |
ignored |
Prints a colsplit2df object.
## S3 method for class 'colsplit2df' print(x, ...)
## S3 method for class 'colsplit2df' print(x, ...)
x |
The colsplit2df object |
... |
ignored |
Prints an combo_syllable_sum object
## S3 method for class 'combo_syllable_sum' print(x, ...)
## S3 method for class 'combo_syllable_sum' print(x, ...)
x |
The combo_syllable_sum object |
... |
ignored |
Prints a cumulative_animated_formality object.
## S3 method for class 'cumulative_animated_formality' print(x, ...)
## S3 method for class 'cumulative_animated_formality' print(x, ...)
x |
The cumulative_animated_formality object. |
... |
ignored |
Prints a cumulative_animated_lexical_classification object.
## S3 method for class 'cumulative_animated_lexical_classification' print(x, ...)
## S3 method for class 'cumulative_animated_lexical_classification' print(x, ...)
x |
The cumulative_animated_lexical_classification object. |
... |
ignored |
Prints a cumulative_animated_polarity object.
## S3 method for class 'cumulative_animated_polarity' print(x, ...)
## S3 method for class 'cumulative_animated_polarity' print(x, ...)
x |
The cumulative_animated_polarity object. |
... |
ignored |
Prints a cumulative_combo_syllable_sum object.
## S3 method for class 'cumulative_combo_syllable_sum' print(x, ...)
## S3 method for class 'cumulative_combo_syllable_sum' print(x, ...)
x |
The cumulative_combo_syllable_sum object. |
... |
ignored |
Prints a cumulative_end_mark object.
## S3 method for class 'cumulative_end_mark' print(x, ...)
## S3 method for class 'cumulative_end_mark' print(x, ...)
x |
The cumulative_end_mark object. |
... |
ignored |
Prints a cumulative_formality object.
## S3 method for class 'cumulative_formality' print(x, ...)
## S3 method for class 'cumulative_formality' print(x, ...)
x |
The cumulative_formality object. |
... |
ignored |
Prints a cumulative_lexical_classification object.
## S3 method for class 'cumulative_lexical_classification' print(x, ...)
## S3 method for class 'cumulative_lexical_classification' print(x, ...)
x |
The cumulative_lexical_classification object. |
... |
ignored |
Prints a cumulative_polarity object.
## S3 method for class 'cumulative_polarity' print(x, ...)
## S3 method for class 'cumulative_polarity' print(x, ...)
x |
The cumulative_polarity object. |
... |
ignored |
Prints a cumulative_syllable_freq object.
## S3 method for class 'cumulative_syllable_freq' print(x, ...)
## S3 method for class 'cumulative_syllable_freq' print(x, ...)
x |
The cumulative_syllable_freqobject. |
... |
ignored |
Prints a discourse_map object.
## S3 method for class 'discourse_map' print(x, edge.curved = TRUE, title = NULL, ...)
## S3 method for class 'discourse_map' print(x, edge.curved = TRUE, title = NULL, ...)
x |
The discourse_map object. |
edge.curved |
logical. If |
title |
The title of the plot. |
... |
Other Arguments passed to |
Prints a Dissimilarity object.
## S3 method for class 'Dissimilarity' print(x, digits = 3, ...)
## S3 method for class 'Dissimilarity' print(x, digits = 3, ...)
x |
The Dissimilarity object |
digits |
Number of decimal places to print. |
... |
ignored |
Prints a diversity object.
## S3 method for class 'diversity' print(x, digits = 3, ...)
## S3 method for class 'diversity' print(x, digits = 3, ...)
x |
The diversity object |
digits |
Number of decimal places to print. |
... |
ignored |
Prints an end_mark object
## S3 method for class 'end_mark' print(x, ...)
## S3 method for class 'end_mark' print(x, ...)
x |
The end_mark object |
... |
ignored |
Prints an end_mark_by object
## S3 method for class 'end_mark_by' print(x, ...)
## S3 method for class 'end_mark_by' print(x, ...)
x |
The end_mark_by object |
... |
ignored |
Prints a end_mark_by_preprocessed object
## S3 method for class 'end_mark_by_preprocessed' print(x, ...)
## S3 method for class 'end_mark_by_preprocessed' print(x, ...)
x |
The end_mark_by_preprocessed object |
... |
ignored |
Prints an flesch_kincaid object.
## S3 method for class 'flesch_kincaid' print(x, digits = 3, ...)
## S3 method for class 'flesch_kincaid' print(x, digits = 3, ...)
x |
The flesch_kincaid object. |
digits |
The number of digits displayed if |
... |
ignored |
Prints a formality object.
## S3 method for class 'formality' print(x, digits, ...)
## S3 method for class 'formality' print(x, digits, ...)
x |
The formality object. |
digits |
The number of digits to print. |
... |
ignored |
Prints a formality_scores object
## S3 method for class 'formality_scores' print(x, ...)
## S3 method for class 'formality_scores' print(x, ...)
x |
The formality_scores object |
... |
ignored |
Prints an fry object.
## S3 method for class 'fry' print(x, digits = 3, auto.label, grid, div.col, plot, ...)
## S3 method for class 'fry' print(x, digits = 3, auto.label, grid, div.col, plot, ...)
x |
The fry object. |
digits |
The number of digits displayed if |
auto.label |
logical. If |
grid |
logical. If |
div.col |
The color of the grade level division lines. |
plot |
logical. If |
... |
ignored |
Prints an inspect_text object.
## S3 method for class 'inspect_text' print(x, file = "", ...)
## S3 method for class 'inspect_text' print(x, file = "", ...)
x |
The inspect_text object. |
file |
A connection, or a character string naming the file to print to. If |
... |
Other arguments passed to |
Prints a kullback_leibler object.
## S3 method for class 'kullback_leibler' print(x, digits = 3, ...)
## S3 method for class 'kullback_leibler' print(x, digits = 3, ...)
x |
The kullback_leibler object |
digits |
Number of decimal places to print. |
... |
ignored |
Prints an lexical_classification object.
## S3 method for class 'lexical_classification' print(x, ...)
## S3 method for class 'lexical_classification' print(x, ...)
x |
The lexical_classification object. |
... |
Other arguments passed to
|
Prints a lexical_classification_by object.
## S3 method for class 'lexical_classification_by' print(x, ave.digits = 1, se.digits = 2, trunc = 25, ...)
## S3 method for class 'lexical_classification_by' print(x, ave.digits = 1, se.digits = 2, trunc = 25, ...)
x |
The lexical_classification_by object. |
ave.digits |
The number of average lexical distribution proportion digits to print. |
se.digits |
The number of standard error of the lexical distribution proportion digits to print. |
trunc |
The width to truncate content/function word lists. |
... |
ignored |
Prints a lexical_classification_preprocessed object.
## S3 method for class 'lexical_classification_preprocessed' print(x, ...)
## S3 method for class 'lexical_classification_preprocessed' print(x, ...)
x |
The lexical_classification_preprocessed object. |
... |
ignored |
Prints a lexical_classification_score object.
## S3 method for class 'lexical_classification_score' print(x, digits = 3, ...)
## S3 method for class 'lexical_classification_score' print(x, digits = 3, ...)
x |
The lexical_classification_score object. |
digits |
The number of digits displayed if |
... |
ignored |
Prints an linsear_write object.
## S3 method for class 'linsear_write' print(x, digits = 3, ...)
## S3 method for class 'linsear_write' print(x, digits = 3, ...)
x |
The linsear_write object. |
digits |
The number of digits displayed if |
... |
ignored |
Prints a linsear_write_count object.
## S3 method for class 'linsear_write_count' print(x, digits = 3, ...)
## S3 method for class 'linsear_write_count' print(x, digits = 3, ...)
x |
The linsear_write_count object. |
digits |
The number of digits displayed. |
... |
ignored |
Prints a linsear_write_scores object.
## S3 method for class 'linsear_write_scores' print(x, digits = 3, ...)
## S3 method for class 'linsear_write_scores' print(x, digits = 3, ...)
x |
The linsear_write_scores object. |
digits |
The number of digits displayed. |
... |
ignored |
Prints a Network object.
## S3 method for class 'Network' print( x, title = NA, title.color = "black", seed = sample(1:10000, 1), layout = igraph::layout.auto, legend = c(-0.5, -1.5, 0.5, -1.45), legend.cex = 1, bg = NULL, legend.text.color = "black", legend.gradient = NULL, vertex.color = "grey80", vertex.size = 9, vertex.frame.color = NA, vertex.label.color = "grey40", vertex.label.cex = 1.1, edge.label.color = "black", edge.label.cex = 0.9, ... )
## S3 method for class 'Network' print( x, title = NA, title.color = "black", seed = sample(1:10000, 1), layout = igraph::layout.auto, legend = c(-0.5, -1.5, 0.5, -1.45), legend.cex = 1, bg = NULL, legend.text.color = "black", legend.gradient = NULL, vertex.color = "grey80", vertex.size = 9, vertex.frame.color = NA, vertex.label.color = "grey40", vertex.label.cex = 1.1, edge.label.color = "black", edge.label.cex = 0.9, ... )
x |
The Network object. |
title |
The title of the plot. |
title.color |
The color of the title. |
seed |
The seed to use in plotting the graph. |
layout |
igraph |
legend |
The coordinates of the legend. See
|
legend.cex |
character expansion factor. |
bg |
The color to be used for the background of the device region. See
|
legend.text.color |
The legend text color. |
legend.gradient |
A vector of ordered colors to use for the gradient fills in the network edges. |
vertex.color |
The font family to be used for vertex labels. |
vertex.size |
The size of the vertex. |
vertex.frame.color |
The color of the vertex border. |
vertex.label.color |
The color of the labels. |
vertex.label.cex |
The font size for vertex labels. |
edge.label.color |
The color for the edge labels. Use |
edge.label.cex |
The font size of the edge labels. |
... |
Other Arguments passed to |
The output from Network
is an igraph object and can be
altered and plotted directly using igraph. The qdap print
method is offered as a quick approach to styling the figure. For more control
use V
, E
, and
plot.igraph
.
Prints an ngrams object
## S3 method for class 'ngrams' print(x, ...)
## S3 method for class 'ngrams' print(x, ...)
x |
The ngrams object |
... |
ignored |
Prints a object_pronoun_type object
## S3 method for class 'object_pronoun_type' print(x, ...)
## S3 method for class 'object_pronoun_type' print(x, ...)
x |
The object_pronoun_type object |
... |
ignored |
Prints a phrase_net object.
## S3 method for class 'phrase_net' print(x, edge.curved = TRUE, ...)
## S3 method for class 'phrase_net' print(x, edge.curved = TRUE, ...)
x |
The phrase_net object. |
edge.curved |
logical. If |
... |
Other Arguments passed to |
Prints an polarity object.
## S3 method for class 'polarity' print(x, digits = 3, ...)
## S3 method for class 'polarity' print(x, digits = 3, ...)
x |
The polarity object. |
digits |
The number of digits displayed if |
... |
ignored |
Prints a polarity_count object.
## S3 method for class 'polarity_count' print(x, digits = 3, ...)
## S3 method for class 'polarity_count' print(x, digits = 3, ...)
x |
The polarity_count object. |
digits |
The number of digits displayed. |
... |
ignored |
Prints a polarity_score object.
## S3 method for class 'polarity_score' print(x, digits = 3, ...)
## S3 method for class 'polarity_score' print(x, digits = 3, ...)
x |
The polarity_score object. |
digits |
The number of digits displayed if |
... |
ignored |
Prints an polysyllable_sum object
## S3 method for class 'polysyllable_sum' print(x, ...)
## S3 method for class 'polysyllable_sum' print(x, ...)
x |
The polysyllable_sum object |
... |
ignored |
Prints a pos object.
## S3 method for class 'pos' print(x, digits = 1, percent = NULL, zero.replace = NULL, ...)
## S3 method for class 'pos' print(x, digits = 1, percent = NULL, zero.replace = NULL, ...)
x |
The pos object |
digits |
Integer values specifying the number of digits to be printed. |
percent |
logical. If TRUE output given as percent. If FALSE the
output is proportion. If NULL uses the value from
|
zero.replace |
Value to replace 0 values with. If NULL uses the value
from |
... |
ignored |
Prints a pos_by object.
## S3 method for class 'pos_by' print(x, digits = 1, percent = NULL, zero.replace = NULL, ...)
## S3 method for class 'pos_by' print(x, digits = 1, percent = NULL, zero.replace = NULL, ...)
x |
The pos_by object |
digits |
Integer values specifying the number of digits to be printed. |
percent |
logical. If TRUE output given as percent. If FALSE the
output is proportion. If NULL uses the value from
|
zero.replace |
Value to replace 0 values with. If NULL uses the value
from |
... |
ignored |
Prints a pos_preprocessed object
## S3 method for class 'pos_preprocessed' print(x, ...)
## S3 method for class 'pos_preprocessed' print(x, ...)
x |
The pos_preprocessed object |
... |
ignored |
Prints a pronoun_type object
## S3 method for class 'pronoun_type' print(x, ...)
## S3 method for class 'pronoun_type' print(x, ...)
x |
The pronoun_type object |
... |
ignored |
Prints a qdap_context object
## S3 method for class 'qdap_context' print( x, file = NULL, pretty = TRUE, width = 70, sep.block = TRUE, double_space = TRUE, ... )
## S3 method for class 'qdap_context' print( x, file = NULL, pretty = TRUE, width = 70, sep.block = TRUE, double_space = TRUE, ... )
x |
The qdap_context object |
file |
The name of the file (can print csv, xlsx, txt, doc and other
text based files). If |
pretty |
logical. If |
width |
A positive integer giving the target column for wrapping lines in the output. |
sep.block |
logical. If |
double_space |
logical. If |
... |
ignored |
Prints a qdapProj object.
## S3 method for class 'qdapProj' print(x, ...)
## S3 method for class 'qdapProj' print(x, ...)
x |
The qdapProj object. |
... |
ignored |
Prints a question_type object
## S3 method for class 'question_type' print(x, ...)
## S3 method for class 'question_type' print(x, ...)
x |
The question_type object |
... |
ignored |
Prints a question_type_preprocessed object
## S3 method for class 'question_type_preprocessed' print(x, ...)
## S3 method for class 'question_type_preprocessed' print(x, ...)
x |
The question_type_preprocessed object |
... |
ignored |
Prints a readability_count object.
## S3 method for class 'readability_count' print(x, digits = 3, ...)
## S3 method for class 'readability_count' print(x, digits = 3, ...)
x |
The readability_count object. |
digits |
The number of digits displayed. |
... |
ignored |
Prints a readability_score object.
## S3 method for class 'readability_score' print(x, digits = 3, ...)
## S3 method for class 'readability_score' print(x, digits = 3, ...)
x |
The readability_score object. |
digits |
The number of digits displayed if |
... |
ignored |
Prints a sent_split object
## S3 method for class 'sent_split' print(x, ...)
## S3 method for class 'sent_split' print(x, ...)
x |
The sent_split object |
... |
ignored |
Prints an SMOG object.
## S3 method for class 'SMOG' print(x, digits = 3, ...)
## S3 method for class 'SMOG' print(x, digits = 3, ...)
x |
The SMOG object. |
digits |
The number of digits displayed if |
... |
ignored |
Prints a sub_holder object
## S3 method for class 'sub_holder' print(x, ...)
## S3 method for class 'sub_holder' print(x, ...)
x |
The sub_holder object |
... |
ignored |
Prints a subject_pronoun_type object
## S3 method for class 'subject_pronoun_type' print(x, ...)
## S3 method for class 'subject_pronoun_type' print(x, ...)
x |
The subject_pronoun_type object |
... |
ignored |
Prints a sum_cmspans object.
## S3 method for class 'sum_cmspans' print(x, digits = NULL, ...)
## S3 method for class 'sum_cmspans' print(x, digits = NULL, ...)
x |
The sum_cmspans object |
digits |
Integer; number of decimal places to round in the display of the output. |
... |
ignored |
Prints a sums_gantt object.
## S3 method for class 'sums_gantt' print(x, ...)
## S3 method for class 'sums_gantt' print(x, ...)
x |
The sums_gantt object |
... |
ignored |
Prints an syllable_sum object
## S3 method for class 'syllable_sum' print(x, ...)
## S3 method for class 'syllable_sum' print(x, ...)
x |
The syllable_sum object |
... |
ignored |
Prints a table_count object
## S3 method for class 'table_count' print(x, ...)
## S3 method for class 'table_count' print(x, ...)
x |
The table_count object |
... |
ignored |
Prints a table_proportion object
## S3 method for class 'table_proportion' print(x, ...)
## S3 method for class 'table_proportion' print(x, ...)
x |
The table_proportion object |
... |
ignored |
Prints a table_score object
## S3 method for class 'table_score' print(x, ...)
## S3 method for class 'table_score' print(x, ...)
x |
The table_score object |
... |
ignored |
Prints a termco object.
## S3 method for class 'termco' print(x, digits = NULL, percent = NULL, zero.replace = NULL, ...)
## S3 method for class 'termco' print(x, digits = NULL, percent = NULL, zero.replace = NULL, ...)
x |
The termco object |
digits |
Integer values specifying the number of digits to be printed. |
percent |
logical. If TRUE output given as percent. If FALSE the
output is proportion. If NULL uses the value from
|
zero.replace |
Value to replace 0 values with. If NULL uses the value
from |
... |
ignored |
Prints a trunc object
## S3 method for class 'trunc' print(x, ...)
## S3 method for class 'trunc' print(x, ...)
x |
The trunc object |
... |
ignored |
Prints a type_token_ratio object.
## S3 method for class 'type_token_ratio' print(x, digits = 3, ...)
## S3 method for class 'type_token_ratio' print(x, digits = 3, ...)
x |
The type_token_ratio object. |
digits |
The number of type-token ratio digits to print. |
... |
ignored |
Prints a wfm object.
## S3 method for class 'wfm' print(x, digits = 3, width = 10000, ...)
## S3 method for class 'wfm' print(x, digits = 3, width = 10000, ...)
x |
The wfm object. |
digits |
The number of digits displayed if |
width |
The width to temporarily set for printing (default = 10000).
See |
... |
ignored |
Prints a wfm_summary object.
## S3 method for class 'wfm_summary' print(x, ...)
## S3 method for class 'wfm_summary' print(x, ...)
x |
The wfm_summary object. |
... |
ignored |
Prints a which_misspelled object.
## S3 method for class 'which_misspelled' print(x, ...)
## S3 method for class 'which_misspelled' print(x, ...)
x |
The which_misspelled object. |
... |
ignored |
Prints a word_associate object.
## S3 method for class 'word_associate' print(x, ...)
## S3 method for class 'word_associate' print(x, ...)
x |
The word_associate object |
... |
ignored |
Prints a word_cor object
## S3 method for class 'word_cor' print(x, digits = 3, ...)
## S3 method for class 'word_cor' print(x, digits = 3, ...)
x |
The word_cor object |
digits |
The number of digits to print |
... |
ignored |
Prints a word_length object
## S3 method for class 'word_length' print(x, ...)
## S3 method for class 'word_length' print(x, ...)
x |
The word_length object |
... |
ignored |
Prints a word_list object.
## S3 method for class 'word_list' print(x, ...)
## S3 method for class 'word_list' print(x, ...)
x |
The word_list object |
... |
ignored |
Prints a word_position object.
## S3 method for class 'word_position' print(x, ...)
## S3 method for class 'word_position' print(x, ...)
x |
The word_position object |
... |
Values passed to |
Prints a word_proximity object
## S3 method for class 'word_proximity' print(x, digits = NULL, ...)
## S3 method for class 'word_proximity' print(x, digits = NULL, ...)
x |
The word_proximity object |
digits |
The number of digits to print |
... |
ignored |
Prints a word_stats object.
## S3 method for class 'word_stats' print(x, digits = NULL, ...)
## S3 method for class 'word_stats' print(x, digits = NULL, ...)
x |
The word_stats object |
digits |
Integer; number of decimal places to round in the display of the output. |
... |
ignored |
Prints a word_stats_counts object
## S3 method for class 'word_stats_counts' print(x, ...)
## S3 method for class 'word_stats_counts' print(x, ...)
x |
The word_stats_counts object |
... |
ignored |
Count the number of subject/object pronouns per grouping variables.
pronoun_type(text.var, grouping.var = NULL, pronoun.list = NULL, ...)
pronoun_type(text.var, grouping.var = NULL, pronoun.list = NULL, ...)
text.var |
The text variable |
grouping.var |
The grouping variables. Default |
pronoun.list |
A named list of subject/object pronouns. See Details for more. |
... |
Other arguments passed to |
The following subject/object pronoun categories are the default searched terms:
I = c(" i'd ", " i'll ", " i'm ", " i've ", " i ")
we = c(" we'd ", " we'll ", " we're ", " we've ", " we ")
you = c(" you'd ", " you'll ", " you're ", " you've ", " you ", " your ")
he = c(" he'd ", " he'll ", " he's ", " he ")
she = c(" she'd ", " she'll ", " she's ", " she ")
they = c(" they'd ", " they'll ", " they're ", "they've ", " they ")
it = c(" it'd ", " it'll ", " it's ", " it ")
me = c(" me ", " my ", " mine ")
us = c(" us ", " our ", " ours ")
him = c(" him ", " his ")
her = c(" her ", " hers ")
them = c(" them ")
their = c(" their ", "theirs ")
Returns a list, of class "pronoun_type", of data frames regarding subject/object pronoun word counts:
preprocessed |
List of uncollapsed dataframes (raw, prop, rnp) of the class "termco" that contain all searchable subject/object pronouns. |
raw |
raw word counts by grouping variable |
prop |
proportional word counts by grouping variable; proportional to each individual's subject/object pronoun use |
rnp |
a character combination data frame of raw and proportional subject/object pronoun use |
Fairclough, N. (1989). Language and power. London: Longman.
Fairclough, N. (2003). Analysing discourse: Textual analysis for social
research. Oxford and New York: Routledge.
Okamura, A. (2009). Use of personal pronouns in two types of monologic
academic speech. The Economic Journal of Takasaki City University of
Economics, 52(1). 17-26.
Us and them: Social categorization and the process of intergroup bias. Perdue, C. W., Dovidio, J. F., Gurtman, M. B., & Tyler, R. B. (1990). Journal of Personality and Social Psychology, 59(3), 475-486. doi: 10.1037/0022-3514.59.3.475
object_pronoun_type
,
subject_pronoun_type
## Not run: dat <- pres_debates2012 dat <- dat[dat$person %in% qcv(ROMNEY, OBAMA), ] (out <- pronoun_type(dat$dialogue, dat$person)) plot(out) plot(out, 2) plot(out, 3) plot(out, 3, ncol=2) scores(out) counts(out) proportions(out) preprocessed(out) plot(scores(out)) plot(counts(out)) plot(proportions(out)) (out2 <- pronoun_type(hamlet$dialogue, hamlet$person)) plot(out2, 3, ncol=7) ## End(Not run)
## Not run: dat <- pres_debates2012 dat <- dat[dat$person %in% qcv(ROMNEY, OBAMA), ] (out <- pronoun_type(dat$dialogue, dat$person)) plot(out) plot(out, 2) plot(out, 3) plot(out, 3, ncol=2) scores(out) counts(out) proportions(out) preprocessed(out) plot(scores(out)) plot(counts(out)) plot(proportions(out)) (out2 <- pronoun_type(hamlet$dialogue, hamlet$person)) plot(out2, 3, ncol=7) ## End(Not run)
Convert a raw matrix or dataframe to proportions/percents. Divides each element of a column by the column sum.
prop(mat, digits = 2, percent = FALSE, by.column = TRUE, round = FALSE)
prop(mat, digits = 2, percent = FALSE, by.column = TRUE, round = FALSE)
mat |
A numeric matrix or dataframe. |
digits |
Integer; number of decimal places to round. |
percent |
logical. If |
by.column |
logical. If |
round |
logical. If |
Returns a matrix with proportionally scaled values.
## Not run: y <- wfdf(DATA$state, DATA$person, stopwords = c("your", "yours"), margins = TRUE) prop(wfm(y), 4)[1:10, ] #as a proportion prop(wfm(y), 4, TRUE)[1:10, ] #as a percentage heatmap(prop(wfm(y), 4)) wdstraj <- word_stats(rajSPLIT$dialogue, rajSPLIT$person) prop(wdstraj$gts[, -1], 5)[1:15, 1:6] ## End(Not run)
## Not run: y <- wfdf(DATA$state, DATA$person, stopwords = c("your", "yours"), margins = TRUE) prop(wfm(y), 4)[1:10, ] #as a proportion prop(wfm(y), 4, TRUE)[1:10, ] #as a percentage heatmap(prop(wfm(y), 4)) wdstraj <- word_stats(rajSPLIT$dialogue, rajSPLIT$person) prop(wdstraj$gts[, -1], 5)[1:15, 1:6] ## End(Not run)
Access the proportions dataframes from select qdap outputs.
proportions(x, ...)
proportions(x, ...)
x |
A qdap object (list) with a proportions dataframe (e.g.,
|
... |
Arguments passed to proportions method of other classes. |
Returns a data.frame of proportions.
scores
,
counts
,
preprocessed
,
visual
View character_table
proportions.
## S3 method for class 'character_table' proportions(x, ...)
## S3 method for class 'character_table' proportions(x, ...)
x |
The character_table object. |
... |
ignored |
character_table Method for proportions
View end_mark_by
proportions.
## S3 method for class 'end_mark_by' proportions(x, ...)
## S3 method for class 'end_mark_by' proportions(x, ...)
x |
The end_mark_by object. |
... |
ignored |
end_mark_by Method for proportions
View object_pronoun_type
proportions.
## S3 method for class 'object_pronoun_type' proportions(x, ...)
## S3 method for class 'object_pronoun_type' proportions(x, ...)
x |
The object_pronoun_type object. |
... |
ignored |
object_pronoun_type Method for proportions
View pos
proportions.
## S3 method for class 'pos' proportions(x, ...)
## S3 method for class 'pos' proportions(x, ...)
x |
The pos object. |
... |
ignored |
pos Method for proportions
View pos_by
proportions.
## S3 method for class 'pos_by' proportions(x, ...)
## S3 method for class 'pos_by' proportions(x, ...)
x |
The pos_by object. |
... |
ignored |
pos_by Method for proportions
View pronoun_type
proportions.
## S3 method for class 'pronoun_type' proportions(x, ...)
## S3 method for class 'pronoun_type' proportions(x, ...)
x |
The pronoun_type object. |
... |
ignored |
pronoun_type Method for proportions
View question_type
proportions.
## S3 method for class 'question_type' proportions(x, ...)
## S3 method for class 'question_type' proportions(x, ...)
x |
The question_type object. |
... |
ignored |
question_type Method for proportions
View subject_pronoun_type
proportions.
## S3 method for class 'subject_pronoun_type' proportions(x, ...)
## S3 method for class 'subject_pronoun_type' proportions(x, ...)
x |
The subject_pronoun_type object. |
... |
ignored |
subject_pronoun_type Method for proportions
View termco
proportions.
## S3 method for class 'termco' proportions(x, ...)
## S3 method for class 'termco' proportions(x, ...)
x |
The termco object. |
... |
ignored |
termco Method for proportions
View word_length
proportions.
## S3 method for class 'word_length' proportions(x, ...)
## S3 method for class 'word_length' proportions(x, ...)
x |
The word_length object. |
... |
ignored |
word_length Method for proportions
View word_position
proportions.
## S3 method for class 'word_position' proportions(x, ...)
## S3 method for class 'word_position' proportions(x, ...)
x |
The word_position object. |
... |
ignored |
word_position Method for proportions
Quickly combine columns (summed) and rename.
qcombine(mat, combined.columns, elim.old = TRUE)
qcombine(mat, combined.columns, elim.old = TRUE)
mat |
A matrix or dataframe with numeric combine columns. |
combined.columns |
A list of named vectors of the colnames/indexes of the numeric columns to be combined (summed). If a vector is unnamed a name will be assigned. |
elim.old |
logical. If |
Returns a dataframe with combines columns.
## Not run: A <- list( a = c(1, 2, 3), b = qcv(mpg, hp), c = c("disp", "am") ) B <- list( c(1, 2, 3), d = qcv(mpg, hp), c("disp", "am") ) qcombine(head(mtcars), A) qcombine(head(mtcars), B) qcombine(head(mtcars), B, elim.old = FALSE) ## End(Not run)
## Not run: A <- list( a = c(1, 2, 3), b = qcv(mpg, hp), c = c("disp", "am") ) B <- list( c(1, 2, 3), d = qcv(mpg, hp), c("disp", "am") ) qcombine(head(mtcars), A) qcombine(head(mtcars), B) qcombine(head(mtcars), B, elim.old = FALSE) ## End(Not run)
Create a character vector without the use of quotation marks.
qcv( ..., terms = NULL, space.wrap = FALSE, trailing = FALSE, leading = FALSE, split = " ", rm.blank = TRUE )
qcv( ..., terms = NULL, space.wrap = FALSE, trailing = FALSE, leading = FALSE, split = " ", rm.blank = TRUE )
terms |
An optional argument to present the terms as one long character string. This is useful if the split (separator) is not a comma (e.g., spaces are the term separators). |
space.wrap |
logical. If |
trailing |
logical. If |
leading |
logical. If |
split |
Character vector of length one to use for splitting (i.e., the
separator used in the vector). For use with the argument |
rm.blank |
logical. If |
... |
Character objects. Either ... or |
Returns a character vector.
## Not run: qcv(I, like, dogs) qcv(terms = "I, like, dogs") #default separator is " " qcv(terms = "I, like, dogs", split = ",") qcv(terms = "I like dogs") qcv(I, like, dogs, space.wrap = TRUE) qcv(I, like, dogs, trailing = TRUE) qcv(I, like, dogs, leading = TRUE) exclude(Top25Words, qcv(the, of, and)) qcv(terms = "mpg cyl disp hp drat wt qsec vs am gear carb") ## End(Not run)
## Not run: qcv(I, like, dogs) qcv(terms = "I, like, dogs") #default separator is " " qcv(terms = "I, like, dogs", split = ",") qcv(terms = "I like dogs") qcv(I, like, dogs, space.wrap = TRUE) qcv(I, like, dogs, trailing = TRUE) qcv(I, like, dogs, leading = TRUE) exclude(Top25Words, qcv(the, of, and)) qcv(terms = "mpg cyl disp hp drat wt qsec vs am gear carb") ## End(Not run)
This package automates many of the tasks associated with quantitative discourse analysis of transcripts containing discourse. The package provides parsing tools for preparing transcript data, coding tools and analysis tools for richer understanding of the data. Many functions allow the user to aggregate data by any number of grouping variables, providing analysis and seamless integration with other R packages which enable higher level analysis and visualization of text. This empowers the researcher with more flexible, efficient and targeted methods and tools.
Creating this qdap specific data structure enables short hand with
subsequent qdap function calls that utilize the text.var
argument. Combined with the %&%
operator, the user n
need not specify a data set or the text.var
argument (as many
qdap functions contain a text.var
argument).
Change text.var column of a qdap_df object.
qdap_df(dataframe, text.var) Text(object) Text(object) <- value
qdap_df(dataframe, text.var) Text(object) Text(object) <- value
dataframe |
A |
text.var |
The name of the |
object |
A |
value |
A character string of the updated |
Returns a data.frame
of the class "qdap_df"
.
