Package 'qdap'

Title: Bridging the Gap Between Qualitative Data and Quantitative Analysis
Description: Automates many of the tasks associated with quantitative discourse analysis of transcripts containing discourse including frequency counts of sentence types, words, sentences, turns of talk, syllables and other assorted analysis tasks. The package provides parsing tools for preparing transcript data. Many functions enable the user to aggregate data by any number of grouping variables, providing analysis and seamless integration with other R packages that undertake higher level analysis and visualization of text. This affords the user a more efficient and targeted analysis. 'qdap' is designed for transcript analysis, however, many functions are applicable to other areas of Text Mining/ Natural Language Processing.
Authors: Tyler Rinker [aut, cre], Bryan Goodrich [ctb], Dason Kurkiewicz [ctb]
Maintainer: Tyler Rinker <[email protected]>
License: GPL-2
Version: 2.4.6
Built: 2024-12-30 09:15:24 UTC
Source: CRAN

Help Index


qdap Chaining

Description

%&% - Chain qdap_dfs to qdap functions with a text.var argument. Saves typing of an explicit text.var argument and supplying a data.frame.

%>% - The magrittr "then" chain operator imported by dplyr. Imported for convenience. See https://github.com/tidyverse/magrittr for details.

Usage

qdap_df.object %&% qdap.fun

lhs %>% rhs

Arguments

qdap_df.object

A data.frame of the class "qdap_df".

qdap.fun

A qdap function with a text.var argument.

lhs

The value to be piped.

rhs

A function or expression.

References

Inspired by magrittr's %>% functionality.

See Also

%>%, qdap_df

Examples

## Not run: 
dat <- qdap_df(DATA, state)
dat %&% trans_cloud(grouping.var=person)
dat %&% trans_cloud(grouping.var=person, text.var=stemmer(DATA$state))
dat %&% termco(grouping.var=person, match.list=list("fun", "computer"))

## Various examples with qdap functions (sentSplit gives class "qdap_df")
dat <- sentSplit(DATA, "state")
dat %&% trans_cloud(grouping.var=person)
dat %&% termco(person, match.list=list("fun", "computer"))
dat %&% trans_venn(person)
dat %&% polarity(person)
dat %&% formality(person)
dat %&% automated_readability_index(person)
dat %&% Dissimilarity(person)
dat %&% gradient_cloud(sex)
dat %&% dispersion_plot(c("fun", "computer"))
dat %&% discourse_map(list(sex, adult))
dat %&% gantt_plot(person)
dat %&% word_list(adult)
dat %&% end_mark_by(person)
dat %&% end_mark()
dat %&% word_stats(person)
dat %&% wfm(person)
dat %&% word_cor(person, "i")
dat %&% sentCombine(person)
dat %&% question_type(person)
dat %&% word_network_plot()
dat %&% character_count()
dat %&% char_table(person)
dat %&% phrase_net(2, .1)
dat %&% boolean_search("it||!")
dat %&% trans_context(person, which(end_mark(DATA.SPLIT[, "state"]) == "?"))
dat %&% mgsub(c("it's", "I'm"), c("it is", "I am"))

## combine with magrittr/dplyr chaining
dat %&% wfm(person) %>% plot()
dat %&% polarity(person) %>% scores()
dat %&% polarity(person) %>% counts()
dat %&% polarity(person) %>% scores()
dat %&% polarity(person) %>% scores() %>% plot()
dat %&% polarity(person) %>% scores %>% plot

## Change text column in `qdap_df` (Example 1)
dat2 <- sentSplit(DATA, "state", stem.col = TRUE)
class(dat2)
dat2 %&% trans_cloud()
Text(dat2)
## change the `text.var` column
Text(dat2) <- "stem.text"
dat2 %&% trans_cloud()

## Change text column in `qdap_df` (Example 2)
(dat2$fake_dat <- paste(emoticon[1:11,2], dat2$state))
Text(dat2) <- "fake_dat"
(m <- dat2 %&% sub_holder(emoticon[,2]))
m$unhold(strip(m$output))

## End(Not run)

Add themes to a Network object.

Description

This operator allows you to add themes to a Network object.

Usage

## S3 method for class 'Network'
Network.obj + x

Arguments

Network.obj

An object of class Network.

x

A component to add to Network.obj


Detect Incomplete Sentences; Add | Endmark

Description

Automatically detect missing endmarks and replace with the | endmark symbol to indicate an incomplete sentence.

Usage

add_incomplete(text.var, endmarks = "[.?|!]+$", silent = FALSE)

Arguments

text.var

The text variable.

endmarks

A reguar expression to check for endmarks.

silent

logical. If TRUE messages are not printed out.

Value

Returns a vector with missing endmarks replaced with |.

Examples

add_incomplete(
    c(
        "This in a", 
        "I am funny!", 
        "An ending of sorts%", 
        "What do you want?"
    )
)

Make Plural (or Verb to Singular) Versions of Words

Description

Add -s, -es, or -ies to words.

Usage

add_s(x, keep.original = TRUE)

Arguments

x

A vector of words to make plural.

keep.original

logical. If TRUE the original words are kept in the return vector.

Value

Returns a vector of plural words.

Examples

set.seed(10)
add_s(sample(GradyAugmented, 10))
set.seed(10)
add_s(sample(GradyAugmented, 10), FALSE)

Takes a Matrix and Generates an Adjacency Matrix

Description

Takes a matrix (wfm) or termco object and generates an adjacency matrix for use with the igraph package.

Usage

adjacency_matrix(matrix.obj)

adjmat(matrix.obj)

Arguments

matrix.obj

A matrix object, preferably, of the class "termco" generated from termco, termco_d or termco_c.

Value

Returns list:

boolean

A Boolean matrix

adjacency

An adjacency matrix. Diagonals are the total (sum) number of occurrences a variable had

shared

An adjacency matrix with no diagonal and the upper triangle replaced with NA

sum

The diagonal of the adjacency matrix; the total (sum) number of occurrences a variable had

See Also

dist

Examples

## Not run: 
words <- c(" you", " the", "it", "oo")
Terms <- with(DATA, termco(state, list(sex, adult), words))
Terms
adjacency_matrix(Terms)

wordLIST <- c(" montague", " capulet", " court", " marry")
raj.termco <- with(raj.act.1, termco(dialogue, person, wordLIST))
raj.adjmat <- adjmat(raj.termco)
names(raj.adjmat)  #see what's available from the adjacency_matrix object
library(igraph)
g <- graph.adjacency(raj.adjmat$adjacency, weighted=TRUE, mode ="undirected")
g <- simplify(g)
V(g)$label <- V(g)$name
V(g)$degree <- degree(g)
plot(g, layout=layout.auto(g))

## End(Not run)

Searches Text Column for Words

Description

A convenience function to find words that begin with or contain a letter chunk and returns the frequency counts of the number of occurrences of each word.

Usage

all_words(
  text.var,
  begins.with = NULL,
  contains = NULL,
  alphabetical = TRUE,
  apostrophe.remove = FALSE,
  char.keep = char2space,
  char2space = "~~",
  ...
)

Arguments

text.var

The text variable.

begins.with

This argument takes a word chunk. Default is NULL. Use this if searching for a word beginning with the word chunk.

contains

This argument takes a word chunk. Default is NULL. Use this if searching for a word containing the word chunk.

alphabetical

logical. If TRUE orders rows alphabetically, if FALSE orders the rows by descending frequency.

apostrophe.remove

logical. If TRUE removes apostrophes from the text before examining.

char.keep

A character vector of symbol character (i.e., punctuation) that strip should keep. The default is to strip everything except apostrophes. This enables the use of special characters to be turned into spaces or for characters to be retained.

char2space

A vector of characters to be turned into spaces.

...

Other argument supplied to strip.

Value

Returns a dataframe with frequency counts of words that begin with or contain the provided word chunk.

Note

Cannot provide both begins.with and contains arguments at once. If both begins.with and contains are NULL. all_words returns a frequency count for all words.

See Also

term_match

Examples

## Not run: 
x1 <- all_words(raj$dialogue, begins.with="re")
head(x1, 10)
x2 <- all_words(raj$dialogue, "q")
head(x2, 10)
all_words(raj$dialogue, contains="conc")
x3 <- all_words(raj$dialogue)
head(x3, 10)
x4 <- all_words(raj$dialogue, contains="the")
head(x4)
x5 <- all_words(raj$dialogue, contains="read")
head(x5)

## Filter by nchar and stopwords
Filter(head(x3), min = 3)

## Keep spaces
all_words(space_fill(DATA$state, c("are you", "can be")))

## End(Not run)

Generic Animate Method

Description

Animate select qdap objects.

Usage

Animate(x, ...)

Arguments

x

An animatable qdap object (e.g., discourse_map).

...

Arguments passed to Animate method of other classes.

Value

Returns a plot object.

See Also

scores, counts, preprocessed, proportions


Animate Character

Description

Animate.character - Animate a character object. Typically this function is useful in conjunction with other Animate objects to create complex animations with accompanying text.

Usage

## S3 method for class 'character'
Animate(
  x,
  wc.time = TRUE,
  time.constant = 2,
  width = 65,
  coord = c(0, 0.5),
  just = c(0, 0.5),
  size = 5,
  color = "black",
  border.color = NA,
  ...
)

Arguments

x

A character object.

wc.time

logical. If TRUE weights duration of frame by word count.

time.constant

A constant to divide the maximum word count by. Time is calculated by 'round(exp(WORD COUNT/(max(WORD COUNT)/time.constant)))'. Therefore a larger constant will make the difference between the large and small word counts greater.

width

The width to break text at if type = "text".

coord

The x/y coordinate to plot the text..

just

The hjust and vjust values to use for the text.

size

The size to print the text. Can be a vector of length 1 or equal to the length of x.

color

The color to print the text. Can be a vector of length 1 or equal to the length of x.

border.color

The panel.border color (seetheme).

...

Other arguments passed to annotate.

Details

character Method for Animate

See Also

theme

Examples

## Not run: 
Animate(DATA[["state"]])
Animate(DATA[["state"]], color="red")
Animate(DATA[["state"]], color=RColorBrewer::brewer.pal(11, "Set3"), size=10)
cls <- DATA[["person"]] %l% data.frame(levels(DATA[["person"]]), 
    RColorBrewer::brewer.pal(5, "Set3"))
Animate(DATA[["state"]], color=cls, size=10, width=30)
cls2 <- DATA[["sex"]] %l% data.frame(c("m", "f"),c("lightblue", "pink"))
Animate(DATA[["state"]], color=cls2, just=c(.5, .5), coord = c(.5, .5))

## Print method
print(Animate(DATA[["state"]], color=cls2, just=c(.5, .5), coord = c(.5, .5)), 
    pause=.25)
Animate(DATA[["state"]], color=sample(colors(), nrow(DATA)), 
    size=sample(4:13, nrow(DATA), TRUE), width=30,  just=c(.5, .5), coord = c(.5, .5))

## End(Not run)

Discourse Map

Description

Animate.discourse_map - Animate a discourse discourse_map.

Usage

## S3 method for class 'discourse_map'
Animate(
  x,
  edge.constant,
  sep = "_",
  current.color = "red",
  previous.color = "grey50",
  wc.time = TRUE,
  time.constant = 2,
  title = NULL,
  ...
)

Arguments

x

The discourse_map object.

edge.constant

A constant to multiple edge width by.

sep

The separator character to use between grouping variables.

current.color

The color to make the vector edge as it moves.

previous.color

The color to make the already plotted edges.

wc.time

logical. If TRUE weights duration of frame by word count.

time.constant

A constant to divide the maximum word count by. Time is calculated by 'round(exp(WORD COUNT/(max(WORD COUNT)/time.constant)))'. Therefore a larger constant will make the difference between the large and small word counts greater.

title

The title to apply to the animated image(s).

...

ignored

Details

discourse_map Method for Animate

Note

The width of edges is based on words counts on that edge until that moment divided by total number of words used until that moment. Thicker edges tend to thin as time passes. The actual duration the current edge stays as the current.color is based on word counts for that particular flow of dialogue divided by total dialogue (words) used.


Animate Formality

Description

Animate.formality - Animate a formality object.