Inspired by dplyr's tbl_df
structure.
## Not run: dat <- qdap_df(DATA, state) dat %&% trans_cloud(grouping.var=person) dat %&% trans_cloud(grouping.var=person, text.var=stemmer(DATA$state)) dat %&% termco(grouping.var=person, match.list=list("fun", "computer")) class(dat) ## Change text column in `qdap_df` (Example 1) dat2 <- sentSplit(DATA, "state", stem.col = TRUE) class(dat2) dat2 %&% trans_cloud() Text(dat2) ## change the `text.var` column Text(dat2) <- "stem.text" dat2 %&% trans_cloud() ## Change text column in `qdap_df` (Example 2) (dat2$fake_dat <- paste(emoticon[1:11,2], dat2$state)) Text(dat2) <- "fake_dat" (m <- dat2 %&% sub_holder(emoticon[,2])) m$unhold(strip(m$output)) ## Various examples with qdap functions dat <- sentSplit(DATA, "state") dat %&% trans_cloud(grouping.var=person) dat %&% termco(person, match.list=list("fun", "computer")) dat %&% trans_venn(person) dat %&% polarity(person) dat %&% formality(person) dat %&% automated_readability_index(person) dat %&% Dissimilarity(person) dat %&% gradient_cloud(sex) dat %&% dispersion_plot(c("fun", "computer")) dat %&% discourse_map(list(sex, adult)) dat %&% gantt_plot(person) dat %&% word_list(adult) dat %&% end_mark_by(person) dat %&% end_mark() dat %&% word_stats(person) dat %&% wfm(person) dat %&% word_cor(person, "i") dat %&% sentCombine(person) dat %&% question_type(person) dat %&% word_network_plot() dat %&% character_count() dat %&% char_table(person) dat %&% phrase_net(2, .1) dat %&% boolean_search("it||!") dat %&% trans_context(person, which(end_mark(DATA.SPLIT[, "state"]) == "?")) dat %&% mgsub(c("it's", "I'm"), c("it is", "I am")) ## combine with magrittr/dplyr chaining dat %&% wfm(person) %>% plot() dat %&% polarity(person) %>% scores() dat %&% polarity(person) %>% counts() dat %&% polarity(person) %>% scores() dat %&% polarity(person) %>% scores() %>% plot() dat %&% polarity(person) %>% scores %>% plot ## End(Not run)
## Not run: dat <- qdap_df(DATA, state) dat %&% trans_cloud(grouping.var=person) dat %&% trans_cloud(grouping.var=person, text.var=stemmer(DATA$state)) dat %&% termco(grouping.var=person, match.list=list("fun", "computer")) class(dat) ## Change text column in `qdap_df` (Example 1) dat2 <- sentSplit(DATA, "state", stem.col = TRUE) class(dat2) dat2 %&% trans_cloud() Text(dat2) ## change the `text.var` column Text(dat2) <- "stem.text" dat2 %&% trans_cloud() ## Change text column in `qdap_df` (Example 2) (dat2$fake_dat <- paste(emoticon[1:11,2], dat2$state)) Text(dat2) <- "fake_dat" (m <- dat2 %&% sub_holder(emoticon[,2])) m$unhold(strip(m$output)) ## Various examples with qdap functions dat <- sentSplit(DATA, "state") dat %&% trans_cloud(grouping.var=person) dat %&% termco(person, match.list=list("fun", "computer")) dat %&% trans_venn(person) dat %&% polarity(person) dat %&% formality(person) dat %&% automated_readability_index(person) dat %&% Dissimilarity(person) dat %&% gradient_cloud(sex) dat %&% dispersion_plot(c("fun", "computer")) dat %&% discourse_map(list(sex, adult)) dat %&% gantt_plot(person) dat %&% word_list(adult) dat %&% end_mark_by(person) dat %&% end_mark() dat %&% word_stats(person) dat %&% wfm(person) dat %&% word_cor(person, "i") dat %&% sentCombine(person) dat %&% question_type(person) dat %&% word_network_plot() dat %&% character_count() dat %&% char_table(person) dat %&% phrase_net(2, .1) dat %&% boolean_search("it||!") dat %&% trans_context(person, which(end_mark(DATA.SPLIT[, "state"]) == "?")) dat %&% mgsub(c("it's", "I'm"), c("it is", "I am")) ## combine with magrittr/dplyr chaining dat %&% wfm(person) %>% plot() dat %&% polarity(person) %>% scores() dat %&% polarity(person) %>% counts() dat %&% polarity(person) %>% scores() dat %&% polarity(person) %>% scores() %>% plot() dat %&% polarity(person) %>% scores %>% plot ## End(Not run)
A quick heatmap function for visualizing typical qdap dataframe/matrix outputs.
qheat( mat, low = "white", high = "darkblue", values = FALSE, digits = 1, text.size = 3, text.color = "grey40", xaxis.col = "black", yaxis.col = "black", order.by = NULL, grid = "white", by.column = TRUE, auto.size = FALSE, mat2 = NULL, plot = TRUE, facet.vars = NULL, facet.flip = FALSE, diag.na = FALSE, diag.values = "", ... ) ## Default S3 method: qheat( mat, low = "white", high = "darkblue", values = FALSE, digits = 1, text.size = 3, text.color = "grey40", xaxis.col = "black", yaxis.col = "black", order.by = NULL, grid = "white", by.column = TRUE, auto.size = FALSE, mat2 = NULL, plot = TRUE, facet.vars = NULL, facet.flip = FALSE, diag.na = FALSE, diag.values = "", ... ) ## S3 method for class 'diversity' qheat( mat, low = "white", high = "darkblue", values = FALSE, digits = 1, text.size = 3, text.color = "grey40", xaxis.col = "black", yaxis.col = "black", order.by = NULL, grid = "white", by.column = TRUE, auto.size = FALSE, mat2 = NULL, plot = TRUE, facet.vars = NULL, facet.flip = FALSE, diag.na = FALSE, diag.values = "", ... ) ## S3 method for class 'termco' qheat( mat, low = "white", high = "darkblue", values = FALSE, digits = 1, text.size = 3, text.color = "grey40", xaxis.col = "black", yaxis.col = "black", order.by = NULL, grid = "white", by.column = TRUE, auto.size = FALSE, mat2 = NULL, plot = TRUE, facet.vars = NULL, facet.flip = FALSE, diag.na = FALSE, diag.values = "", ... ) ## S3 method for class 'word_stats' qheat( mat, low = "white", high = "darkblue", values = FALSE, digits = 1, text.size = 3, text.color = "grey40", xaxis.col = "black", yaxis.col = "black", order.by = NULL, grid = "white", by.column = TRUE, auto.size = FALSE, mat2 = NULL, plot = TRUE, facet.vars = NULL, facet.flip = FALSE, diag.na = FALSE, diag.values = "", ... ) ## S3 method for class 'character_table' qheat( mat, low = "white", high = "darkblue", values = FALSE, digits = 1, text.size = 3, text.color = "grey40", xaxis.col = "black", yaxis.col = "black", order.by = NULL, grid = "white", by.column = TRUE, auto.size = FALSE, mat2 = NULL, plot = TRUE, facet.vars = NULL, facet.flip = FALSE, diag.na = FALSE, diag.values = "", ... ) ## S3 method for class 'question_type' qheat( mat, low = "white", high = "darkblue", values = FALSE, digits = 1, text.size = 3, text.color = "grey40", xaxis.col = "black", yaxis.col = "black", order.by = NULL, grid = "white", by.column = TRUE, auto.size = FALSE, mat2 = NULL, plot = TRUE, facet.vars = NULL, facet.flip = FALSE, diag.na = FALSE, diag.values = "", ... ) ## S3 method for class 'pos_by' qheat( mat, low = "white", high = "darkblue", values = FALSE, digits = 1, text.size = 3, text.color = "grey40", xaxis.col = "black", yaxis.col = "black", order.by = NULL, grid = "white", by.column = TRUE, auto.size = FALSE, mat2 = NULL, plot = TRUE, facet.vars = NULL, facet.flip = FALSE, diag.na = FALSE, diag.values = "", ... )
qheat( mat, low = "white", high = "darkblue", values = FALSE, digits = 1, text.size = 3, text.color = "grey40", xaxis.col = "black", yaxis.col = "black", order.by = NULL, grid = "white", by.column = TRUE, auto.size = FALSE, mat2 = NULL, plot = TRUE, facet.vars = NULL, facet.flip = FALSE, diag.na = FALSE, diag.values = "", ... ) ## Default S3 method: qheat( mat, low = "white", high = "darkblue", values = FALSE, digits = 1, text.size = 3, text.color = "grey40", xaxis.col = "black", yaxis.col = "black", order.by = NULL, grid = "white", by.column = TRUE, auto.size = FALSE, mat2 = NULL, plot = TRUE, facet.vars = NULL, facet.flip = FALSE, diag.na = FALSE, diag.values = "", ... ) ## S3 method for class 'diversity' qheat( mat, low = "white", high = "darkblue", values = FALSE, digits = 1, text.size = 3, text.color = "grey40", xaxis.col = "black", yaxis.col = "black", order.by = NULL, grid = "white", by.column = TRUE, auto.size = FALSE, mat2 = NULL, plot = TRUE, facet.vars = NULL, facet.flip = FALSE, diag.na = FALSE, diag.values = "", ... ) ## S3 method for class 'termco' qheat( mat, low = "white", high = "darkblue", values = FALSE, digits = 1, text.size = 3, text.color = "grey40", xaxis.col = "black", yaxis.col = "black", order.by = NULL, grid = "white", by.column = TRUE, auto.size = FALSE, mat2 = NULL, plot = TRUE, facet.vars = NULL, facet.flip = FALSE, diag.na = FALSE, diag.values = "", ... ) ## S3 method for class 'word_stats' qheat( mat, low = "white", high = "darkblue", values = FALSE, digits = 1, text.size = 3, text.color = "grey40", xaxis.col = "black", yaxis.col = "black", order.by = NULL, grid = "white", by.column = TRUE, auto.size = FALSE, mat2 = NULL, plot = TRUE, facet.vars = NULL, facet.flip = FALSE, diag.na = FALSE, diag.values = "", ... ) ## S3 method for class 'character_table' qheat( mat, low = "white", high = "darkblue", values = FALSE, digits = 1, text.size = 3, text.color = "grey40", xaxis.col = "black", yaxis.col = "black", order.by = NULL, grid = "white", by.column = TRUE, auto.size = FALSE, mat2 = NULL, plot = TRUE, facet.vars = NULL, facet.flip = FALSE, diag.na = FALSE, diag.values = "", ... ) ## S3 method for class 'question_type' qheat( mat, low = "white", high = "darkblue", values = FALSE, digits = 1, text.size = 3, text.color = "grey40", xaxis.col = "black", yaxis.col = "black", order.by = NULL, grid = "white", by.column = TRUE, auto.size = FALSE, mat2 = NULL, plot = TRUE, facet.vars = NULL, facet.flip = FALSE, diag.na = FALSE, diag.values = "", ... ) ## S3 method for class 'pos_by' qheat( mat, low = "white", high = "darkblue", values = FALSE, digits = 1, text.size = 3, text.color = "grey40", xaxis.col = "black", yaxis.col = "black", order.by = NULL, grid = "white", by.column = TRUE, auto.size = FALSE, mat2 = NULL, plot = TRUE, facet.vars = NULL, facet.flip = FALSE, diag.na = FALSE, diag.values = "", ... )
mat |
A matrix or dataframe produced by many qdap functions in
which the first column is the grouping variable and the rest of the matrix
is numeric. Also accepts objects directly from |
low |
The color to be used for lower values. |
high |
The color to be used for higher values. |
values |
logical. If |
digits |
The number of digits displayed if |
text.size |
A integer size to plot the text if |
text.color |
A character vector to plot the text if |
xaxis.col |
A single character vector color choice for the high values. |
yaxis.col |
A single character vector color choice for the low values. |
order.by |
An optional character vector of a variable name to order the
columns by. To reverse use a negative ( |
grid |
The color of the grid (Use |
by.column |
logical. If |
auto.size |
logical. If |
mat2 |
A second matrix equal in dimensions to |
plot |
logical. If |
facet.vars |
A character vector of 1 or 2 column names to facet by. |
facet.flip |
logical If |
diag.na |
logical. If |
diag.values |
The string to be used for the diagonal labels (values)
if |
... |
Not currently used. |
qheat
is useful for finding patterns and anomalies in large
qdap generated dataframes and matrices.
qheat
is a fast way of working with data formats
produced by qdap. The function isn't designed to be extended beyond
exploratory qdap usage.
## Not run: dat <- sentSplit(DATA, "state") ws.ob <- with(dat, word_stats(state, list(sex, adult), tot=tot)) qheat(ws.ob) qheat(ws.ob) + coord_flip() qheat(ws.ob, order.by = "sptot", xaxis.col = c("red", "black", "green", "blue")) qheat(ws.ob, order.by = "sptot") qheat(ws.ob, order.by = "-sptot") qheat(ws.ob, values = TRUE) qheat(ws.ob, values = TRUE, text.color = "red") qheat(ws.ob, "yellow", "red", grid = FALSE) qheat(mtcars, facet.vars = "cyl") qheat(mtcars, facet.vars = c("gear", "cyl")) qheat(t(mtcars), by.column=FALSE) qheat(cor(mtcars), diag.na=TRUE, diag.value="", by.column=NULL, values = TRUE) dat1 <- data.frame(G=LETTERS[1:5], matrix(rnorm(20), ncol = 4)) dat2 <- data.frame(matrix(LETTERS[1:25], ncol=5)) qheat(dat1, values=TRUE) qheat(dat1, values=TRUE, mat2=dat2) ## End(Not run)
## Not run: dat <- sentSplit(DATA, "state") ws.ob <- with(dat, word_stats(state, list(sex, adult), tot=tot)) qheat(ws.ob) qheat(ws.ob) + coord_flip() qheat(ws.ob, order.by = "sptot", xaxis.col = c("red", "black", "green", "blue")) qheat(ws.ob, order.by = "sptot") qheat(ws.ob, order.by = "-sptot") qheat(ws.ob, values = TRUE) qheat(ws.ob, values = TRUE, text.color = "red") qheat(ws.ob, "yellow", "red", grid = FALSE) qheat(mtcars, facet.vars = "cyl") qheat(mtcars, facet.vars = c("gear", "cyl")) qheat(t(mtcars), by.column=FALSE) qheat(cor(mtcars), diag.na=TRUE, diag.value="", by.column=NULL, values = TRUE) dat1 <- data.frame(G=LETTERS[1:5], matrix(rnorm(20), ncol = 4)) dat2 <- data.frame(matrix(LETTERS[1:25], ncol=5)) qheat(dat1, values=TRUE) qheat(dat1, values=TRUE, mat2=dat2) ## End(Not run)
Wrapper for bracketX
, replace_number
,
replace_symbol
, replace_abbreviation
and scrubber
to quickly prepare text for analysis. Care
should be taken with this function to ensure data is properly formatted and
complete.
qprep( text.var, rm.dash = TRUE, bracket = "all", missing = NULL, names = FALSE, abbreviation = qdapDictionaries::abbreviations, replace = NULL, ignore.case = TRUE, num.paste = TRUE, ... )
qprep( text.var, rm.dash = TRUE, bracket = "all", missing = NULL, names = FALSE, abbreviation = qdapDictionaries::abbreviations, replace = NULL, ignore.case = TRUE, num.paste = TRUE, ... )
text.var |
The text variable. |
rm.dash |
logical. If |
bracket |
The type of bracket (and encased text) to remove. This is one
of the strings |
missing |
Value to assign to empty cells. |
names |
logical. If |
abbreviation |
A two column key of abbreviations (column 1) and long
form replacements (column 2) or a vector of abbreviations. Default is to use
qdap's abbreviations data set. Also takes the argument |
replace |
A vector of long form replacements if a data frame is not supplied to the abbreviation argument. |
ignore.case |
logical. If |
num.paste |
logical. If |
... |
Other arguments passed to |
Care should be taken with this function to ensure data is properly formatted and complete.
bracketX
,
replace_abbreviation
,
replace_number
,
replace_symbol
## Not run: x <- "I like 60 (laughter) #d-bot and $6 @ the store w/o 8p.m." qprep(x) ## End(Not run)
## Not run: x <- "I like 60 (laughter) #d-bot and $6 @ the store w/o 8p.m." qprep(x) ## End(Not run)
qtheme
- This function builds generic themes to add a theme to a
Network
object rather than individual print
arguments.
theme_nightheat
A night heat theme.
theme_badkitchen
A 70s kitchen theme.
theme_cafe
A cafe theme.
theme_grayscale
A grayscale theme.
theme_norah
A Norah theme.
theme_hipster
A hipster theme.
theme_duskheat
A duskheat theme.
qtheme( x = "generic", title, title.color, layout, legend, legend.cex, legend.text.color, legend.gradient, bg, vertex.color, vertex.size, vertex.frame.color, vertex.label.color, vertex.label.cex, edge.label.color, edge.label.cex ) theme_nightheat( x = pars[["x"]], title = pars[["title"]], title.color = pars[["title.color"]], layout = pars[["layout"]], legend = pars[["legend"]], legend.cex = pars[["legend.cex"]], legend.gradient = pars[["legend.gradient"]], bg = pars[["bg"]], legend.text.color = pars[["legend.text.color"]], vertex.color = pars[["vertex.color"]], vertex.size = pars[["vertex.size"]], vertex.frame.color = pars[["vertex.frame.color"]], vertex.label.color = pars[["vertex.label.color"]], vertex.label.cex = pars[["vertex.label.cex"]], edge.label.color = pars[["edge.label.color"]], edge.label.cex = pars[["edge.label.cex"]], ... ) theme_badkitchen( x = pars[["x"]], title = pars[["title"]], title.color = pars[["title.color"]], layout = pars[["layout"]], legend = pars[["legend"]], legend.cex = pars[["legend.cex"]], legend.gradient = pars[["legend.gradient"]], bg = pars[["bg"]], legend.text.color = pars[["legend.text.color"]], vertex.color = pars[["vertex.color"]], vertex.size = pars[["vertex.size"]], vertex.frame.color = pars[["vertex.frame.color"]], vertex.label.color = pars[["vertex.label.color"]], vertex.label.cex = pars[["vertex.label.cex"]], edge.label.color = pars[["edge.label.color"]], edge.label.cex = pars[["edge.label.cex"]], ... ) theme_cafe( x = pars[["x"]], title = pars[["title"]], title.color = pars[["title.color"]], layout = pars[["layout"]], legend = pars[["legend"]], legend.cex = pars[["legend.cex"]], legend.gradient = pars[["legend.gradient"]], bg = pars[["bg"]], legend.text.color = pars[["legend.text.color"]], vertex.color = pars[["vertex.color"]], vertex.size = pars[["vertex.size"]], vertex.frame.color = pars[["vertex.frame.color"]], vertex.label.color = pars[["vertex.label.color"]], vertex.label.cex = pars[["vertex.label.cex"]], edge.label.color = pars[["edge.label.color"]], edge.label.cex = pars[["edge.label.cex"]], ... ) theme_grayscale( x = pars[["x"]], title = pars[["title"]], title.color = pars[["title.color"]], layout = pars[["layout"]], legend = pars[["legend"]], legend.cex = pars[["legend.cex"]], legend.gradient = pars[["legend.gradient"]], bg = pars[["bg"]], legend.text.color = pars[["legend.text.color"]], vertex.color = pars[["vertex.color"]], vertex.size = pars[["vertex.size"]], vertex.frame.color = pars[["vertex.frame.color"]], vertex.label.color = pars[["vertex.label.color"]], vertex.label.cex = pars[["vertex.label.cex"]], edge.label.color = pars[["edge.label.color"]], edge.label.cex = pars[["edge.label.cex"]], ... ) theme_greyscale( x = pars[["x"]], title = pars[["title"]], title.color = pars[["title.color"]], layout = pars[["layout"]], legend = pars[["legend"]], legend.cex = pars[["legend.cex"]], legend.gradient = pars[["legend.gradient"]], bg = pars[["bg"]], legend.text.color = pars[["legend.text.color"]], vertex.color = pars[["vertex.color"]], vertex.size = pars[["vertex.size"]], vertex.frame.color = pars[["vertex.frame.color"]], vertex.label.color = pars[["vertex.label.color"]], vertex.label.cex = pars[["vertex.label.cex"]], edge.label.color = pars[["edge.label.color"]], edge.label.cex = pars[["edge.label.cex"]], ... ) theme_norah( x = pars[["x"]], title = pars[["title"]], title.color = pars[["title.color"]], layout = pars[["layout"]], legend = pars[["legend"]], legend.cex = pars[["legend.cex"]], legend.gradient = pars[["legend.gradient"]], bg = pars[["bg"]], legend.text.color = pars[["legend.text.color"]], vertex.color = pars[["vertex.color"]], vertex.size = pars[["vertex.size"]], vertex.frame.color = pars[["vertex.frame.color"]], vertex.label.color = pars[["vertex.label.color"]], vertex.label.cex = pars[["vertex.label.cex"]], edge.label.color = pars[["edge.label.color"]], edge.label.cex = pars[["edge.label.cex"]], ... ) theme_hipster( x = pars[["x"]], title = pars[["title"]], title.color = pars[["title.color"]], layout = pars[["layout"]], legend = pars[["legend"]], legend.cex = pars[["legend.cex"]], legend.gradient = pars[["legend.gradient"]], bg = pars[["bg"]], legend.text.color = pars[["legend.text.color"]], vertex.color = pars[["vertex.color"]], vertex.size = pars[["vertex.size"]], vertex.frame.color = pars[["vertex.frame.color"]], vertex.label.color = pars[["vertex.label.color"]], vertex.label.cex = pars[["vertex.label.cex"]], edge.label.color = pars[["edge.label.color"]], edge.label.cex = pars[["edge.label.cex"]], ... ) theme_duskheat( x = pars[["x"]], title = pars[["title"]], title.color = pars[["title.color"]], layout = pars[["layout"]], legend = pars[["legend"]], legend.cex = pars[["legend.cex"]], legend.gradient = pars[["legend.gradient"]], bg = pars[["bg"]], legend.text.color = pars[["legend.text.color"]], vertex.color = pars[["vertex.color"]], vertex.size = pars[["vertex.size"]], vertex.frame.color = pars[["vertex.frame.color"]], vertex.label.color = pars[["vertex.label.color"]], vertex.label.cex = pars[["vertex.label.cex"]], edge.label.color = pars[["edge.label.color"]], edge.label.cex = pars[["edge.label.cex"]], ... )
qtheme( x = "generic", title, title.color, layout, legend, legend.cex, legend.text.color, legend.gradient, bg, vertex.color, vertex.size, vertex.frame.color, vertex.label.color, vertex.label.cex, edge.label.color, edge.label.cex ) theme_nightheat( x = pars[["x"]], title = pars[["title"]], title.color = pars[["title.color"]], layout = pars[["layout"]], legend = pars[["legend"]], legend.cex = pars[["legend.cex"]], legend.gradient = pars[["legend.gradient"]], bg = pars[["bg"]], legend.text.color = pars[["legend.text.color"]], vertex.color = pars[["vertex.color"]], vertex.size = pars[["vertex.size"]], vertex.frame.color = pars[["vertex.frame.color"]], vertex.label.color = pars[["vertex.label.color"]], vertex.label.cex = pars[["vertex.label.cex"]], edge.label.color = pars[["edge.label.color"]], edge.label.cex = pars[["edge.label.cex"]], ... ) theme_badkitchen( x = pars[["x"]], title = pars[["title"]], title.color = pars[["title.color"]], layout = pars[["layout"]], legend = pars[["legend"]], legend.cex = pars[["legend.cex"]], legend.gradient = pars[["legend.gradient"]], bg = pars[["bg"]], legend.text.color = pars[["legend.text.color"]], vertex.color = pars[["vertex.color"]], vertex.size = pars[["vertex.size"]], vertex.frame.color = pars[["vertex.frame.color"]], vertex.label.color = pars[["vertex.label.color"]], vertex.label.cex = pars[["vertex.label.cex"]], edge.label.color = pars[["edge.label.color"]], edge.label.cex = pars[["edge.label.cex"]], ... ) theme_cafe( x = pars[["x"]], title = pars[["title"]], title.color = pars[["title.color"]], layout = pars[["layout"]], legend = pars[["legend"]], legend.cex = pars[["legend.cex"]], legend.gradient = pars[["legend.gradient"]], bg = pars[["bg"]], legend.text.color = pars[["legend.text.color"]], vertex.color = pars[["vertex.color"]], vertex.size = pars[["vertex.size"]], vertex.frame.color = pars[["vertex.frame.color"]], vertex.label.color = pars[["vertex.label.color"]], vertex.label.cex = pars[["vertex.label.cex"]], edge.label.color = pars[["edge.label.color"]], edge.label.cex = pars[["edge.label.cex"]], ... ) theme_grayscale( x = pars[["x"]], title = pars[["title"]], title.color = pars[["title.color"]], layout = pars[["layout"]], legend = pars[["legend"]], legend.cex = pars[["legend.cex"]], legend.gradient = pars[["legend.gradient"]], bg = pars[["bg"]], legend.text.color = pars[["legend.text.color"]], vertex.color = pars[["vertex.color"]], vertex.size = pars[["vertex.size"]], vertex.frame.color = pars[["vertex.frame.color"]], vertex.label.color = pars[["vertex.label.color"]], vertex.label.cex = pars[["vertex.label.cex"]], edge.label.color = pars[["edge.label.color"]], edge.label.cex = pars[["edge.label.cex"]], ... ) theme_greyscale( x = pars[["x"]], title = pars[["title"]], title.color = pars[["title.color"]], layout = pars[["layout"]], legend = pars[["legend"]], legend.cex = pars[["legend.cex"]], legend.gradient = pars[["legend.gradient"]], bg = pars[["bg"]], legend.text.color = pars[["legend.text.color"]], vertex.color = pars[["vertex.color"]], vertex.size = pars[["vertex.size"]], vertex.frame.color = pars[["vertex.frame.color"]], vertex.label.color = pars[["vertex.label.color"]], vertex.label.cex = pars[["vertex.label.cex"]], edge.label.color = pars[["edge.label.color"]], edge.label.cex = pars[["edge.label.cex"]], ... ) theme_norah( x = pars[["x"]], title = pars[["title"]], title.color = pars[["title.color"]], layout = pars[["layout"]], legend = pars[["legend"]], legend.cex = pars[["legend.cex"]], legend.gradient = pars[["legend.gradient"]], bg = pars[["bg"]], legend.text.color = pars[["legend.text.color"]], vertex.color = pars[["vertex.color"]], vertex.size = pars[["vertex.size"]], vertex.frame.color = pars[["vertex.frame.color"]], vertex.label.color = pars[["vertex.label.color"]], vertex.label.cex = pars[["vertex.label.cex"]], edge.label.color = pars[["edge.label.color"]], edge.label.cex = pars[["edge.label.cex"]], ... ) theme_hipster( x = pars[["x"]], title = pars[["title"]], title.color = pars[["title.color"]], layout = pars[["layout"]], legend = pars[["legend"]], legend.cex = pars[["legend.cex"]], legend.gradient = pars[["legend.gradient"]], bg = pars[["bg"]], legend.text.color = pars[["legend.text.color"]], vertex.color = pars[["vertex.color"]], vertex.size = pars[["vertex.size"]], vertex.frame.color = pars[["vertex.frame.color"]], vertex.label.color = pars[["vertex.label.color"]], vertex.label.cex = pars[["vertex.label.cex"]], edge.label.color = pars[["edge.label.color"]], edge.label.cex = pars[["edge.label.cex"]], ... ) theme_duskheat( x = pars[["x"]], title = pars[["title"]], title.color = pars[["title.color"]], layout = pars[["layout"]], legend = pars[["legend"]], legend.cex = pars[["legend.cex"]], legend.gradient = pars[["legend.gradient"]], bg = pars[["bg"]], legend.text.color = pars[["legend.text.color"]], vertex.color = pars[["vertex.color"]], vertex.size = pars[["vertex.size"]], vertex.frame.color = pars[["vertex.frame.color"]], vertex.label.color = pars[["vertex.label.color"]], vertex.label.cex = pars[["vertex.label.cex"]], edge.label.color = pars[["edge.label.color"]], edge.label.cex = pars[["edge.label.cex"]], ... )
x |
The name of the qtheme. |
title |
The title of the plot. |
title.color |
The color of the title. |
layout |
igraph |
legend |
The coordinates of the legend. See
|
legend.cex |
character expansion factor. |
legend.text.color |
The text legend text color. |
legend.gradient |
A vector of ordered colors to use for the gradient fills in the network edges. |
bg |
The color to be used for the background of the device region. See
|
vertex.color |
The font family to be used for vertex labels. |
vertex.size |
The size of the vertex. |
vertex.frame.color |
The color of the vertex border. |
vertex.label.color |
The color of the labels. |
vertex.label.cex |
The font size for vertex labels. |
edge.label.color |
The color for the edge labels. Use |
edge.label.cex |
The font size of the edge labels. |
... |
Additional arguments supplied to |
## Not run: (poldat <- with(sentSplit(DATA, 4), polarity(state, person))) m <- Network(poldat) m m + theme_nightheat m + theme_cafe m + theme_grayscale m + theme_norah m + theme_hipster m + theme_badkitchen m + theme_duskheat ## make your own themes theme_irish <- qtheme(x = "irish", bg = "grey25", vertex.label.color = "grey50", legend.text.color = "white", legend.gradient = c("darkgreen", "white", "darkorange"), edge.label.color="white", vertex.size= 20) m + theme_irish ## End(Not run)
## Not run: (poldat <- with(sentSplit(DATA, 4), polarity(state, person))) m <- Network(poldat) m m + theme_nightheat m + theme_cafe m + theme_grayscale m + theme_norah m + theme_hipster m + theme_badkitchen m + theme_duskheat ## make your own themes theme_irish <- qtheme(x = "irish", bg = "grey25", vertex.label.color = "grey50", legend.text.color = "white", legend.gradient = c("darkgreen", "white", "darkorange"), edge.label.color="white", vertex.size= 20) m + theme_irish ## End(Not run)
Transcript apply question counts.
question_type( text.var, grouping.var = NULL, neg.cont = FALSE, percent = TRUE, zero.replace = 0, digits = 2, contraction = qdapDictionaries::contractions, bracket = "all", amplifiers = qdapDictionaries::amplification.words, ... )
question_type( text.var, grouping.var = NULL, neg.cont = FALSE, percent = TRUE, zero.replace = 0, digits = 2, contraction = qdapDictionaries::contractions, bracket = "all", amplifiers = qdapDictionaries::amplification.words, ... )
text.var |
The text variable |
grouping.var |
The grouping variables. Default |
neg.cont |
logical. If |
percent |
logical. If |
zero.replace |
Value to replace 0 values with. |
digits |
Integer; number of decimal places to round when printing. |
contraction |
A two column key of contractions (column 1) and expanded
form replacements (column 2) or a vector of contractions. Default is to use
qdapDictionaries's |
bracket |
The type of bracket (and encased text) to remove. This is one
or more of the strings |
amplifiers |
A character vector of terms that increase the
intensity of a positive or negative word. Default is to use
qdapDictionaries's |
... |
Other arguments passed to |
The algorithm searches for the following interrogative words (and optionally, their negative contraction form as well):
1) whose 2) whom 3) who 4) where 5) what 6) which 7) why 8) when 9) were* 10) was* 11) does* 12) did* 13) do* 14) is 15) are* 16) will* 17) how 18) should 19) could 20) would* 21) shall 22) may 23) might* 24) must* 25) can* 26) has 27) have* 28) had* 29) ok 30) right 31) correct 32) implied do/does/did
The interrogative word that is found first (with the exception of "ok", "right"/"alright", and "correct") in the question determines the sentence type. "ok", "right"/"alright", and "correct" sentence types are determined if the sentence is a question with no other interrogative words found and "ok", "right"/"alright", or "correct" is the last word of the sentence. Those interrogative sentences beginning with the word "you", "wanna", or "want" are categorized as implying do/does/did question type, though the use of do/does/did is not explicit. Those sentence beginning with "you" followed by a select interrogative word (and or their negative counter parts) above (marked with *) or 1-2 amplifier(s) followed by the select interrogative word are categorized by the select word rather than an implied do/does/did question type. A sentence that is marked "ok" over rides an implied do/does/did label. Those with undetermined sentence type are labeled unknown.