Usage

## S3 method for class 'formality'
Animate(
  x,
  contextual = "yellow",
  formal = "red",
  edge.constant,
  wc.time = TRUE,
  time.constant = 2,
  title = NULL,
  digits = 3,
  current.color = "black",
  current.speaker.color = NULL,
  non.speaker.color = NA,
  missing.color = "purple",
  all.color.line = "red",
  plus.300.color = "grey40",
  under.300.color = "grey88",
  type = "network",
  width = 65,
  coord = c(0, 0.5),
  just = c(0, 0.5),
  ...
)

Arguments

x

A formality object.

contextual

The color to use for 0% formality (purely contextual).

formal

The color to use for 100% formality (purely formal).

edge.constant

A constant to multiple edge width by.

wc.time

logical. If TRUE weights duration of frame by word count.

time.constant

A constant to divide the maximum word count by. Time is calculated by 'round(exp(WORD COUNT/(max(WORD COUNT)/time.constant)))'. Therefore a larger constant will make the difference between the large and small word counts greater.

title

The title to apply to the animated image(s).

digits

The number of digits to use in the current turn of talk formality.

current.color

The color to use for the current turn of talk formality.

current.speaker.color

The color for the current speaker.

non.speaker.color

The color for the speakers not currently speaking.

missing.color

The color to use in a network plot for edges corresponding to missing text data. Use na.omit before hand to remove the missing values all together.

all.color.line

The color to use for the total discourse formality color line if network = FALSE.

plus.300.color

The bar color to use for grouping variables exceeding 299 words per Heylighen & Dewaele's (2002) minimum word recommendations.

under.300.color

The bar color to use for grouping variables less than 300 words per Heylighen & Dewaele's (2002) minimum word recommendations.

type

Character string of either "network" (as a network plot), "bar" (as a bar plot), or "text" (as a simple colored text plot).

width

The width to break text at if type = "text".

coord

The x/y coordinate to plot the text if type = "text".

just

The hjust and vjust values to use for the text if type = "text".

...

Other arguments passed to discourse_map or annotate if type = "text".

Details

formality Method for Animate

Note

The width of edges is based on words counts on that edge until that moment divided by total number of words used until that moment. Thicker edges tend to thin as time passes. The actual duration the current edge stays as the current.color is based on word counts for that particular flow of dialogue divided by total dialogue (words) used. The edge label is the current formality for that turn of talk (an aggregation of the sub sentences of the current turn of talk). The coloring of the current edge formality is produced at th sentence level, therefor a label may indicate a positive current turn of talk, while the coloring may indicate a negative sentences. Coloring is based on percentage of formal parts of speech (i.e., noun, adjective, preposition, article).


Gantt Durations

Description

gantt - Animate discourse from gantt.

Usage

## S3 method for class 'gantt'
Animate(x, wc.time = TRUE, time.constant = 2, colors = NULL, ...)

Arguments

x

The gantt object.

wc.time

logical. If TRUE weights duration of frame by word count.

time.constant

A constant to divide the maximum word count by. Time is calculated by 'round(exp(WORD COUNT/(max(WORD COUNT)/time.constant)))'. Therefore a larger constant will make the difference between the large and small word counts greater.

colors

An optional character vector of colors to color the Gantt bars. Must be length 1 (repeats the same color) or equal to the levels of the grouping variable.

...

Other arguments passed to gantt_wrap.

Details

gantt Method for Animate


Gantt Plot

Description

gantt_plot - Animate discourse from gantt_wrap, gantt_plot, or any other Gantt plotting method.

Usage

## S3 method for class 'gantt_plot'
Animate(x, wc.time = TRUE, time.constant = 2, colors = NULL, ...)

Arguments

x

The gantt_plot object.

wc.time

logical. If TRUE weights duration of frame by word count.

time.constant

A constant to divide the maximum word count by. Time is calculated by 'round(exp(WORD COUNT/(max(WORD COUNT)/time.constant)))'. Therefore a larger constant will make the difference between the large and small word counts greater.

colors

An optional character vector of colors to color the Gantt bars. Must be length 1 (repeats the same color) or equal to the levels of the grouping variable.

...

ignored

Details

gantt_plot Method for Animate


Animate Formality

Description

Animate.lexical_classification - Animate a lexical_classification object.

Usage

## S3 method for class 'lexical_classification'
Animate(
  x,
  type = "network",
  content = "red",
  functional = "yellow",
  edge.constant,
  wc.time = TRUE,
  time.constant = 2,
  title = NULL,
  digits = 2,
  current.color = "black",
  current.speaker.color = NULL,
  non.speaker.color = NA,
  missing.color = "purple",
  all.color.line = "red",
  width = 65,
  function.words = qdapDictionaries::function.words,
  left = "<<",
  right = ">>",
  coord = c(0, 0.5),
  just = c(0, 0.5),
  ...
)

Arguments

x

A lexical_classification object.

type

Character string of either "network" (as a network plot), "bar" (as a bar plot), or "text" (as a simple colored text plot).

content

The color to use for 100% lexical_classification (purely content).

functional

The color to use for 0% lexical_classification (purely functional).

edge.constant

A constant to multiple edge width by.

wc.time

logical. If TRUE weights duration of frame by word count.

time.constant

A constant to divide the maximum word count by. Time is calculated by 'round(exp(WORD COUNT/(max(WORD COUNT)/time.constant)))'. Therefore a larger constant will make the difference between the large and small word counts greater.

title

The title to apply to the animated image(s).

digits

The number of digits to use in the current turn of talk's content rate.

current.color

The color to use for the current turn of talk's content rate.

current.speaker.color

The color for the current speaker.

non.speaker.color

The color for the speakers not currently speaking.

missing.color

The color to use in a network plot for edges corresponding to missing text data. Use na.omit before hand to remove the missing values all together.

all.color.line

The color to use for the total average discourse content rate.

width

The width to break text at if type = "text".

function.words

A vector of function words. Default is function.words.

left

A left bound to wrap content words with if type = "text".

right

A right bound to wrap content words with if type = "text".

coord

The x/y coordinate to plot the test if type = "text".

just

The hjust and vjust values to use for the text if type = "text".

...

Other arguments passed to discourse_map or annotate if type = "text".

Details

lexical_classification Method for Animate

Note

The width of edges is based on words counts on that edge until that moment divided by total number of words used until that moment. Thicker edges tend to thin as time passes. The actual duration the current edge stays as the current.color is based on word counts for that particular flow of dialogue divided by total dialogue (words) used. The edge label is the current content rate for that turn of talk (an aggregation of the sub sentences of the current turn of talk). The coloring of the current edge content rate is produced at th sentence level, therefor a label may indicate a more content laden current turn of talk, while the coloring may indicate a functional laden average of sentences. Coloring is based on percentage of conent words.


Animate Polarity

Description

Animate.polarity - Animate a polarity object.

Usage

## S3 method for class 'polarity'
Animate(
  x,
  negative = "blue",
  positive = "red",
  neutral = "yellow",
  edge.constant,
  wc.time = TRUE,
  time.constant = 2,
  title = NULL,
  digits = 3,
  width = 65,
  current.color = "black",
  current.speaker.color = NULL,
  non.speaker.color = NA,
  ave.color.line = "red",
  type = "network",
  coord = c(0, 0.5),
  just = c(0, 0.5),
  ...
)

Arguments

x

A polarity object.

negative

The color to use for negative polarity.

positive

The color to use for positive polarity.

neutral

The color to use for neutral polarity.

edge.constant

A constant to multiple edge width by.

wc.time

logical. If TRUE weights duration of frame by word count.

time.constant

A constant to divide the maximum word count by. Time is calculated by 'round(exp(WORD COUNT/(max(WORD COUNT)/time.constant)))'. Therefore a larger constant will make the difference between the large and small word counts greater.

title

The title to apply to the animated image(s).

digits

The number of digits to use in the current turn of talk polarity.

width

The width to break text at if type = "text".

current.color

The color to use for the current turn of talk polarity.

current.speaker.color

The color for the current speaker.

non.speaker.color

The color for the speakers not currently speaking.

ave.color.line

The color to use for the average color line if type = "network".

type

Character string of either "network" (as a network plot), "bar" (as a bar plot), or "text" (as a simple colored text plot).

coord

The x/y coordinate to plot the test if type = "text".

just

The hjust and vjust values to use for the text if type = "text".

...

Other arguments passed to discourse_map or annotate if type = "text".

Details

polarity Method for Animate

Note

The width of edges is based on words counts on that edge until that moment divided by total number of words used until that moment. Thicker edges tend to thin as time passes. The actual duration the current edge stays as the current.color is based on word counts for that particular flow of dialogue divided by total dialogue (words) used. The edge label is the current polarity for that turn of talk (an aggregation of the sub sentences of the current turn of talk). The coloring of the current edge polarity is produced at th sentence level, therefor a label may indicate a positive current turn of talk, while the coloring may indicate a negative sentences.


tm Package Compatibility Tools: Apply to or Convert to/from Term Document Matrix or Document Term Matrix

Description

as.tdm - Create term document matrices from raw text or wfm for use with other text analysis packages.

as.TermDocumentMatrix - Create document term matrices from raw text or wfm for use with other text analysis packages.

as.dtm - Create document term matrices from raw text or wfm for use with other text analysis packages.

as.DocumentTermMatrix - Create document term matrices from raw text or wfm for use with other text analysis packages.

as.data.frame - Convert a tm package Corpus to a qdap data.frame.

as.Corpus - Attempts to convert its argument into a tm package Corpus.

apply_as_tm - Apply functions intended to be used on the tm package's TermDocumentMatrix to a wfm object.

apply_as_df - Apply a tm Corpus as a qdap dataframe. apply_as_df - Apply functions intended to be used on the qdap package's data.frame + sentSplit to a tm Corpus object.

Usage

as.tdm(text.var, grouping.var = NULL, vowel.check = TRUE, ...)

as.TermDocumentMatrix(text.var, grouping.var = NULL, vowel.check = TRUE, ...)

as.dtm(text.var, grouping.var = NULL, vowel.check = TRUE, ...)

as.DocumentTermMatrix(text.var, grouping.var = NULL, vowel.check = TRUE, ...)

## S3 method for class 'Corpus'
as.tdm(text.var, grouping.var = NULL, vowel.check = TRUE, ...)

## Default S3 method:
as.tdm(text.var, grouping.var = NULL, vowel.check = TRUE, ...)

## S3 method for class 'character'
as.tdm(text.var, grouping.var = NULL, vowel.check = TRUE, ...)

## S3 method for class 'Corpus'
as.dtm(text.var, grouping.var = NULL, vowel.check = TRUE, ...)

## Default S3 method:
as.dtm(text.var, grouping.var = NULL, vowel.check = TRUE, ...)

## S3 method for class 'character'
as.dtm(text.var, grouping.var = NULL, vowel.check = TRUE, ...)

## S3 method for class 'wfm'
as.tdm(text.var, grouping.var = NULL, vowel.check = TRUE, ...)

## S3 method for class 'wfm'
as.dtm(text.var, grouping.var = NULL, vowel.check = TRUE, ...)

## S3 method for class 'Corpus'
as.data.frame(
  x,
  row.names,
  optional,
  ...,
  doc = "doc_id",
  text = "text",
  sent.split = FALSE
)

as.Corpus(text.var, grouping.var = NULL, demographic.vars, ...)

## S3 method for class 'sent_split'
as.Corpus(text.var, grouping.var = NULL, demographic.vars, ...)

## Default S3 method:
as.Corpus(text.var, grouping.var = NULL, demographic.vars, ...)

apply_as_tm(wfm.obj, tmfun, ..., to.qdap = TRUE)

apply_as_df(
  tm.corpus,
  qdapfun,
  ...,
  stopwords = NULL,
  min = 1,
  max = Inf,
  count.apostrophe = TRUE,
  ignore.case = TRUE
)

## S3 method for class 'TermDocumentMatrix'
as.Corpus(text.var, ...)

## S3 method for class 'DocumentTermMatrix'
as.Corpus(text.var, ...)

## S3 method for class 'wfm'
as.Corpus(text.var, ...)

Arguments

text.var

The text variable or a wfm object.

grouping.var

The grouping variables. Default NULL generates one word list for all text. Also takes a single grouping variable or a list of 1 or more grouping variables.

vowel.check

logical. Should terms without vowels be remove?

x

A Corpus object.

row.names

NULL or a character vector giving the row names for the data frame. Not used in qdap; for base generic consistency.

optional

logical. If TRUE, setting row names and converting column names is optional. Not used in qdap; for base generic consistency.

doc

Name for Corpus documents.

text

Name for Corpus text.

sent.split

logical. If TRUE the text variable sentences will be split into individual rows.

demographic.vars

Additional demographic information about the grouping variables. This is a data.frame, list of equal length vectors, or a single vector corresponding to the grouping variable/text variable. This information will be mapped to the DMetaData in the Corpus.

wfm.obj

A wfm object.

tmfun

A function applied to a TermDocumentMatrix object.

to.qdap

logical. If TRUE should wfm try to coerce the output back to a qdap object.

tm.corpus

A Corpus object.

qdapfun

A qdap function that is usually used on text.variable ~ grouping variable.

stopwords

A character vector of words to remove from the text. qdap has a number of data sets that can be used as stop words including: Top200Words, Top100Words, Top25Words. For the tm package's traditional English stop words use tm::stopwords("english").

min

Minimum word length.

max

Maximum word length.

count.apostrophe

logical. If TRUE apostrophes are counted as characters.

ignore.case

logical. If TRUE stop words will be removed regardless of case.