Returns a list of:
raw |
A dataframe of the questions used in the transcript and their type. |
count |
A dataframe of total questions ( |
rnp |
Dataframe of the frequency and proportions of question types by grouping variable. |
inds |
The indices of the original text variable that contain questions. |
missing |
The row numbers of the missing data (excluded from analysis). |
percent |
The value of percent used for plotting purposes. |
zero.replace |
The value of zero.replace used for plotting purposes. |
## Not run: ## Inspect the algorithm classification x <- c("Kate's got no appetite doesn't she?", "Wanna tell Daddy what you did today?", "You helped getting out a book?", "umm hum?", "Do you know what it is?", "What do you want?", "Who's there?", "Whose?", "Why do you want it?", "Want some?", "Where did it go?", "Was it fun?") left_just(preprocessed(question_type(x))[, c(2, 6)]) ## Transcript/dialogue examples (x <- question_type(DATA.SPLIT$state, DATA.SPLIT$person)) ## methods scores(x) plot(scores(x)) counts(x) plot(counts(x)) proportions(x) plot(proportions(x)) truncdf(preprocessed(x), 15) plot(preprocessed(x)) plot(x) plot(x, label = TRUE) plot(x, label = TRUE, text.color = "red") question_type(DATA.SPLIT$state, DATA.SPLIT$person, percent = FALSE) DATA[8, 4] <- "Won't I distrust you?" question_type(DATA.SPLIT$state, DATA.SPLIT$person) DATA <- qdap::DATA with(DATA.SPLIT, question_type(state, list(sex, adult))) out1 <- with(mraja1spl, question_type(dialogue, person)) ## out1 out2 <- with(mraja1spl, question_type(dialogue, list(sex, fam.aff))) ## out2 out3 <- with(mraja1spl, question_type(dialogue, list(sex, fam.aff), percent = FALSE)) plot(out3, label = TRUE, lab.digits = 3) ## End(Not run)
## Not run: ## Inspect the algorithm classification x <- c("Kate's got no appetite doesn't she?", "Wanna tell Daddy what you did today?", "You helped getting out a book?", "umm hum?", "Do you know what it is?", "What do you want?", "Who's there?", "Whose?", "Why do you want it?", "Want some?", "Where did it go?", "Was it fun?") left_just(preprocessed(question_type(x))[, c(2, 6)]) ## Transcript/dialogue examples (x <- question_type(DATA.SPLIT$state, DATA.SPLIT$person)) ## methods scores(x) plot(scores(x)) counts(x) plot(counts(x)) proportions(x) plot(proportions(x)) truncdf(preprocessed(x), 15) plot(preprocessed(x)) plot(x) plot(x, label = TRUE) plot(x, label = TRUE, text.color = "red") question_type(DATA.SPLIT$state, DATA.SPLIT$person, percent = FALSE) DATA[8, 4] <- "Won't I distrust you?" question_type(DATA.SPLIT$state, DATA.SPLIT$person) DATA <- qdap::DATA with(DATA.SPLIT, question_type(state, list(sex, adult))) out1 <- with(mraja1spl, question_type(dialogue, person)) ## out1 out2 <- with(mraja1spl, question_type(dialogue, list(sex, fam.aff))) ## out2 out3 <- with(mraja1spl, question_type(dialogue, list(sex, fam.aff), percent = FALSE)) plot(out3, label = TRUE, lab.digits = 3) ## End(Not run)
A dataset containing the original transcript from Romeo and Juliet as it was scraped from: http://shakespeare.mit.edu/romeo_juliet/full.html.
data(raj)
data(raj)
A data frame with 840 rows and 3 variables
person. Character in the play
dialogue. The spoken dialogue
act. The act (akin to repeated measures)
http://shakespeare.mit.edu/romeo_juliet/full.html
A dataset containing Romeo and Juliet: Act 1.
data(raj.act.1)
data(raj.act.1)
A data frame with 235 rows and 2 variables
person. Character in the play
dialogue. The spoken dialogue
http://shakespeare.mit.edu/romeo_juliet/full.html
pos_by
using the
mraja1spl
data set (see pos_by
for
more information).Romeo and Juliet: Act 1 Parts of Speech by Person
A dataset containing a list from pos_by
using the
mraja1spl
data set (see pos_by
for
more information).
data(raj.act.1POS)
data(raj.act.1POS)
A list with 10 elements http://shakespeare.mit.edu/romeo_juliet/full.html
The original text
The original words replaced with parts of speech in context.
Dataframe of the proportion of parts of speech by row.
Dataframe of the frequency of parts of speech by row.
Dataframe of the frequency and proportions of parts of speech by row
The value of percent used for plotting purposes.
The value of zero.replace used for plotting purposes.
Dataframe of the frequency of parts of speech by grouping variable.
Dataframe of the proportion of parts of speech by grouping variable.
Dataframe of the frequency and proportions of parts of speech by grouping variable.
A dataset containing Romeo and Juliet: Act 2.
data(raj.act.2)
data(raj.act.2)
A data frame with 205 rows and 2 variables
person. Character in the play
dialogue. The spoken dialogue
http://shakespeare.mit.edu/romeo_juliet/full.html
A dataset containing Romeo and Juliet: Act 3.
data(raj.act.3)
data(raj.act.3)
A data frame with 197 rows and 2 variables
person. Character in the play
dialogue. The spoken dialogue
http://shakespeare.mit.edu/romeo_juliet/full.html
A dataset containing Romeo and Juliet: Act 4.
data(raj.act.4)
data(raj.act.4)
A data frame with 115 rows and 2 variables
person. Character in the play
dialogue. The spoken dialogue
http://shakespeare.mit.edu/romeo_juliet/full.html
A dataset containing Romeo and Juliet: Act 5.
data(raj.act.5)
data(raj.act.5)
A data frame with 88 rows and 2 variables
person. Character in the play
dialogue. The spoken dialogue
http://shakespeare.mit.edu/romeo_juliet/full.html
A dataset containing Romeo and Juliet demographic information for the characters.
data(raj.demographics)
data(raj.demographics)
A data frame with 34 rows and 4 variables
person. Character in the play
sex. Gender
fam.aff. Family affiliation of character
died. Dummy coded death variable (0-no; 1-yes); if yes the character dies in the play
http://shakespeare.mit.edu/romeo_juliet/full.html
A dataset containing a list from pos
using the
raj
data set (see pos
for more
information).
data(rajPOS)
data(rajPOS)
A list with 4 elements
The original text
The original words replaced with parts of speech in context.
Dataframe of the proportion of parts of speech by row.
Dataframe of the frequency of parts of speech by row.
http://shakespeare.mit.edu/romeo_juliet/full.html
A dataset containing the complete dialogue of Romeo and Juliet with turns of talk split into sentences.
data(rajSPLIT)
data(rajSPLIT)
A data frame with 2151 rows and 8 variables
person. Character in the play
sex. Gender
fam.aff. Family affiliation of character
died. Dummy coded death variable (0-no; 1-yes); if yes the character dies in the play
dialogue. The spoken dialogue
act. The act (akin to repeated measures)
stem.text. Text that has been stemmed
http://shakespeare.mit.edu/romeo_juliet/full.html
random_sent
- Generates a random sample of sentences (sentences are
sampled at the word level and there for are likely nonsensical).
random_data
- Generate random dialogue, people, and demographic
variables
random_sent( n = 10, len = 14, range = len - 1, dictionary = qdapDictionaries::Top200Words, endmark.fun = function() sample(c(".", "!", "|", "?"), 1, prob = c(0.85, 0.05, 0.05, 0.05)) ) random_data( n = 10, ..., n.people = 10, ages = 7:10, people.names = unique(tolower(qdapDictionaries::NAMES[[1]])) )
random_sent( n = 10, len = 14, range = len - 1, dictionary = qdapDictionaries::Top200Words, endmark.fun = function() sample(c(".", "!", "|", "?"), 1, prob = c(0.85, 0.05, 0.05, 0.05)) ) random_data( n = 10, ..., n.people = 10, ages = 7:10, people.names = unique(tolower(qdapDictionaries::NAMES[[1]])) )
n |
Number of sentences to create. |
len |
Average length of sentences (in words). |
range |
Range around |
dictionary |
A dictionary of words to sample from. |
endmark.fun |
A function to create random end marks. |
n.people |
An integer of the number of people to include in the sample
(number of people is sampled from; if |
ages |
The possible ages to choose from (numeric). |
people.names |
A vector of names to choose from at least as large as
|
... |
Other arguments passed to |
random_sent
- Returns a random vector of sentence strings.
random_data
- Returns a data.frame
of
people, dialogue, and demographic variables of the class sent_split
.
## Not run: random_sent() random_sent(200, 10) dict <- sort(unique(bag_o_words(pres_debates2012[["dialogue"]]))) random_sent(dictionary=dict) random_data() random_data(ages = seq(10, 20, by = .5)) random_data(50) %&% word_stats(person) random_data(100) %&% word_stats(list(race, sex)) random_data(dictionary = dict) ## End(Not run)
## Not run: random_sent() random_sent(200, 10) dict <- sort(unique(bag_o_words(pres_debates2012[["dialogue"]]))) random_sent(dictionary=dict) random_data() random_data(ages = seq(10, 20, by = .5)) random_data(50) %&% word_stats(person) random_data(100) %&% word_stats(list(race, sex)) random_data(dictionary = dict) ## End(Not run)
rank_freq_mplot
- Plot a faceted word rank versus frequencies by
grouping variable(s).
rank_freq_plot
- Plot word rank versus frequencies.
rank_freq_mplot( text.var, grouping.var = NULL, ncol = 4, jitter = 0.2, log.freq = TRUE, log.rank = TRUE, hap.col = "red", dis.col = "blue", alpha = 1, shape = 1, title = "Rank-Frequency Plot", digits = 2, plot = TRUE ) rank_freq_plot( words, frequencies, plot = TRUE, title.ext = NULL, jitter.ammount = 0.1, log.scale = TRUE, hap.col = "red", dis.col = "blue" )
rank_freq_mplot( text.var, grouping.var = NULL, ncol = 4, jitter = 0.2, log.freq = TRUE, log.rank = TRUE, hap.col = "red", dis.col = "blue", alpha = 1, shape = 1, title = "Rank-Frequency Plot", digits = 2, plot = TRUE ) rank_freq_plot( words, frequencies, plot = TRUE, title.ext = NULL, jitter.ammount = 0.1, log.scale = TRUE, hap.col = "red", dis.col = "blue" )
text.var |
The text variable. |
grouping.var |
The grouping variables. Default |
ncol |
integer value indicating the number of columns in the facet wrap. |
jitter |
Amount of horizontal jitter to add to the points. |
log.freq |
logical. If |
log.rank |
logical. If |
hap.col |
Color of the hapax legomenon points. |
dis.col |
Color of the dis legomenon points. |
alpha |
Transparency level of points (ranges between 0 and 1). |
shape |
An integer specifying the symbol used to plot the points. |
title |
Optional plot title. |
digits |
Integer; number of decimal places to round. |
plot |
logical. If |
words |
A vector of words. |
frequencies |
A vector of frequencies corresponding to the words argument. |
title.ext |
The title extension that extends: "Rank-Frequency Plot ..." |
jitter.ammount |
Amount of horizontal jitter to add to the points. |
log.scale |
logical. If |
Returns a rank-frequency plot and a list of three dataframes:
WORD_COUNTS |
The word frequencies supplied to
|
RANK_AND_FREQUENCY_STATS |
A dataframe of rank and frequencies for the words used in the text. |
LEGOMENA_STATS |
A dataframe displaying the percent hapax legomena and percent dis legomena of the text. |
rank_freq_mplot
utilizes the ggplot2 package, whereas,
rank_freq_plot
employs base graphics. rank_freq_mplot
is more
general & flexible; in most cases rank_freq_mplot
should be preferred.
Zipf, G. K. (1949). Human behavior and the principle of least effort. Cambridge, Massachusetts: Addison-Wesley. p. 1.
## Not run: #rank_freq_mplot EXAMPLES: x1 <- rank_freq_mplot(DATA$state, DATA$person, ncol = 2, jitter = 0) ltruncdf(x1, 10) x2 <- rank_freq_mplot(mraja1spl$dialogue, mraja1spl$person, ncol = 5, hap.col = "purple") ltruncdf(x2, 10) invisible(rank_freq_mplot(mraja1spl$dialogue, mraja1spl$person, ncol = 5, log.freq = FALSE, log.rank = FALSE, jitter = .6)) invisible(rank_freq_mplot(raj$dialogue, jitter = .5, alpha = 1/15)) invisible(rank_freq_mplot(raj$dialogue, jitter = .5, shape = 19, alpha = 1/15)) #rank_freq_plot EXAMPLES: mod <- with(mraja1spl , word_list(dialogue, person, cut.n = 10, cap.list=unique(mraja1spl$person))) x3 <- rank_freq_plot(mod$fwl$Romeo$WORD, mod$fwl$Romeo$FREQ, title.ext = 'Romeo') ltruncdf(x3, 10) ltruncdf(rank_freq_plot(mod$fwl$Romeo$WORD, mod$fwl$Romeo$FREQ, plot = FALSE) , 10) invisible(rank_freq_plot(mod$fwl$Romeo$WORD, mod$fwl$Romeo$FREQ, title.ext = 'Romeo', jitter.ammount = 0.15, hap.col = "darkgreen", dis.col = "purple")) invisible(rank_freq_plot(mod$fwl$Romeo$WORD, mod$fwl$Romeo$FREQ, title.ext = 'Romeo', jitter.ammount = 0.5, log.scale=FALSE)) invisible(lapply(seq_along(mod$fwl), function(i){ dev.new() rank_freq_plot(mod$fwl[[i]]$WORD, mod$fwl[[i]]$FREQ, title.ext = names(mod$fwl)[i], jitter.ammount = 0.5, log.scale=FALSE) })) ## End(Not run)
## Not run: #rank_freq_mplot EXAMPLES: x1 <- rank_freq_mplot(DATA$state, DATA$person, ncol = 2, jitter = 0) ltruncdf(x1, 10) x2 <- rank_freq_mplot(mraja1spl$dialogue, mraja1spl$person, ncol = 5, hap.col = "purple") ltruncdf(x2, 10) invisible(rank_freq_mplot(mraja1spl$dialogue, mraja1spl$person, ncol = 5, log.freq = FALSE, log.rank = FALSE, jitter = .6)) invisible(rank_freq_mplot(raj$dialogue, jitter = .5, alpha = 1/15)) invisible(rank_freq_mplot(raj$dialogue, jitter = .5, shape = 19, alpha = 1/15)) #rank_freq_plot EXAMPLES: mod <- with(mraja1spl , word_list(dialogue, person, cut.n = 10, cap.list=unique(mraja1spl$person))) x3 <- rank_freq_plot(mod$fwl$Romeo$WORD, mod$fwl$Romeo$FREQ, title.ext = 'Romeo') ltruncdf(x3, 10) ltruncdf(rank_freq_plot(mod$fwl$Romeo$WORD, mod$fwl$Romeo$FREQ, plot = FALSE) , 10) invisible(rank_freq_plot(mod$fwl$Romeo$WORD, mod$fwl$Romeo$FREQ, title.ext = 'Romeo', jitter.ammount = 0.15, hap.col = "darkgreen", dis.col = "purple")) invisible(rank_freq_plot(mod$fwl$Romeo$WORD, mod$fwl$Romeo$FREQ, title.ext = 'Romeo', jitter.ammount = 0.5, log.scale=FALSE)) invisible(lapply(seq_along(mod$fwl), function(i){ dev.new() rank_freq_plot(mod$fwl[[i]]$WORD, mod$fwl[[i]]$FREQ, title.ext = names(mod$fwl)[i], jitter.ammount = 0.5, log.scale=FALSE) })) ## End(Not run)
A dataset containing a list of named vectors of time spans.
data(raw.time.span)
data(raw.time.span)
A list with 3 elements
Read .docx, .csv or .xlsx files into R.
read.transcript( file, col.names = NULL, text.var = NULL, merge.broke.tot = TRUE, header = FALSE, dash = "", ellipsis = "...", quote2bracket = FALSE, rm.empty.rows = TRUE, na.strings = c("999", "NA", "", " "), sep = NULL, skip = 0, nontext2factor = TRUE, text, comment.char = "", ... )
read.transcript( file, col.names = NULL, text.var = NULL, merge.broke.tot = TRUE, header = FALSE, dash = "", ellipsis = "...", quote2bracket = FALSE, rm.empty.rows = TRUE, na.strings = c("999", "NA", "", " "), sep = NULL, skip = 0, nontext2factor = TRUE, text, comment.char = "", ... )
file |
The name of the file which the data are to be read from. Each row
of the table appears as one line of the file. If it does not contain an
absolute path, the file name is relative to the current working directory,
|
col.names |
A character vector specifying the column names of the transcript columns. |
text.var |
A character string specifying the name of the text variable
will ensure that variable is classed as character. If |
merge.broke.tot |
logical. If |
header |
logical. If |
dash |
A character string to replace the en and em dashes special characters (default is to remove). |
ellipsis |
A character string to replace the ellipsis special characters (default is text ...). |
quote2bracket |
logical. If |
rm.empty.rows |
logical. If |
na.strings |
A vector of character strings which are to be interpreted
as |
sep |
The field separator character. Values on each line of the file are
separated by this character. The default of |
skip |
Integer; the number of lines of the data file to skip before beginning to read data. |
nontext2factor |
logical. If |
text |
Character string: if file is not supplied and this is, then data are read from the value of text. Notice that a literal string can be used to include (small) data sets within R code. |
comment.char |
A character vector of length one containing a single
character or an empty string. Use |
... |
Further arguments to be passed to |
Returns a dataframe of dialogue and people.
read.transcript
may contain errors if the
file being read in is .docx. The researcher should carefully investigate
each transcript for errors before further parsing the data.
If a transcript is a .docx file read transcript expects two columns (generally person and dialogue) with some sort of separator (default is colon separator). .doc files must be converted to .docx before reading in.
Bryan Goodrich and Tyler Rinker <[email protected]>.
https://github.com/trinker/qdap/wiki/Reading-.docx-%5BMS-Word%5D-Transcripts-into-R
## Not run: #Note: to view the document below use the path: system.file("extdata/transcripts/", package = "qdap") (doc1 <- system.file("extdata/transcripts/trans1.docx", package = "qdap")) (doc2 <- system.file("extdata/transcripts/trans2.docx", package = "qdap")) (doc3 <- system.file("extdata/transcripts/trans3.docx", package = "qdap")) (doc4 <- system.file("extdata/transcripts/trans4.xlsx", package = "qdap")) dat1 <- read.transcript(doc1) truncdf(dat1, 40) dat2 <- read.transcript(doc1, col.names = c("person", "dialogue")) truncdf(dat2, 40) dat2b <- rm_row(dat2, "person", "[C") #remove bracket row truncdf(dat2b, 40) ## read.transcript(doc2) #throws an error (need skip) dat3 <- read.transcript(doc2, skip = 1); truncdf(dat3, 40) ## read.transcript(doc3, skip = 1) #incorrect read; wrong sep dat4 <- read.transcript(doc3, sep = "-", skip = 1); truncdf(dat4, 40) dat5 <- read.transcript(doc4); truncdf(dat5, 40) #an .xlsx file trans <- "sam: Computer is fun. Not too fun. greg: No it's not, it's dumb. teacher: What should we do? sam: You liar, it stinks!" read.transcript(text=trans) ## Read in text specify spaces as sep ## EXAMPLE 1 read.transcript(text="34 The New York Times reports a lot of words here. 12 Greenwire reports a lot of words. 31 Only three words. 2 The Financial Times reports a lot of words. 9 Greenwire short. 13 The New York Times reports a lot of words again.", col.names=qcv(NO, ARTICLE), sep=" ") ## EXAMPLE 2 read.transcript(text="34.. The New York Times reports a lot of words here. 12.. Greenwire reports a lot of words. 31.. Only three words. 2.. The Financial Times reports a lot of words. 9.. Greenwire short. 13.. The New York Times reports a lot of words again.", col.names=qcv(NO, ARTICLE), sep="\\.\\.") ## End(Not run)
## Not run: #Note: to view the document below use the path: system.file("extdata/transcripts/", package = "qdap") (doc1 <- system.file("extdata/transcripts/trans1.docx", package = "qdap")) (doc2 <- system.file("extdata/transcripts/trans2.docx", package = "qdap")) (doc3 <- system.file("extdata/transcripts/trans3.docx", package = "qdap")) (doc4 <- system.file("extdata/transcripts/trans4.xlsx", package = "qdap")) dat1 <- read.transcript(doc1) truncdf(dat1, 40) dat2 <- read.transcript(doc1, col.names = c("person", "dialogue")) truncdf(dat2, 40) dat2b <- rm_row(dat2, "person", "[C") #remove bracket row truncdf(dat2b, 40) ## read.transcript(doc2) #throws an error (need skip) dat3 <- read.transcript(doc2, skip = 1); truncdf(dat3, 40) ## read.transcript(doc3, skip = 1) #incorrect read; wrong sep dat4 <- read.transcript(doc3, sep = "-", skip = 1); truncdf(dat4, 40) dat5 <- read.transcript(doc4); truncdf(dat5, 40) #an .xlsx file trans <- "sam: Computer is fun. Not too fun. greg: No it's not, it's dumb. teacher: What should we do? sam: You liar, it stinks!" read.transcript(text=trans) ## Read in text specify spaces as sep ## EXAMPLE 1 read.transcript(text="34 The New York Times reports a lot of words here. 12 Greenwire reports a lot of words. 31 Only three words. 2 The Financial Times reports a lot of words. 9 Greenwire short. 13 The New York Times reports a lot of words again.", col.names=qcv(NO, ARTICLE), sep=" ") ## EXAMPLE 2 read.transcript(text="34.. The New York Times reports a lot of words here. 12.. Greenwire reports a lot of words. 31.. Only three words. 2.. The Financial Times reports a lot of words. 9.. Greenwire short. 13.. The New York Times reports a lot of words again.", col.names=qcv(NO, ARTICLE), sep="\\.\\.") ## End(Not run)
This function replaces abbreviations with long form.
replace_abbreviation( text.var, abbreviation = qdapDictionaries::abbreviations, replace = NULL, ignore.case = TRUE )
replace_abbreviation( text.var, abbreviation = qdapDictionaries::abbreviations, replace = NULL, ignore.case = TRUE )
text.var |
The text variable. |
abbreviation |
A two column key of abbreviations (column 1) and long
form replacements (column 2) or a vector of abbreviations. Default is to use
qdapDictionaries's |
replace |
A vector of long form replacements if a data frame is not supplied to the abbreviation argument. |
ignore.case |
logical. If |
Returns a vector with abbreviations replaced.
bracketX
,
qprep
,
replace_contraction
,
replace_number
,
replace_symbol
## Not run: x <- c("Mr. Jones is here at 7:30 p.m.", "Check it out at www.github.com/trinker/qdap", "i.e. He's a sr. dr.; the best in 2012 A.D.", "the robot at t.s. is 10ft. 3in.") replace_abbreviation(x) #create abbreviation and replacement vectors abv <- c("in.", "ft.", "t.s.") repl <- c("inch", "feet", "talkstats") replace_abbreviation(x, abv, repl) (KEY <- rbind(abbreviations, data.frame(abv = abv, rep = repl))) replace_abbreviation(x, KEY) ## End(Not run)
## Not run: x <- c("Mr. Jones is here at 7:30 p.m.", "Check it out at www.github.com/trinker/qdap", "i.e. He's a sr. dr.; the best in 2012 A.D.", "the robot at t.s. is 10ft. 3in.") replace_abbreviation(x) #create abbreviation and replacement vectors abv <- c("in.", "ft.", "t.s.") repl <- c("inch", "feet", "talkstats") replace_abbreviation(x, abv, repl) (KEY <- rbind(abbreviations, data.frame(abv = abv, rep = repl))) replace_abbreviation(x, KEY) ## End(Not run)
This function replaces contractions with long form.
replace_contraction( text.var, contraction = qdapDictionaries::contractions, replace = NULL, ignore.case = TRUE, sent.cap = TRUE )
replace_contraction( text.var, contraction = qdapDictionaries::contractions, replace = NULL, ignore.case = TRUE, sent.cap = TRUE )
text.var |
The text variable. |
contraction |
A two column key of contractions (column 1) and expanded
form replacements (column 2) or a vector of contractions. Default is to use
qdapDictionaries's |
replace |
A vector of expanded form replacements if a data frame is not supplied to the contraction argument. |
ignore.case |
logical. If |
sent.cap |
logical. If |
Returns a vector with contractions replaced.
bracketX
,
qprep
,
replace_abbreviation
,
replace_number
,
replace_symbol
## Not run: x <- c("Mr. Jones isn't going.", "Check it out what's going on.", "He's here but didn't go.", "the robot at t.s. wasn't nice", "he'd like it if i'd go away") replace_contraction(x) ## End(Not run)
## Not run: x <- c("Mr. Jones isn't going.", "Check it out what's going on.", "He's here but didn't go.", "the robot at t.s. wasn't nice", "he'd like it if i'd go away") replace_contraction(x) ## End(Not run)
Replaces numeric represented numbers with words (e.g., 1001 becomes one thousand one).
replace_number(text.var, num.paste = TRUE, remove = FALSE)
replace_number(text.var, num.paste = TRUE, remove = FALSE)
text.var |
The text variable. |
num.paste |
logical. If |
remove |
logical. If |
Returns a vector with abbreviations replaced.
The user may want to use replace_ordinal
first to
remove ordinal number notation. For example replace_number
would turn "21st" into "twenty onest", whereas replace_ordinal
would generate "twenty first".
Fox, J. (2005). Programmer's niche: How do you spell that number? R News. Vol. 5(1), pp. 51-55.
bracketX
,
qprep
,
replace_abbreviation
,
replace_contraction
,
replace_symbol
,
replace_ordinal
## Not run: x <- c("I like 346,457 ice cream cones.", "They are 99 percent good") y <- c("I like 346457 ice cream cones.", "They are 99 percent good") replace_number(x) replace_number(y) replace_number(x, FALSE) replace_number(x, remove=TRUE) ## End(Not run)
## Not run: x <- c("I like 346,457 ice cream cones.", "They are 99 percent good") y <- c("I like 346457 ice cream cones.", "They are 99 percent good") replace_number(x) replace_number(y) replace_number(x, FALSE) replace_number(x, remove=TRUE) ## End(Not run)
Replaces mixed text/numeric represented ordinal numbers with words (e.g., "1st" becomes "first").
replace_ordinal(text.var, num.paste = TRUE, remove = FALSE)
replace_ordinal(text.var, num.paste = TRUE, remove = FALSE)
text.var |
The text variable. |
num.paste |
logical. If |
remove |
logical. If |
Currently only implemented for ordinal values 1 through 100
bracketX
,
qprep
,
replace_abbreviation
,
replace_contraction
,
replace_symbol
,
replace_number
## Not run: x <- c( "I like the 1st one not the 22nd one.", "For the 100th time stop!" ) replace_ordinal(x) replace_ordinal(x, FALSE) replace_ordinal(x, remove = TRUE) "I like the 1st 1 not the 22nd 1." %>% replace_ordinal %>% replace_number ## End(Not run)
## Not run: x <- c( "I like the 1st one not the 22nd one.", "For the 100th time stop!" ) replace_ordinal(x) replace_ordinal(x, FALSE) replace_ordinal(x, remove = TRUE) "I like the 1st 1 not the 22nd 1." %>% replace_ordinal %>% replace_number ## End(Not run)
This function replaces symbols with word equivalents (e.g., @
becomes
"at"
.
replace_symbol( text.var, dollar = TRUE, percent = TRUE, pound = TRUE, at = TRUE, and = TRUE, with = TRUE )
replace_symbol( text.var, dollar = TRUE, percent = TRUE, pound = TRUE, at = TRUE, and = TRUE, with = TRUE )
text.var |
The text variable. |
dollar |
logical. If |
percent |
logical. If |
pound |
logical. If |
at |
logical. If |
and |
logical. If |
with |
logical. If |
Returns a character vector with symbols replaced..
bracketX
,
qprep
,
replace_abbreviation
,
replace_contraction
,
replace_number
,
## Not run: x <- c("I am @ Jon's & Jim's w/ Marry", "I owe $41 for food", "two is 10% of a #") replace_symbol(x) ## End(Not run)
## Not run: x <- c("I am @ Jon's & Jim's w/ Marry", "I owe $41 for food", "two is 10% of a #") replace_symbol(x) ## End(Not run)
Replace elements of a dataframe, matrix or vector with least restrictive class.
replacer(dat, replace = 0, with = "-")
replacer(dat, replace = 0, with = "-")
dat |
Data; either a dataframe, matrix or vector. |
replace |
Element to replace. |
with |
Replacement element. |
Returns a dataframe, matrix or vector with the element replaced.
## Not run: replacer(mtcars[1:10, ], 0, "REP") replacer(mtcars[1:10, ], 4, NA) replacer(c("a", "b"), "a", "foo") #replace missing values (NA) dat <- data.frame(matrix(sample(c(1:3, NA), 25, TRUE), ncol=5)) replacer(dat, NA, "FOO") ## End(Not run)
## Not run: replacer(mtcars[1:10, ], 0, "REP") replacer(mtcars[1:10, ], 4, NA) replacer(c("a", "b"), "a", "foo") #replace missing values (NA) dat <- data.frame(matrix(sample(c(1:3, NA), 25, TRUE), ncol=5)) replacer(dat, NA, "FOO") ## End(Not run)
rm_row
- Remove rows from a data set that contain a given marker/term.
rm_empty_row
- Removes the empty rows of a data set that are common in
reading in data (default method in read.transcript
).
rm_row( dataframe, search.column, terms, contains = FALSE, ignore.case = FALSE, keep.rownames = FALSE, ... ) rm_empty_row(dataframe)
rm_row( dataframe, search.column, terms, contains = FALSE, ignore.case = FALSE, keep.rownames = FALSE, ... ) rm_empty_row(dataframe)
dataframe |
A dataframe object. |
search.column |
Column name to search for markers/terms. |
terms |
Terms/markers of the rows that are to be removed from the dataframe. The term/marker must appear at the beginning of the string and is case sensitive. |
contains |
logical. If |
ignore.case |
logical. If |
keep.rownames |
logical. If |
... |
Other arguments passed to |
rm_row
- returns a dataframe with the termed/markered rows
removed.
rm_empty_row
- returns a dataframe with empty rows removed.
## Not run: #rm_row EXAMPLE: rm_row(DATA, "person", c("sam", "greg")) rm_row(DATA, 1, c("sam", "greg")) rm_row(DATA, "state", c("Comp")) rm_row(DATA, "state", c("I ")) rm_row(DATA, "state", c("you"), contains = TRUE, ignore.case=TRUE) #rm_empty_row EXAMPLE: (dat <- rbind.data.frame(DATA[, c(1, 4)], matrix(rep(" ", 4), ncol =2, dimnames=list(12:13, colnames(DATA)[c(1, 4)])))) rm_empty_row(dat) ## End(Not run)
## Not run: #rm_row EXAMPLE: rm_row(DATA, "person", c("sam", "greg")) rm_row(DATA, 1, c("sam", "greg")) rm_row(DATA, "state", c("Comp")) rm_row(DATA, "state", c("I ")) rm_row(DATA, "state", c("you"), contains = TRUE, ignore.case=TRUE) #rm_empty_row EXAMPLE: (dat <- rbind.data.frame(DATA[, c(1, 4)], matrix(rep(" ", 4), ncol =2, dimnames=list(12:13, colnames(DATA)[c(1, 4)])))) rm_empty_row(dat) ## End(Not run)
Removal of stop words in a variety of contexts .
%sw%
- Binary operator version of rm_stopwords
that
defaults to separate = FALSE
..
rm_stopwords( text.var, stopwords = qdapDictionaries::Top25Words, unlist = FALSE, separate = TRUE, strip = FALSE, unique = FALSE, char.keep = NULL, names = FALSE, ignore.case = TRUE, apostrophe.remove = FALSE, ... ) rm_stop( text.var, stopwords = qdapDictionaries::Top25Words, unlist = FALSE, separate = TRUE, strip = FALSE, unique = FALSE, char.keep = NULL, names = FALSE, ignore.case = TRUE, apostrophe.remove = FALSE, ... ) text.var %sw% stopwords
rm_stopwords( text.var, stopwords = qdapDictionaries::Top25Words, unlist = FALSE, separate = TRUE, strip = FALSE, unique = FALSE, char.keep = NULL, names = FALSE, ignore.case = TRUE, apostrophe.remove = FALSE, ... ) rm_stop( text.var, stopwords = qdapDictionaries::Top25Words, unlist = FALSE, separate = TRUE, strip = FALSE, unique = FALSE, char.keep = NULL, names = FALSE, ignore.case = TRUE, apostrophe.remove = FALSE, ... ) text.var %sw% stopwords
text.var |
A character string of text or a vector of character strings. |
stopwords |
A character vector of words to remove from the text. qdap
has a number of data sets that can be used as stop words including:
|
unlist |
logical. If |
separate |
logical. If |
strip |
logical. IF |
unique |
logical. If |
char.keep |
If strip is |
names |
logical. If |
ignore.case |
logical. If |
apostrophe.remove |
logical. If |
... |
further arguments passed to |
Returns a vector of sentences, vector of words, or (default) a list of vectors of words with stop words removed. Output depends on supplied arguments.
## Not run: rm_stopwords(DATA$state) rm_stopwords(DATA$state, tm::stopwords("english")) rm_stopwords(DATA$state, Top200Words) rm_stopwords(DATA$state, Top200Words, strip = TRUE) rm_stopwords(DATA$state, Top200Words, separate = FALSE) rm_stopwords(DATA$state, Top200Words, separate = FALSE, ignore.case = FALSE) rm_stopwords(DATA$state, Top200Words, unlist = TRUE) rm_stopwords(DATA$state, Top200Words, unlist = TRUE, strip=TRUE) rm_stop(DATA$state, Top200Words, unlist = TRUE, unique = TRUE) c("I like it alot", "I like it too") %sw% qdapDictionaries::Top25Words ## End(Not run)
## Not run: rm_stopwords(DATA$state) rm_stopwords(DATA$state, tm::stopwords("english")) rm_stopwords(DATA$state, Top200Words) rm_stopwords(DATA$state, Top200Words, strip = TRUE) rm_stopwords(DATA$state, Top200Words, separate = FALSE) rm_stopwords(DATA$state, Top200Words, separate = FALSE, ignore.case = FALSE) rm_stopwords(DATA$state, Top200Words, unlist = TRUE) rm_stopwords(DATA$state, Top200Words, unlist = TRUE, strip=TRUE) rm_stop(DATA$state, Top200Words, unlist = TRUE, unique = TRUE) c("I like it alot", "I like it too") %sw% qdapDictionaries::Top25Words ## End(Not run)
A fictitious dataset containing time spans for codes A and B.
data(sample.time.span)
data(sample.time.span)
A data frame with 9 rows and 6 variables
code. The qualitative code.
start. The integer start time.
end. The integer end time.
Start. The chron start time.
End. The chron end time.
variable. An arbitrary single time repeated measures variable (ignore).
Access the scores dataframes from select qdap outputs.
scores(x, ...)
scores(x, ...)
x |
A qdap object (list) with a dataframe of scores (e.g.,
|
... |
Arguments passed to scores method of other classes. |
Returns a data.frame of scores.
scores.automated_readability_index
- View scores from automated_readability_index
.
## S3 method for class 'automated_readability_index' scores(x, ...)
## S3 method for class 'automated_readability_index' scores(x, ...)
x |
The automated_readability_index object. |
... |
ignored |
automated_readability_index Method for scores
View character_table scores.
## S3 method for class 'character_table' scores(x, ...)
## S3 method for class 'character_table' scores(x, ...)
x |
The |
... |
ignored |
character_table Method for scores
scores.coleman_liau
- View scores from coleman_liau
.
## S3 method for class 'coleman_liau' scores(x, ...)
## S3 method for class 'coleman_liau' scores(x, ...)
x |
The coleman_liau object. |
... |
ignored |
coleman_liau Method for scores
View end_mark_by scores.
## S3 method for class 'end_mark_by' scores(x, ...)
## S3 method for class 'end_mark_by' scores(x, ...)
x |
The |
... |
ignored |
end_mark_by Method for scores
scores.flesch_kincaid
- View scores from flesch_kincaid
.
## S3 method for class 'flesch_kincaid' scores(x, ...)
## S3 method for class 'flesch_kincaid' scores(x, ...)
x |
The flesch_kincaid object. |
... |
ignored |
flesch_kincaid Method for scores
scores.fry
- View scores from fry
.
## S3 method for class 'fry' scores(x, ...)
## S3 method for class 'fry' scores(x, ...)
x |
The fry object. |
... |
ignored |
fry Method for scores
scores.lexical_classification
- View scores from lexical_classification
.
## S3 method for class 'lexical_classification' scores(x, ...)
## S3 method for class 'lexical_classification' scores(x, ...)
x |
The lexical_classification object. |
... |
ignored |
lexical_classification Method for scores
scores.linsear_write
- View scores from linsear_write
.
## S3 method for class 'linsear_write' scores(x, ...)
## S3 method for class 'linsear_write' scores(x, ...)
x |
The linsear_write object. |
... |
ignored |
linsear_write Method for scores
View object_pronoun_type scores.
## S3 method for class 'object_pronoun_type' scores(x, ...)
## S3 method for class 'object_pronoun_type' scores(x, ...)
x |
The |
... |
ignored |
object_pronoun_type Method for scores
View pos_by scores.
## S3 method for class 'pos_by' scores(x, ...)
## S3 method for class 'pos_by' scores(x, ...)
x |
The |
... |
ignored |
pos_by Method for scores
View pronoun_type scores.
## S3 method for class 'pronoun_type' scores(x, ...)
## S3 method for class 'pronoun_type' scores(x, ...)
x |
The |
... |
ignored |
pronoun_type Method for scores
View question_type scores.
## S3 method for class 'question_type' scores(x, ...)
## S3 method for class 'question_type' scores(x, ...)
x |
The |
... |
ignored |
question_type Method for scores
scores.SMOG
- View scores from SMOG
.
## S3 method for class 'SMOG' scores(x, ...)
## S3 method for class 'SMOG' scores(x, ...)
x |
The SMOG object. |
... |
ignored |
SMOG Method for scores
View subject_pronoun_type scores.
## S3 method for class 'subject_pronoun_type' scores(x, ...)
## S3 method for class 'subject_pronoun_type' scores(x, ...)
x |
The |
... |
ignored |
subject_pronoun_type Method for scores
View termco scores.
## S3 method for class 'termco' scores(x, ...)
## S3 method for class 'termco' scores(x, ...)
x |
The |
... |
ignored |
termco Method for scores
View word_length scores.
## S3 method for class 'word_length' scores(x, ...)
## S3 method for class 'word_length' scores(x, ...)
x |
The |
... |
ignored |
word_length Method for scores
View word_position scores.
## S3 method for class 'word_position' scores(x, ...)
## S3 method for class 'word_position' scores(x, ...)
x |
The |
... |
ignored |
word_position Method for scores
View question_type scores.
## S3 method for class 'word_stats' scores(x, ...)
## S3 method for class 'word_stats' scores(x, ...)
x |
The |
... |
ignored |
question_type Method for scores
Use to clean text variables when importing a new data set. Removes extra white spaces other textual anomalies that may cause errors.
scrubber( text.var, num2word = FALSE, rm.quote = TRUE, fix.comma = TRUE, fix.space = TRUE, ... )
scrubber( text.var, num2word = FALSE, rm.quote = TRUE, fix.comma = TRUE, fix.space = TRUE, ... )
text.var |
The text variable. |
num2word |
logical If |
rm.quote |
logical If |
fix.comma |
logical If |
fix.space |
logical. If |
... |
Other arguments passed to |
Returns a parsed character vector.
## Not run: x <- c("I like 456 dogs\t , don't you?", 'The end"') scrubber(x) scrubber(x, TRUE) ## End(Not run)
## Not run: x <- c("I like 456 dogs\t , don't you?", 'The end"') scrubber(x) scrubber(x, TRUE) ## End(Not run)
Search
- Find terms located in columns of a data frame.
boolean_search
- Conducts a Boolean search for terms/strings within a
character vector.
%bs%
- Binary operator version of boolean_search
.
Search(dataframe, term, column.name = NULL, max.distance = 0.02, ...) boolean_search( text.var, terms, ignore.case = TRUE, values = FALSE, exclude = NULL, apostrophe.remove = FALSE, char.keep = NULL, digit.remove = FALSE ) text.var %bs% terms
Search(dataframe, term, column.name = NULL, max.distance = 0.02, ...) boolean_search( text.var, terms, ignore.case = TRUE, values = FALSE, exclude = NULL, apostrophe.remove = FALSE, char.keep = NULL, digit.remove = FALSE ) text.var %bs% terms
dataframe |
A dataframe object to search. |
term |
A character string to search for. |
column.name |
Optional column of the data frame to search (character name or integer index). |
max.distance |
Maximum distance allowed for a match. Expressed either as integer, or as a fraction of the pattern length times the maximal transformation cost (will be replaced by the smallest integer not less than the corresponding fraction). |
text.var |
The text variable. |
terms |
A character string(s) to search for. The terms are arranged in
a single string with AND (use |
ignore.case |
logical. If |
values |
logical. Should the values be returned or the index of the values. |
exclude |
Terms to exclude from the search. If one of these terms is found in the sentence it cannot be returned. |
apostrophe.remove |
logical. If |
char.keep |
A character vector of symbol character (i.e., punctuation)
that strip should keep. The default is to strip everything except
apostrophes. |
digit.remove |
logical. If |
... |
Other arguments passed to |
The terms string is first split by the OR separators into a list. Next the list of vectors is split on the AND separator to produce a list of vectors of search terms. Each sentence is matched against the terms. For a sentence to be counted it must fit all of the terms in an AND Boolean or one of the conditions in an OR Boolean.
Search
- Returns the rows of the data frame that match the
search term.
boolean_search
- Returns the values (or indices) of a vector of strings that match
given terms.
## Not run: ## Dataframe search: (SampDF <- data.frame("islands"=names(islands)[1:32],mtcars, row.names=NULL)) Search(SampDF, "Cuba", "islands") Search(SampDF, "New", "islands") Search(SampDF, "Ho") Search(SampDF, "Ho", max.distance = 0) Search(SampDF, "Axel Heiberg") Search(SampDF, 19) #too much tolerance in max.distance Search(SampDF, 19, max.distance = 0) Search(SampDF, 19, "qsec", max.distance = 0) ##Boolean search: boolean_search(DATA$state, " I ORliar&&stinks") boolean_search(DATA$state, " I &&.", values=TRUE) boolean_search(DATA$state, " I OR.", values=TRUE) boolean_search(DATA$state, " I &&.") ## Exclusion: boolean_search(DATA$state, " I ||.", values=TRUE) boolean_search(DATA$state, " I ||.", exclude = c("way", "truth"), values=TRUE) ## From stackoverflow: http://stackoverflow.com/q/19640562/1000343 dat <- data.frame(x = c("Doggy", "Hello", "Hi Dog", "Zebra"), y = 1:4) z <- data.frame(z =c("Hello", "Dog")) dat[boolean_search(dat$x, paste(z$z, collapse = "OR")), ] ## Binary operator version dat[dat$x %bs% paste(z$z, collapse = "OR"), ] ## Passing to `trans_context` inds <- boolean_search(DATA.SPLIT$state, " I&&.|| I&&!", ignore.case = FALSE) with(DATA.SPLIT, trans_context(state, person, inds=inds)) (inds2 <- boolean_search(raj$dialogue, spaste(paste(negation.words, collapse = " || ")))) trans_context(raj$dialogue, raj$person, inds2) ## End(Not run)
## Not run: ## Dataframe search: (SampDF <- data.frame("islands"=names(islands)[1:32],mtcars, row.names=NULL)) Search(SampDF, "Cuba", "islands") Search(SampDF, "New", "islands") Search(SampDF, "Ho") Search(SampDF, "Ho", max.distance = 0) Search(SampDF, "Axel Heiberg") Search(SampDF, 19) #too much tolerance in max.distance Search(SampDF, 19, max.distance = 0) Search(SampDF, 19, "qsec", max.distance = 0) ##Boolean search: boolean_search(DATA$state, " I ORliar&&stinks") boolean_search(DATA$state, " I &&.", values=TRUE) boolean_search(DATA$state, " I OR.", values=TRUE) boolean_search(DATA$state, " I &&.") ## Exclusion: boolean_search(DATA$state, " I ||.", values=TRUE) boolean_search(DATA$state, " I ||.", exclude = c("way", "truth"), values=TRUE) ## From stackoverflow: http://stackoverflow.com/q/19640562/1000343 dat <- data.frame(x = c("Doggy", "Hello", "Hi Dog", "Zebra"), y = 1:4) z <- data.frame(z =c("Hello", "Dog")) dat[boolean_search(dat$x, paste(z$z, collapse = "OR")), ] ## Binary operator version dat[dat$x %bs% paste(z$z, collapse = "OR"), ] ## Passing to `trans_context` inds <- boolean_search(DATA.SPLIT$state, " I&&.|| I&&!", ignore.case = FALSE) with(DATA.SPLIT, trans_context(state, person, inds=inds)) (inds2 <- boolean_search(raj$dialogue, spaste(paste(negation.words, collapse = " || ")))) trans_context(raj$dialogue, raj$person, inds2) ## End(Not run)
sentiment_frame
- Generate a sentiment lookup hash table
for use with the xxx.frame
argument of various sentiment functions.
sentiment_frame(positives, negatives, pos.weights = 1, neg.weights = -1)
sentiment_frame(positives, negatives, pos.weights = 1, neg.weights = -1)
positives |
A character vector of positive words. |
negatives |
A character vector of negative words. |
pos.weights |
A vector of weights to weight each positive word by.
Length must be equal to length of |
neg.weights |
A vector of weights to weight each negative word by.
Length must be equal to length of |
sentSplit
- Splits turns of talk into individual sentences (provided
proper punctuation is used). This procedure is usually done as part of the
data read in and cleaning process.
sentCombine
- Combines sentences by the same grouping variable together.
TOT
- Convert the tot column from sentSplit
to
turn of talk index (no sub sentence). Generally, for internal use.
sent_detect
- Detect and split sentences on endmark boundaries.
sent_detect_nlp
- Detect and split sentences on endmark boundaries
using openNLP & NLP utilities which matches the onld version of
the openNLP package's now removed sentDetect
function.
sentSplit( dataframe, text.var, rm.var = NULL, endmarks = c("?", ".", "!", "|"), incomplete.sub = TRUE, rm.bracket = TRUE, stem.col = FALSE, text.place = "right", verbose = is.global(2), ... ) sentCombine(text.var, grouping.var = NULL, as.list = FALSE) TOT(tot) sent_detect( text.var, endmarks = c("?", ".", "!", "|"), incomplete.sub = TRUE, rm.bracket = TRUE, ... ) sent_detect_nlp(text.var, ...)
sentSplit( dataframe, text.var, rm.var = NULL, endmarks = c("?", ".", "!", "|"), incomplete.sub = TRUE, rm.bracket = TRUE, stem.col = FALSE, text.place = "right", verbose = is.global(2), ... ) sentCombine(text.var, grouping.var = NULL, as.list = FALSE) TOT(tot) sent_detect( text.var, endmarks = c("?", ".", "!", "|"), incomplete.sub = TRUE, rm.bracket = TRUE, ... ) sent_detect_nlp(text.var, ...)
dataframe |
A dataframe that contains the person and text variable. |
text.var |
The text variable. |
rm.var |
An optional character vector of 1 or 2 naming the variables that are repeated measures (This will restart the "tot" column). |
endmarks |
A character vector of endmarks to split turns of talk into sentences. |
incomplete.sub |
logical. If |
rm.bracket |
logical. If |
stem.col |
logical. If |
text.place |
A character string giving placement location of the text
column. This must be one of the strings |
verbose |
logical. If |
grouping.var |
The grouping variables. Default |
as.list |
logical. If |
tot |
A tot column from a |
... |
Additional options passed to |
sentSplit
- returns a dataframe with turn of talk broken apart
into sentences. Optionally a stemmed version of the text variable may be
returned as well.
sentCombine
- returns a list of vectors with the continuous
sentences by grouping.var pasted together.
returned as well.
TOT
- returns a numeric vector of the turns of talk without
sentence sub indexing (e.g. 3.2 become 3).
sent_detect
- returns a character vector of sentences split on
endmark.
sent_detect
- returns a character vector of sentences split on
endmark.
sentSplit
requires the dialogue (text)
column to be cleaned in a particular way. The data should contain qdap
punctuation marks (c("?", ".", "!", "|")
) at the end of each sentence.
Additionally, extraneous punctuation such as abbreviations should be removed
(see replace_abbreviation
).
Trailing sentences such as I thought I... will be treated as
incomplete and marked with "|"
to denote an incomplete/trailing
sentence.
It is recommended that the user runs check_text
on the
output of sentSplit
's text column.
Dason Kurkiewicz and Tyler Rinker <[email protected]>.
bracketX
,
incomplete_replace
,
stem2df
,
TOT
## Not run: ## `sentSplit` EXAMPLE: (out <- sentSplit(DATA, "state")) out %&% check_text() ## check output text sentSplit(DATA, "state", stem.col = TRUE) sentSplit(DATA, "state", text.place = "left") sentSplit(DATA, "state", text.place = "original") sentSplit(raj, "dialogue")[1:20, ] ## plotting plot(out) plot(out, grouping.var = "person") out2 <- sentSplit(DATA2, "state", rm.var = c("class", "day")) plot(out2) plot(out2, grouping.var = "person") plot(out2, grouping.var = "person", rm.var = "day") plot(out2, grouping.var = "person", rm.var = c("day", "class")) ## `sentCombine` EXAMPLE: dat <- sentSplit(DATA, "state") sentCombine(dat$state, dat$person) truncdf(sentCombine(dat$state, dat$sex), 50) ## `TOT` EXAMPLE: dat <- sentSplit(DATA, "state") TOT(dat$tot) ## `sent_detect` sent_detect(DATA$state) ## NLP based sentence splitting sent_detect_nlp(DATA$state) ## End(Not run)
## Not run: ## `sentSplit` EXAMPLE: (out <- sentSplit(DATA, "state")) out %&% check_text() ## check output text sentSplit(DATA, "state", stem.col = TRUE) sentSplit(DATA, "state", text.place = "left") sentSplit(DATA, "state", text.place = "original") sentSplit(raj, "dialogue")[1:20, ] ## plotting plot(out) plot(out, grouping.var = "person") out2 <- sentSplit(DATA2, "state", rm.var = c("class", "day")) plot(out2) plot(out2, grouping.var = "person") plot(out2, grouping.var = "person", rm.var = "day") plot(out2, grouping.var = "person", rm.var = c("day", "class")) ## `sentCombine` EXAMPLE: dat <- sentSplit(DATA, "state") sentCombine(dat$state, dat$person) truncdf(sentCombine(dat$state, dat$sex), 50) ## `TOT` EXAMPLE: dat <- sentSplit(DATA, "state") TOT(dat$tot) ## `sent_detect` sent_detect(DATA$state) ## NLP based sentence splitting sent_detect_nlp(DATA$state) ## End(Not run)
Replace spaces in words groups that should be grouped together.
space_fill( text.var, terms, sep = "~~", rm.extra = TRUE, ignore.case = TRUE, fixed = FALSE, ... )
space_fill( text.var, terms, sep = "~~", rm.extra = TRUE, ignore.case = TRUE, fixed = FALSE, ... )
text.var |
The text variable. |
terms |
A character vector of grouped word terms to insert a new separating/space character. |
sep |
A character string to separate the terms. |
rm.extra |
logical. Should trailing, leading and > 1 continuous white spaces be removed? |
ignore.case |
logical. If |
fixed |
logical. If |
... |
Other arguments passed to |
space_fill
is useful for keeping grouped words
together. Many functions in qdap take a char.keep
or
char2space
argument. This can be used to prepare multi word phrases
(e.g., proper nouns) as a single unit.
Returns a character vector with extra, trailing and/or leading spaces removed.
link[qdap]{strip}
by default does not remove the double tilde
"~~"
character.
## Not run: x <- c("I want to hear the Dr. Martin Luther King Jr. speech.", "I also want to go to the white House to see President Obama speak.") keeps <- c("Dr. Martin Luther King Jr.", "The White House", "President Obama") space_fill(x, keeps) strip(space_fill(x, keeps)) ## End(Not run)
## Not run: x <- c("I want to hear the Dr. Martin Luther King Jr. speech.", "I also want to go to the white House to see President Obama speak.") keeps <- c("Dr. Martin Luther King Jr.", "The White House", "President Obama") space_fill(x, keeps) strip(space_fill(x, keeps)) ## End(Not run)
Adds trailing and/or leading spaces to a vector of terms.
spaste(terms, trailing = TRUE, leading = TRUE)
spaste(terms, trailing = TRUE, leading = TRUE)
terms |
A character vector of terms to insert trailing and/or leading spaces. |
trailing |
logical. If |
leading |
logical. If |
Returns a character vector with trailing and/or leading spaces.
## Not run: spaste(Top25Words) spaste(Top25Words, FALSE) spaste(Top25Words, trailing = TRUE, leading = FALSE) #or spaste(Top25Words, , FALSE) ## End(Not run)
## Not run: spaste(Top25Words) spaste(Top25Words, FALSE) spaste(Top25Words, trailing = TRUE, leading = FALSE) #or spaste(Top25Words, , FALSE) ## End(Not run)
Look for cells with multiple people and create separate rows for each person.
speakerSplit( dataframe, person.var = 1, sep = c("and", "&", ","), track.reps = FALSE )
speakerSplit( dataframe, person.var = 1, sep = c("and", "&", ","), track.reps = FALSE )
dataframe |
A dataframe that contains the person variable. |
person.var |
The person variable to be stretched. |
sep |
The separator(s) to search for and break on. Default is: c("and", "&", ",") |
track.reps |
logical. If |
Returns an expanded dataframe with person variable stretched and accompanying rows repeated.
## Not run: DATA$person <- as.character(DATA$person) DATA$person[c(1, 4, 6)] <- c("greg, sally, & sam", "greg, sally", "sam and sally") speakerSplit(DATA) speakerSplit(DATA, track.reps=TRUE) DATA$person[c(1, 4, 6)] <- c("greg_sally_sam", "greg.sally", "sam; sally") speakerSplit(DATA, sep = c(".", "_", ";")) DATA <- qdap::DATA #reset DATA ## End(Not run)
## Not run: DATA$person <- as.character(DATA$person) DATA$person[c(1, 4, 6)] <- c("greg, sally, & sam", "greg, sally", "sam and sally") speakerSplit(DATA) speakerSplit(DATA, track.reps=TRUE) DATA$person[c(1, 4, 6)] <- c("greg_sally_sam", "greg.sally", "sam; sally") speakerSplit(DATA, sep = c(".", "_", ";")) DATA <- qdap::DATA #reset DATA ## End(Not run)
stemmer
- Stems a vector of text strings (A wrapper for the tm
package's stemDocument
.
stem_words
- Wrapper for stemmer that stems a vector of words.
stem2df
- Wrapper for stemmer that stems a vector of text strings
and returns a dataframe with the vector added..
stemmer( text.var, rm.bracket = TRUE, capitalize = TRUE, warn = TRUE, char.keep = "~~", ... ) stem_words(...) stem2df(dataframe, text.var, stem.name = NULL, ...)
stemmer( text.var, rm.bracket = TRUE, capitalize = TRUE, warn = TRUE, char.keep = "~~", ... ) stem_words(...) stem2df(dataframe, text.var, stem.name = NULL, ...)
text.var |
The text variable. In |
rm.bracket |
logical. If |
capitalize |
logical. If |
warn |
logical. If |
char.keep |
A character vector of symbols that should be kept within sentences. |
... |
Various: |
dataframe |
A dataframe object. |
stem.name |
A character vector of length one for the stemmed column. If
|
stemmer
- returns a character vector with stemmed text.
stem_words
- returns a vector of individually stemmed words.
stem2df
- returns a dataframe with a character vector with
stemmed text.
## Not run: #stemmer EXAMPLE: stemmer(DATA$state) out1 <- stemmer(raj$dialogue) htruncdf(out1, 20, 60) #stem_words EXAMPLE: stem_words(doggies, jumping, swims) #stem2df EXAMPLE: out2 <- stem2df(DATA, "state", "new") truncdf(out2, 30) ## End(Not run)
## Not run: #stemmer EXAMPLE: stemmer(DATA$state) out1 <- stemmer(raj$dialogue) htruncdf(out1, 20, 60) #stem_words EXAMPLE: stem_words(doggies, jumping, swims) #stem2df EXAMPLE: out2 <- stem2df(DATA, "state", "new") truncdf(out2, 30) ## End(Not run)
Strip text of unwanted characters.
strip( x, char.keep = "~~", digit.remove = TRUE, apostrophe.remove = TRUE, lower.case = TRUE ) ## S3 method for class 'character' strip( x, char.keep = "~~", digit.remove = TRUE, apostrophe.remove = TRUE, lower.case = TRUE ) ## S3 method for class 'factor' strip( x, char.keep = "~~", digit.remove = TRUE, apostrophe.remove = TRUE, lower.case = TRUE ) ## Default S3 method: strip( x, char.keep = "~~", digit.remove = TRUE, apostrophe.remove = TRUE, lower.case = TRUE ) ## S3 method for class 'list' strip( x, char.keep = "~~", digit.remove = TRUE, apostrophe.remove = TRUE, lower.case = TRUE )
strip( x, char.keep = "~~", digit.remove = TRUE, apostrophe.remove = TRUE, lower.case = TRUE ) ## S3 method for class 'character' strip( x, char.keep = "~~", digit.remove = TRUE, apostrophe.remove = TRUE, lower.case = TRUE ) ## S3 method for class 'factor' strip( x, char.keep = "~~", digit.remove = TRUE, apostrophe.remove = TRUE, lower.case = TRUE ) ## Default S3 method: strip( x, char.keep = "~~", digit.remove = TRUE, apostrophe.remove = TRUE, lower.case = TRUE ) ## S3 method for class 'list' strip( x, char.keep = "~~", digit.remove = TRUE, apostrophe.remove = TRUE, lower.case = TRUE )
x |
The text variable. |
char.keep |
A character vector of symbols (i.e., punctuation) that
|
digit.remove |
logical. If |
apostrophe.remove |
logical. If |
lower.case |
logical. If |
Returns a vector of text that has been stripped of unwanted characters.
## Not run: DATA$state #no strip applied strip(DATA$state) strip(DATA$state, apostrophe.remove=FALSE) strip(DATA$state, char.keep = c("?", ".")) ## End(Not run)
## Not run: DATA$state #no strip applied strip(DATA$state) strip(DATA$state, apostrophe.remove=FALSE) strip(DATA$state, char.keep = c("?", ".")) ## End(Not run)
A wrapper for as.character
that writes to the Mac/Windows
clipboard.
strWrap(text = "clipboard", width = 70, copy2clip = interactive())
strWrap(text = "clipboard", width = 70, copy2clip = interactive())
text |
character vector, or an object which can be converted to a
character vector by |
width |
A positive integer giving the target column for wrapping lines in the output. |
copy2clip |
logical. If |
Prints a wrapped text vector to the console and copies the wrapped text to the clipboard on a Mac or Windows machine.