...

Function dependant:

  • as.tdm or as.dtm - Other arguments passed to wfm

  • apply_as_tm - Other arguments passed to functions used on a tm TermDocumentMatrix

  • as.data.frame - Other arguments passed to sentSplit

  • as.Corpus - Other arguments passed to tm's Corpus

Details

Produces output that is identical to the tm package's TermDocumentMatrix, DocumentTermMatrix, Corpus or allows convenient interface between the qdap and tm packages.

Value

as.tdm - Returns a TermDocumentMatrix.

as.TermDocumentMatrix - Returns a TermDocumentMatrix.

as.dtm - Returns a DocumentTermMatrix.

as.DocumentTermMatrix - Returns a TermDocumentMatrix.

as.data.frame - Converts a Corpus and returns a qdap oriented data.frame.

as.Corpus - Converts a qdap oriented dataframe and returns a Corpus.

apply_as_tm - Applies a tm oriented function to a wfm and attempts to simplify back to a wfm or weight format.

apply_as_df - Returns the output typical of the applied qdap function.

Note

aply_as_df coerces to a dataframe with columns named 'docs' and the other named 'text'.

See Also

DocumentTermMatrix, Corpus, TermDocumentMatrix, as.wfm

Filter

Examples

## Not run: 
as.dtm(DATA$state, DATA$person)
as.tdm(DATA$state, DATA$person)

x <- wfm(DATA$state, DATA$person)
as.tdm(x)
as.dtm(x)
library(tm)
plot(as.tdm(x))

pres <- as.tdm(pres_debates2012$dialogue, pres_debates2012$person)
plot(pres, corThreshold = 0.8)
pres
(pres2 <- removeSparseTerms(pres, .3))
plot(pres2, corThreshold = 0.95)

shorts <- all_words(pres_debates2012)[,1][nchar(all_words(
    pres_debates2012)[,1]) < 4]

SW <- c(shorts, qdapDictionaries::contractions[, 1],
    qdapDictionaries::Top200Words,
    "governor", "president", "mister", "obama","romney")

DocTermMat2 <- with(pres_debates2012, as.dtm(dialogue, list(person, time), stopwords = SW))
DocTermMat2 <- removeSparseTerms(DocTermMat2,0.95)
(DocTermMat2 <- DocTermMat2[rowSums(as.matrix(DocTermMat2))> 0,])
plot(DocTermMat2)
    
## Correspondence Analysis
library(ca)

dat <- pres_debates2012
dat <- dat[dat$person %in% qcv(ROMNEY, OBAMA), ]

speech <- stemmer(dat$dialogue)
mytable1 <- with(dat, as.tdm(speech, list(person, time), stopwords = Top25Words))

fit <- ca(as.matrix(mytable1))
summary(fit)
plot(fit)
plot3d.ca(fit, labels=1)


mytable2 <- with(dat, as.tdm(speech, list(person, time), stopwords = Top200Words))

fit2 <- ca(as.matrix(mytable2))
summary(fit2)
plot(fit2)
plot3d.ca(fit2, labels=1)

## Topic Models
# Example 1 #
library(topicmodels); library(tm)

# Generate stop words based on short words, frequent words and contractions
shorts <- all_words(pres_debates2012)[,1][nchar(all_words(
    pres_debates2012)[,1]) < 4]
    
SW <- c(shorts, qdapDictionaries::contractions[, 1], 
    qdapDictionaries::Top200Words, 
    "governor", "president", "mister", "obama","romney")
    
DocTermMat <- with(pres_debates2012, as.dtm(dialogue, person, stopwords = SW))
DocTermMat <- removeSparseTerms(DocTermMat,0.999)
DocTermMat <- DocTermMat[rowSums(as.matrix(DocTermMat))> 0,]

lda.model <- LDA(DocTermMat, 5)

(topics <- posterior(lda.model, DocTermMat)$topics)
terms(lda.model,20)

# Plot the Topics Per Person
topic.dat <- matrix2df(topics, "Person")
colnames(topic.dat)[-1] <- paste2(t(terms(lda.model,20)), sep=", ")

library(reshape2)
mtopic <- melt(topic.dat, variable="Topic", value.name="Proportion")
ggplot(mtopic, aes(weight=Proportion, x=Topic, fill=Topic)) + 
    geom_bar() + 
    coord_flip() +
    facet_grid(Person~.) +
    guides(fill=FALSE)

# Example 2 #
DocTermMat2 <- with(pres_debates2012, as.dtm(dialogue, list(person, time), stopwords = SW))
DocTermMat2 <- removeSparseTerms(DocTermMat2,0.95)
DocTermMat2 <- DocTermMat2[rowSums(as.matrix(DocTermMat2))> 0,]

lda.model2 <- LDA(DocTermMat2, 6)

(topics2 <- posterior(lda.model2, DocTermMat2)$topics)
terms(lda.model2,20)
qheat(topics2, high="blue", low="yellow", by.col=FALSE)

# Example 3 #
lda.model3 <- LDA(DocTermMat2, 10)

(topics3 <- posterior(lda.model3, DocTermMat2)$topics)
terms(lda.model3, 20)
qheat(topics3, high="blue", low="yellow", by.col=FALSE)

# Plot the Topics Per Person
topic.dat3 <- matrix2df(topics3, "Person&Time")
colnames(topic.dat3)[-1] <- paste2(t(terms(lda.model3, 10)), sep=", ")
topic.dat3 <- colsplit2df(topic.dat3)

library(reshape2)
library(scales)
mtopic3 <- melt(topic.dat3, variable="Topic", value.name="Proportion")
(p1 <- ggplot(mtopic3, aes(weight=Proportion, x=Topic, fill=Topic)) +
    geom_bar() +
    coord_flip() +
    facet_grid(Person~Time) +
    guides(fill=FALSE) +
    scale_y_continuous(labels = percent) +
    theme(plot.margin = unit(c(1, 0, 0.5, .5), "lines")) +
    ylab("Proportion")) 

mtopic3.b <- mtopic3
mtopic3.b[, "Topic"] <- factor(as.numeric(mtopic3.b[, "Topic"]), levels = 1:10)
mtopic3.b[, "Time"] <- factor(gsub("time ", "", mtopic3.b[, "Time"]))

p2 <- ggplot(mtopic3.b, aes(x=Time, y=Topic, fill=Proportion)) +
    geom_tile(color = "white") +
    scale_fill_gradient(low = "grey70", high = "red") +
    facet_grid(Person~Time, scales = "free") +
    theme(axis.title.y = element_blank(),
        axis.text.x= element_text(colour="white"),
        axis.ticks.x= element_line(colour="white"),
        axis.ticks.y = element_blank(),
        axis.text.y= element_blank(),
        plot.margin = unit(c(1, -.5, .5, -.9), "lines")
) 

library(gridExtra)
grid.arrange(p1, p2, nrow=1, widths = grid::unit(c(.85, .15), "native")) 
    
## tm Matrices to wfm
library(tm)
data(crude)

## A Term Document Matrix Conversion
(tm_in <- TermDocumentMatrix(crude, control = list(stopwords = TRUE)))
converted <- as.wfm(tm_in)
head(converted)
summary(converted)

## A Document Term Matrix Conversion
(dtm_in <- DocumentTermMatrix(crude, control = list(stopwords = TRUE)))
summary(as.wfm(dtm_in))

## `apply_as_tm` Examples
## Create a wfm
a <- with(DATA, wfm(state, list(sex, adult)))
summary(a)

## Apply functions meant for a tm TermDocumentMatrix
out <- apply_as_tm(a, tm:::removeSparseTerms, sparse=0.6)
summary(out)

apply_as_tm(a, tm:::findAssocs, "computer", .8)
apply_as_tm(a, tm:::findFreqTerms, 2, 3)
apply_as_tm(a, tm:::Zipf_plot)
apply_as_tm(a, tm:::Heaps_plot)
apply_as_tm(a, tm:::plot.TermDocumentMatrix, corThreshold = 0.4)

library(proxy)
apply_as_tm(a, tm:::weightBin)
apply_as_tm(a, tm:::weightBin, to.qdap = FALSE)
apply_as_tm(a, tm:::weightSMART)
apply_as_tm(a, tm:::weightTfIdf)

## Convert tm Corpus to Dataframe
## A tm Corpus
library(tm)
reut21578 <- system.file("texts", "crude", package = "tm")
reuters <- Corpus(DirSource(reut21578),
    readerControl = list(reader = readReut21578XML))

## Convert to dataframe
corp_df <- as.data.frame(reuters)
htruncdf(corp_df)

z <- as.Corpus(DATA$state, DATA$person, 
       demographic=DATA[, qcv(sex, adult, code)])
as.data.frame(z)

## Apply a qdap function
out <- formality(corp_df$text, corp_df$docs)
plot(out)

## Convert a qdap dataframe to tm package Corpus
(x <- with(DATA2, as.Corpus(state, list(person, class, day))))
library(tm)
inspect(x)
inspect_text(x)
class(x)

(y <- with(pres_debates2012, as.Corpus(dialogue, list(person, time))))

## Add demographic info to DMetaData of Corpus
z <- as.Corpus(DATA$state, DATA$person, 
    demographic=DATA[, qcv(sex, adult, code)])
lview(z)

lview(as.Corpus(DATA$state, DATA$person,
    demographic=DATA$sex))

lview(as.Corpus(DATA$state, DATA$person,
    demographic=list(DATA$sex, DATA$adult)))

## Apply qdap functions meant for dataframes from sentSplit to tm Corpus
library(tm)
reut21578 <- system.file("texts", "crude", package = "tm")
reuters <- Corpus(DirSource(reut21578),
    readerControl = list(reader = readReut21578XML))

matches <- list(
    oil = qcv(oil, crude),
    money = c("economic", "money")
)

apply_as_df(reuters, word_stats)
apply_as_df(reuters, formality)
apply_as_df(reuters, word_list)
apply_as_df(reuters, polarity)
apply_as_df(reuters, Dissimilarity)
apply_as_df(reuters, diversity)
apply_as_df(reuters, pos_by)
apply_as_df(reuters, flesch_kincaid)
apply_as_df(reuters, trans_venn)
apply_as_df(reuters, gantt_plot)
apply_as_df(reuters, rank_freq_mplot)
apply_as_df(reuters, character_table)

(termco_out <- apply_as_df(reuters, termco, match.list = matches))
plot(termco_out, values = TRUE, high="red")

(wordcor_out <- apply_as_df(reuters, word_cor, word = unlist(matches)))
plot(wordcor_out)

(f_terms <- apply_as_df(reuters, freq_terms, at.least = 3))
plot(f_terms)

apply_as_df(reuters, trans_cloud)
## To use "all" rather than "docs" as "grouping.var"...
apply_as_df(reuters, trans_cloud, grouping.var=NULL, 
    target.words=matches, cloud.colors = c("red", "blue", "grey75"))

finds <- apply_as_df(reuters, freq_terms, at.least = 5,
    top = 5, stopwords = Top100Words)
apply_as_df(reuters, dispersion_plot, match.terms = finds[, 1],
    total.color = NULL)
    
## Filter for Term Document Matrix/Document Term Matrix
library(tm)
data(crude)

(tdm_in <- TermDocumentMatrix(crude, control = list(stopwords = TRUE)))
Filter(tdm_in, 5)

(dtm_in <- DocumentTermMatrix(crude, control = list(stopwords = TRUE)))
Filter(dtm_in, 5)

## Filter particular words based on max/min values
Filter(dtm_in, 5, 7)
Filter(dtm_in, 4, 4)
Filter(tdm_in, 3, 4)
Filter(tdm_in, 3, 4, stopwords = Top200Words)

## SPECIAL REMOVAL OF TERMS (more flexible consideration of words than wfm)
dat <- data.frame(
    person = paste0("person_", 1:5),
    tweets = c("test one two", "two apples","hashtag #apple", 
        "#apple #tree", "http://microsoft.com")
)

## remove specialty items
dat[[2]] <- rm_default(dat[[2]], pattern=pastex("@rm_url", "#apple\\b"))


myCorp <- tm::tm_map(crude, tm::removeWords, Top200Words)
myCorp %>% as.dtm() %>% tm::inspect()

## End(Not run)

Readability Measures

Description

automated_readability_index - Apply Automated Readability Index to transcript(s) by zero or more grouping variable(s).

coleman_liau - Apply Coleman Liau Index to transcript(s) by zero or more grouping variable(s).

SMOG - Apply SMOG Readability to transcript(s) by zero or more grouping variable(s).

flesch_kincaid - Flesch-Kincaid Readability to transcript(s) by zero or more grouping variable(s).

fry - Apply Fry Readability to transcript(s) by zero or more grouping variable(s).

linsear_write - Apply Linsear Write Readability to transcript(s) by zero or more grouping variable(s).

Usage

automated_readability_index(
  text.var,
  grouping.var = NULL,
  rm.incomplete = FALSE,
  ...
)

coleman_liau(text.var, grouping.var = NULL, rm.incomplete = FALSE, ...)

SMOG(
  text.var,
  grouping.var = NULL,
  output = "valid",
  rm.incomplete = FALSE,
  ...
)

flesch_kincaid(text.var, grouping.var = NULL, rm.incomplete = FALSE, ...)

fry(
  text.var,
  grouping.var = NULL,
  rm.incomplete = FALSE,
  auto.label = TRUE,
  grid = FALSE,
  div.col = "grey85",
  plot = TRUE,
  ...
)

linsear_write(text.var, grouping.var = NULL, rm.incomplete = FALSE, ...)

Arguments

text.var

The text variable.

grouping.var

The grouping variables. Default NULL generates one output for all text. Also takes a single grouping variable or a list of 1 or more grouping variables.

rm.incomplete

logical. If TRUE removes incomplete sentences from the analysis.

output

A character vector character string indicating output type. One of "valid" (default and congruent with McLaughlin's intent) or "all".

auto.label

logical. If TRUE labels automatically added. If FALSE the user clicks interactively.

grid

logical. If TRUE a micro grid is displayed, similar to Fry's original depiction, though this may make visualizing more difficult.

div.col

The color of the grade level division lines.

plot

logical. If TRUE a graph is plotted corresponding to Fry's graphic representation.

...

Other arguments passed to end_inc.

Value

Returns a list of 2 dataframes: (1) Counts and (2) Readability. Counts are the raw scores used to calculate readability score and can be accessed via counts. Readability is the dataframe with the selected readability statistic by grouping variable(s) and can be access via scores. The fry function returns a graphic representation of the readability as the scores returns the information for graphing but not a readability score.

Warning

Many of the indices (e.g., Automated Readability Index) are derived from word difficulty (letters per word) and sentence difficulty (words per sentence). If you have not run the sentSplit function on your data the results may not be accurate.

Fry

The fry function is based on Fry's formula that randomly samples 3 100 word length passages. If a group(s) in does not contain 300+ words they will not be included in the output.

References

Coleman, M., & Liau, T. L. (1975). A computer readability formula designed for machine scoring. Journal of Applied Psychology, Vol. 60, pp. 283-284.

Fry, E. B. (1968). A readability formula that saves time. Journal of Reading, 11(7), 513-516, 575-578.

Fry, E. B. (1969). The readability graph validated at primary levels. The Reading Teacher, 22(6), 534-538.

Flesch R. (1948). A new readability yardstick. Journal of Applied Psychology. Vol. 32(3), pp. 221-233. doi: 10.1037/h0057532.

Gunning, T. G. (2003). Building Literacy in the Content Areas. Boston: Allyn & Bacon.

McLaughlin, G. H. (1969). SMOG Grading: A New Readability Formula. Journal of Reading, Vol. 12(8), pp. 639-646.

Smith, E. A. & Senter, R. J. (1967) Automated readability index. Technical Report AMRLTR-66-220, University of Cincinnati, Cincinnati, Ohio.

Examples

## Not run: 
AR1 <- with(rajSPLIT, automated_readability_index(dialogue, list(person, act)))
ltruncdf(AR1,, 15)
scores(AR1)
counts(AR1)
plot(AR1)
plot(counts(AR1))

AR2 <- with(rajSPLIT, automated_readability_index(dialogue, list(sex, fam.aff)))
ltruncdf(AR2,, 15)
scores(AR2)
counts(AR2)
plot(AR2)
plot(counts(AR2))

AR3 <- with(rajSPLIT, automated_readability_index(dialogue, person))
ltruncdf(AR3,, 15)
scores(AR3)
head(counts(AR3))
plot(AR3)
plot(counts(AR3))

CL1 <- with(rajSPLIT, coleman_liau(dialogue, list(person, act)))
ltruncdf(CL1, 20)
head(counts(CL1))
plot(CL1)

CL2 <- with(rajSPLIT, coleman_liau(dialogue, list(sex, fam.aff)))
ltruncdf(CL2)
plot(counts(CL2))

(SM1 <- with(rajSPLIT, SMOG(dialogue, list(person, act))))
plot(counts(SM1))
plot(SM1)

(SM2 <- with(rajSPLIT, SMOG(dialogue, list(sex, fam.aff))))

(FL1 <- with(rajSPLIT, flesch_kincaid(dialogue, list(person, act))))
plot(scores(FL1))
plot(counts(FL1))

(FL2 <-  with(rajSPLIT, flesch_kincaid(dialogue, list(sex, fam.aff))))
plot(scores(FL2))
plot(counts(FL2))

FR1 <- with(rajSPLIT, fry(dialogue, list(sex, fam.aff)))
scores(FR1)
plot(scores(FR1))
counts(FR1)
plot(counts(FR1))

FR2 <- with(rajSPLIT, fry(dialogue, person))
scores(FR2)
plot(scores(FR2))
counts(FR2)
plot(counts(FR2))

FR3 <- with(pres_debates2012, fry(dialogue, list(time, person)))
colsplit2df(scores(FR3))
plot(scores(FR3), auto.label = FALSE)
counts(FR3)
plot(counts(FR3))

library(ggplot2)
ggplot(colsplit2df(counts(FR3)), aes(sent.per.100.wrds, 
    syllables.per.100.wrds)) +
    geom_point(aes(fill=person), shape=21, size=3) +
    facet_grid(person~time)
    
LW1 <- with(rajSPLIT, linsear_write(dialogue, list(person, act)))
plot(scores(LW1))
plot(counts(LW1))

LW2 <- with(rajSPLIT, linsear_write(dialogue, list(sex, fam.aff)))
plot(scores(LW2), method="lm")
plot(counts(LW2))

## End(Not run)

Bag of Words

Description

bag_o_words - Reduces a text column to a bag of words.

unbag - Wrapper for paste(collapse=" ") to glue words back into strings.

breaker - Reduces a text column to a bag of words and qdap recognized end marks.

word_split - Reduces a text column to a list of vectors of bag of words and qdap recognized end marks (i.e., ".", "!", "?", "*", "-").

Usage

bag_o_words(text.var, apostrophe.remove = FALSE, ...)

unbag(text.var, na.rm = TRUE)

breaker(text.var)

word_split(text.var)

Arguments

text.var

The text variable.

apostrophe.remove

logical. If TRUE removes apostrophe's from the output.

na.rm

logical. If TRUE NAs are removed before pasting.

...

Additional arguments passed to strip.

Value

Returns a vector of stripped words.

unbag - Returns a string.

breaker - Returns a vector of striped words and qdap recognized endmarks (i.e., ".", "!", "?", "*", "-").

Examples

## Not run: 
bag_o_words("I'm going home!")
bag_o_words("I'm going home!", apostrophe.remove = TRUE)
unbag(bag_o_words("I'm going home!"))

bag_o_words(DATA$state)
by(DATA$state, DATA$person, bag_o_words)
lapply(DATA$state,  bag_o_words)

breaker(DATA$state)
by(DATA$state, DATA$person, breaker)
lapply(DATA$state,  breaker)
unbag(breaker(DATA$state))

word_split(c(NA, DATA$state))
unbag(word_split(c(NA, DATA$state)))

## End(Not run)

Grab Begin/End of String to Character

Description

beg2char - Grab from beginning of string to a character(s).

char2end - Grab from character(s) to end of string.

Usage

beg2char(text.var, char = " ", noc = 1, include = FALSE)

char2end(text.var, char = " ", noc = 1, include = FALSE)

Arguments

text.var

A character string

char

The character from which to grab until/from.

noc

Number of times the character appears before the grab.

include

logical. If TRUE includes the character in the grab.

Value

returns a vector of text with char on/forward removed.

Author(s)

Josh O'Brien, Justin Haynes and Tyler Rinker <[email protected]>.

References

https://stackoverflow.com/q/15909626/1000343

Examples

## Not run: 
x <- c("a_b_c_d", "1_2_3_4", "<_?_._:")
beg2char(x, "_")
beg2char(x, "_", 2)
beg2char(x, "_", 3)
beg2char(x, "_", 4)
beg2char(x, "_", 3, include=TRUE)

char2end(x, "_")
char2end(x, "_", 2)
char2end(x, "_", 3)
char2end(x, "_", 4)
char2end(x, "_", 3, include=TRUE)

x2 <- gsub("_", " ", x)
char2end(x2, " ", 2)
beg2char(x2, " ", 2)

x3 <- gsub("_", "\\^", x)
char2end(x3, "^", 2)
beg2char(x3, "^", 2)

## End(Not run)

Replace Blanks in a dataframe

Description

Replaces blank (empty) cells in a dataframe. Generally, for internal use.

Usage

blank2NA(dataframe, missing = NA)

Arguments

dataframe

A dataframe with blank (empty) cells.

missing

Value to replace empty cells with.

Value

Returns a data frame with blank spaces replaced.

See Also

rm_row

Examples

## Not run: 
set.seed(15)
dat <- data.frame(matrix(sample(c(month.abb[1:4], ""), 50, TRUE), 
    10, byrow = TRUE), stringsAsFactors = FALSE)

dat
blank2NA(dat)

## End(Not run)

Bracket Parsing

Description

bracketX - Apply bracket removal to character vectors.

bracketXtract - Apply bracket extraction to character vectors.

genX - Apply general chunk removal to character vectors. A generalized version of bracketX.

genXtract - Apply general chunk extraction to character vectors. A generalized version of bracketXtract.

Usage

bracketX(
  text.var,
  bracket = "all",
  missing = NULL,
  names = FALSE,
  fix.space = TRUE,
  scrub = fix.space
)

bracketXtract(text.var, bracket = "all", with = FALSE, merge = TRUE)

genX(
  text.var,
  left,
  right,
  missing = NULL,
  names = FALSE,
  fix.space = TRUE,
  scrub = TRUE
)

genXtract(text.var, left, right, with = FALSE, merge = TRUE)

Arguments

text.var

The text variable

bracket

The type of bracket (and encased text) to remove. This is one or more of the strings "curly", "square", "round", "angle" and "all". These strings correspond to: {, [, (, < or all four types.

missing

Value to assign to empty cells.

names

logical. If TRUE the sentences are given as the names of the counts.

fix.space

logical. If TRUE extra spaces left behind from an extraction will be eliminated. Additionally, non-space (e.g., "text(no space between text and parenthesis)") is replaced with a single space (e.g., "text (space between text and parenthesis)").

scrub

logical. If TRUE scrubber will clean the text.

with

logical. If TRUE returns the brackets and the bracketed text.

merge

logical. If TRUE the results of each bracket type will be merged by sentence. FALSE returns a named list of lists of vectors of bracketed text per bracket type.

left

A vector of character or numeric symbols as the left edge to extract.

right

A vector of character or numeric symbols as the right edge to extract.

Value

bracketX - returns a vector of text with brackets removed.

bracketXtract - returns a list of vectors of bracketed text.

genXtract - returns a vector of text with chunks removed.

genX - returns a list of vectors of removed text.

Author(s)

Martin Morgan and Tyler Rinker <[email protected]>.

References

https://stackoverflow.com/q/8621066/1000343

See Also

regex

Examples

## Not run: 
examp <- structure(list(person = structure(c(1L, 2L, 1L, 3L), 
    .Label = c("bob", "greg", "sue"), class = "factor"), text = 
    c("I love chicken [unintelligible]!", 
    "Me too! (laughter) It's so good.[interrupting]", 
    "Yep it's awesome {reading}.", "Agreed. {is so much fun}")), .Names = 
    c("person", "text"), row.names = c(NA, -4L), class = "data.frame")    

examp                                                              
bracketX(examp$text, "square")  
bracketX(examp$text, "curly") 
bracketX(examp$text, c("square", "round")) 
bracketX(examp$text)  
                                              
                                              
bracketXtract(examp$text, "square")  
bracketXtract(examp$text, "curly")  
bracketXtract(examp$text, c("square", "round")) 
bracketXtract(examp$text, c("square", "round"), merge = FALSE)  
bracketXtract(examp$text)  
bracketXtract(examp$text, with = TRUE)

paste2(bracketXtract(examp$text, "curly"), " ")

x <- c("Where is the /big dog#?", 
    "I think he's @arunning@b with /little cat#.")
genXtract(x, c("/", "@a"), c("#", "@b"))

x <- c("Where is the L1big dogL2?", 
    "I think he's 98running99 with L1little catL2.")
genXtract(x, c("L1", 98), c("L2", 99))

DATA$state  #notice number 1 and 10
genX(DATA$state, c("is", "we"), c("too", "on"))

## End(Not run)

Replace Temporary Introduction to qdap Vignette

Description

Replaces the temporary (place holder) Introduction to qdap Vignette with the actual vignette.