## Not run: x <- paste2(DATA$state, sep = " " ) strWrap(x) strWrap(x, 10) #should be copied to the clipboard on a Mac or Windows machine. ## End(Not run)
## Not run: x <- paste2(DATA$state, sep = " " ) strWrap(x) strWrap(x, 10) #should be copied to the clipboard on a Mac or Windows machine. ## End(Not run)
Count the number of subject pronouns per grouping variables.
subject_pronoun_type( text.var, grouping.var = NULL, subject.pronoun.list = NULL, ... )
subject_pronoun_type( text.var, grouping.var = NULL, subject.pronoun.list = NULL, ... )
text.var |
The text variable |
grouping.var |
The grouping variables. Default |
subject.pronoun.list |
A named list of subject pronouns. See Details for more. |
... |
Other arguments passed to |
The following subject pronoun categories are the default searched terms:
I - c(" i'd ", " i'll ", " i'm ", " i've ", " i ")
we - c(" we'd ", " we'll ", " we're ", " we've ", " we ")
you - c(" you'd ", " you'll ", " you're ", " you've ", " you ", " your ")
he - c(" he'd ", " he'll ", " he's ", " he ")
she - c(" she'd ", " she'll ", " she's ", " she ")
it - c(" it'd ", " it'll ", " it's ", " it ")
they - c(" they'd ", " they'll ", " they're ", "they've ", " they ")
Returns a list, of class "subject_pronoun_type", of data frames regarding subject pronoun word counts:
preprocessed |
List of uncollapsed dataframes (raw, prop, rnp) of the class "termco" that contain all searchable subject pronouns. |
raw |
raw word counts by grouping variable |
prop |
proportional word counts by grouping variable; proportional to each individual's subject pronoun use |
rnp |
a character combination data frame of raw and proportional subject pronoun use |
object_pronoun_type
,
pronoun_type
## Not run: dat <- pres_debates2012 dat <- dat[dat$person %in% qcv(ROMNEY, OBAMA), ] (out <- subject_pronoun_type(dat$dialogue, dat$person)) plot(out) plot(out, 2) plot(out, 3) plot(out, 3, ncol=2) scores(out) counts(out) proportions(out) preprocessed(out) plot(scores(out)) plot(counts(out)) plot(proportions(out)) ## End(Not run)
## Not run: dat <- pres_debates2012 dat <- dat[dat$person %in% qcv(ROMNEY, OBAMA), ] (out <- subject_pronoun_type(dat$dialogue, dat$person)) plot(out) plot(out, 2) plot(out, 3) plot(out, 3, ncol=2) scores(out) counts(out) proportions(out) preprocessed(out) plot(scores(out)) plot(counts(out)) plot(proportions(out)) ## End(Not run)
Summarize a cmspans object
## S3 method for class 'cmspans' summary( object, grouping.var = NULL, rm.var = NULL, total.span = TRUE, aggregate = FALSE, percent = TRUE, digits = 2, ... )
## S3 method for class 'cmspans' summary( object, grouping.var = NULL, rm.var = NULL, total.span = TRUE, aggregate = FALSE, percent = TRUE, digits = 2, ... )
object |
The cmspans object |
grouping.var |
The grouping variables. Also takes a single grouping variable or a list of 1 or more grouping variables. |
rm.var |
An optional single vector or list of 1 or 2 of repeated measures to aggregate by. |
total.span |
logical or an option list of vectors (length 1 or 2) of the
total duration of the event. If |
aggregate |
logical. If |
percent |
logical. If |
digits |
Integer; number of decimal places to round when printing. |
... |
Other argument passed to |
## Not run: ## Example 1 foo <- list( person_greg = qcv(terms='7:11, 20:24, 30:33, 49:56'), person_researcher = qcv(terms='42:48'), person_sally = qcv(terms='25:29, 37:41'), person_sam = qcv(terms='1:6, 16:19, 34:36'), person_teacher = qcv(terms='12:15'), adult_0 = qcv(terms='1:11, 16:41, 49:56'), adult_1 = qcv(terms='12:15, 42:48'), AA = qcv(terms="1"), BB = qcv(terms="1:2, 3:10, 19"), CC = qcv(terms="1:9, 100:150") ) foo2 <- list( person_greg = qcv(terms='7:11, 20:24, 30:33, 49:56'), person_researcher = qcv(terms='42:48'), person_sally = qcv(terms='25:29, 37:41'), person_sam = qcv(terms='1:6, 16:19, 34:36'), person_teacher = qcv(terms='12:15'), adult_0 = qcv(terms='1:11, 16:41, 49:56'), adult_1 = qcv(terms='12:15, 42:48'), AA = qcv(terms="40"), BB = qcv(terms="50:90"), CC = qcv(terms="60:90, 100:120, 150"), DD = qcv(terms="") ) v <- cm_2long(foo, foo2, v.name = "time") plot(v) summary(v) plot(summary(v)) ## Example 2 x <- list( transcript_time_span = qcv(00:00 - 1:12:00), A = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00"), B = qcv(terms = "2.40, 3.01:3.02, 5.01, 6.02:7.00, 9.00, 1.12.00:1.19.01"), C = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00, 17.01") ) z <-cm_2long(x) summary(z) summary(z, total.span = FALSE) summary(z, total.span = c(0, 3333)) summary(z, total.span = c("00:01:00", "03:02:00")) plot(summary(z)) ## suppress printing measurement units suppressMessages(print(summary(z))) ## remove print method as.data.frame(summary(z)) ## End(Not run)
## Not run: ## Example 1 foo <- list( person_greg = qcv(terms='7:11, 20:24, 30:33, 49:56'), person_researcher = qcv(terms='42:48'), person_sally = qcv(terms='25:29, 37:41'), person_sam = qcv(terms='1:6, 16:19, 34:36'), person_teacher = qcv(terms='12:15'), adult_0 = qcv(terms='1:11, 16:41, 49:56'), adult_1 = qcv(terms='12:15, 42:48'), AA = qcv(terms="1"), BB = qcv(terms="1:2, 3:10, 19"), CC = qcv(terms="1:9, 100:150") ) foo2 <- list( person_greg = qcv(terms='7:11, 20:24, 30:33, 49:56'), person_researcher = qcv(terms='42:48'), person_sally = qcv(terms='25:29, 37:41'), person_sam = qcv(terms='1:6, 16:19, 34:36'), person_teacher = qcv(terms='12:15'), adult_0 = qcv(terms='1:11, 16:41, 49:56'), adult_1 = qcv(terms='12:15, 42:48'), AA = qcv(terms="40"), BB = qcv(terms="50:90"), CC = qcv(terms="60:90, 100:120, 150"), DD = qcv(terms="") ) v <- cm_2long(foo, foo2, v.name = "time") plot(v) summary(v) plot(summary(v)) ## Example 2 x <- list( transcript_time_span = qcv(00:00 - 1:12:00), A = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00"), B = qcv(terms = "2.40, 3.01:3.02, 5.01, 6.02:7.00, 9.00, 1.12.00:1.19.01"), C = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00, 17.01") ) z <-cm_2long(x) summary(z) summary(z, total.span = FALSE) summary(z, total.span = c(0, 3333)) summary(z, total.span = c("00:01:00", "03:02:00")) plot(summary(z)) ## suppress printing measurement units suppressMessages(print(summary(z))) ## remove print method as.data.frame(summary(z)) ## End(Not run)
Summarize a wfdf object with familiar tm package look.
## S3 method for class 'wfdf' summary(object, ...)
## S3 method for class 'wfdf' summary(object, ...)
object |
The wfdf object |
... |
Ignored. |
Non-/sparse entries is the ratio of non-zeros to zero counts. Sparsity is that ratio represented as a percent. Hapax legomenon is the number(percent) of terms that appear only once in the dialogue. Dis legomenon is the number(percent) of terms that appear exactly two times once.
## Not run: x <- with(DATA, wfdf(state, list(sex, adult))) summary(x) ## End(Not run)
## Not run: x <- with(DATA, wfdf(state, list(sex, adult))) summary(x) ## End(Not run)
Summarize a wfm object with familiar tm package look.
## S3 method for class 'wfm' summary(object, ...)
## S3 method for class 'wfm' summary(object, ...)
object |
The wfm object |
... |
Ignored. |
Non-/sparse entries is the ratio of non-zeros to zero counts. Sparsity is that ratio represented as a percent. Hapax legomenon is the number(percent) of terms that appear only once in the dialogue. Dis legomenon is the number(percent) of terms that appear exactly two times once.
## Not run: x <- with(DATA, wfm(state, list(sex, adult))) summary(x) ## End(Not run)
## Not run: x <- with(DATA, wfm(state, list(sex, adult))) summary(x) ## End(Not run)
syllable_sum
- Count the number of syllables per row of text.
syllable_count
- Count the number of syllables in a single text string.
polysyllable_sum
- Count the number of polysyllables per row of text.
combo_syllable_sum
- Count the number of both syllables and
polysyllables per row of text.
syllable_sum(text.var, parallel = FALSE, ...) syllable_count( text, remove.bracketed = TRUE, algorithm.report = FALSE, env = qdap::env.syl ) polysyllable_sum(text.var, parallel = FALSE) combo_syllable_sum(text.var, parallel = FALSE)
syllable_sum(text.var, parallel = FALSE, ...) syllable_count( text, remove.bracketed = TRUE, algorithm.report = FALSE, env = qdap::env.syl ) polysyllable_sum(text.var, parallel = FALSE) combo_syllable_sum(text.var, parallel = FALSE)
text.var |
The text variable |
parallel |
logical. If |
text |
A single character vector of text. |
remove.bracketed |
logical. If |
algorithm.report |
logical. If |
env |
A lookup environment to lookup the number of syllables in found words. |
... |
Other arguments passed to |
The worker function of all the syllable functions is
syllable_count
, though it is not intended for direct
use on a transcript. This function relies on a combined dictionary lookup
(based on the Nettalk Corpus (Sejnowski & Rosenberg, 1987)) and backup
algorithm method.
syllable_sum
- returns a vector of syllable counts per row.
syllable_count
- returns a dataframe of syllable counts and
algorithm/dictionary uses and, optionally, a report of words not found in the dictionary.
polysyllable_sum
- returns a vector of polysyllable counts per row.
combo_syllable_sum
- returns a dataframe of syllable and polysyllable
counts per row.
Sejnowski, T.J., and Rosenberg, C.R. (1987). "Parallel networks that learn to pronounce English text" in Complex Systems, 1, 145-168.
## Not run: syllable_count("Robots like Dason lie.") syllable_count("Robots like Dason lie.", algorithm.report = TRUE) syllable_sum(DATA$state) x1 <- syllable_sum(rajSPLIT$dialogue) plot(x1) cumulative(x1) polysyllable_sum(DATA$state) x2 <- polysyllable_sum(rajSPLIT$dialogue) plot(x2) cumulative(x2) combo_syllable_sum(DATA$state) x3 <- combo_syllable_sum(rajSPLIT$dialogue) plot(x3) cumulative(x3) ## End(Not run)
## Not run: syllable_count("Robots like Dason lie.") syllable_count("Robots like Dason lie.", algorithm.report = TRUE) syllable_sum(DATA$state) x1 <- syllable_sum(rajSPLIT$dialogue) plot(x1) cumulative(x1) polysyllable_sum(DATA$state) x2 <- polysyllable_sum(rajSPLIT$dialogue) plot(x2) cumulative(x2) combo_syllable_sum(DATA$state) x3 <- combo_syllable_sum(rajSPLIT$dialogue) plot(x3) cumulative(x3) ## End(Not run)
synonyms
- Search for synonyms that match term(s).
synonyms_frame
- Generate a synonym lookup hash key
for use with the synonym.frame
argument in the synonym
function.
synonyms( terms, return.list = TRUE, multiwords = TRUE, report.null = TRUE, synonym.frame = qdapDictionaries::key.syn ) syn( terms, return.list = TRUE, multiwords = TRUE, report.null = TRUE, synonym.frame = qdapDictionaries::key.syn ) synonyms_frame(synonym.list, prior.frame) syn_frame(synonym.list, prior.frame)
synonyms( terms, return.list = TRUE, multiwords = TRUE, report.null = TRUE, synonym.frame = qdapDictionaries::key.syn ) syn( terms, return.list = TRUE, multiwords = TRUE, report.null = TRUE, synonym.frame = qdapDictionaries::key.syn ) synonyms_frame(synonym.list, prior.frame) syn_frame(synonym.list, prior.frame)
terms |
The terms to find synonyms for. |
return.list |
logical. If |
multiwords |
logical. IF |
report.null |
logical. If |
synonym.frame |
A dataframe or hash key of positive/negative words and weights. |
synonym.list |
A named list of lists (or vectors) of synonyms. |
prior.frame |
A prior synonyms data.frame in the format produced by
|
Returns a list of vectors or vector of possible words that match term(s).
The synonyms dictionary (see key.syn
) was
generated by web scraping the Reverso (https://dictionary.reverso.net/english-synonyms/) Online Dictionary.
The word list fed to Reverso
is the unique words from the combination of DICTIONARY
and labMT
.
## Not run: synonyms(c("the", "cat", "job", "environment", "read", "teach")) head(syn(c("the", "cat", "job", "environment", "read", "teach"), return.list = FALSE), 30) syn(c("the", "cat", "job", "environment", "read", "teach"), multiwords = FALSE) ## User defined synonym lookup syn_dat <- list( like = list(c("want", "desire"), c("love", "care")), show = list(c("reveal"), c("movie", "opera")), R = c("old friend", "statistics language") ) synonyms_frame(syn_dat) syn(c("R", "show"), synonym.frame = syn_frame(syn_dat)) syns.hash <- syn_frame(syn_dat, prior.frame = qdapDictionaries::key.syn) syn(c("R", "show", "like", "robot"), synonym.frame = syns.hash) ## End(Not run)
## Not run: synonyms(c("the", "cat", "job", "environment", "read", "teach")) head(syn(c("the", "cat", "job", "environment", "read", "teach"), return.list = FALSE), 30) syn(c("the", "cat", "job", "environment", "read", "teach"), multiwords = FALSE) ## User defined synonym lookup syn_dat <- list( like = list(c("want", "desire"), c("love", "care")), show = list(c("reveal"), c("movie", "opera")), R = c("old friend", "statistics language") ) synonyms_frame(syn_dat) syn(c("R", "show"), synonym.frame = syn_frame(syn_dat)) syns.hash <- syn_frame(syn_dat, prior.frame = qdapDictionaries::key.syn) syn(c("R", "show", "like", "robot"), synonym.frame = syns.hash) ## End(Not run)
termco
- Search a transcript by any number of grouping variables for
categories (themes) of grouped root terms. While there are other termco
functions in the termco family (e.g., termco_d
)
termco
is a more powerful and flexible wrapper intended for general
use.
termco_d
- Search a transcript by any number of grouping variables for
root terms.
term_match
- Search a transcript for words that exactly match term(s).
termco2mat
- Convert a termco dataframe to a matrix for use with
visualization functions (e.g., heatmap.2
).
termco( text.var, grouping.var = NULL, match.list, short.term = TRUE, ignore.case = TRUE, elim.old = TRUE, percent = TRUE, digits = 2, apostrophe.remove = FALSE, char.keep = NULL, digit.remove = NULL, zero.replace = 0, ... ) termco_d( text.var, grouping.var = NULL, match.string, short.term = FALSE, ignore.case = TRUE, zero.replace = 0, percent = TRUE, digits = 2, apostrophe.remove = FALSE, char.keep = NULL, digit.remove = TRUE, ... ) term_match(text.var, terms, return.list = TRUE, apostrophe.remove = FALSE) termco2mat( dataframe, drop.wc = TRUE, short.term = TRUE, rm.zerocol = FALSE, no.quote = TRUE, transform = TRUE, trim.terms = TRUE )
termco( text.var, grouping.var = NULL, match.list, short.term = TRUE, ignore.case = TRUE, elim.old = TRUE, percent = TRUE, digits = 2, apostrophe.remove = FALSE, char.keep = NULL, digit.remove = NULL, zero.replace = 0, ... ) termco_d( text.var, grouping.var = NULL, match.string, short.term = FALSE, ignore.case = TRUE, zero.replace = 0, percent = TRUE, digits = 2, apostrophe.remove = FALSE, char.keep = NULL, digit.remove = TRUE, ... ) term_match(text.var, terms, return.list = TRUE, apostrophe.remove = FALSE) termco2mat( dataframe, drop.wc = TRUE, short.term = TRUE, rm.zerocol = FALSE, no.quote = TRUE, transform = TRUE, trim.terms = TRUE )
text.var |
The text variable. |
grouping.var |
The grouping variables. Default |
match.list |
A list of named character vectors. |
short.term |
logical. If |
ignore.case |
logical. If |
elim.old |
logical. If |
percent |
logical. If |
digits |
Integer; number of decimal places to round when printing. |
apostrophe.remove |
logical. If |
char.keep |
A character vector of symbol character (i.e., punctuation)
that strip should keep. The default is to strip everything except
apostrophes. |
digit.remove |
logical. If |
zero.replace |
Value to replace 0 values with. |
match.string |
A vector of terms to search for. When using inside of
|
terms |
The terms to search for in the |
return.list |
logical. If |
dataframe |
A termco (or termco_d) dataframe or object. |
drop.wc |
logical. If |
rm.zerocol |
logical. If |
no.quote |
logical. If |
transform |
logical. If |
trim.terms |
logical. If |
... |
Other argument supplied to |
termco
& termco_d
- both return a list, of class
"termco", of data frames and information regarding word counts:
raw |
raw word counts by grouping variable |
prop |
proportional word counts by grouping variable; proportional to each individual's word use |
rnp |
a character combination data frame of raw and proportional |
zero_replace |
value to replace zeros with; mostly internal use |
percent |
The value of percent used for plotting purposes. |
digits |
integer value of number of digits to display; mostly internal use |
term_match
- returns a list or vector of possible words that
match term(s).
termco2mat
- returns a matrix of term counts.
Percentages are calculated as a ratio of counts of
match.list
elements to word counts. Word counts do not contain
symbols or digits. Using symbols, digits or small segments of full words
(e.g., "to") could total more than 100%.
The match.list/match.string is (optionally) case and character sensitive. Spacing is an important way to grab specific words and requires careful thought. Using "read" will find the words "bread", "read" "reading", and "ready". If you want to search for just the word "read" you'd supply a vector of c(" read ", " reads", " reading", " reader"). To search for non character arguments (i.e., numbers and symbols) additional arguments from strip must be passed.
## Not run: #termco examples: term <- c("the ", "she", " wh") (out <- with(raj.act.1, termco(dialogue, person, term))) plot(out) scores(out) plot(scores(out)) counts(out) plot(counts(out)) proportions(out) plot(proportions(out)) # General form for match.list as themes # # ml <- list( # cat1 = c(), # cat2 = c(), # catn = c() # ) ml <- list( cat1 = c(" the ", " a ", " an "), cat2 = c(" I'" ), "good", the = c("the", " the ", " the", "the") ) (dat <- with(raj.act.1, termco(dialogue, person, ml))) scores(dat) #useful for presenting in tables counts(dat) #prop and raw counts are useful for performing calculations proportions(dat) datb <- with(raj.act.1, termco(dialogue, person, ml, short.term = FALSE, elim.old=FALSE)) ltruncdf(datb, 20, 6) (dat2 <- data.frame(dialogue=c("@bryan is bryan good @br", "indeed", "@ brian"), person=qcv(A, B, A))) ml2 <- list(wrds=c("bryan", "indeed"), "@", bryan=c("bryan", "@ br", "@br")) with(dat2, termco(dialogue, person, match.list=ml2)) with(dat2, termco(dialogue, person, match.list=ml2, percent = FALSE)) DATA$state[1] <- "12 4 rgfr r0ffrg0" termco(DATA$state, DATA$person, '0', digit.remove=FALSE) DATA <- qdap::DATA #Using with term_match and exclude exclude(term_match(DATA$state, qcv(th), FALSE), "truth") termco(DATA$state, DATA$person, exclude(term_match(DATA$state, qcv(th), FALSE), "truth")) MTCH.LST <- exclude(term_match(DATA$state, qcv(th, i)), qcv(truth, stinks)) termco(DATA$state, DATA$person, MTCH.LST) syns <- synonyms("doubt") syns[1] termco(DATA$state, DATA$person, unlist(syns[1])) synonyms("doubt", FALSE) termco(DATA$state, DATA$person, list(doubt = synonyms("doubt", FALSE))) termco(DATA$state, DATA$person, syns) #termco_d examples: termco_d(DATA$state, DATA$person, c(" the", " i'")) termco_d(DATA$state, DATA$person, c(" the", " i'"), ignore.case=FALSE) termco_d(DATA$state, DATA$person, c(" the ", " i'")) # termco2mat example: MTCH.LST <- exclude(term_match(DATA$state, qcv(a, i)), qcv(is, it, am, shall)) termco_obj <- termco(DATA$state, DATA$person, MTCH.LST) termco2mat(termco_obj) plot(termco_obj) plot(termco_obj, label = TRUE) plot(termco_obj, label = TRUE, text.color = "red") plot(termco_obj, label = TRUE, text.color="red", lab.digits=3) ## REVERSE TERMCO (return raw words found per variable) df <- data.frame(x=1:6, y = c("the fluffy little bat" , "the man was round like a ball", "the fluffy little bat" , "the man was round like a ball", "he ate the chair" , "cough, cough"), stringsAsFactors=FALSE) l <- list("bat" ,"man", "ball", "heavy") z <- counts(termco(df$y, qdapTools::id(df), l))[, -2] counts2list(z[, -1], z[, 1]) ## politness politness <- c("please", "excuse me", "thank you", "you welcome", "you're welcome", "i'm sorry", "forgive me", "pardon me") with(pres_debates2012, termco(dialogue, person, politness)) with(hamlet, termco(dialogue, person, politness)) ## Term Use Percentage per N Words dat <- with(raj, chunker(dialogue, person, n.words = 100, rm.unequal = TRUE)) dat2 <- list2df(dat, "Dialogue", "Person") dat2[["Duration"]] <- unlist(lapply(dat, id, pad=FALSE)) dat2 <- qdap_df(dat2, "Dialogue") Top5 <- sapply(split(raj$dialogue, raj$person), wc, FALSE) %>% sort(decreasing=TRUE) %>% list2df("wordcount", "person") %>% `[`(1:5, 2) propdat <- dat2 %&% termco(list(Person, Duration), as.list(Top25Words[1:5]), percent = FALSE) %>% proportions %>% colsplit2df %>% reshape2::melt(id=c("Person", "Duration", "word.count"), variable="Word") %>% dplyr::filter(Person %in% Top5) head(propdat) ggplot(propdat, aes(y=value, x=Duration, group=Person, color=Person)) + geom_line(size=1.25) + facet_grid(Word~., scales="free_y") + ylab("Percent of Word Use") + xlab("Per 100 Words") + scale_y_continuous(labels = percent) ggplot(propdat, aes(y=value, x=Duration, group=Word, color=Word)) + geom_line(size=1.25) + facet_grid(Person~.) + ylab("Percent of Word Use") + xlab("Per 100 Words") + scale_y_continuous(labels = percent) ggplot(propdat, aes(y=value, x=Duration, group=Word)) + geom_line() + facet_grid(Word~Person, scales="free_y") + ylab("Percent of Word Use") + xlab("Per 100 Words") + scale_y_continuous(labels = percent) + ggthemes::theme_few() ## Discourse Markers: See... ## Schffrin, D. (2001). Discourse markers: Language, meaning, and context. ## In D. Schiffrin, D. Tannen, & H. E. Hamilton (Eds.), The handbook of ## discourse analysis (pp. 54-75). Malden, MA: Blackwell Publishing. discoure_markers <- list( response_cries = c(" oh ", " ah ", " aha ", " ouch ", " yuk "), back_channels = c(" uh-huh ", " uhuh ", " yeah "), summons = " hey ", justification = " because " ) (markers <- with(pres_debates2012, termco(dialogue, list(person, time), discoure_markers) )) plot(markers, high="red") with(pres_debates2012, termco(dialogue, list(person, time), discoure_markers, elim.old = FALSE) ) with(pres_debates2012, dispersion_plot(dialogue, unlist(discoure_markers), person, time) ) ## End(Not run)
## Not run: #termco examples: term <- c("the ", "she", " wh") (out <- with(raj.act.1, termco(dialogue, person, term))) plot(out) scores(out) plot(scores(out)) counts(out) plot(counts(out)) proportions(out) plot(proportions(out)) # General form for match.list as themes # # ml <- list( # cat1 = c(), # cat2 = c(), # catn = c() # ) ml <- list( cat1 = c(" the ", " a ", " an "), cat2 = c(" I'" ), "good", the = c("the", " the ", " the", "the") ) (dat <- with(raj.act.1, termco(dialogue, person, ml))) scores(dat) #useful for presenting in tables counts(dat) #prop and raw counts are useful for performing calculations proportions(dat) datb <- with(raj.act.1, termco(dialogue, person, ml, short.term = FALSE, elim.old=FALSE)) ltruncdf(datb, 20, 6) (dat2 <- data.frame(dialogue=c("@bryan is bryan good @br", "indeed", "@ brian"), person=qcv(A, B, A))) ml2 <- list(wrds=c("bryan", "indeed"), "@", bryan=c("bryan", "@ br", "@br")) with(dat2, termco(dialogue, person, match.list=ml2)) with(dat2, termco(dialogue, person, match.list=ml2, percent = FALSE)) DATA$state[1] <- "12 4 rgfr r0ffrg0" termco(DATA$state, DATA$person, '0', digit.remove=FALSE) DATA <- qdap::DATA #Using with term_match and exclude exclude(term_match(DATA$state, qcv(th), FALSE), "truth") termco(DATA$state, DATA$person, exclude(term_match(DATA$state, qcv(th), FALSE), "truth")) MTCH.LST <- exclude(term_match(DATA$state, qcv(th, i)), qcv(truth, stinks)) termco(DATA$state, DATA$person, MTCH.LST) syns <- synonyms("doubt") syns[1] termco(DATA$state, DATA$person, unlist(syns[1])) synonyms("doubt", FALSE) termco(DATA$state, DATA$person, list(doubt = synonyms("doubt", FALSE))) termco(DATA$state, DATA$person, syns) #termco_d examples: termco_d(DATA$state, DATA$person, c(" the", " i'")) termco_d(DATA$state, DATA$person, c(" the", " i'"), ignore.case=FALSE) termco_d(DATA$state, DATA$person, c(" the ", " i'")) # termco2mat example: MTCH.LST <- exclude(term_match(DATA$state, qcv(a, i)), qcv(is, it, am, shall)) termco_obj <- termco(DATA$state, DATA$person, MTCH.LST) termco2mat(termco_obj) plot(termco_obj) plot(termco_obj, label = TRUE) plot(termco_obj, label = TRUE, text.color = "red") plot(termco_obj, label = TRUE, text.color="red", lab.digits=3) ## REVERSE TERMCO (return raw words found per variable) df <- data.frame(x=1:6, y = c("the fluffy little bat" , "the man was round like a ball", "the fluffy little bat" , "the man was round like a ball", "he ate the chair" , "cough, cough"), stringsAsFactors=FALSE) l <- list("bat" ,"man", "ball", "heavy") z <- counts(termco(df$y, qdapTools::id(df), l))[, -2] counts2list(z[, -1], z[, 1]) ## politness politness <- c("please", "excuse me", "thank you", "you welcome", "you're welcome", "i'm sorry", "forgive me", "pardon me") with(pres_debates2012, termco(dialogue, person, politness)) with(hamlet, termco(dialogue, person, politness)) ## Term Use Percentage per N Words dat <- with(raj, chunker(dialogue, person, n.words = 100, rm.unequal = TRUE)) dat2 <- list2df(dat, "Dialogue", "Person") dat2[["Duration"]] <- unlist(lapply(dat, id, pad=FALSE)) dat2 <- qdap_df(dat2, "Dialogue") Top5 <- sapply(split(raj$dialogue, raj$person), wc, FALSE) %>% sort(decreasing=TRUE) %>% list2df("wordcount", "person") %>% `[`(1:5, 2) propdat <- dat2 %&% termco(list(Person, Duration), as.list(Top25Words[1:5]), percent = FALSE) %>% proportions %>% colsplit2df %>% reshape2::melt(id=c("Person", "Duration", "word.count"), variable="Word") %>% dplyr::filter(Person %in% Top5) head(propdat) ggplot(propdat, aes(y=value, x=Duration, group=Person, color=Person)) + geom_line(size=1.25) + facet_grid(Word~., scales="free_y") + ylab("Percent of Word Use") + xlab("Per 100 Words") + scale_y_continuous(labels = percent) ggplot(propdat, aes(y=value, x=Duration, group=Word, color=Word)) + geom_line(size=1.25) + facet_grid(Person~.) + ylab("Percent of Word Use") + xlab("Per 100 Words") + scale_y_continuous(labels = percent) ggplot(propdat, aes(y=value, x=Duration, group=Word)) + geom_line() + facet_grid(Word~Person, scales="free_y") + ylab("Percent of Word Use") + xlab("Per 100 Words") + scale_y_continuous(labels = percent) + ggthemes::theme_few() ## Discourse Markers: See... ## Schffrin, D. (2001). Discourse markers: Language, meaning, and context. ## In D. Schiffrin, D. Tannen, & H. E. Hamilton (Eds.), The handbook of ## discourse analysis (pp. 54-75). Malden, MA: Blackwell Publishing. discoure_markers <- list( response_cries = c(" oh ", " ah ", " aha ", " ouch ", " yuk "), back_channels = c(" uh-huh ", " uhuh ", " yeah "), summons = " hey ", justification = " because " ) (markers <- with(pres_debates2012, termco(dialogue, list(person, time), discoure_markers) )) plot(markers, high="red") with(pres_debates2012, termco(dialogue, list(person, time), discoure_markers, elim.old = FALSE) ) with(pres_debates2012, dispersion_plot(dialogue, unlist(discoure_markers), person, time) ) ## End(Not run)
Combines the columns of a termco object. Generally intended for internal use but documented for completeness.
termco_c( termco.object, combined.columns, new.name, short.term = TRUE, zero.replace = NULL, elim.old = TRUE, percent = NULL, digits = 2 )
termco_c( termco.object, combined.columns, new.name, short.term = TRUE, zero.replace = NULL, elim.old = TRUE, percent = NULL, digits = 2 )
termco.object |
|
combined.columns |
The names/indexes of the columns to be combined. |
new.name |
A character vector of length one to name the new combined column. |
short.term |
logical. If |
zero.replace |
Value to replace zeros with. |
elim.old |
logical. If |
percent |
logical. If |
digits |
Integer; number of decimal places to round when printing. |
Returns a return a list, of class "termco"
, of data frames and
information regarding word counts:
raw |
raw word counts by grouping variable |
prop |
proportional word counts by grouping variable; proportional to each individual's word use |
rnp |
a character combination data frame of raw and proportional |
zero_replace |
value to replace zeros with; mostly internal use |
percent |
The value of percent used for plotting purposes. |
digits |
integer value od number of digits to display; mostly internal use |
Add title to select qdap objects that store a plot.
Title(object) Title(object) <- value
Title(object) Title(object) <- value
object |
A select qdap object that stores a plot. |
value |
The value to assign to title. |
Uses a bar graph to visualize patterns in sentence length and grouping variables by turn of talk.
tot_plot( dataframe, text.var, grouping.var = NULL, facet.vars = NULL, tot = TRUE, transform = FALSE, ncol = NULL, ylab = NULL, xlab = NULL, bar.space = 0, scale = NULL, space = NULL, plot = TRUE )
tot_plot( dataframe, text.var, grouping.var = NULL, facet.vars = NULL, tot = TRUE, transform = FALSE, ncol = NULL, ylab = NULL, xlab = NULL, bar.space = 0, scale = NULL, space = NULL, plot = TRUE )
dataframe |
A dataframe that contains the text variable and optionally the grouping.var and tot variables. |
text.var |
The text variable (character string). |
grouping.var |
The grouping variables to color by. Default |
facet.vars |
An optional single vector or list of 1 or 2 to facet by. |
tot |
The turn of talk variable (character string). May be |
transform |
logical. If |
ncol |
number of columns.
|
ylab |
Optional y label. |
xlab |
Optional x label. |
bar.space |
The amount space between bars (ranging between 1 and 0). |
scale |
Should scales be fixed ( |
space |
If |
plot |
logical. If |
Invisibly returns the ggplot2 object.