Usage

build_qdap_vignette(download.html = FALSE)

Arguments

download.html

logical. If TRUE the file will be downloaded from: http://trinker.github.io/qdap/vignettes/qdap_vignette.html. This

Value

Places the (1) HTML, (2) source, & (3) R code for the Introduction to qdap Vignette in the user's ‘R-VERSION/library/qdap/doc’.

Note

The knitr built HTML approach above takes about 4 minutes. The user may choose the faster approach (< 30 seconds) that downloads the HTML file directly from the Internet (this is for the latest CRAN release of qdap). This choice is controlled via the download.html argument. The function will ask for the user's permission before writing the documents. Once the user has run this function browseVignettes(package = 'qdap') will allow access to the new vignette files.


Capitalize Select Words

Description

A helper function for word_list that allows the user to supply vectors of words to be capitalized.

Usage

capitalizer(text, caps.list = NULL, I.list = TRUE, apostrophe.remove = FALSE)

Arguments

text

A vector of words (generally from bag_o_words or breaker).

caps.list

A list of words to capitalize.

I.list

logical. If TRUE capitalizes I words and contractions.

apostrophe.remove

logical, asking if apostrophes have been removed. If TRUE will try to insert apostrophe's back into words appropriately.

Value

Returns a vector of capitalized words based on supplied capitalization arguments.

Note

Not intended for general use. Acts as a helper function to several qdap functions.

Examples

## Not run: 
capitalizer(bag_o_words("i like it but i'm not certain"), "like")
capitalizer(bag_o_words("i like it but i'm not certain"), "like", FALSE)

## End(Not run)

Check Spelling

Description

check_spelling - Check the spelling for an vector of strings. The function use the following technique:

  • Separate the words from a string into a bag of words.

  • Look those words up in a dictionary to find words not recognized/found (considered possibly misspelled).

  • These misses (possible misspellings) will be what is looked up for suggested replacements.

  • Optionally, reduce dictionary by assuming the first letter of the misspelled word is correct (dictionary for this letter only).

  • Reduce dictionary by eliminating words outside of the range of number of characters of the misspelled word.

  • Use stringdist to find string distances between possible replacements and the misspelled term.

  • Select n (n.suggests) terms from dictionary that are closest to the misspelled term.

which_misspelled - Check the spelling for a string.

check_spelling_interactive - Interactively check spelling.

correct - Access the spell corrector function from a "check_spelling_interactive" object for subsequent text character vector spelling corrections.

Usage

check_spelling(
  text.var,
  range = 2,
  assume.first.correct = TRUE,
  method = "jw",
  dictionary = qdapDictionaries::GradyAugmented,
  parallel = TRUE,
  cores = parallel::detectCores()/2,
  n.suggests = 8
)

which_misspelled(
  x,
  suggest = FALSE,
  range = 2,
  assume.first.correct = TRUE,
  dictionary = qdapDictionaries::GradyAugmented,
  method = "jw",
  nchar.dictionary = nchar(dictionary),
  first.char.dictionary = substring(dictionary, 1, 1),
  n.suggests = 8
)

check_spelling_interactive(
  text.var,
  range = 2,
  assume.first.correct = TRUE,
  click = TRUE,
  method = "jw",
  dictionary = qdapDictionaries::GradyAugmented,
  parallel = TRUE,
  cores = parallel::detectCores()/2,
  n.suggests = 8,
  ...
)

correct(x, ...)

Arguments

text.var

The text variable.

range

An integer of length 1 to use as a range for number of characters, beyond the number of characters of a word not found in the dictionary, to initially limit dictionary size and thus time to find a suggested replacement term. This may be expanded if no suitable suggestion is returned.

assume.first.correct

logical. If TRUE it is assumed that the first letter of the misspelled word is correct. This reduces the dictionary size, thus speeding up computation.

method

Method for distance calculation. The default is "jaccard". It is assumed that smaller measures indicate closer distance. Measures that do not adhere to this assumption will result in incorrect output (see stringdist for details).

dictionary

A character vector of terms to search for. To reduce overhead it is expected that this dictionary is lower case, unique terms.

parallel

logical. If TRUE attempts to run the function on multiple cores. Note that this may not mean a speed boost if you have one core or if the data set is smaller as the cluster takes time to create.

cores

The number of cores to use if parallel = TRUE. Default is half the number of available cores.

n.suggests

The number of terms to suggest. In the case of a tie (multiple terms have the same distance from misspelled word) all will be provided. Dictionary reduction may result in less than n.suggests suggested terms.

x

If which_misspelled - A character string. If correct - An object from check_spelling_interactive.

suggest

logical. If TRUE returns a data.frame with possible suggestions for misspelled words (words not found in the dictionary).

nchar.dictionary

A vector that corresponds in length and content to dictionary with elements that are the precalculated number of characters for each word in the dictionary.

first.char.dictionary

A vector that corresponds in length and content to dictionary with elements that are the pre-allotted first characters of each word in the dictionary.

click

logical. If TRUE the interface is a point and click GUI. If FALSE the interface is command line driven.

...

ignored

Value

check_spelling - Returns a data.frame with row (row number), not.found word.no (number of misspelled word), not.found (a word not found in the dictionary), suggestion (the most likely replacement for the word), and more.suggestions (A list of vectors of up to 10 most likely replacements).

which_misspelled - Returns either a named vector (names are the word number) of possible misspelled words (ifsuggestions = FALSE) or a data.frame with word.no (number of misspelled word), not.found (a word not found in the dictionary), suggestion (the most likely replacement for the word), and more.suggestions (A list of vectors of up to 10 most likely replacements).

check_spelling_interactive - Returns a character vector with the corrected text, the replacement list (via an attribute to the character vector), and a function to correct the same spelling errors in subsequent text character vectors.

correct - Returns a function for correcting spelling errors.

Note

A possible misspelled word is defined as not found in the dictionary.

check_spelling_interactive - The user may go back (undo) by pressing "TYPE MY OWN" entering either "!" (not) or "0" (similar to a phone system). The second choice in the "SELECT REPLACEMNT:" will be the original word and is prefixed with "IGNORE:". Press this to keep the original word.

References

https://stackoverflow.com/a/24454727/1000343
https://journal.r-project.org/archive/2011-2/RJournal_2011-2_Hornik+Murdoch.pdf

See Also

stringdist

Examples

## Not run: 
x <- "Robots are evl creatres and deserv exterimanitation."
which_misspelled(x, suggest=FALSE)
which_misspelled(x, suggest=TRUE)

check_spelling(DATA$state)

## browseURL("http://stackoverflow.com/a/24454727/1000343")
terms <- c("accounts", "account", "accounting", "acounting", "acount", "acounts", "accounnt")

set.seed(10)
(fake_text <- unlist(lapply(terms, function(x) {
    unbag(sample(c(x, sample(DICTIONARY[[1]], sample(1:5, 1)))))
})))

check_spelling(fake_text)

##============================##
## INTERACTIVE SPELL CHECKING ##
##============================##

## No misspellings found
check_spelling_interactive(DATA$state)

## character method approach (minimal example)
dat <- DATA$state; dat[1] <- "I likedd the cokie icekream"
(o <- check_spelling_interactive(dat))
preprocessed(o)
fixit <- attributes(o)$correct
fixit(dat)

## character method approach (larger example)
m <- check_spelling_interactive(mraja1spl$dialogue[1:75])
preprocessed(m)
fixit <- attributes(m)$correct
fixit(mraja1spl$dialogue[1:75])

## check_spelling method approach
out <- check_spelling(mraja1spl$dialogue[1:75])
(x <- check_spelling_interactive(out))
preprocessed(x)
correct(x)(mraja1spl$dialogue[1:75])
(y <- check_spelling_interactive(out, click=FALSE))
preprocessed(y)

## Examine Methods (?stringdist::stringdist)
strings <- c(
    "Robots are evl creatres and deserv exterimanitation kream.",
    "I gots me a biggert measrue, tommorrow"
)

meths <- c("osa", "lv", "dl", "hamming", "lcs", "qgram", "cosine", "jaccard", "jw")

stats::setNames(lapply(meths, function(x) check_spelling(strings, method=x)), meths)

## End(Not run)

Check Spelling

Description

View character check_spelling_interactive.

Usage

## S3 method for class 'character'
check_spelling_interactive(
  text.var,
  range = 2,
  assume.first.correct = TRUE,
  click = TRUE,
  method = "jw",
  dictionary = qdapDictionaries::GradyAugmented,
  parallel = TRUE,
  cores = parallel::detectCores()/2,
  n.suggests = 8,
  ...
)

Arguments

text.var

A character object, specifically a text vector of character strings.

range

An integer of length 1 to use as a range for number of characters, beyond the number of characters of a word not found in the dictionary, to initially limit dictionary size and thus time to find a suggested replacement term. This may be expanded if no suitable suggestion is returned.

assume.first.correct

logical. If TRUE it is assumed that the first letter of the misspelled word is correct. This reduces the dictionary size, thus speeding up computation.

click

logical. If TRUE the interface is a point and click GUI. If FALSE the interface is command line driven.

method

Method for distance calculation. The default is "jaccard". It is assumed that smaller measures indicate closer distance. Measures that do not adhere to this assumption will result in incorrect output (see stringdist for details).

dictionary

A character vector of terms to search for. To reduce overhead it is expected that this dictionary is lower case, unique terms.

parallel

logical. If TRUE attempts to run the function on multiple cores. Note that this may not mean a speed boost if you have one core or if the data set is smaller as the cluster takes time to create.

cores

The number of cores to use if parallel = TRUE. Default is half the number of available cores.

n.suggests

The number of terms to suggest. In the case of a tie (multiple terms have the same distance from misspelled word) all will be provided. Dictionary reduction may result in less than n.suggests suggested terms.

...

ignored

Details

character Method for check_spelling_interactive


Check Spelling

Description

View check_spelling check_spelling_interactive.

Usage

## S3 method for class 'check_spelling'
check_spelling_interactive(
  text.var,
  range = 2,
  assume.first.correct = TRUE,
  click = TRUE,
  method = "jw",
  dictionary = qdapDictionaries::GradyAugmented,
  parallel = TRUE,
  cores = parallel::detectCores()/2,
  n.suggests = 8,
  ...
)

Arguments

text.var

A check_spelling object.

range

An integer of length 1 to use as a range for number of characters, beyond the number of characters of a word not found in the dictionary, to initially limit dictionary size and thus time to find a suggested replacement term. This may be expanded if no suitable suggestion is returned.

assume.first.correct

logical. If TRUE it is assumed that the first letter of the misspelled word is correct. This reduces the dictionary size, thus speeding up computation.

click

logical. If TRUE the interface is a point and click GUI. If FALSE the interface is command line driven.

method

Method for distance calculation. The default is "jaccard". It is assumed that smaller measures indicate closer distance. Measures that do not adhere to this assumption will result in incorrect output (see stringdist for details).

dictionary

A character vector of terms to search for. To reduce overhead it is expected that this dictionary is lower case, unique terms.

parallel

logical. If TRUE attempts to run the function on multiple cores. Note that this may not mean a speed boost if you have one core or if the data set is smaller as the cluster takes time to create.

cores

The number of cores to use if parallel = TRUE. Default is half the number of available cores.

n.suggests

The number of terms to suggest. In the case of a tie (multiple terms have the same distance from misspelled word) all will be provided. Dictionary reduction may result in less than n.suggests suggested terms.

...

ignored

Details

check_spelling Method for check_spelling_interactive


Check Spelling

Description

View factor check_spelling_interactive.

Usage

## S3 method for class 'factor'
check_spelling_interactive(
  text.var,
  range = 2,
  assume.first.correct = TRUE,
  click = TRUE,
  method = "jw",
  dictionary = qdapDictionaries::GradyAugmented,
  parallel = TRUE,
  cores = parallel::detectCores()/2,
  n.suggests = 8,
  ...
)

Arguments

text.var

A factor object, specifically a text vector of factor strings. Note that this method is provided for factors for convenience, ideally the user should supply a character vector rather than factor.

range

An integer of length 1 to use as a range for number of characters, beyond the number of characters of a word not found in the dictionary, to initially limit dictionary size and thus time to find a suggested replacement term. This may be expanded if no suitable suggestion is returned.

assume.first.correct

logical. If TRUE it is assumed that the first letter of the misspelled word is correct. This reduces the dictionary size, thus speeding up computation.

click

logical. If TRUE the interface is a point and click GUI. If FALSE the interface is command line driven.

method

Method for distance calculation. The default is "jaccard". It is assumed that smaller measures indicate closer distance. Measures that do not adhere to this assumption will result in incorrect output (see stringdist for details).

dictionary

A character vector of terms to search for. To reduce overhead it is expected that this dictionary is lower case, unique terms.

parallel

logical. If TRUE attempts to run the function on multiple cores. Note that this may not mean a speed boost if you have one core or if the data set is smaller as the cluster takes time to create.

cores

The number of cores to use if parallel = TRUE. Default is half the number of available cores.

n.suggests

The number of terms to suggest. In the case of a tie (multiple terms have the same distance from misspelled word) all will be provided. Dictionary reduction may result in less than n.suggests suggested terms.

...

ignored

Details

factor Method for check_spelling_interactive


Check Text For Potential Problems

Description

Uncleaned text may result in errors, warnings, and incorrect results in subsequent analysis. check_text checks text for potential problems and suggests possible fixes. Potential text anomalies that are detected include: factors, missing ending punctuation, empty cells, double punctuation, non-space after comma, no alphabetic characters, non-ascii, missing value, and potentially misspelled words.

Usage

check_text(text.var, file = NULL)

Arguments

text.var

The text variable.

file

A connection, or a character string naming the file to print to. If NULL prints to the console. Note that this is assigned as an attribute and passed to print.

Value

Returns a list with the following potential text faults reports:

  • non_character- Text that is non-character.

  • missing_ending_punctuation- Text with no endmark at the end of the string.

  • empty- Text that contains an empty element (i.e., "").

  • double_punctuation- Text that contains two qdap punctuation marks in the same string.

  • non_space_after_comma- Text that contains commas with no space after them.

  • no_alpha- Text that contains string elements with no alphabetic characters.

  • non_ascii- Text that contains non-ASCII characters.

  • missing_value- Text that contains missing values (i.e., NA).

  • containing_escaped- Text that contains escaped (see ?Quotes).

  • containing_digits- Text that contains digits.

  • indicating_incomplete- Text that contains endmarks that are indicative of incomplete/trailing sentences (e.g., ...).

  • potentially_misspelled- Text that contains potentially misspelled words.

Note

The output is a list but prints as a pretty formatted output with potential problem elements, the accompanying text, and possible suggestions to fix the text.

See Also

check_spelling_interactive

Examples

## Not run: 
x <- c("i like", "i want. thet them .", "I am ! that|", "", NA, 
    "they,were there", ".", "   ", "?", "3;", "I like goud eggs!", 
    "i 4like...", "\\tgreat",  "She said \"yes\"")
check_text(x)
print(check_text(x), include.text=FALSE)

y <- c("A valid sentence.", "yet another!")
check_text(y)

## End(Not run)

Break Text Into Ordered Word Chunks

Description

Some visualizations and algorithms require text to be broken into chunks of ordered words. chunker breaks text, optionally by grouping variables, into equal chunks. The chunk size can be specified by giving number of words to be in each chunk or the number of chunks.

Usage

chunker(
  text.var,
  grouping.var = NULL,
  n.words,
  n.chunks,
  as.string = TRUE,
  rm.unequal = FALSE
)

Arguments

text.var

The text variable

grouping.var

The grouping variables. Default NULL generates one word list for all text. Also takes a single grouping variable or a list of 1 or more grouping variables.

n.words

An integer specifying the number of words in each chunk (must specify n.chunks or n.words).

n.chunks

An integer specifying the number of chunks (must specify n.chunks or n.words).

as.string

logical. If TRUE the chunks are returned as a single string. If FALSE the chunks are returned as a vector of single words.

rm.unequal

logical. If TRUE final chunks that are unequal in length to the other chunks are removed.

Value

Returns a list of text chunks.

Examples

with(DATA, chunker(state, n.chunks = 10))
with(DATA, chunker(state, n.words = 10))
with(DATA, chunker(state, n.chunks = 10, as.string=FALSE))
with(DATA, chunker(state, n.chunks = 10, rm.unequal=TRUE))
with(DATA, chunker(state, person, n.chunks = 10))
with(DATA, chunker(state, list(sex, adult), n.words = 10))
with(DATA, chunker(state, person, n.words = 10, rm.unequal=TRUE))

## Bigger data
with(hamlet, chunker(dialogue, person, n.chunks = 10))
with(hamlet, chunker(dialogue, person, n.words = 300))

## Not run: 
## with polarity hedonmetrics
dat <- with(pres_debates2012[pres_debates2012$person %in% qcv(OBAMA, ROMNEY), ], 
    chunker(dialogue, list(person, time), n.words = 300))

dat2 <- colsplit2df(list2df(dat, "dialogue", "person&time")[, 2:1])

dat3 <- split(dat2[, -2], dat2$time)
ltruncdf(dat3, 10, 50)

poldat <- lapply(dat3, function(x) with(x, polarity(dialogue, person, constrain = TRUE)))


m <- lapply(poldat, function(x) plot(cumulative(x)))
m <- Map(function(w, x, y, z) {
        w + ggtitle(x) + xlab(y) + ylab(z)
    }, 
        m, 
        paste("Debate", 1:3), 
        list(NULL, NULL, "Duration (300 Word Segment)"), 
        list(NULL, "Cumulative Average Polarity", NULL)
)

library(gridExtra)
do.call(grid.arrange, m)

## By person
## By person
poldat2 <- Map(function(x, x2){

    scores <- with(counts(x), split(polarity, person))
    setNames(lapply(scores, function(y) {
        y <- list(cumulative_average_polarity = y)
        attributes(y)[["constrained"]] <- TRUE
        qdap:::plot.cumulative_polarity(y) + xlab(NULL) + ylab(x2)
    }), names(scores))

}, poldat, paste("Debate", 1:3))

poldat2 <- lapply(poldat2, function(x) {
    x[[2]] <- x[[2]] + ylab(NULL)
    x
})

poldat2[[1]] <- Map(function(x, y) {
        x + ggtitle(y)
    },
        poldat2[[1]], qcv(Obama, Romney)
)

library(gridExtra)
do.call(grid.arrange, unlist(poldat2, recursive=FALSE))

## End(Not run)

Remove Escaped Characters

Description

Preprocess data to remove escaped characters

Usage

clean(text.var)

Arguments

text.var

The text variable

Value

Returns a vector of character strings with escaped characters removed.

Examples

## Not run: 
x <- "I go \\r
    to the \\tnext line"
x
clean(x)

## End(Not run)

A Generic to Long Function

Description

A wrapper for cm_df2long, cm_range2long, and cm_time2long that automatically detects the objects being read and outputs the correct form and class.

Usage

cm_2long(..., v.name = "variable", list.var = TRUE, debug = TRUE)

Arguments

v.name

An optional name for the column created for the list.var argument.

list.var

logical. If TRUE creates a column for the data frame created by each time.list passed to cm_t2l.

debug

logical. If TRUE debugging mode is on. cm_time2long will return possible errors in time span inputs.

...

list object(s) in the form generated by cm_df.temp, cm_range.temp, or cm_time.temp.

Value

Returns a long data.frame of the correct cm_XXX classes.

See Also

cm_df2long, cm_range2long, cm_time2long

Examples

## Not run: 
## cm_range2long use: 
foo <- list(
    person_greg = qcv(terms='7:11, 20:24, 30:33, 49:56'),
    person_researcher = qcv(terms='42:48'),
    person_sally = qcv(terms='25:29, 37:41'),
    person_sam = qcv(terms='1:6, 16:19, 34:36'),
    person_teacher = qcv(terms='12:15'),
    adult_0 = qcv(terms='1:11, 16:41, 49:56'),
    adult_1 = qcv(terms='12:15, 42:48'),
    AA = qcv(terms="1"),
    BB = qcv(terms="1:2, 3:10, 19"),
    CC = qcv(terms="1:9, 100:150")
)

foo2  <- list(
    person_greg = qcv(terms='7:11, 20:24, 30:33, 49:56'),
    person_researcher = qcv(terms='42:48'),
    person_sally = qcv(terms='25:29, 37:41'),
    person_sam = qcv(terms='1:6, 16:19, 34:36'),
    person_teacher = qcv(terms='12:15'),
    adult_0 = qcv(terms='1:11, 16:41, 49:56'),
    adult_1 = qcv(terms='12:15, 42:48'),
    AA = qcv(terms="40"),
    BB = qcv(terms="50:90"),
    CC = qcv(terms="60:90, 100:120, 150"),
    DD = qcv(terms="")
)

cm_2long(foo, foo2, v.name = "time")

## cm_time2long use: 
x <- list(
    transcript_time_span = qcv(00:00 - 1:12:00),
    A = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00"),
    B = qcv(terms = "2.40, 3.01:3.02, 5.01, 6.02:7.00, 
        9.00, 1.12.00:1.19.01"),
    C = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00, 17.01")
)
cm_2long(x)

## cm_df2long use:
codes <- qcv(dc, sf, wes, pol, rejk, lk, azx, mmm)
x1 <- cm_df.temp(DATA, "state", codes)
#fill it randomly
x1[, 7:14] <- lapply(7:14,  function(i) sample(0:1, nrow(x1), TRUE))
out2 <- cm_2long(x1)
head(out2, 15)
plot(out2)

## End(Not run)

Blank Code Transformation

Description

Transform codes with any binary operator combination.

Usage

cm_code.blank(x2long.obj, combine.code.list, rm.var = NULL, overlap = TRUE)

Arguments

x2long.obj

An object from cm_range2long, cm_time2long or cm_df2long.

combine.code.list

A list of named character vectors of at least two code column names to combine.

rm.var

Name of the repeated measures column.

overlap

logical, integer or character of binary operator + integer. If TRUE finds the overlap. If FALSE finds anywhere any of the codes occur. If integer finds that exact combination of overlaps. If character must be a logical vector c(>, <, =<, =>, ==, !=) followed by an integer and wrapped with quotes.

Value

Returns a dataframe with transformed occurrences of supplied overlapping codes added.

Note

For most jobs cm_code.transform will work. This adds a bit of flexibility in exclusion and partial matching. The code column must be named "code" and your start and end columns must be named "start" and "end".

See Also

cm_range2long, cm_time2long, cm_df2long, cm_code.overlap, cm_code.combine, cm_code.exclude, cm_code.transform

Examples

## Not run: 
foo <- list(
    AA = qcv(terms="1:10"),
    BB = qcv(terms="1:2, 3:10, 19"),
    CC = qcv(terms="1:3, 5:6")
)

foo2  <- list(
    AA = qcv(terms="4:8"),
    BB = qcv(terms="1:4, 10:12"),
    CC = qcv(terms="1, 11, 15:20"),
    DD = qcv(terms="")
)

## Single occurrence version
(x <- cm_range2long(foo))

cm_code.blank(x, combine.code.list = list(ABC=qcv(AA, BB, CC)),
    overlap = "!=1")

## Repeated measures version
(z <- cm_range2long(foo, foo2, v.name="time"))

cm_code.blank(z, combine.code.list = list(ABC=qcv(AA, BB, CC)),
    rm.var = "time", overlap = "!=1")

cm_code.blank(z, combine.code.list = list(AB=qcv(AA, BB)),
    rm.var = "time", overlap = TRUE)

cm_code.blank(z, combine.code.list = list(AB=qcv(AA, BB)),
    rm.var = "time", overlap = FALSE)

cm_code.blank(z, combine.code.list = list(AB=qcv(AA, BB)),
    rm.var = "time", overlap = ">1")

cm_code.blank(z, combine.code.list = list(AB=qcv(AA, BB)),
    rm.var = "time", overlap = "==2")

## Notice `overlap = "==2"` above is identical to `cm_code.overlap`
cm_code.overlap(z, overlap.code.list = list(AB=qcv(AA, BB)),
    rm.var = "time")


#WITH cm_time2long
x <- list(
    transcript_time_span = qcv(00:00 - 1:12:00),
    A = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00"),
    B = qcv(terms = "2.40, 3.01:3.02, 5.01, 6.02:7.00, 9.00,
        1.12.00:1.19.01"),
    C = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00, 17.01")
)

y <- list(
    transcript_time_span = qcv(00:00 - 1:12:00),
    A = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00"),
    B = qcv(terms = "2.40, 3.01:3.02, 5.01, 6.02:7.00, 9.00,
        1.12.00:1.19.01"),
    C = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00, 17.01")
)

dat <- cm_time2long(x, y, v.name="time")
head(dat, 10)
out <- cm_code.blank(dat, combine.code.list = list(ABC=qcv(A, B, C)),
    rm.var = "time", overlap = "!=1")

head(out)
plot(out)

## End(Not run)

Combine Codes

Description

Combine all occurrences of codes into a new code.

Usage

cm_code.combine(x2long.obj, combine.code.list, rm.var = NULL)

Arguments

x2long.obj

An object from cm_range2long, cm_time2long or cm_df2long.

combine.code.list

A list of named character vectors of at least two code column names to combine

rm.var

Name of the repeated measures column.