## Not run: dataframe <- sentSplit(DATA, "state") tot_plot(dataframe, "state") tot_plot(DATA, "state", tot=FALSE) tot_plot(dataframe, "state", bar.space=.03) tot_plot(dataframe, "state", "sex") tot_plot(dataframe, "state", "person", tot = "sex") tot_plot(mraja1, "dialogue", "fam.aff", tot=FALSE) tot_plot(mraja1, "dialogue", "died", tot=FALSE) tot_plot(mraja1, "dialogue", c("sex", "fam.aff"), tot=FALSE) + scale_fill_hue(l=40) tot_plot(mraja1, "dialogue", c("sex", "fam.aff"), tot=FALSE)+ scale_fill_brewer(palette="Spectral") tot_plot(mraja1, "dialogue", c("sex", "fam.aff"), tot=FALSE)+ scale_fill_brewer(palette="Set1") ## repeated measures rajSPLIT2 <- do.call(rbind, lapply(split(rajSPLIT, rajSPLIT$act), head, 25)) tot_plot(rajSPLIT2, "dialogue", "fam.aff", facet.var = "act") ## add mean and +/- 2 sd tot_plot(mraja1, "dialogue", grouping.var = c("sex", "fam.aff"), tot=FALSE)+ scale_fill_brewer(palette="Set1") + geom_hline(aes(yintercept=mean(word.count))) + geom_hline(aes(yintercept=mean(word.count) + (2 *sd(word.count)))) + geom_hline(aes(yintercept=mean(word.count) + (3 *sd(word.count)))) + geom_text(parse=TRUE, hjust=0, vjust=0, family="serif", size = 4, aes(x = 2, y = mean(word.count) + 2, label = "bar(x)")) + geom_text(hjust=0, vjust=0, family="serif", size = 4, aes(x = 1, y = mean(word.count) + (2 *sd(word.count)) + 2, label = "+2 sd")) + geom_text(hjust=0, vjust=0, family="serif", size = 4, aes(x = 1, y = mean(word.count) + (3 *sd(word.count)) + 2, label = "+3 sd")) ## End(Not run)
## Not run: dataframe <- sentSplit(DATA, "state") tot_plot(dataframe, "state") tot_plot(DATA, "state", tot=FALSE) tot_plot(dataframe, "state", bar.space=.03) tot_plot(dataframe, "state", "sex") tot_plot(dataframe, "state", "person", tot = "sex") tot_plot(mraja1, "dialogue", "fam.aff", tot=FALSE) tot_plot(mraja1, "dialogue", "died", tot=FALSE) tot_plot(mraja1, "dialogue", c("sex", "fam.aff"), tot=FALSE) + scale_fill_hue(l=40) tot_plot(mraja1, "dialogue", c("sex", "fam.aff"), tot=FALSE)+ scale_fill_brewer(palette="Spectral") tot_plot(mraja1, "dialogue", c("sex", "fam.aff"), tot=FALSE)+ scale_fill_brewer(palette="Set1") ## repeated measures rajSPLIT2 <- do.call(rbind, lapply(split(rajSPLIT, rajSPLIT$act), head, 25)) tot_plot(rajSPLIT2, "dialogue", "fam.aff", facet.var = "act") ## add mean and +/- 2 sd tot_plot(mraja1, "dialogue", grouping.var = c("sex", "fam.aff"), tot=FALSE)+ scale_fill_brewer(palette="Set1") + geom_hline(aes(yintercept=mean(word.count))) + geom_hline(aes(yintercept=mean(word.count) + (2 *sd(word.count)))) + geom_hline(aes(yintercept=mean(word.count) + (3 *sd(word.count)))) + geom_text(parse=TRUE, hjust=0, vjust=0, family="serif", size = 4, aes(x = 2, y = mean(word.count) + 2, label = "bar(x)")) + geom_text(hjust=0, vjust=0, family="serif", size = 4, aes(x = 1, y = mean(word.count) + (2 *sd(word.count)) + 2, label = "+2 sd")) + geom_text(hjust=0, vjust=0, family="serif", size = 4, aes(x = 1, y = mean(word.count) + (3 *sd(word.count)) + 2, label = "+3 sd")) ## End(Not run)
Produces word clouds with optional theme coloring by grouping variable.
trans_cloud( text.var = NULL, grouping.var = NULL, word.list = NULL, stem = FALSE, target.words = NULL, expand.target = TRUE, target.exclude = NULL, stopwords = NULL, min.freq = 1, caps = TRUE, caps.list = NULL, random.order = FALSE, rot.per = 0, cloud.colors = NULL, title = TRUE, cloud.font = NULL, title.font = NULL, title.color = "black", title.padj = -4.5, title.location = 3, title.cex = NULL, title.names = NULL, proportional = FALSE, max.word.size = NULL, min.word.size = 0.5, legend = NULL, legend.cex = 0.8, legend.location = c(-0.03, 1.03), char.keep = "~~", char2space = "~~" )
trans_cloud( text.var = NULL, grouping.var = NULL, word.list = NULL, stem = FALSE, target.words = NULL, expand.target = TRUE, target.exclude = NULL, stopwords = NULL, min.freq = 1, caps = TRUE, caps.list = NULL, random.order = FALSE, rot.per = 0, cloud.colors = NULL, title = TRUE, cloud.font = NULL, title.font = NULL, title.color = "black", title.padj = -4.5, title.location = 3, title.cex = NULL, title.names = NULL, proportional = FALSE, max.word.size = NULL, min.word.size = 0.5, legend = NULL, legend.cex = 0.8, legend.location = c(-0.03, 1.03), char.keep = "~~", char2space = "~~" )
text.var |
The text variable. |
grouping.var |
The grouping variables. Default |
word.list |
A frequency word list passed from
|
stem |
logical. If |
target.words |
A named list of vectors of words whose length corresponds
to |
expand.target |
logical. If |
target.exclude |
A vector of words to exclude from the
|
stopwords |
Words to exclude from the cloud. |
min.freq |
An integer value indicating the minimum frequency a word must appear to be included. |
caps |
logical. If |
caps.list |
A vector of words to capitalize ( |
random.order |
Plot words in random order. If false, they will be plotted in decreasing frequency. |
rot.per |
Proportion words with 90 degree rotation. |
cloud.colors |
A vector of colors equal to the length of target words +1. |
title |
logical. If |
cloud.font |
The font family of the cloud text. |
title.font |
The font family of the cloud title. |
title.color |
A character vector of length one corresponding to the color of the title. |
title.padj |
Adjustment for the title. For strings parallel to the axes, padj = 0 means right or top alignment, and padj = 1 means left or bottom alignment. |
title.location |
On which side of the plot (1=bottom, 2=left, 3=top, 4=right). |
title.cex |
Character expansion factor for the title. |
title.names |
Optional vector of title names equal in length to the grouping.var that will override the default use of the grouping.var names. |
proportional |
logical. If |
max.word.size |
A size argument to control the minimum size of the words. |
min.word.size |
A size argument to control the maximum size of the words. |
legend |
A character vector of names corresponding to the number of vectors in target.words. |
legend.cex |
Character expansion factor for the legend. |
legend.location |
The x and y co-ordinates to be used to position the legend. |
char.keep |
A character vector of symbol character (i.e., punctuation) that strip should keep. The default is to strip everything except apostrophes. This enables the use of special characters to be turned into spaces or for characters to be retained. |
char2space |
A vector of characters to be turned into spaces. If
|
Returns a series of word cloud plots with target words (themes) colored.
## Not run: terms <- list( I=c("i", "i'm"), mal=qcv(stinks, dumb, distrust), articles=qcv(the, a, an), pronoun=qcv(we, you) ) with(DATA, trans_cloud(state, person, target.words=terms, cloud.colors=qcv(red, green, blue, black, gray65), expand.target=FALSE, proportional=TRUE, legend=c(names(terms), "other"))) with(DATA, trans_cloud(state, person, target.words=terms, stopwords=exclude(with(DATA, unique(bag_o_words(state))), unique(unlist(terms))), cloud.colors=qcv(red, green, blue, black, gray65), expand.target=FALSE, proportional=TRUE, legend=names(terms))) #color the negated phrases opposite: DATA <- qdap::DATA DATA[1, 4] <- "This is not good!" DATA[8, 4] <- "I don't distrust you." DATA$state <- space_fill(DATA$state, paste0(negation.words, " "), rm.extra = FALSE) txt <- gsub("~~", " ", breaker(DATA$state)) rev.neg <- sapply(negation.words, paste, negative.words) rev.pos <- sapply(negation.words, paste, positive.words) tw <- list( positive=c(positive.words, rev.neg[rev.neg %in% txt]), negative=c(negative.words, rev.pos[rev.pos %in% txt]) ) with(DATA, trans_cloud(state, person, target.words=tw, cloud.colors=qcv(darkgreen, red, gray65), expand.target=FALSE, proportional=TRUE, legend=names(tw))) DATA <- qdap::DATA ## Reset DATA ## End(Not run)
## Not run: terms <- list( I=c("i", "i'm"), mal=qcv(stinks, dumb, distrust), articles=qcv(the, a, an), pronoun=qcv(we, you) ) with(DATA, trans_cloud(state, person, target.words=terms, cloud.colors=qcv(red, green, blue, black, gray65), expand.target=FALSE, proportional=TRUE, legend=c(names(terms), "other"))) with(DATA, trans_cloud(state, person, target.words=terms, stopwords=exclude(with(DATA, unique(bag_o_words(state))), unique(unlist(terms))), cloud.colors=qcv(red, green, blue, black, gray65), expand.target=FALSE, proportional=TRUE, legend=names(terms))) #color the negated phrases opposite: DATA <- qdap::DATA DATA[1, 4] <- "This is not good!" DATA[8, 4] <- "I don't distrust you." DATA$state <- space_fill(DATA$state, paste0(negation.words, " "), rm.extra = FALSE) txt <- gsub("~~", " ", breaker(DATA$state)) rev.neg <- sapply(negation.words, paste, negative.words) rev.pos <- sapply(negation.words, paste, positive.words) tw <- list( positive=c(positive.words, rev.neg[rev.neg %in% txt]), negative=c(negative.words, rev.pos[rev.pos %in% txt]) ) with(DATA, trans_cloud(state, person, target.words=tw, cloud.colors=qcv(darkgreen, red, gray65), expand.target=FALSE, proportional=TRUE, legend=names(tw))) DATA <- qdap::DATA ## Reset DATA ## End(Not run)
Print (or save to an external file) n text elements before and after indices.
trans_context( text.var, grouping.var, inds, n.before = 3, tot = TRUE, n.after = n.before, ord.inds = TRUE )
trans_context( text.var, grouping.var, inds, n.before = 3, tot = TRUE, n.after = n.before, ord.inds = TRUE )
text.var |
The text variable. |
grouping.var |
The grouping variables. Also takes a single grouping variable or a list of 1 or more grouping variables. |
inds |
A list of integer indices to print context for. |
n.before |
The number of rows before the indexed occurrence. |
tot |
logical. If |
n.after |
The number of rows after the indexed occurrence. |
ord.inds |
logical. If |
Returns a dataframe of the class "qdap_context" that can be printed (i.e., saved) in flexible outputs. The dataframe can be printed as a dataframe style or pretty text output. The resulting file contains n rows before and after each index of a vector of indices.
boolean_search
,
question_type
,
end_mark
## Not run: (x <- with(DATA, trans_context(state, person, inds=c(1, 4, 7, 11)))) print(x, pretty=FALSE) print(x, double_space = FALSE) print(x, file="foo.xlsx") print(x, file="foo.csv") print(x, file="foo.txt") print(x, file="foo.txt", pretty = FALSE) print(x, file="foo.doc") ## With `end_mark` inds1 <- which(end_mark(DATA.SPLIT[, "state"]) == "?") with(DATA.SPLIT, trans_context(state, person, inds=inds1)) with(DATA.SPLIT, trans_context(state, person, n.before = 0, inds=inds1)) ## With `boolean_search` inds2 <- boolean_search(DATA.SPLIT$state, " I &&.") with(DATA.SPLIT, trans_context(state, person, inds=inds2)) inds3 <- boolean_search(DATA$state, " I ||.") with(DATA.SPLIT, trans_context(state, person, inds=inds3)) with(DATA.SPLIT, trans_context(state, list(person, sex), inds=inds3)) with(DATA.SPLIT, trans_context(state, list(sex, adult), inds=inds3)) inds4 <- boolean_search(raj$dialogue, spaste(paste(negation.words, collapse = " || "))) trans_context(raj$dialogue, raj$person, inds4) ### With `question_type` (x <- question_type(DATA.SPLIT$state, DATA.SPLIT$person)) ## All questions with(DATA.SPLIT, trans_context(state, person, inds=x$inds)) ## Specific question types y <- x[["raw"]] inds5 <- y[y[, "q.type"] %in% qcv(what, how), "n.row"] with(DATA.SPLIT, trans_context(state, person, inds=inds5)) with(DATA.SPLIT, trans_context(state, person, inds=inds5, tot=F)) ## End(Not run)
## Not run: (x <- with(DATA, trans_context(state, person, inds=c(1, 4, 7, 11)))) print(x, pretty=FALSE) print(x, double_space = FALSE) print(x, file="foo.xlsx") print(x, file="foo.csv") print(x, file="foo.txt") print(x, file="foo.txt", pretty = FALSE) print(x, file="foo.doc") ## With `end_mark` inds1 <- which(end_mark(DATA.SPLIT[, "state"]) == "?") with(DATA.SPLIT, trans_context(state, person, inds=inds1)) with(DATA.SPLIT, trans_context(state, person, n.before = 0, inds=inds1)) ## With `boolean_search` inds2 <- boolean_search(DATA.SPLIT$state, " I &&.") with(DATA.SPLIT, trans_context(state, person, inds=inds2)) inds3 <- boolean_search(DATA$state, " I ||.") with(DATA.SPLIT, trans_context(state, person, inds=inds3)) with(DATA.SPLIT, trans_context(state, list(person, sex), inds=inds3)) with(DATA.SPLIT, trans_context(state, list(sex, adult), inds=inds3)) inds4 <- boolean_search(raj$dialogue, spaste(paste(negation.words, collapse = " || "))) trans_context(raj$dialogue, raj$person, inds4) ### With `question_type` (x <- question_type(DATA.SPLIT$state, DATA.SPLIT$person)) ## All questions with(DATA.SPLIT, trans_context(state, person, inds=x$inds)) ## Specific question types y <- x[["raw"]] inds5 <- y[y[, "q.type"] %in% qcv(what, how), "n.row"] with(DATA.SPLIT, trans_context(state, person, inds=inds5)) with(DATA.SPLIT, trans_context(state, person, inds=inds5, tot=F)) ## End(Not run)
Produce a Venn diagram by grouping variable.
trans_venn( text.var, grouping.var, stopwords = NULL, rm.duplicates = TRUE, title = TRUE, title.font = NULL, title.color = "black", title.cex = NULL, title.name = NULL, legend = TRUE, legend.cex = 0.8, legend.location = "bottomleft", legend.text.col = "black", legend.horiz = FALSE, ... )
trans_venn( text.var, grouping.var, stopwords = NULL, rm.duplicates = TRUE, title = TRUE, title.font = NULL, title.color = "black", title.cex = NULL, title.name = NULL, legend = TRUE, legend.cex = 0.8, legend.location = "bottomleft", legend.text.col = "black", legend.horiz = FALSE, ... )
text.var |
The text variable. |
grouping.var |
The grouping variables. Default |
stopwords |
Words to exclude from the analysis. |
rm.duplicates |
logical. If |
title |
logical. IF |
title.font |
The font family of the cloud title. |
title.color |
A character vector of length one corresponding to the color of the title. |
title.cex |
Character expansion factor for the title. |
title.name |
A title for the plot. |
legend |
logical. If |
legend.cex |
Character expansion factor for the legend. |
legend.location |
The x and y co-ordinates to be used to position the
legend. The location may also be specified by setting x to a
single keyword from the list |
legend.text.col |
The color used for the legend text. |
legend.horiz |
logical; if |
... |
Other arguments passed to plot. |
Returns a Venn plot by grouping variable(s).
The algorithm used to overlap the Venn circles becomes
increasingly overburdened and less accurate with increased grouping
variables. An alternative is to use a network plot with
{codeDissimilarity measures labeling the edges between nodes
(grouping variables) or a heat map (qheat
).
## Not run: with(DATA , trans_venn(state, person, legend.location = "topright")) #the plot below will take a considerable amount of time to plot with(raj.act.1 , trans_venn(dialogue, person, legend.location = "topleft")) ## End(Not run)
## Not run: with(DATA , trans_venn(state, person, legend.location = "topright")) #the plot below will take a considerable amount of time to plot with(raj.act.1 , trans_venn(dialogue, person, legend.location = "topleft")) ## End(Not run)
Remove leading/trailing white space.
Trim(x)
Trim(x)
x |
The text variable. |
Returns a vector with the leading/trailing white spaces removed.
## Not run: (x <- c(" talkstats.com ", " really? ", " yeah")) Trim(x) ## End(Not run)
## Not run: (x <- c(" talkstats.com ", " really? ", " yeah")) Trim(x) ## End(Not run)
Calculate type-token ratio by grouping variable.
type_token_ratio(text.var, grouping.var = NULL, n.words = 1000, ...)
type_token_ratio(text.var, grouping.var = NULL, n.words = 1000, ...)
text.var |
The text variable |
grouping.var |
The grouping variables. Default |
n.words |
An integer specifying the number of words in each chunk. |
... |
ignored. |
Returns a list of class type_text_ratio
. This object
contains a type-token ratio for the overall text and a data frame
type-token ratios per grouping vriable.
Baker, P. (2006) Using Corpora in Discourse Analysis. London: Continuum.
with(raj, type_token_ratio(dialogue, person)) plot(with(raj, type_token_ratio(dialogue, person)))
with(raj, type_token_ratio(dialogue, person)) plot(with(raj, type_token_ratio(dialogue, person)))
Find unique words used by grouping variable.
unique_by(text.var, grouping.var)
unique_by(text.var, grouping.var)
text.var |
The text variable |
grouping.var |
The grouping variables. Default |
Returns a list of unique words by grouping variable.
## Not run: dat <- pres_debates2012[pres_debates2012$time == "time 3", ] with(dat, unique_by(dialogue, person)) with(pres_debates2012, unique_by(dialogue, list(time, person))) with(DATA, unique_by(state, person)) ## End(Not run)
## Not run: dat <- pres_debates2012[pres_debates2012$time == "time 3", ] with(dat, unique_by(dialogue, person)) with(pres_debates2012, unique_by(dialogue, list(time, person))) with(DATA, unique_by(state, person)) ## End(Not run)
vertex_apply
- Uniformly apply igraph vertex plotting parameters to a list of igraph objects.
edge_apply
- Uniformly apply igrph edge plotting parameters to a list of igraph objects.
vertex_apply(x, ..., hold.ends = NULL) edge_apply(x, ..., hold.ends = c("label.color"))
vertex_apply(x, ..., hold.ends = NULL) edge_apply(x, ..., hold.ends = c("label.color"))
x |
A list of igraph objects. |
hold.ends |
A vector of parameters passed to ... that should not be altered for the first and last (ends) objects in the list. |
... |
Arguments passed igraph's |
Returns a list of igraph objects.
## Not run: x <- with(DATA.SPLIT, polarity(state, person)) bg_black <- Animate(x, neutral="white") print(bg_black) bgb <- vertex_apply(bg_black, label.color="grey80", size=20, color="grey40") bgb <- edge_apply(bgb, label.color="yellow") print(bgb, bg="black", pause=.75) ## End(Not run)
## Not run: x <- with(DATA.SPLIT, polarity(state, person)) bg_black <- Animate(x, neutral="white") print(bg_black) bgb <- vertex_apply(bg_black, label.color="grey80", size=20, color="grey40") bgb <- edge_apply(bgb, label.color="yellow") print(bgb, bg="black", pause=.75) ## End(Not run)
Access the visual-graph-plot object from select qdap outputs.
visual(x, ...)
visual(x, ...)
x |
A qdap object (list) with a visual-graph-plot object (e.g.,
|
... |
Arguments passed to visual method of other classes. |
Returns a plot object.
scores
,
counts
,
preprocessed
,
proportions
visual.discourse_map
- View visual from discourse_map
.
## S3 method for class 'discourse_map' visual(x, ...)
## S3 method for class 'discourse_map' visual(x, ...)
x |
The discourse_map object. |
... |
ignored |
discourse_map Method for visual
Weight a word_proximity object.
weight(x, type = "scale", ...)
weight(x, type = "scale", ...)
x |
A qdap object with a weight method. |
type |
A weighting type of: c( |
... |
ignored. |
Returns a weighted list of matrices.
A constant of .000000000001 is added to each element when log is used
to deal with the problem of log(0)
.
wfm
- Generate a word frequency matrix by grouping variable(s).
wfdf
- Generate a word frequency data frame by grouping variable.
wfm_expanded
- Expand a word frequency matrix to have multiple rows
for each word.
wfm_combine
- Combines words (rows) of a word frequency matrix
(wfdf
) together.
weight
- Weight a word frequency matrix for analysis where such
weighting is sensible.
weight.wfdf
- Weight a word frequency matrix for analysis where such
weighting is sensible.
as.wfm
- Attempts to coerce a matrix to a wfm
.
wfm( text.var = NULL, grouping.var = NULL, output = "raw", stopwords = NULL, char2space = "~~", ... ) ## S3 method for class 'wfdf' wfm( text.var = NULL, grouping.var = NULL, output = "raw", stopwords = NULL, char2space = "~~", ... ) ## S3 method for class 'character' wfm( text.var = NULL, grouping.var = NULL, output = "raw", stopwords = NULL, char2space = "~~", ... ) ## S3 method for class 'factor' wfm( text.var = NULL, grouping.var = NULL, output = "raw", stopwords = NULL, char2space = "~~", ... ) wfdf( text.var, grouping.var = NULL, stopwords = NULL, margins = FALSE, output = "raw", digits = 2, char2space = "~~", ... ) wfm_expanded(text.var, grouping.var = NULL, ...) wfm_combine(wf.obj, word.lists, matrix = TRUE) ## S3 method for class 'wfm' weight(x, type = "prop", ...) ## S3 method for class 'wfdf' weight(x, type = "prop", ...) as.wfm(x, ...) ## S3 method for class 'matrix' as.wfm(x, ...) ## Default S3 method: as.wfm(x, ...) ## S3 method for class 'TermDocumentMatrix' as.wfm(x, ...) ## S3 method for class 'DocumentTermMatrix' as.wfm(x, ...) ## S3 method for class 'data.frame' as.wfm(x, ...) ## S3 method for class 'wfdf' as.wfm(x, ...) ## S3 method for class 'Corpus' as.wfm(x, col = "docs", row = "text", ...) ## S3 method for class 'Corpus' wfm(text.var, ...)
wfm( text.var = NULL, grouping.var = NULL, output = "raw", stopwords = NULL, char2space = "~~", ... ) ## S3 method for class 'wfdf' wfm( text.var = NULL, grouping.var = NULL, output = "raw", stopwords = NULL, char2space = "~~", ... ) ## S3 method for class 'character' wfm( text.var = NULL, grouping.var = NULL, output = "raw", stopwords = NULL, char2space = "~~", ... ) ## S3 method for class 'factor' wfm( text.var = NULL, grouping.var = NULL, output = "raw", stopwords = NULL, char2space = "~~", ... ) wfdf( text.var, grouping.var = NULL, stopwords = NULL, margins = FALSE, output = "raw", digits = 2, char2space = "~~", ... ) wfm_expanded(text.var, grouping.var = NULL, ...) wfm_combine(wf.obj, word.lists, matrix = TRUE) ## S3 method for class 'wfm' weight(x, type = "prop", ...) ## S3 method for class 'wfdf' weight(x, type = "prop", ...) as.wfm(x, ...) ## S3 method for class 'matrix' as.wfm(x, ...) ## Default S3 method: as.wfm(x, ...) ## S3 method for class 'TermDocumentMatrix' as.wfm(x, ...) ## S3 method for class 'DocumentTermMatrix' as.wfm(x, ...) ## S3 method for class 'data.frame' as.wfm(x, ...) ## S3 method for class 'wfdf' as.wfm(x, ...) ## S3 method for class 'Corpus' as.wfm(x, col = "docs", row = "text", ...) ## S3 method for class 'Corpus' wfm(text.var, ...)
text.var |
The text variable. |
grouping.var |
The grouping variables. Default |
output |
Output type (either |
stopwords |
A vector of stop words to remove. |
char2space |
A vector of characters to be turned into spaces. If
|
margins |
logical. If |
digits |
An integer indicating the number of decimal places (round) or significant digits (signif) to be used. Negative values are allowed. |
wf.obj |
A |
word.lists |
A list of character vectors of words to pass to
|
matrix |
logical. If |
x |
An object with words for row names and integer values. |
type |
The type of weighting to use: c( |
col |
The column name (generally not used). |
row |
The row name (generally not used). |
... |
Other arguments supplied to |
wfm
- returns a word frequency of the class matrix.
wfdf
- returns a word frequency of the class data.frame with
a words column and optional margin sums.
wfm_expanded
- returns a matrix similar to a word frequency
matrix (wfm
) but the rows are expanded to represent the maximum usages
of the word and cells are dummy coded to indicate that number of uses.
wfm_combine
- returns a word frequency matrix (wfm
) or
dataframe (wfdf
) with counts for the combined word.lists merged and
remaining terms (else
).
weight
- Returns a weighted matrix for use with other R
packages. The output is not of the class "wfm".
as.wfm
- Returns a matrix of the class "wfm".
Words can be kept as one by inserting a double tilde ("~~"
), or
other character strings passed to char2space, as a single word/entry. This is
useful for keeping proper names as a single unit.