Value

Returns a dataframe with combined occurrences of supplied overlapping codes added.

Note

The code column must be named "code" and your start and end columns must be named "start" and "end".

See Also

cm_range2long, cm_time2long, cm_df2long, cm_code.blank, cm_code.exclude, cm_code.overlap, cm_code.transform

Examples

## Not run: 
foo <- list(
    AA = qcv(terms="1:10"),
    BB = qcv(terms="1:2, 3:10, 19"),
    CC = qcv(terms="1:3, 5:6")
)

foo2  <- list(
    AA = qcv(terms="4:8"),
    BB = qcv(terms="1:4, 10:12"),
    CC = qcv(terms="1, 11, 15:20"),
    DD = qcv(terms="")
)

(x <- cm_range2long(foo))
(z <- cm_range2long(foo, foo2, v.name="time"))
cm_code.combine(x, list(AB=qcv(AA, BB)))
cm_code.combine(x, list(ALL=qcv(AA, BB, CC)))
combines <- list(AB=qcv(AA, BB), ABC=qcv(AA, BB, CC))
cm_code.combine(z, combines, rm.var = "time")

#WITH cm_time2long
x <- list(
    transcript_time_span = qcv(00:00 - 1:12:00),
    A = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00"),
    B = qcv(terms = "2.40, 3.01:3.02, 5.01, 6.02:7.00, 9.00, 
        1.12.00:1.19.01"),
    C = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00, 17.01")
)

y <- list(
    transcript_time_span = qcv(00:00 - 1:12:00),
    A = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00"),
    B = qcv(terms = "2.40, 3.01:3.02, 5.01, 6.02:7.00, 9.00, 
        1.12.00:1.19.01"),
    C = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00, 17.01")
)

dat <- cm_time2long(x, y)
head(dat, 12)
cm_code.combine(dat, list(P=qcv(A, B), Q=qcv(B, C), R=qcv(A, B, C)), "variable")

## End(Not run)

Exclude Codes

Description

Find the occurrences of n codes excluding the nth code. For example you have times/words coded for a teacher and you also have times/words coded for happiness. You can find all the happiness times excluding the teacher times or vice versa.

Usage

cm_code.exclude(x2long.obj, exclude.code.list, rm.var = NULL)

Arguments

x2long.obj

An object from cm_range2long, cm_time2long or cm_df2long.

exclude.code.list

A list of named character vectors of at least two code column names to compare and exclude. The last column name is the one that will be excluded.

rm.var

Name of the repeated measures column.

Value

Returns a dataframe with n codes excluding the nth code.

Note

The code column must be named "code" and your start and end columns must be named "start" and "end".

See Also

cm_range2long, cm_time2long, cm_df2long, cm_code.blank, cm_code.combine, cm_code.overlap, cm_code.transform

Examples

## Not run: 
foo <- list(
    AA = qcv(terms="1:10"),
    BB = qcv(terms="1:2, 3:10, 19"),
    CC = qcv(terms="1:3, 5:6")
)

foo2  <- list(
    AA = qcv(terms="4:8"),
    BB = qcv(terms="1:4, 10:12"),
    CC = qcv(terms="1, 11, 15:20"),
    DD = qcv(terms="")
)


(x <- cm_range2long(foo))
(z <- cm_range2long(foo, foo2, v.name="time"))
cm_code.exclude(x, list(ABnoC=qcv(AA, BB, CC)))
cm_code.exclude(z, list(ABnoC=qcv(AA, BB, CC)), rm.var="time")
excludes <- list(AnoB=qcv(AA, BB), ABnoC=qcv(AA, BB, CC))
(a <- cm_code.exclude(z, excludes, rm.var="time"))
plot(a)

#WITH cm_time2long
x <- list(
    transcript_time_span = qcv(00:00 - 1:12:00),
    A = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00"),
    B = qcv(terms = "2.40, 3.01:3.02, 5.01, 6.02:7.00, 9.00, 
        1.12.00:1.19.01"),
    C = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00, 17.01")
)

y <- list(
    transcript_time_span = qcv(00:00 - 1:12:00),
    A = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00"),
    B = qcv(terms = "2.40, 3.01:3.02, 5.01, 6.02:7.00, 9.00, 
        1.12.00:1.19.01"),
    C = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00, 17.01")
)

dat <- cm_time2long(x, y)
head(dat, 10)
cm_code.exclude(dat, list(P=qcv(A, B), Q=qcv(B, C), R=qcv(A, B, C)), 
    rm.var = "variable")

## End(Not run)

Find Co-occurrence Between Codes

Description

Combine co-occurrences of codes into a new code.

Usage

cm_code.overlap(x2long.obj, overlap.code.list, rm.var = NULL)

Arguments

x2long.obj

An object from cm_range2long, cm_time2long or cm_df2long.

overlap.code.list

A list of named character vectors of at least two code column names to aggregate co-occurrences.

rm.var

Name of the repeated measures column.

Value

Returns a dataframe with co-occurrences of supplied overlapping codes added.

Note

The code column must be named code and your start and end columns must be named "start" and "end".

See Also

cm_range2long, cm_time2long, cm_df2long, cm_code.combine, cm_code.transform

Examples

## Not run: 
foo <- list(
    AA = qcv(terms="1:10"),
    BB = qcv(terms="1:2, 3:10, 19"),
    CC = qcv(terms="1:3, 5:6")
)

foo2  <- list(
    AA = qcv(terms="4:8"),
    BB = qcv(terms="1:4, 10:12"),
    CC = qcv(terms="1, 11, 15:20"),
    DD = qcv(terms="")
)


(x <- cm_range2long(foo))
(z <- cm_range2long(foo, foo2, v.name="time"))
cm_code.overlap(x, list(AB=qcv(AA, BB)))
cm_code.overlap(x, list(ALL=qcv(AA, BB, CC)))
combines <- list(AB=qcv(AA, BB), ABC=qcv(AA, BB, CC))
(a <- cm_code.overlap(z, combines, "time"))
plot(a)

#WITH cm_time2long
x <- list(
    transcript_time_span = qcv(00:00 - 1:12:00),
    A = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00"),
    B = qcv(terms = "2.40, 3.01:3.02, 5.01, 6.02:7.00, 9.00, 
        1.12.00:1.19.01"),
    C = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00, 17.01")
)

y <- list(
    transcript_time_span = qcv(00:00 - 1:12:00),
    A = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00"),
    B = qcv(terms = "2.40, 3.01:3.02, 5.01, 6.02:7.00, 9.00, 
        1.12.00:1.19.01"),
    C = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00, 17.01")
)

dat <- cm_time2long(x, y)
head(dat, 10)
out <- cm_code.overlap(dat, list(P=qcv(A, B), Q=qcv(B, C), R=qcv(A, B, C)), 
    rm.var="variable")
head(out, 10)

## End(Not run)

Transform Codes

Description

Transform co-occurrences and/or combinations of codes into a new code(s).

Usage

cm_code.transform(
  x2long.obj,
  overlap.code.list = NULL,
  combine.code.list = NULL,
  exclude.code.list = NULL,
  rm.var = NULL
)

Arguments

x2long.obj

An object from cm_range2long, cm_time2long or cm_df2long.

overlap.code.list

A list of named character vectors of at least two code column names to aggregate co-occurrences.

combine.code.list

A list of named character vectors of at least two code column names to combine

exclude.code.list

A list of named character vectors of at least two code column names to compare and exclude. The last column name is the one that will be excluded.

rm.var

Name of the repeated measures column.

Value

Returns a dataframe with overlapping, combined occurrences, and/or exclusion of supplied overlapping codes added.

Note

The code column must be named "code" and your start and end columns must be named "start" and "end".

See Also

cm_range2long, cm_time2long, cm_df2long, cm_code.blank, cm_code.combine, cm_code.exclude, cm_code.overlap

Examples

## Not run: 
foo <- list(
    AA = qcv(terms="1:10"),
    BB = qcv(terms="1:2, 3:10, 19"),
    CC = qcv(terms="1:3, 5:6")
)

foo2  <- list(
    AA = qcv(terms="4:8"),
    BB = qcv(terms="1:4, 10:12"),
    CC = qcv(terms="1, 11, 15:20"),
    DD = qcv(terms="")
)

bar1 <- list(
    transcript_time_span = qcv(00:00 - 1:12:00),
    A = qcv(terms = "0.00:3.00, 5.01, 6.02:7.00, 9.00"),
    B = qcv(terms = "2.40, 3.01:3.02, 5.01, 6.02:7.00, 9.00,
        1.12.00:1.19.01"),
    C = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00, 16.25:17.01")
)

(x <- cm_range2long(foo))
(z <- cm_range2long(foo, foo2, v.name="time"))
(dat <- cm_time2long(bar1))

cm_code.transform(x, 
    overlap.code.list = list(ABC=qcv(AA, BB, CC)),
    combine.code.list = list(oABC=qcv(AA, BB, CC)), 
    exclude.code.list = list(ABnoC=qcv(AA, BB, CC))
)

cm_code.transform(z, 
    overlap.code.list = list(ABC=qcv(AA, BB, CC)),
    combine.code.list = list(oABC=qcv(AA, BB, CC)), 
    exclude.code.list = list(ABnoC=qcv(AA, BB, CC)), "time"
)

cm_code.transform(dat, 
    overlap.code.list = list(ABC=qcv(A, B, C)),
    combine.code.list = list(oABC=qcv(A, B, C)), 
    exclude.code.list = list(ABnoC=qcv(A, B, C))
)

## End(Not run)

Find Co-occurrence Between Dummy Codes

Description

Combine code columns where they co-occur.

Usage

cm_combine.dummy(cm.l2d.obj, combine.code, rm.var = "time", overlap = TRUE)

Arguments

cm.l2d.obj

An object from cm_long2dummy.

combine.code

A list of named character vectors of at least two code column names to combine

rm.var

Name of the repeated measures column. Default is "time".

overlap

logical, integer or character of binary operator + integer. If TRUE finds the overlap. If FALSE finds anywhere any of the codes occur. If integer finds that exact combination of overlaps. If character must be a logical vector c(>, <, =<, =>, ==, !=) followed by an integer and wrapped with quotes.

Value

Returns a dataframe with co-occurrences of provided code columns.

See Also

cm_long2dummy

Examples

## Not run: 
foo <- list(
    AA = qcv(terms="1:10"),
    BB = qcv(terms="1:2, 3:10, 19"),
    CC = qcv(terms="1:3, 5:6")
)

foo2  <- list(
    AA = qcv(terms="4:8"),
    BB = qcv(terms="1:4, 10:12"),
    CC = qcv(terms="1, 11, 15:20"),
    DD = qcv(terms="")
)


(x <- cm_range2long(foo))
(D1 <- cm_long2dummy(x))

(z <- cm_range2long(foo, foo2, v.name="time"))
(D2 <- cm_long2dummy(z, "time"))
cm_combine.dummy(D1, combine.code = list(AB=qcv(AA, BB)))
cm_combine.dummy(D1, combine.code = list(AB=qcv(AA, BB)), overlap="==1")
cm_combine.dummy(D1, combine.code = list(AB=qcv(AA, BB)), overlap="!=1")
D1 <- cm_combine.dummy(D1, combine.code = list(AB=qcv(AA, BB)), overlap=0)
D1 <- cm_combine.dummy(D1, combine.code = list(CAB=qcv(AB, CC)), overlap=FALSE)

combines <- list(AB=qcv(AA, BB), ABC=qcv(AA, BB, CC))
cm_combine.dummy(D1, combine.code = combines)
cm_combine.dummy(D2, combine.code = combines)

## End(Not run)

Range Coding

Description

Allows range coding of words for efficient coding.

Usage

cm_df.fill(
  dataframe,
  ranges,
  value = 1,
  text.var = NULL,
  code.vars = NULL,
  transform = FALSE
)

Arguments

dataframe

A dataframe containing a text variable.

ranges

A named list of ranges to recode. Names correspond to code names in dataframe.

value

The recode value. Takes a vector of length one or a vector of length equal to the number of code columns.

text.var

The name of the text variable.

code.vars

Optional vector of codes.

transform

logical. If TRUE the words are located across the top of dataframe.

Details

After ranging coding transcripts via (cm_df.temp) or the blank code matrix via (cm_df.transcript),cm_df.fill is used to create a matrix of what codes occurred at what words (a filled code matrix). A list of range codes (word number spans) is fed to cm_df.fill. A single number indicates a single word with that coding scheme whereas the colon is used as a separator that indicates the range of words from x to y are that particular code.

Value

Generates a dummy coded dataframe.

References

Miles, M. B. & Huberman, A. M. (1994). An expanded sourcebook: Qualitative data analysis. 2nd ed. Thousand Oaks, CA: SAGE Publications.