## Not run: ## word frequency matrix (wfm) example: with(DATA, wfm(state, list(sex, adult)))[1:15, ] with(DATA, wfm(state, person))[1:15, ] Filter(with(DATA, wfm(state, list(sex, adult))), 5) with(DATA, wfm(state, list(sex, adult))) ## Filter particular words based on max/min values in wfm v <- with(DATA, wfm(state, list(sex, adult))) Filter(v, 5) Filter(v, 5, count.apostrophe = FALSE) Filter(v, 5, 7) Filter(v, 4, 4) Filter(v, 3, 4) Filter(v, 3, 4, stopwords = Top25Words) ## insert double tilde ("~~") to keep phrases(i.e., first last name) alts <- c(" fun", "I ") state2 <- space_fill(DATA$state, alts, rm.extra = FALSE) with(DATA, wfm(state2, list(sex, adult)))[1:18, ] ## word frequency dataframe (wfdf) example: with(DATA, wfdf(state, list(sex, adult)))[1:15, ] with(DATA, wfdf(state, person))[1:15, ] ## wfm_expanded example: z <- wfm(DATA$state, DATA$person) wfm_expanded(z)[30:45, ] #two "you"s ## wf_combine examples: #=================== ## raw no margins (will work) x <- wfm(DATA$state, DATA$person) ## raw with margin (will work) y <- wfdf(DATA$state, DATA$person, margins = TRUE) ## Proportion matrix z2 <- wfm(DATA$state, DATA$person, output="proportion") WL1 <- c(y[, 1]) WL2 <- list(c("read", "the", "a"), c("you", "your", "you're")) WL3 <- list(bob = c("read", "the", "a"), yous = c("you", "your", "you're")) WL4 <- list(bob = c("read", "the", "a"), yous = c("a", "you", "your", "your're")) WL5 <- list(yous = c("you", "your", "your're")) WL6 <- list(c("you", "your", "your're")) #no name so will be called words 1 WL7 <- c("you", "your", "your're") wfm_combine(z2, WL2) #Won't work not a raw frequency matrix wfm_combine(x, WL2) #Works (raw and no margins) wfm_combine(y, WL2) #Works (raw with margins) wfm_combine(y, c("you", "your", "your're")) wfm_combine(y, WL1) wfm_combine(y, WL3) ## wfm_combine(y, WL4) #Error wfm_combine(y, WL5) wfm_combine(y, WL6) wfm_combine(y, WL7) worlis <- c("you", "it", "it's", "no", "not", "we") y <- wfdf(DATA$state, list(DATA$sex, DATA$adult), margins = TRUE) z <- wfm_combine(y, worlis) chisq.test(z) chisq.test(wfm(y)) ## Dendrogram presdeb <- with(pres_debates2012, wfm(dialogue, list(person, time))) library(sjPlot) sjc.dend(t(presdeb), 2:4) ## Words correlated within turns of talk ## EXAMPLE 1 library(qdapTools) x <- factor(with(rajSPLIT, paste(act, pad(TOT(tot)), sep = "|"))) dat <- wfm(rajSPLIT$dialogue, x) cor(t(dat)[, c("romeo", "juliet")]) cor(t(dat)[, c("romeo", "banished")]) cor(t(dat)[, c("romeo", "juliet", "hate", "love")]) qheat(cor(t(dat)[, c("romeo", "juliet", "hate", "love")]), diag.na = TRUE, values = TRUE, digits = 3, by.column = NULL) dat2 <- wfm(DATA$state, id(DATA)) qheat(cor(t(dat2)), low = "yellow", high = "red", grid = "grey90", diag.na = TRUE, by.column = NULL) ## EXAMPLE 2 x2 <- factor(with(pres_debates2012, paste(time, pad(TOT(tot)), sep = "|"))) dat2 <- wfm(pres_debates2012$dialogue, x2) wrds <- word_list(pres_debates2012$dialogue, stopwords = c("it's", "that's", Top200Words)) wrds2 <- tolower(sort(wrds$rfswl[[1]][, 1])) qheat(word_cor(t(dat2), word = wrds2, r = NULL), diag.na = TRUE, values = TRUE, digits = 3, by.column = NULL, high="red", low="yellow", grid=NULL) ## EXAMPLE 3 library(gridExtra); library(ggplot2); library(grid) dat3 <- lapply(qcv(OBAMA, ROMNEY), function(x) { with(pres_debates2012, wfm(dialogue[person == x], x2[person == x])) }) # Presidential debates by person dat5 <- pres_debates2012 dat5 <- dat5[dat5$person %in% qcv(ROMNEY, OBAMA), ] disp <- with(dat5, dispersion_plot(dialogue, wrds2, grouping.var = person, total.color = NULL, rm.vars=time)) cors <- lapply(dat3, function(m) { word_cor(t(m), word = wrds2, r = NULL) }) plots <- lapply(cors, function(x) { qheat(x, diag.na = TRUE, values = TRUE, digits = 3, plot = FALSE, by.column = NULL, high="red", low="yellow", grid=NULL) }) plots <- lapply(1:2, function(i) { plots[[i]] + ggtitle(qcv(OBAMA, ROMNEY)[i]) + theme(axis.title.x = element_blank(), plot.margin = unit(rep(0, 4), "lines")) }) grid.arrange(disp, arrangeGrob(plots[[1]], plots[[2]], ncol=1), ncol=2) ## With `word_cor` worlis <- list( pronouns = c("you", "it", "it's", "we", "i'm", "i"), negative = qcv(no, dumb, distrust, not, stinks), literacy = qcv(computer, talking, telling) ) y <- wfdf(DATA$state, qdapTools::id(DATA, prefix = TRUE)) z <- wfm_combine(y, worlis) word_cor(t(z), word = names(worlis), r = NULL) ## Plotting method plot(y, TRUE) plot(z) ## Correspondence Analysis library(ca) dat <- pres_debates2012 dat <- dat[dat$person %in% qcv(ROMNEY, OBAMA), ] speech <- stemmer(dat$dialogue) mytable1 <- with(dat, wfm(speech, list(person, time), stopwords = Top25Words)) fit <- ca(mytable1) summary(fit) plot(fit) plot3d.ca(fit, labels=1) mytable2 <- with(dat, wfm(speech, list(person, time), stopwords = Top200Words)) fit2 <- ca(mytable2) summary(fit2) plot(fit2) plot3d.ca(fit2, labels=1) ## Weight a wfm WFM <- with(DATA, wfm(state, list(sex, adult))) plot(weight(WFM, "scaled"), TRUE) weight(WFM, "prop") weight(WFM, "max") weight(WFM, "scaled") ## End(Not run)
## Not run: ## word frequency matrix (wfm) example: with(DATA, wfm(state, list(sex, adult)))[1:15, ] with(DATA, wfm(state, person))[1:15, ] Filter(with(DATA, wfm(state, list(sex, adult))), 5) with(DATA, wfm(state, list(sex, adult))) ## Filter particular words based on max/min values in wfm v <- with(DATA, wfm(state, list(sex, adult))) Filter(v, 5) Filter(v, 5, count.apostrophe = FALSE) Filter(v, 5, 7) Filter(v, 4, 4) Filter(v, 3, 4) Filter(v, 3, 4, stopwords = Top25Words) ## insert double tilde ("~~") to keep phrases(i.e., first last name) alts <- c(" fun", "I ") state2 <- space_fill(DATA$state, alts, rm.extra = FALSE) with(DATA, wfm(state2, list(sex, adult)))[1:18, ] ## word frequency dataframe (wfdf) example: with(DATA, wfdf(state, list(sex, adult)))[1:15, ] with(DATA, wfdf(state, person))[1:15, ] ## wfm_expanded example: z <- wfm(DATA$state, DATA$person) wfm_expanded(z)[30:45, ] #two "you"s ## wf_combine examples: #=================== ## raw no margins (will work) x <- wfm(DATA$state, DATA$person) ## raw with margin (will work) y <- wfdf(DATA$state, DATA$person, margins = TRUE) ## Proportion matrix z2 <- wfm(DATA$state, DATA$person, output="proportion") WL1 <- c(y[, 1]) WL2 <- list(c("read", "the", "a"), c("you", "your", "you're")) WL3 <- list(bob = c("read", "the", "a"), yous = c("you", "your", "you're")) WL4 <- list(bob = c("read", "the", "a"), yous = c("a", "you", "your", "your're")) WL5 <- list(yous = c("you", "your", "your're")) WL6 <- list(c("you", "your", "your're")) #no name so will be called words 1 WL7 <- c("you", "your", "your're") wfm_combine(z2, WL2) #Won't work not a raw frequency matrix wfm_combine(x, WL2) #Works (raw and no margins) wfm_combine(y, WL2) #Works (raw with margins) wfm_combine(y, c("you", "your", "your're")) wfm_combine(y, WL1) wfm_combine(y, WL3) ## wfm_combine(y, WL4) #Error wfm_combine(y, WL5) wfm_combine(y, WL6) wfm_combine(y, WL7) worlis <- c("you", "it", "it's", "no", "not", "we") y <- wfdf(DATA$state, list(DATA$sex, DATA$adult), margins = TRUE) z <- wfm_combine(y, worlis) chisq.test(z) chisq.test(wfm(y)) ## Dendrogram presdeb <- with(pres_debates2012, wfm(dialogue, list(person, time))) library(sjPlot) sjc.dend(t(presdeb), 2:4) ## Words correlated within turns of talk ## EXAMPLE 1 library(qdapTools) x <- factor(with(rajSPLIT, paste(act, pad(TOT(tot)), sep = "|"))) dat <- wfm(rajSPLIT$dialogue, x) cor(t(dat)[, c("romeo", "juliet")]) cor(t(dat)[, c("romeo", "banished")]) cor(t(dat)[, c("romeo", "juliet", "hate", "love")]) qheat(cor(t(dat)[, c("romeo", "juliet", "hate", "love")]), diag.na = TRUE, values = TRUE, digits = 3, by.column = NULL) dat2 <- wfm(DATA$state, id(DATA)) qheat(cor(t(dat2)), low = "yellow", high = "red", grid = "grey90", diag.na = TRUE, by.column = NULL) ## EXAMPLE 2 x2 <- factor(with(pres_debates2012, paste(time, pad(TOT(tot)), sep = "|"))) dat2 <- wfm(pres_debates2012$dialogue, x2) wrds <- word_list(pres_debates2012$dialogue, stopwords = c("it's", "that's", Top200Words)) wrds2 <- tolower(sort(wrds$rfswl[[1]][, 1])) qheat(word_cor(t(dat2), word = wrds2, r = NULL), diag.na = TRUE, values = TRUE, digits = 3, by.column = NULL, high="red", low="yellow", grid=NULL) ## EXAMPLE 3 library(gridExtra); library(ggplot2); library(grid) dat3 <- lapply(qcv(OBAMA, ROMNEY), function(x) { with(pres_debates2012, wfm(dialogue[person == x], x2[person == x])) }) # Presidential debates by person dat5 <- pres_debates2012 dat5 <- dat5[dat5$person %in% qcv(ROMNEY, OBAMA), ] disp <- with(dat5, dispersion_plot(dialogue, wrds2, grouping.var = person, total.color = NULL, rm.vars=time)) cors <- lapply(dat3, function(m) { word_cor(t(m), word = wrds2, r = NULL) }) plots <- lapply(cors, function(x) { qheat(x, diag.na = TRUE, values = TRUE, digits = 3, plot = FALSE, by.column = NULL, high="red", low="yellow", grid=NULL) }) plots <- lapply(1:2, function(i) { plots[[i]] + ggtitle(qcv(OBAMA, ROMNEY)[i]) + theme(axis.title.x = element_blank(), plot.margin = unit(rep(0, 4), "lines")) }) grid.arrange(disp, arrangeGrob(plots[[1]], plots[[2]], ncol=1), ncol=2) ## With `word_cor` worlis <- list( pronouns = c("you", "it", "it's", "we", "i'm", "i"), negative = qcv(no, dumb, distrust, not, stinks), literacy = qcv(computer, talking, telling) ) y <- wfdf(DATA$state, qdapTools::id(DATA, prefix = TRUE)) z <- wfm_combine(y, worlis) word_cor(t(z), word = names(worlis), r = NULL) ## Plotting method plot(y, TRUE) plot(z) ## Correspondence Analysis library(ca) dat <- pres_debates2012 dat <- dat[dat$person %in% qcv(ROMNEY, OBAMA), ] speech <- stemmer(dat$dialogue) mytable1 <- with(dat, wfm(speech, list(person, time), stopwords = Top25Words)) fit <- ca(mytable1) summary(fit) plot(fit) plot3d.ca(fit, labels=1) mytable2 <- with(dat, wfm(speech, list(person, time), stopwords = Top200Words)) fit2 <- ca(mytable2) summary(fit2) plot(fit2) plot3d.ca(fit2, labels=1) ## Weight a wfm WFM <- with(DATA, wfm(state, list(sex, adult))) plot(weight(WFM, "scaled"), TRUE) weight(WFM, "prop") weight(WFM, "max") weight(WFM, "scaled") ## End(Not run)
Find words associated with a given word(s) or a phrase(s). Results can be output as a network graph and/or wordcloud.
word_associate( text.var, grouping.var = NULL, match.string, text.unit = "sentence", extra.terms = NULL, target.exclude = NULL, stopwords = NULL, network.plot = FALSE, wordcloud = FALSE, cloud.colors = c("black", "gray55"), title.color = "blue", nw.label.cex = 0.8, title.padj = -4.5, nw.label.colors = NULL, nw.layout = NULL, nw.edge.color = "gray90", nw.label.proportional = TRUE, nw.title.padj = NULL, nw.title.location = NULL, title.font = NULL, title.cex = NULL, nw.edge.curved = TRUE, cloud.legend = NULL, cloud.legend.cex = 0.8, cloud.legend.location = c(-0.03, 1.03), nw.legend = NULL, nw.legend.cex = 0.8, nw.legend.location = c(-1.54, 1.41), legend.override = FALSE, char2space = "~~", ... )
word_associate( text.var, grouping.var = NULL, match.string, text.unit = "sentence", extra.terms = NULL, target.exclude = NULL, stopwords = NULL, network.plot = FALSE, wordcloud = FALSE, cloud.colors = c("black", "gray55"), title.color = "blue", nw.label.cex = 0.8, title.padj = -4.5, nw.label.colors = NULL, nw.layout = NULL, nw.edge.color = "gray90", nw.label.proportional = TRUE, nw.title.padj = NULL, nw.title.location = NULL, title.font = NULL, title.cex = NULL, nw.edge.curved = TRUE, cloud.legend = NULL, cloud.legend.cex = 0.8, cloud.legend.location = c(-0.03, 1.03), nw.legend = NULL, nw.legend.cex = 0.8, nw.legend.location = c(-1.54, 1.41), legend.override = FALSE, char2space = "~~", ... )
text.var |
The text variable. |
grouping.var |
The grouping variables. Default |
match.string |
A list of vectors or vector of terms to associate in the text. |
text.unit |
The text unit (either |
extra.terms |
Other terms to color beyond the match string. |
target.exclude |
A vector of words to exclude from the
|
stopwords |
Words to exclude from the analysis. |
network.plot |
logical. If |
wordcloud |
logical. If |
cloud.colors |
A vector of colors equal to the length of
|
title.color |
A character vector of length one corresponding to the color of the title. |
nw.label.cex |
The magnification to be used for network plot labels relative to the current setting of cex. Default is .8. |
title.padj |
Adjustment for the title. For strings parallel to the axes, padj = 0 means right or top alignment, and padj = 1 means left or bottom alignment. |
nw.label.colors |
A vector of colors equal to the length of
|
nw.layout |
layout types supported by igraph. See
|
nw.edge.color |
A character vector of length one corresponding to the color of the plot edges. |
nw.label.proportional |
logical. If |
nw.title.padj |
Adjustment for the network plot title. For strings parallel to the axes, padj = 0 means right or top alignment, and padj = 1 means left or bottom alignment. |
nw.title.location |
On which side of the network plot (1=bottom, 2=left, 3=top, 4=right). |
title.font |
The font family of the cloud title. |
title.cex |
Character expansion factor for the title. |
nw.edge.curved |
logical. If |
cloud.legend |
A character vector of names corresponding to the number of
vectors in |
cloud.legend.cex |
Character expansion factor for the wordcloud legend.
|
cloud.legend.location |
The x and y co-ordinates to be used to position the
wordcloud legend. The location may also be specified by setting x to a
single keyword from the list |
nw.legend |
A character vector of names corresponding to the number of
vectors in |
nw.legend.cex |
Character expansion factor for the network plot legend.
|
nw.legend.location |
The x and y co-ordinates to be used to position the
network plot legend. The location may also be specified by setting x to a
single keyword from the list |
legend.override |
By default if legend labels are supplied to either
|
char2space |
Currently a road to nowhere. Eventually this will allow
the retention of characters as is allowed in |
... |
Other arguments supplied to |
Returns a list:
word frequency matrices |
Word frequency matrices for each grouping variable. |
dialogue |
A list of dataframes for each word list (each vector supplied
to |
match.terms |
A list of vectors of word lists (each vector supplied
to |
Optionally, returns a word cloud and/or a network plot of the text unit
containing the match.string
terms.
trans_cloud
,
word_network_plot
,
wordcloud
,
graph.adjacency
## Not run: ms <- c(" I ", "you") et <- c(" it", " tell", "tru") out1 <- word_associate(DATA2$state, DATA2$person, match.string = ms, wordcloud = TRUE, proportional = TRUE, network.plot = TRUE, nw.label.proportional = TRUE, extra.terms = et, cloud.legend =c("A", "B", "C"), title.color = "blue", cloud.colors = c("red", "purple", "gray70")) #====================================== #Note: You don't have to name the vectors in the lists but I do for clarity ms <- list( list1 = c(" I ", " you", "not"), list2 = c(" wh") ) et <- list( B = c(" the", "do", "tru"), C = c(" it", " already", "we") ) out2 <- word_associate(DATA2$state, DATA2$person, match.string = ms, wordcloud = TRUE, proportional = TRUE, network.plot = TRUE, nw.label.proportional = TRUE, extra.terms = et, cloud.legend =c("A", "B", "C", "D"), title.color = "blue", cloud.colors = c("red", "blue", "purple", "gray70")) out3 <- word_associate(DATA2$state, list(DATA2$day, DATA2$person), match.string = ms) #====================================== m <- list( A1 = c("you", "in"), #list 1 A2 = c(" wh") #list 2 ) n <- list( B = c(" the", " on"), C = c(" it", " no") ) out4 <- word_associate(DATA2$state, list(DATA2$day, DATA2$person), match.string = m) out5 <- word_associate(raj.act.1$dialogue, list(raj.act.1$person), match.string = m) out6 <- with(mraja1spl, word_associate(dialogue, list(fam.aff, sex), match.string = m)) names(out6) lapply(out6$dialogue, htruncdf, n = 20, w = 20) #====================================== DATA2$state2 <- space_fill(DATA2$state, c("is fun", "too fun")) ms <- list( list1 = c(" I ", " you", "is fun", "too fun"), list2 = c(" wh") ) et <- list( B = c(" the", " on"), C = c(" it", " no") ) out7 <- word_associate(DATA2$state2, DATA2$person, match.string = ms, wordcloud = TRUE, proportional = TRUE, network.plot = TRUE, nw.label.proportional = TRUE, extra.terms = et, cloud.legend =c("A", "B", "C", "D"), title.color = "blue", cloud.colors = c("red", "blue", "purple", "gray70")) DATA2 <- qdap::DATA2 ## End(Not run)
## Not run: ms <- c(" I ", "you") et <- c(" it", " tell", "tru") out1 <- word_associate(DATA2$state, DATA2$person, match.string = ms, wordcloud = TRUE, proportional = TRUE, network.plot = TRUE, nw.label.proportional = TRUE, extra.terms = et, cloud.legend =c("A", "B", "C"), title.color = "blue", cloud.colors = c("red", "purple", "gray70")) #====================================== #Note: You don't have to name the vectors in the lists but I do for clarity ms <- list( list1 = c(" I ", " you", "not"), list2 = c(" wh") ) et <- list( B = c(" the", "do", "tru"), C = c(" it", " already", "we") ) out2 <- word_associate(DATA2$state, DATA2$person, match.string = ms, wordcloud = TRUE, proportional = TRUE, network.plot = TRUE, nw.label.proportional = TRUE, extra.terms = et, cloud.legend =c("A", "B", "C", "D"), title.color = "blue", cloud.colors = c("red", "blue", "purple", "gray70")) out3 <- word_associate(DATA2$state, list(DATA2$day, DATA2$person), match.string = ms) #====================================== m <- list( A1 = c("you", "in"), #list 1 A2 = c(" wh") #list 2 ) n <- list( B = c(" the", " on"), C = c(" it", " no") ) out4 <- word_associate(DATA2$state, list(DATA2$day, DATA2$person), match.string = m) out5 <- word_associate(raj.act.1$dialogue, list(raj.act.1$person), match.string = m) out6 <- with(mraja1spl, word_associate(dialogue, list(fam.aff, sex), match.string = m)) names(out6) lapply(out6$dialogue, htruncdf, n = 20, w = 20) #====================================== DATA2$state2 <- space_fill(DATA2$state, c("is fun", "too fun")) ms <- list( list1 = c(" I ", " you", "is fun", "too fun"), list2 = c(" wh") ) et <- list( B = c(" the", " on"), C = c(" it", " no") ) out7 <- word_associate(DATA2$state2, DATA2$person, match.string = ms, wordcloud = TRUE, proportional = TRUE, network.plot = TRUE, nw.label.proportional = TRUE, extra.terms = et, cloud.legend =c("A", "B", "C", "D"), title.color = "blue", cloud.colors = c("red", "blue", "purple", "gray70")) DATA2 <- qdap::DATA2 ## End(Not run)
Find associated words within grouping variable(s).
word_cor( text.var, grouping.var = qdapTools::id(text.var), word, r = 0.7, values = TRUE, method = "pearson", ... )
word_cor( text.var, grouping.var = qdapTools::id(text.var), word, r = 0.7, values = TRUE, method = "pearson", ... )
text.var |
The text variable (or frequency matrix). |
grouping.var |
The grouping variables. Default uses each row as a group.
Also takes a single grouping variable or a list of 1 or more grouping
variables. Unlike other qdap functions, this cannot be |
word |
The word(s) vector to find associated words for. |
r |
The correlation level find associated words for. If positive this is the minimum value, if negative this is the maximum value. |
values |
logical. If |
method |
A character string indicating which correlation coefficient is
to be computed ( |
... |
Other arguments passed to |
Returns a vector of associated words or correlation matrix if
r = NULL
.
Note that if a word has no variablity in it's usage across grouping
variable(s) the sd
will result in 0, thus
cor
will will likely return a warning as in this
example: cor(rep(3, 10), rnorm(10))
.
The plotting method for the list output was inspired by Ben Marwick; see https://stackoverflow.com/a/19925445/1000343 for more.
word_proximity
,
findAssocs
,
word_associate
,
wfm
,
cor
## Not run: x <- factor(with(rajSPLIT, paste(act, pad(TOT(tot)), sep = "|"))) word_cor(rajSPLIT$dialogue, x, "romeo", .45) word_cor(rajSPLIT$dialogue, x, "love", .5) ## Negative correlation word_cor(rajSPLIT$dialogue, x, "you", -.1) with(rajSPLIT, word_cor(dialogue, list(person, act), "hate")) words <- c("hate", "i", "love", "ghost") with(rajSPLIT, word_cor(dialogue, x, words, r = .5)) with(rajSPLIT, word_cor(dialogue, x, words, r = .4)) ## Set `r = NULL` to get matrix between words with(rajSPLIT, word_cor(dialogue, x, words, r = NULL)) ## Plotting library(tm) data("crude") oil_cor1 <- apply_as_df(crude, word_cor, word = "oil", r=.7) plot(oil_cor1) oil_cor2 <- apply_as_df(crude, word_cor, word = qcv(texas, oil, money), r=.7) plot(oil_cor2) plot(oil_cor2, ncol=2) oil_cor3 <- apply_as_df(crude, word_cor, word = qcv(texas, oil, money), r=NULL) plot(oil_cor3) ## Run on multiple times/person/nested ## Split and apply to data sets ## Suggested use of stemming DATA3 <- split(DATA2, DATA2$person) ## Find correlations between words per turn of talk by person ## Throws multiple warning because small data set library(qdapTools) lapply(DATA3, function(x) { word_cor(x[, "state"], qdapTools::id(x), qcv(computer, i, no, good), r = NULL) }) ## Find words correlated per turn of talk by person ## Throws multiple warning because small data set lapply(DATA3, function(x) { word_cor(x[, "state"], qdapTools::id(x), qcv(computer, i, no, good)) }) ## A real example dat <- pres_debates2012 dat$TOT <- factor(with(dat, paste(time, pad(TOT(tot)), sep = "|"))) dat <- dat[dat$person %in% qcv(OBAMA, ROMNEY), ] dat$person <- factor(dat$person) dat.split <- with(dat, split(dat, list(person, time))) wrds <- qcv(america, debt, dollar, people, tax, health) lapply(dat.split, function(x) { word_cor(x[, "dialogue"], x[, "TOT"], wrds, r=NULL) }) ## Supply a matrix (make sure to use `t` on a `wfm` matrix) worlis <- list( pronouns = c("you", "it", "it's", "we", "i'm", "i"), negative = qcv(no, dumb, distrust, not, stinks), literacy = qcv(computer, talking, telling) ) y <- wfdf(DATA$state, qdapTools::id(DATA, prefix = TRUE)) z <- wfm_combine(y, worlis) out <- word_cor(t(z), word = c(names(worlis), "else.words"), r = NULL) out plot(out) ## Additional plotting/viewing require(tm) data("crude") out1 <- word_cor(t(as.wfm(crude)), word = "oil", r=.7) vect2df(out1[[1]], "word", "cor") plot(out1) qheat(vect2df(out1[[1]], "word", "cor"), values=TRUE, high="red", digits=2, order.by ="cor", plot=FALSE) + coord_flip() out2 <- word_cor(t(as.wfm(crude)), word = c("oil", "country"), r=.7) plot(out2) ## End(Not run)
## Not run: x <- factor(with(rajSPLIT, paste(act, pad(TOT(tot)), sep = "|"))) word_cor(rajSPLIT$dialogue, x, "romeo", .45) word_cor(rajSPLIT$dialogue, x, "love", .5) ## Negative correlation word_cor(rajSPLIT$dialogue, x, "you", -.1) with(rajSPLIT, word_cor(dialogue, list(person, act), "hate")) words <- c("hate", "i", "love", "ghost") with(rajSPLIT, word_cor(dialogue, x, words, r = .5)) with(rajSPLIT, word_cor(dialogue, x, words, r = .4)) ## Set `r = NULL` to get matrix between words with(rajSPLIT, word_cor(dialogue, x, words, r = NULL)) ## Plotting library(tm) data("crude") oil_cor1 <- apply_as_df(crude, word_cor, word = "oil", r=.7) plot(oil_cor1) oil_cor2 <- apply_as_df(crude, word_cor, word = qcv(texas, oil, money), r=.7) plot(oil_cor2) plot(oil_cor2, ncol=2) oil_cor3 <- apply_as_df(crude, word_cor, word = qcv(texas, oil, money), r=NULL) plot(oil_cor3) ## Run on multiple times/person/nested ## Split and apply to data sets ## Suggested use of stemming DATA3 <- split(DATA2, DATA2$person) ## Find correlations between words per turn of talk by person ## Throws multiple warning because small data set library(qdapTools) lapply(DATA3, function(x) { word_cor(x[, "state"], qdapTools::id(x), qcv(computer, i, no, good), r = NULL) }) ## Find words correlated per turn of talk by person ## Throws multiple warning because small data set lapply(DATA3, function(x) { word_cor(x[, "state"], qdapTools::id(x), qcv(computer, i, no, good)) }) ## A real example dat <- pres_debates2012 dat$TOT <- factor(with(dat, paste(time, pad(TOT(tot)), sep = "|"))) dat <- dat[dat$person %in% qcv(OBAMA, ROMNEY), ] dat$person <- factor(dat$person) dat.split <- with(dat, split(dat, list(person, time))) wrds <- qcv(america, debt, dollar, people, tax, health) lapply(dat.split, function(x) { word_cor(x[, "dialogue"], x[, "TOT"], wrds, r=NULL) }) ## Supply a matrix (make sure to use `t` on a `wfm` matrix) worlis <- list( pronouns = c("you", "it", "it's", "we", "i'm", "i"), negative = qcv(no, dumb, distrust, not, stinks), literacy = qcv(computer, talking, telling) ) y <- wfdf(DATA$state, qdapTools::id(DATA, prefix = TRUE)) z <- wfm_combine(y, worlis) out <- word_cor(t(z), word = c(names(worlis), "else.words"), r = NULL) out plot(out) ## Additional plotting/viewing require(tm) data("crude") out1 <- word_cor(t(as.wfm(crude)), word = "oil", r=.7) vect2df(out1[[1]], "word", "cor") plot(out1) qheat(vect2df(out1[[1]], "word", "cor"), values=TRUE, high="red", digits=2, order.by ="cor", plot=FALSE) + coord_flip() out2 <- word_cor(t(as.wfm(crude)), word = c("oil", "country"), r=.7) plot(out2) ## End(Not run)
word_count
- Transcript apply word counts.
character_count
- Transcript apply character counts.
character_table
- Computes a table of character counts by grouping .
variable(s).
word_count( text.var, byrow = TRUE, missing = NA, digit.remove = TRUE, names = FALSE ) wc(text.var, byrow = TRUE, missing = NA, digit.remove = TRUE, names = FALSE) character_count( text.var, byrow = TRUE, missing = NA, apostrophe.remove = TRUE, digit.remove = TRUE, count.space = FALSE ) character_table( text.var, grouping.var = NULL, percent = TRUE, prop.by.row = TRUE, zero.replace = 0, digits = 2, ... ) char_table( text.var, grouping.var = NULL, percent = TRUE, prop.by.row = TRUE, zero.replace = 0, digits = 2, ... )
word_count( text.var, byrow = TRUE, missing = NA, digit.remove = TRUE, names = FALSE ) wc(text.var, byrow = TRUE, missing = NA, digit.remove = TRUE, names = FALSE) character_count( text.var, byrow = TRUE, missing = NA, apostrophe.remove = TRUE, digit.remove = TRUE, count.space = FALSE ) character_table( text.var, grouping.var = NULL, percent = TRUE, prop.by.row = TRUE, zero.replace = 0, digits = 2, ... ) char_table( text.var, grouping.var = NULL, percent = TRUE, prop.by.row = TRUE, zero.replace = 0, digits = 2, ... )
text.var |
The text variable |
byrow |
logical. If |
missing |
Value to insert for missing values (empty cells). |
digit.remove |
logical. If |
names |
logical. If |
apostrophe.remove |
logical. If |
count.space |
logical. If |
grouping.var |
The grouping variables. Default |
percent |
logical. If |
prop.by.row |
logical. If |
zero.replace |
Value to replace 0 values with. |
digits |
Integer; number of decimal places to round when printing. |
... |
Other arguments passed to |
word_count
- returns a word count by row or total.
character_count
- returns a character count by row or total.
character_table
- returns a list:
dataframe of character counts by grouping variable.
raw |
Dataframe of the frequency of characters by grouping variable. |
prop |
Dataframe of the proportion of characters by grouping variable. |
rnp |
Dataframe of the frequency and proportions of characters by grouping variable. |
percent |
The value of percent used for plotting purposes. |
zero.replace |
The value of zero.replace used for plotting purposes. |
wc is a convenient short hand for word_count.
syllable_count
,
prop
,
colcomb2class
## Not run: ## WORD COUNT word_count(DATA$state) wc(DATA$state) word_count(DATA$state, names = TRUE) word_count(DATA$state, byrow=FALSE, names = TRUE) sum(word_count(DATA$state)) sapply(split(raj$dialogue, raj$person), wc, FALSE) %>% sort(decreasing=TRUE) %>% list2df("wordcount", "person") %>% `[`(, 2:1) ## PLOT WORD COUNTS raj2 <- raj raj2$scaled <- unlist(tapply(wc(raj$dialogue), raj2$act, scale)) raj2$scaled2 <- unlist(tapply(wc(raj$dialogue), raj2$act, scale, scale = FALSE)) raj2$ID <- factor(unlist(tapply(raj2$act, raj2$act, seq_along))) ggplot(raj2, aes(x = ID, y = scaled, fill =person)) + geom_bar(stat="identity") + facet_grid(act~.) + ylab("Scaled") + xlab("Turn of Talk") + guides(fill = guide_legend(nrow = 5, byrow = TRUE)) + theme(legend.position="bottom") + ggtitle("Scaled and Centered") ggplot(raj2, aes(x = ID, y = scaled2, fill =person)) + geom_bar(stat="identity") + facet_grid(act~.) + ylab("Scaled") + xlab("Turn of Talk") + guides(fill = guide_legend(nrow = 5, byrow = TRUE)) + theme(legend.position="bottom") + ggtitle("Mean Difference") raj$wc <- wc(raj$dialogue) raj$cum.wc <- unlist(with(raj, tapply(wc, act, cumsum))) raj$turn <- unlist(with(raj, tapply(act, act, seq_along))) ggplot(raj, aes(y=cum.wc, x=turn)) + geom_step(direction = "hv") + facet_wrap(~act) ## CHARACTER COUNTS character_count(DATA$state) character_count(DATA$state, byrow=FALSE) sum(character_count(DATA$state)) ## CHARACTER TABLE x <- character_table(DATA$state, DATA$person) plot(x) plot(x, label = TRUE) plot(x, label = TRUE, text.color = "red") plot(x, label = TRUE, lab.digits = 1, zero.replace = "PP7") scores(x) counts(x) proportions(x) plot(scores(x)) plot(counts(x)) plot(proportions(x)) ## combine columns colcomb2class(x, list(vowels = c("a", "e", "i", "o", "u"))) ## char_table(DATA$state, DATA$person) ## char_table(DATA$state, DATA$person, percent = TRUE) ## character_table(DATA$state, list(DATA$sex, DATA$adult)) library(ggplot2);library(reshape2) dat <- character_table(DATA$state, list(DATA$sex, DATA$adult)) dat2 <- colsplit2df(melt(counts(dat)), keep.orig = TRUE) head(dat2, 15) ggplot(data = dat2, aes(y = variable, x = value, colour=sex)) + facet_grid(adult~.) + geom_line(size=1, aes(group =variable), colour = "black") + geom_point() ggplot(data = dat2, aes(x = variable, y = value)) + geom_bar(aes(fill = variable), stat = "identity") + facet_grid(sex ~ adult, margins = TRUE) + theme(legend.position="none") ## End(Not run)
## Not run: ## WORD COUNT word_count(DATA$state) wc(DATA$state) word_count(DATA$state, names = TRUE) word_count(DATA$state, byrow=FALSE, names = TRUE) sum(word_count(DATA$state)) sapply(split(raj$dialogue, raj$person), wc, FALSE) %>% sort(decreasing=TRUE) %>% list2df("wordcount", "person") %>% `[`(, 2:1) ## PLOT WORD COUNTS raj2 <- raj raj2$scaled <- unlist(tapply(wc(raj$dialogue), raj2$act, scale)) raj2$scaled2 <- unlist(tapply(wc(raj$dialogue), raj2$act, scale, scale = FALSE)) raj2$ID <- factor(unlist(tapply(raj2$act, raj2$act, seq_along))) ggplot(raj2, aes(x = ID, y = scaled, fill =person)) + geom_bar(stat="identity") + facet_grid(act~.) + ylab("Scaled") + xlab("Turn of Talk") + guides(fill = guide_legend(nrow = 5, byrow = TRUE)) + theme(legend.position="bottom") + ggtitle("Scaled and Centered") ggplot(raj2, aes(x = ID, y = scaled2, fill =person)) + geom_bar(stat="identity") + facet_grid(act~.) + ylab("Scaled") + xlab("Turn of Talk") + guides(fill = guide_legend(nrow = 5, byrow = TRUE)) + theme(legend.position="bottom") + ggtitle("Mean Difference") raj$wc <- wc(raj$dialogue) raj$cum.wc <- unlist(with(raj, tapply(wc, act, cumsum))) raj$turn <- unlist(with(raj, tapply(act, act, seq_along))) ggplot(raj, aes(y=cum.wc, x=turn)) + geom_step(direction = "hv") + facet_wrap(~act) ## CHARACTER COUNTS character_count(DATA$state) character_count(DATA$state, byrow=FALSE) sum(character_count(DATA$state)) ## CHARACTER TABLE x <- character_table(DATA$state, DATA$person) plot(x) plot(x, label = TRUE) plot(x, label = TRUE, text.color = "red") plot(x, label = TRUE, lab.digits = 1, zero.replace = "PP7") scores(x) counts(x) proportions(x) plot(scores(x)) plot(counts(x)) plot(proportions(x)) ## combine columns colcomb2class(x, list(vowels = c("a", "e", "i", "o", "u"))) ## char_table(DATA$state, DATA$person) ## char_table(DATA$state, DATA$person, percent = TRUE) ## character_table(DATA$state, list(DATA$sex, DATA$adult)) library(ggplot2);library(reshape2) dat <- character_table(DATA$state, list(DATA$sex, DATA$adult)) dat2 <- colsplit2df(melt(counts(dat)), keep.orig = TRUE) head(dat2, 15) ggplot(data = dat2, aes(y = variable, x = value, colour=sex)) + facet_grid(adult~.) + geom_line(size=1, aes(group =variable), colour = "black") + geom_point() ggplot(data = dat2, aes(x = variable, y = value)) + geom_bar(aes(fill = variable), stat = "identity") + facet_grid(sex ~ adult, margins = TRUE) + theme(legend.position="none") ## End(Not run)
Look at the differences in word uses between grouping variable(s). Look at all possible "a" vs. "b" combinations or "a" vs. all others.
word_diff_list( text.var, grouping.var, vs.all = FALSE, vs.all.cut = 1, stopwords = NULL, alphabetical = FALSE, digits = 2 )
word_diff_list( text.var, grouping.var, vs.all = FALSE, vs.all.cut = 1, stopwords = NULL, alphabetical = FALSE, digits = 2 )
text.var |
The text variable. |
grouping.var |
The grouping variables. Default |
vs.all |
logical. If |
vs.all.cut |
Controls the number of other groups that may share a word (default is 1). |
stopwords |
A vector of stop words to remove. |
alphabetical |
logical. If |
digits |
the number of digits to be displayed in the proportion column (default is 3). |
An list of word data frames comparing grouping variables word use against one another. Each dataframe contains three columns:
word |
The words unique to that group |
freq |
The number of times that group used that word |
prop |
The proportion of that group's overall word use dedicated to that particular word |
## Not run: out1 <- with(DATA, word_diff_list(text.var = state, grouping.var = list(sex, adult))) lapply(unlist(out1, recursive = FALSE), head, n=3) out2 <- with(DATA, word_diff_list(state, person)) lapply(unlist(out2, recursive = FALSE), head, n=3) out3 <- with(DATA, word_diff_list(state, grouping.var = list(sex, adult), vs.all=TRUE, vs.all.cut=2)) out4 <- with(mraja1, word_diff_list(text.var = dialogue, grouping.var = list(mraja1$sex, mraja1$fam.aff))) out5 <- word_diff_list(mraja1$dialogue, mraja1$person) out6 <- word_diff_list(mraja1$dialogue, mraja1$fam.aff, stopwords = Top25Words) out7 <- word_diff_list(mraja1$dialogue, mraja1$fam.aff, vs.all=TRUE, vs.all.cut=2) lapply(out7, head, n=3) ## End(Not run)
## Not run: out1 <- with(DATA, word_diff_list(text.var = state, grouping.var = list(sex, adult))) lapply(unlist(out1, recursive = FALSE), head, n=3) out2 <- with(DATA, word_diff_list(state, person)) lapply(unlist(out2, recursive = FALSE), head, n=3) out3 <- with(DATA, word_diff_list(state, grouping.var = list(sex, adult), vs.all=TRUE, vs.all.cut=2)) out4 <- with(mraja1, word_diff_list(text.var = dialogue, grouping.var = list(mraja1$sex, mraja1$fam.aff))) out5 <- word_diff_list(mraja1$dialogue, mraja1$person) out6 <- word_diff_list(mraja1$dialogue, mraja1$fam.aff, stopwords = Top25Words) out7 <- word_diff_list(mraja1$dialogue, mraja1$fam.aff, vs.all=TRUE, vs.all.cut=2) lapply(out7, head, n=3) ## End(Not run)
Transcript apply word length counts.
word_length( text.var, grouping.var = NULL, percent = TRUE, zero.replace = 0, digits = 2, ... )
word_length( text.var, grouping.var = NULL, percent = TRUE, zero.replace = 0, digits = 2, ... )
text.var |
The text variable. |
grouping.var |
The grouping variables. Default |
percent |
logical. If |
zero.replace |
Value to replace 0 values with. |
digits |
Integer; number of decimal places to round when printing. |
... |
Other arguments passed to |
Returns a list of:
count |
Dataframe of word length counts by grouping variable(s). |
prop |
Dataframe of the proportions of word length counts by grouping variable. |
rnp |
Dataframe of the frequency and proportions of word length counts by grouping variable. |
percent |
The value of percent used for plotting purposes. |
zero.replace |
The value of zero.replace used for plotting purposes. |
## Not run: (x <- with(DATA, word_length(state, person))) plot(x) scores(x) proportions(x) counts(x) plot(scores(x)) plot(proportions(x)) plot(counts(x)) (x2 <- word_length(DATA[["state"]])) (x2 <- word_length(DATA[["state"]], apostrophe.remove=TRUE)) ## Example Visualizations with Presidential Debate Data library(tidyr) (x_long <- proportions(x) %>% gather("Letter_Length", "Proportion", -c(1:2))) ggplot(x_long, aes(x = Letter_Length, y = Proportion, color=person, group=person)) + geom_line(size=.8) (x3 <- with(pres_debates2012, word_length(dialogue, person))) (x_long2 <- proportions(x3) %>% gather("Letter_Length", "Proportion", -c(1:2))) ggplot(x_long, aes(x = Letter_Length, weight = Proportion, fill=person, group=person)) + geom_bar() ggplot(x_long, aes(x = Letter_Length, weight = Proportion, fill=person)) + geom_bar() + facet_wrap(~person, ncol=1) ggplot(x_long, aes(x = Letter_Length, weight = Proportion, fill=person)) + geom_bar() + coord_flip() + facet_wrap(~person, ncol=1) ggplot(x_long, aes(x = person, weight = Proportion)) + geom_bar(fill="grey40") + coord_flip() + facet_grid(Letter_Length~.) ## End(Not run)
## Not run: (x <- with(DATA, word_length(state, person))) plot(x) scores(x) proportions(x) counts(x) plot(scores(x)) plot(proportions(x)) plot(counts(x)) (x2 <- word_length(DATA[["state"]])) (x2 <- word_length(DATA[["state"]], apostrophe.remove=TRUE)) ## Example Visualizations with Presidential Debate Data library(tidyr) (x_long <- proportions(x) %>% gather("Letter_Length", "Proportion", -c(1:2))) ggplot(x_long, aes(x = Letter_Length, y = Proportion, color=person, group=person)) + geom_line(size=.8) (x3 <- with(pres_debates2012, word_length(dialogue, person))) (x_long2 <- proportions(x3) %>% gather("Letter_Length", "Proportion", -c(1:2))) ggplot(x_long, aes(x = Letter_Length, weight = Proportion, fill=person, group=person)) + geom_bar() ggplot(x_long, aes(x = Letter_Length, weight = Proportion, fill=person)) + geom_bar() + facet_wrap(~person, ncol=1) ggplot(x_long, aes(x = Letter_Length, weight = Proportion, fill=person)) + geom_bar() + coord_flip() + facet_wrap(~person, ncol=1) ggplot(x_long, aes(x = person, weight = Proportion)) + geom_bar(fill="grey40") + coord_flip() + facet_grid(Letter_Length~.) ## End(Not run)
Transcript Apply Raw Word Lists and Frequency Counts by grouping variable(s).
word_list( text.var, grouping.var = NULL, stopwords = NULL, alphabetical = FALSE, cut.n = 20, cap = TRUE, cap.list = NULL, cap.I = TRUE, rm.bracket = TRUE, char.keep = NULL, apostrophe.remove = FALSE, ... )
word_list( text.var, grouping.var = NULL, stopwords = NULL, alphabetical = FALSE, cut.n = 20, cap = TRUE, cap.list = NULL, cap.I = TRUE, rm.bracket = TRUE, char.keep = NULL, apostrophe.remove = FALSE, ... )
text.var |
The text variable. |
grouping.var |
The grouping variables. Default |
stopwords |
A vector of stop words to remove. |
alphabetical |
If |
cut.n |
Cut off point for reduced frequency stop word list (rfswl). |
cap |
logical. If |
cap.list |
Vector of words to capitalize. |
cap.I |
logical. If |
rm.bracket |
logical If |
char.keep |
A character vector of symbols (i.e., punctuation) that
|
apostrophe.remove |
logical. If |
... |
Other arguments passed to |
An object of class "word_list"
is a list of lists of vectors
or dataframes containing the following components:
cwl |
complete word list; raw words |
swl |
stop word list; same as rwl with stop words removed |
fwl |
frequency word list; a data frame of words and corresponding frequency counts |
fswl |
frequency stopword word list; same as fwl but with stop words removed |
rfswl |
reduced frequency stopword word list; same as fswl but truncated to n rows |
## Not run: word_list(raj.act.1$dialogue) out1 <- with(raj, word_list(text.var = dialogue, grouping.var = list(person, act))) names(out1) lapply(out1$cwl, "[", 1:5) with(DATA, word_list(state, person)) with(DATA, word_list(state, person, stopwords = Top25Words)) with(DATA, word_list(state, person, cap = FALSE, cap.list=c("do", "we"))) ## End(Not run)
## Not run: word_list(raj.act.1$dialogue) out1 <- with(raj, word_list(text.var = dialogue, grouping.var = list(person, act))) names(out1) lapply(out1$cwl, "[", 1:5) with(DATA, word_list(state, person)) with(DATA, word_list(state, person, stopwords = Top25Words)) with(DATA, word_list(state, person, cap = FALSE, cap.list=c("do", "we"))) ## End(Not run)
A network plot of words. Shows the interconnected and supporting use of words between textual units containing key terms.
word_network_plot( text.var, grouping.var = 1:length(text.var), target.words = NULL, stopwords = qdapDictionaries::Top100Words, label.cex = 0.8, label.size = 0.5, edge.curved = TRUE, vertex.shape = "circle", edge.color = "gray70", label.colors = "black", layout = NULL, title.name = NULL, title.padj = -4.5, title.location = 3, title.font = NULL, title.cex = 0.8, log.labels = FALSE, title.color = "black", legend = NULL, legend.cex = 0.8, legend.location = c(-1.54, 1.41), plot = TRUE, char2space = "~~", ... )
word_network_plot( text.var, grouping.var = 1:length(text.var), target.words = NULL, stopwords = qdapDictionaries::Top100Words, label.cex = 0.8, label.size = 0.5, edge.curved = TRUE, vertex.shape = "circle", edge.color = "gray70", label.colors = "black", layout = NULL, title.name = NULL, title.padj = -4.5, title.location = 3, title.font = NULL, title.cex = 0.8, log.labels = FALSE, title.color = "black", legend = NULL, legend.cex = 0.8, legend.location = c(-1.54, 1.41), plot = TRUE, char2space = "~~", ... )
text.var |
The text variable. |
grouping.var |
The grouping variables. Default uses the sequence along the length of text variable (this may be the connection of sentences or turn of talk as the textual unit). Also takes a single grouping variable or a list of 1 or more grouping variables. |
target.words |
A named list of vectors of words whose length corresponds
to |
stopwords |
Words to exclude from the analysis (default is Top100Words). |
label.cex |
The magnification to be used for network plot labels relative to the current setting of cex. Default is .8. |
label.size |
An optional sizing constant to add to labels if log.labels
is |
edge.curved |
logical. If |
vertex.shape |
The shape of the vertices (see
|
edge.color |
A character vector of length one corresponding to the color of the plot edges. |
label.colors |
A character vector of length one corresponding to the color of the labels. |
layout |
Layout types supported by igraph. See
|
title.name |
The title of the plot. |
title.padj |
Adjustment for the network plot title. For strings parallel to the axes, padj = 0 means right or top alignment, and padj = 1 means left or bottom alignment. |
title.location |
On which side of the network plot (1=bottom, 2=left, 3=top, 4=right). |
title.font |
The font family of the cloud title. |
title.cex |
Character expansion factor for the title. |
log.labels |
logical. If |
title.color |
A character vector of length one corresponding to the color of the title. |
legend |
A character vector of names corresponding to the number of
vectors in |
legend.cex |
Character expansion factor for the network plot legend.
|
legend.location |
The x and y co-ordinates to be used to position the
network plot legend. The location may also be specified by setting x to a
single keyword from the list |
plot |
logical. If |
char2space |
A vector of characters to be turned into spaces. If
|
... |
Other arguments passed to |
Words can be kept as one by inserting a double tilde ("~~"
), or
other character strings passed to char2space, as a single word/entry. This is
useful for keeping proper names as a single unit.
word_network_plot
,
graph.adjacency
## Not run: word_network_plot(text.var=DATA$state) word_network_plot(text.var=DATA$state, stopwords=NULL) word_network_plot(text.var=DATA$state, DATA$person) word_network_plot(text.var=DATA$state, DATA$person, stopwords=NULL) word_network_plot(text.var=DATA$state, grouping.var=list(DATA$sex, DATA$adult)) word_network_plot(text.var=DATA$state, grouping.var=DATA$person, title.name = "TITLE", log.labels=TRUE) word_network_plot(text.var=raj.act.1$dialogue, grouping.var=raj.act.1$person, stopwords = Top200Words) #insert double tilde ("~~") to keep dual words (e.g., first last name) alts <- c(" fun", "I ") state2 <- mgsub(alts, gsub("\\s", "~~", alts), DATA$state) word_network_plot(text.var=state2, grouping.var=DATA$person) ## Invisibly returns the igraph model x <- word_network_plot(text.var=DATA$state, DATA$person) str(x) library(igraph) plot(x, vertex.size=0, vertex.color="white", edge.curved = TRUE) x2 <- word_network_plot(text.var=DATA$state, grouping.var=DATA$person, title.name = "TITLE", log.labels = TRUE, label.size = 1.2) l <- layout.drl(x2, options=list(simmer.attraction=0)) plot(x2, vertex.size=0, layout = l) ## End(Not run)
## Not run: word_network_plot(text.var=DATA$state) word_network_plot(text.var=DATA$state, stopwords=NULL) word_network_plot(text.var=DATA$state, DATA$person) word_network_plot(text.var=DATA$state, DATA$person, stopwords=NULL) word_network_plot(text.var=DATA$state, grouping.var=list(DATA$sex, DATA$adult)) word_network_plot(text.var=DATA$state, grouping.var=DATA$person, title.name = "TITLE", log.labels=TRUE) word_network_plot(text.var=raj.act.1$dialogue, grouping.var=raj.act.1$person, stopwords = Top200Words) #insert double tilde ("~~") to keep dual words (e.g., first last name) alts <- c(" fun", "I ") state2 <- mgsub(alts, gsub("\\s", "~~", alts), DATA$state) word_network_plot(text.var=state2, grouping.var=DATA$person) ## Invisibly returns the igraph model x <- word_network_plot(text.var=DATA$state, DATA$person) str(x) library(igraph) plot(x, vertex.size=0, vertex.color="white", edge.curved = TRUE) x2 <- word_network_plot(text.var=DATA$state, grouping.var=DATA$person, title.name = "TITLE", log.labels = TRUE, label.size = 1.2) l <- layout.drl(x2, options=list(simmer.attraction=0)) plot(x2, vertex.size=0, layout = l) ## End(Not run)
Find counts of the positioning of words within a sentence.
word_position( text.var, match.terms, digits = 2, percent = TRUE, zero.replace = 0, ... )
word_position( text.var, match.terms, digits = 2, percent = TRUE, zero.replace = 0, ... )
text.var |
The text variable. |
match.terms |
A character vector of quoted terms to find the positions of. |
digits |
Integer; number of decimal places to round when printing. |
percent |
logical. If |
zero.replace |
Value to replace 0 values with. |
... |
Currently ignored. |
Returns a list, of class "word_position", of data frames and information regarding word positions:
raw |
raw word position counts in long format (may be more useful for plotting) |
count |
integer word position counts |
prop |
proportional word position counts; proportional to each total word uses |
rnp |
a character combination data frame of count and proportional |
zero_replace |
value to replace zeros with; mostly internal use |
percent |
The value of percent used for plotting purposes. |
digits |
integer value of number of digits to display; mostly internal use |
Default printing is a heatmap plot.
## Not run: position <- with(DATA, word_position(sent_detect(state), Top25Words)) position lview(position) plot(position) scores(position) preprocessed(position) counts(position) proportions(position) plot(proportions(position)) stopwords <- unique(c(contractions[[1]], Top200Words)) topwords <- freq_terms(pres_debates2012[["dialogue"]], top = 40, at.least = 4, stopwords = stopwords)[[1]] word_position(pres_debates2012[["dialogue"]], topwords) plot(word_position(pres_debates2012[["dialogue"]], topwords), FALSE) plot(word_position(pres_debates2012[["dialogue"]], topwords), TRUE, scale=FALSE) wordlist <- c("tax", "health", "rich", "america", "truth", "money", "cost", "governnor", "president", "we", "job", "i", "you", "because", "our", "years") word_position(pres_debates2012[["dialogue"]], wordlist) ## BY VARIABLES library(gridExtra) pres_deb_by_time <- with(pres_debates2012, split(dialogue, time)) out1 <-lapply(pres_deb_by_time, word_position, wordlist) do.call("grid.arrange", c(lapply(out1, plot), ncol=1)) pres_deb_by_person <- with(pres_debates2012, split(dialogue, person)) out2 <-lapply(pres_deb_by_person, word_position, wordlist) plots <- lapply(names(out2), function(x) plot(out2[[x]], scale=FALSE) + ggtitle(x)) do.call("grid.arrange", c(plots, ncol=2)) ## As a histogram ## theme taken from: http://jonlefcheck.net/2013/03/11/black-theme-for-ggplot2-2/ theme_black <- function(base_size=12,base_family="") { theme_grey(base_size=base_size,base_family=base_family) %+replace% theme( # Specify axis options axis.line=element_blank(), axis.text.x=element_text(size=base_size*0.8,color="grey55", lineheight=0.9,vjust=1), axis.text.y=element_text(size=base_size*0.8,color="grey55", lineheight=0.9,hjust=1), axis.ticks=element_line(color="grey55",size = 0.2), axis.title.x=element_text(size=base_size,color="grey55",vjust=1), axis.title.y=element_text(size=base_size,color="grey55",angle=90, vjust=0.5), axis.ticks.length=unit(0.3,"lines"), axis.ticks.margin=unit(0.5,"lines"), # Specify legend options legend.background=element_rect(color=NA,fill="black"), legend.key=element_rect(color="grey55", fill="black"), legend.key.size=unit(1.2,"lines"), legend.key.height=NULL, legend.key.width=NULL, legend.text=element_text(size=base_size*0.8,color="grey55"), legend.title=element_text(size=base_size*0.8,face="bold",hjust=0, color="grey55"), legend.position="right", legend.text.align=NULL, legend.title.align=NULL, legend.direction="vertical", legend.box=NULL, # Specify panel options panel.background=element_rect(fill="black",color = NA), panel.border=element_rect(fill=NA,color="grey55"), panel.grid.major=element_blank(), panel.grid.minor=element_blank(), panel.spacing=unit(0.25,"lines"), # Specify facetting options strip.background=element_rect(fill="grey30",color="grey10"), strip.text.x=element_text(size=base_size*0.8,color="grey55"), strip.text.y=element_text(size=base_size*0.8,color="grey55", angle=-90), # Specify plot options plot.background=element_rect(color="black",fill="black"), plot.title=element_text(size=base_size*1.2,color="grey55"), plot.margin=unit(c(1,1,0.5,0.5),"lines") ) } out3 <- list_df2df(lapply(out2[1:2], preprocessed), "Person") out3 %>% ggplot(aes(x=position)) + geom_histogram(binwidth = 1, fill="white") + facet_grid(Person~word) + theme_black() + ylab("Count") + xlab("Position") ## MOVE TO THE MICRO THROUGH QUALITATIVE ANALYSIS locs <- unlist(setNames(lapply(wordlist, function(x){ sapply(c("ROMNEY", "OBAMA"), function(y){ which(pres_debates2012[["person"]] ==y & grepl(x, pres_debates2012[["dialogue"]])) }) }), wordlist), recursive=FALSE) fdl <- qdap:::folder(pres_context) Map(function(x, y){ if (identical(integer(0), x)) return(NULL) z <- with(pres_debates2012, trans_context(dialogue, person, inds=x, n.before=1)) z[["text"]] <- gsub(beg2char(y, "."), paste0("[[", beg2char(y, "."), "]]"), z[["text"]]) print(z, file=file.path(fdl, sprintf("%s.doc", y))) }, locs, names(locs)) ## End(Not run)
## Not run: position <- with(DATA, word_position(sent_detect(state), Top25Words)) position lview(position) plot(position) scores(position) preprocessed(position) counts(position) proportions(position) plot(proportions(position)) stopwords <- unique(c(contractions[[1]], Top200Words)) topwords <- freq_terms(pres_debates2012[["dialogue"]], top = 40, at.least = 4, stopwords = stopwords)[[1]] word_position(pres_debates2012[["dialogue"]], topwords) plot(word_position(pres_debates2012[["dialogue"]], topwords), FALSE) plot(word_position(pres_debates2012[["dialogue"]], topwords), TRUE, scale=FALSE) wordlist <- c("tax", "health", "rich", "america", "truth", "money", "cost", "governnor", "president", "we", "job", "i", "you", "because", "our", "years") word_position(pres_debates2012[["dialogue"]], wordlist) ## BY VARIABLES library(gridExtra) pres_deb_by_time <- with(pres_debates2012, split(dialogue, time)) out1 <-lapply(pres_deb_by_time, word_position, wordlist) do.call("grid.arrange", c(lapply(out1, plot), ncol=1)) pres_deb_by_person <- with(pres_debates2012, split(dialogue, person)) out2 <-lapply(pres_deb_by_person, word_position, wordlist) plots <- lapply(names(out2), function(x) plot(out2[[x]], scale=FALSE) + ggtitle(x)) do.call("grid.arrange", c(plots, ncol=2)) ## As a histogram ## theme taken from: http://jonlefcheck.net/2013/03/11/black-theme-for-ggplot2-2/ theme_black <- function(base_size=12,base_family="") { theme_grey(base_size=base_size,base_family=base_family) %+replace% theme( # Specify axis options axis.line=element_blank(), axis.text.x=element_text(size=base_size*0.8,color="grey55", lineheight=0.9,vjust=1), axis.text.y=element_text(size=base_size*0.8,color="grey55", lineheight=0.9,hjust=1), axis.ticks=element_line(color="grey55",size = 0.2), axis.title.x=element_text(size=base_size,color="grey55",vjust=1), axis.title.y=element_text(size=base_size,color="grey55",angle=90, vjust=0.5), axis.ticks.length=unit(0.3,"lines"), axis.ticks.margin=unit(0.5,"lines"), # Specify legend options legend.background=element_rect(color=NA,fill="black"), legend.key=element_rect(color="grey55", fill="black"), legend.key.size=unit(1.2,"lines"), legend.key.height=NULL, legend.key.width=NULL, legend.text=element_text(size=base_size*0.8,color="grey55"), legend.title=element_text(size=base_size*0.8,face="bold",hjust=0, color="grey55"), legend.position="right", legend.text.align=NULL, legend.title.align=NULL, legend.direction="vertical", legend.box=NULL, # Specify panel options panel.background=element_rect(fill="black",color = NA), panel.border=element_rect(fill=NA,color="grey55"), panel.grid.major=element_blank(), panel.grid.minor=element_blank(), panel.spacing=unit(0.25,"lines"), # Specify facetting options strip.background=element_rect(fill="grey30",color="grey10"), strip.text.x=element_text(size=base_size*0.8,color="grey55"), strip.text.y=element_text(size=base_size*0.8,color="grey55", angle=-90), # Specify plot options plot.background=element_rect(color="black",fill="black"), plot.title=element_text(size=base_size*1.2,color="grey55"), plot.margin=unit(c(1,1,0.5,0.5),"lines") ) } out3 <- list_df2df(lapply(out2[1:2], preprocessed), "Person") out3 %>% ggplot(aes(x=position)) + geom_histogram(binwidth = 1, fill="white") + facet_grid(Person~word) + theme_black() + ylab("Count") + xlab("Position") ## MOVE TO THE MICRO THROUGH QUALITATIVE ANALYSIS locs <- unlist(setNames(lapply(wordlist, function(x){ sapply(c("ROMNEY", "OBAMA"), function(y){ which(pres_debates2012[["person"]] ==y & grepl(x, pres_debates2012[["dialogue"]])) }) }), wordlist), recursive=FALSE) fdl <- qdap:::folder(pres_context) Map(function(x, y){ if (identical(integer(0), x)) return(NULL) z <- with(pres_debates2012, trans_context(dialogue, person, inds=x, n.before=1)) z[["text"]] <- gsub(beg2char(y, "."), paste0("[[", beg2char(y, "."), "]]"), z[["text"]]) print(z, file=file.path(fdl, sprintf("%s.doc", y))) }, locs, names(locs)) ## End(Not run)
word_proximity
- Generate proximity measures to ascertain a mean
distance measure between word uses.
word_proximity( text.var, terms, grouping.var = NULL, parallel = TRUE, cores = parallel::detectCores()/2 ) ## S3 method for class 'word_proximity' weight(x, type = "scale", ...)
word_proximity( text.var, terms, grouping.var = NULL, parallel = TRUE, cores = parallel::detectCores()/2 ) ## S3 method for class 'word_proximity' weight(x, type = "scale", ...)
text.var |
The text variable. |
terms |
A vector of quoted terms. |
grouping.var |
The grouping variables. Default |
parallel |
logical. If |
cores |
The number of cores to use if |
x |
An object to be weighted. |
type |
A weighting type of: c( |
... |
ignored. |
Note that row names are the first word and column names are the
second comparison word. The values for Word A compared to Word B will not
be the same as Word B compared to Word A. This is because, unlike a true
distance measure, word_proximity
's matrix is asymmetrical.
word_proximity
computes the distance by taking each sentence position
for Word A and comparing it to the nearest sentence location for Word B.
Returns a list of matrices of proximity measures in the unit of average sentences between words (defaults to scaled).
The match.terms is character sensitive. Spacing is an important way to grab specific words and requires careful thought. Using "read" will find the words "bread", "read" "reading", and "ready". If you want to search for just the word "read" you'd supply a vector of c(" read ", " reads", " reading", " reader").
## Not run: wrds <- word_list(pres_debates2012$dialogue, stopwords = c("it's", "that's", Top200Words)) wrds2 <- tolower(sort(wrds$rfswl[[1]][, 1])) (x <- with(pres_debates2012, word_proximity(dialogue, wrds2))) plot(x) plot(weight(x)) plot(weight(x, "rev_scale_log")) (x2 <- with(pres_debates2012, word_proximity(dialogue, wrds2, person))) ## The spaces around `terms` are important (x3 <- with(DATA, word_proximity(state, spaste(qcv(the, i))))) (x4 <- with(DATA, word_proximity(state, qcv(the, i)))) ## End(Not run)
## Not run: wrds <- word_list(pres_debates2012$dialogue, stopwords = c("it's", "that's", Top200Words)) wrds2 <- tolower(sort(wrds$rfswl[[1]][, 1])) (x <- with(pres_debates2012, word_proximity(dialogue, wrds2))) plot(x) plot(weight(x)) plot(weight(x, "rev_scale_log")) (x2 <- with(pres_debates2012, word_proximity(dialogue, wrds2, person))) ## The spaces around `terms` are important (x3 <- with(DATA, word_proximity(state, spaste(qcv(the, i))))) (x4 <- with(DATA, word_proximity(state, qcv(the, i)))) ## End(Not run)
Transcript apply descriptive word statistics.
word_stats( text.var, grouping.var = NULL, tot = NULL, parallel = FALSE, rm.incomplete = FALSE, digit.remove = FALSE, apostrophe.remove = FALSE, digits = 3, ... )
word_stats( text.var, grouping.var = NULL, tot = NULL, parallel = FALSE, rm.incomplete = FALSE, digit.remove = FALSE, apostrophe.remove = FALSE, digits = 3, ... )
text.var |
The text variable or a |
grouping.var |
The grouping variables. Default |
tot |
Optional turns of talk variable that yields turn of talk measures. |
parallel |
logical. If |
rm.incomplete |
logical. If |
digit.remove |
logical. If |
apostrophe.remove |
logical. If |
digits |
Integer; number of decimal places to round when printing. |
... |
Any other arguments passed to |
Note that a sentence is classified with only one endmark. An imperative sentence is classified only as imperative (not as a state, quest, or exclm as well). If a sentence is both imperative and incomplete the sentence will be counted as incomplete rather than imperative. labeled as both imperative
Returns a list of three descriptive word statistics:
ts |
A data frame of descriptive word statistics by row |
gts |
A data frame of word/sentence statistics per grouping variable:
|
mpun |
An account of sentences with an improper/missing end mark |
word.elem |
A data frame with word element columns from gts |
sent.elem |
A data frame with sentence element columns from gts |
omit |
Counter of omitted sentences for internal use (only included if some rows contained missing values) |
percent |
The value of percent used for plotting purposes. |
zero.replace |
The value of zero.replace used for plotting purposes. |
digits |
integer value od number of digits to display; mostly internal use |
It is assumed the user has run sentSplit
on their
data, otherwise some counts may not be accurate.
## Not run: word_stats(mraja1spl$dialogue, mraja1spl$person) (desc_wrds <- with(mraja1spl, word_stats(dialogue, person, tot = tot))) ## Recycle for speed boost with(mraja1spl, word_stats(desc_wrds, person, tot = tot)) scores(desc_wrds) counts(desc_wrds) htruncdf(counts(desc_wrds), 15, 6) plot(scores(desc_wrds)) plot(counts(desc_wrds)) names(desc_wrds) htruncdf(desc_wrds$ts, 15, 5) htruncdf(desc_wrds$gts, 15, 6) desc_wrds$mpun desc_wrds$word.elem desc_wrds$sent.elem plot(desc_wrds) plot(desc_wrds, label=TRUE, lab.digits = 1) ## Correlation Visualization qheat(cor(scores(desc_wrds)[, -1]), diag.na = TRUE, by.column =NULL, low = "yellow", high = "red", grid = FALSE) ## Parallel (possible speed boost) with(mraja1spl, word_stats(dialogue, list(sex, died, fam.aff))) with(mraja1spl, word_stats(dialogue, list(sex, died, fam.aff), parallel = TRUE)) ## Recycle for speed boost word_stats(desc_wrds, mraja1spl$sex) ## End(Not run)
## Not run: word_stats(mraja1spl$dialogue, mraja1spl$person) (desc_wrds <- with(mraja1spl, word_stats(dialogue, person, tot = tot))) ## Recycle for speed boost with(mraja1spl, word_stats(desc_wrds, person, tot = tot)) scores(desc_wrds) counts(desc_wrds) htruncdf(counts(desc_wrds), 15, 6) plot(scores(desc_wrds)) plot(counts(desc_wrds)) names(desc_wrds) htruncdf(desc_wrds$ts, 15, 5) htruncdf(desc_wrds$gts, 15, 6) desc_wrds$mpun desc_wrds$word.elem desc_wrds$sent.elem plot(desc_wrds) plot(desc_wrds, label=TRUE, lab.digits = 1) ## Correlation Visualization qheat(cor(scores(desc_wrds)[, -1]), diag.na = TRUE, by.column =NULL, low = "yellow", high = "red", grid = FALSE) ## Parallel (possible speed boost) with(mraja1spl, word_stats(dialogue, list(sex, died, fam.aff))) with(mraja1spl, word_stats(dialogue, list(sex, died, fam.aff), parallel = TRUE)) ## Recycle for speed boost word_stats(desc_wrds, mraja1spl$sex) ## End(Not run)