See Also

cm_df.temp, cm_df.transcript, cm_df2long

Examples

## Not run: 
codes <- qcv(dc, sf, wes, pol, rejk, lk, azx, mmm)
X <- cm_df.temp(DATA, "state", codes)
head(X, 10)

#recommended structure
cds1 <- list(
     dc=c(1:3, 5), 
     sf=c(4, 6:9, 11), 
     wes=0, 
     pol=0, 
     rejk=0,
     lk=0, 
     azx=1:30, 
     mmm=5
)

out1 <- cm_df.fill(X, cds1)
head(out1)

#recommended structure
cds2 <- list(
    sf=c(4, 6:9, 11), 
    dc=c(1:3, 5), 
    azx=1:30, 
    mmm=5
)
out2 <- cm_df.fill(X, cds2)
head(out2)

## End(Not run)

Break Transcript Dialogue into Blank Code Matrix

Description

Breaks transcript dialogue into words while retaining the demographic factors associate with each word. The codes argument provides a matrix of zeros that can serve as a dummy coded matrix of codes per word.

Usage

cm_df.temp(
  dataframe,
  text.var,
  codes = NULL,
  file = NULL,
  transpose = FALSE,
  strip = FALSE,
  ...
)

Arguments

dataframe

A dataframe containing a text variable.

text.var

The name of the text variable.

codes

Optional list of codes.

file

The name of the file (csv is recommended file type). If NULL no file is written.

transpose

logical. If TRUE transposes the dataframe so that the text is across the top.

strip

logical. If TRUE all punctuation is removed.

...

Other arguments passed to strip.

Value

Generates a dataframe, and optional csv file, of individual words while maintaining demographic information. If a vector of codes is provided the outcome is a matrix of words used by codes filled with zeros. This dataframe is useful for dummy coded (1-yes code exists; 0-no it does not) representation of data and can be used for visualizations and statistical analysis.

References

Miles, M. B. & Huberman, A. M. (1994). An expanded sourcebook: Qualitative data analysis. 2nd ed. Thousand Oaks, CA: SAGE Publications.

See Also

cm_range2long, cm_df.transcript, cm_df.fill

Examples

## Not run: 
codes <- qcv(dc, sf, wes, pol, rejk, lk, azx, mmm)
out1 <- cm_df.temp(DATA, "state", codes)
head(out1, 15)
out2 <- cm_df.temp(DATA, "state", codes, transpose = TRUE)
out2[, 1:10]
out3 <- cm_df.temp(raj.act.1, "dialogue", codes)
head(out3, 15)
out4 <- cm_df.temp(raj.act.1, "dialogue", codes, transpose = TRUE)
out4 [, 1:8]

## End(Not run)

Transcript With Word Number

Description

Output a transcript with word number/index above for easy input back into qdap after coding.

Usage

cm_df.transcript(
  text.var,
  grouping.var,
  file = NULL,
  indent = 4,
  width = 70,
  space = 2,
  ...
)

Arguments

text.var

The text variable.

grouping.var

The grouping variables. Default NULL generates one word list for all text. Also takes a single grouping variable or a list of 1 or more grouping variables.

file

A connection, or a character string naming the file to print to (e.g., .doc, .txt).

indent

Number of spaces to indent.

width

Width to output the file (defaults to 70; this is generally a good width and indent for a .docx file).

space

An integer value denoting the vertical spacing between the grouping.var and the numbered text (allow more space for more coding room) in the output of a text file.

...

Other arguments passed to strip.

Value

Returns a transcript by grouping variable with word number above each word. This makes use with cm_df2long transfer/usage easier because the researcher has coded on a transcript with the numeric word index already.

Note

It is recommended that the researcher actually codes on the output from this file. The codes can then be transferred to via a list. If a file already exists cm_df.transcript will append to that file.

Author(s)

BondedDust (stackoverflow.com), Gavin Simpson and Tyler Rinker <[email protected]>

See Also

cm_df2long, cm_df.temp

Examples

## Not run: 
with(DATA, cm_df.transcript(state, person))
with(DATA, cm_df.transcript(state, list(sex, adult)))
#use it with nested variables just to keep track of demographic info
with(DATA, cm_df.transcript(state, list(person, sex, adult)))

#use double tilde "~~" to keep word group as one word
DATA$state <- mgsub("be certain", "be~~certain", DATA$state, fixed = TRUE)
with(DATA, cm_df.transcript(state, person))
DATA <- qdap::DATA

##  with(mraja1spl, cm_df.transcript(dialogue, list(person)))
##  with(mraja1spl, cm_df.transcript(dialogue, list(sex, fam.aff, died)))
##  with(mraja1spl, cm_df.transcript(dialogue, list(person), file="foo.doc"))
##  delete("foo.doc")   #delete the file just created

## End(Not run)

Transform Codes to Start-End Durations

Description

Transforms the range coding structure(s) from cm_df.temp (in list format) into a data frame of start and end durations in long format.

Usage

cm_df2long(
  df.temp.obj,
  v.name = "variable",
  list.var = TRUE,
  code.vars = NULL,
  no.code = NA,
  add.start.end = TRUE,
  repeat.vars = NULL,
  rev.code = FALSE
)

Arguments

df.temp.obj

A character vector of names of object(s) created by cm_df.temp, a list of cm_df.temp created objects or a data frame created by cm_df.temp.

v.name

An optional name for the column created for the list.var argument.

list.var

logical. If TRUE creates a column for the data frame created by each time.list.

code.vars

A character vector of code variables. If NULL uses all variables from the first column after the column named word.num.

no.code

The value to assign to no code; default is NA.

add.start.end

logical. If TRUE adds a column for start and end times.

repeat.vars

A character vector of repeated/stacked variables. If NULL uses all non code.vars variables.

rev.code

logical. If TRUE reverses the order of code.vars and no.code variables.

Value

Generates a data frame of start and end times for each code.

References

Miles, M. B. & Huberman, A. M. (1994). An expanded sourcebook: Qualitative data analysis. 2nd ed. Thousand Oaks, CA: SAGE Publications.

See Also

cm_time2long, cm_range2long, cm_df.temp

Examples

## Not run: 
codes <- qcv(dc, sf, wes, pol, rejk, lk, azx, mmm)
x1 <- cm_df.temp(DATA, "state", codes)
head(x1)

#empty code matrix
out1 <- cm_df2long(x1,  code.vars = codes)
head(out1, 15)

#fill it randomly
x1[, 7:14] <- lapply(7:14,  function(i) sample(0:1, nrow(x1), TRUE))
out2 <- cm_df2long(x1,  code.vars = codes)
head(out2, 15)
plot(out2)

## End(Not run)

Distance Matrix Between Codes

Description

Generate distance measures to ascertain a mean distance measure between codes.

Usage

cm_distance(
  dataframe,
  pvals = c(TRUE, FALSE),
  replications = 1000,
  parallel = TRUE,
  extended.output = TRUE,
  time.var = TRUE,
  code.var = "code",
  causal = FALSE,
  start.var = "start",
  end.var = "end",
  cores = detectCores()/2
)

Arguments

dataframe

A data frame from the cm_x2long family (cm_range2long; cm_df2long; cm_time2long).

pvals

A logical vector of length 1 or 2. If element 2 is blank element 1 will be recycled. If the first element is TRUE pvalues will be calculated for the combined (main) output for all repeated measures from simulated resampling of the data. If the second element is TRUE pvalues will be calculated for the individual (extended) repeated measures output from simulated resampling of the data. Default is to calculate pvalues for the main output but not for the extended output. This process involves multiple resampling of the data and is a time consuming process. It may take from a few minutes to days to calculate the pvalues depending on the number of all codes use, number of different codes and number of replications.

replications

An integer value for the number of replications used in resampling the data if any pvals is TRUE. It is recommended that this value be no lower than 1000. Failure to use enough replications may result in unreliable pvalues.

parallel

logical. If TRUE runs the cm_distance on multiple cores (if available). This will generally be effective with most data sets, given there are repeated measures, because of the large number of simulations. Default uses 1/2 of the available cores.

extended.output

logical. If TRUE the information on individual repeated measures is calculated in addition to the aggregated repeated measures results for the main output.

time.var

An optional variable to split the dataframe by (if you have data that is by various times this must be supplied).

code.var

The name of the code variable column. Defaults to "codes" as out putted by x2long family.

causal

logical. If TRUE measures the distance between x and y given that x must precede y. That is, only those yiy_i that begin after the xix_i has begun will be considered, as it is assumed that x precedes y. If FALSE x is not assumed to precede y. The closest yiy_i (either its beginning or end) is calculated to xix_i (either it's beginning or end).

start.var

The name of the start variable column. Defaults to "start" as out putted by x2long family.

end.var

The name of the end variable column. Defaults to "end" as out putted by x2long family.

cores

An integer value describing the number of cores to use if parallel = TRUE. Default is to use half of the available cores.

Details

Note that row names are the first code and column names are the second comparison code. The values for Code A compared to Code B will not be the same as Code B compared to Code A. This is because, unlike a true distance measure, cm_distance's matrix is asymmetrical. cm_distance computes the distance by taking each span (start and end) for Code A and comparing it to the nearest start or end for Code B.

Value

An object of the class "cm_distance". This is a list with the following components:

pvals

A logical indication of whether pvalues were calculated

replications

Integer value of number of replications used

extended.output

An optional list of individual repeated measures information

main.output

A list of aggregated repeated measures information

adj.alpha

An adjusted alpha level (based on α=.05\alpha = .05) for the estimated p-values using the upper end of the confidence interval around the p-values

Within the lists of extended.output and list of the main.output are the following items:

mean

A distance matrix of average distances between codes

sd

A matrix of standard deviations of distances between codes

n

A matrix of counts of distances between codes

stan.mean

A matrix of standardized values of distances between codes. The closer a value is to zero the closer two codes relate.

pvalue

A n optional matrix of simulated pvalues associated with the mean distances

Warning

p-values are estimated and thus subject to error. More replications decreases the error. Use:

p±(1.96α(1α)n)p \pm \left ( 1.96 \cdot \sqrt{\frac{\alpha(1-\alpha)}{n}}\right )

to adjust the confidence in the estimated p-values based on the number of replications.

References

https://stats.stackexchange.com/a/22333/7482

See Also

print.cm_distance

Examples

## Not run: 
foo <- list(
    AA = qcv(terms="02:03, 05"),
    BB = qcv(terms="1:2, 3:10"),
    CC = qcv(terms="1:9, 100:150")
)

foo2  <- list(
    AA = qcv(terms="40"),
    BB = qcv(terms="50:90"),
    CC = qcv(terms="60:90, 100:120, 150"),
    DD = qcv(terms="")
)

(dat <- cm_2long(foo, foo2, v.name = "time"))
plot(dat)
(out <- cm_distance(dat, replications=100))
names(out)
names(out$main.output)
out$main.output
out$extended.output
print(out, new.order = c(3, 2, 1))
print(out, new.order = 3:2)
#========================================
x <- list(
    transcript_time_span = qcv(00:00 - 1:12:00),
    A = qcv(terms = "2.40:3.00, 6.32:7.00, 9.00,
        10.00:11.00, 59.56"),
    B = qcv(terms = "3.01:3.02, 5.01,  19.00, 1.12.00:1.19.01"),
    C = qcv(terms = "2.40:3.00, 5.01, 6.32:7.00, 9.00, 17.01")
)
(dat <- cm_2long(x))
plot(dat)
(a <- cm_distance(dat, causal=TRUE, replications=100))

## Plotting as a network graph
datA <- list(
    A = qcv(terms="02:03, 05"),
    B = qcv(terms="1:2, 3:10, 45, 60, 200:206, 250, 289:299, 330"),
    C = qcv(terms="1:9, 47, 62, 100:150, 202, 260, 292:299, 332"),
    D = qcv(terms="10:20, 30, 38:44, 138:145"),
    E = qcv(terms="10:15, 32, 36:43, 132:140"),
    F = qcv(terms="1:2, 3:9, 10:15, 32, 36:43, 45, 60, 132:140, 250, 289:299"),
    G = qcv(terms="1:2, 3:9, 10:15, 32, 36:43, 45, 60, 132:140, 250, 289:299"),
    H = qcv(terms="20, 40, 60, 150, 190, 222, 255, 277"),
    I = qcv(terms="20, 40, 60, 150, 190, 222, 255, 277")
)

datB  <- list(
    A = qcv(terms="40"),
    B = qcv(terms="50:90, 110, 148, 177, 200:206, 250, 289:299"),
    C = qcv(terms="60:90, 100:120, 150, 201, 244, 292"),
    D = qcv(terms="10:20, 30, 38:44, 138:145"),
    E = qcv(terms="10:15, 32, 36:43, 132:140"),
    F = qcv(terms="10:15, 32, 36:43, 132:140, 148, 177, 200:206, 250, 289:299"),
    G = qcv(terms="10:15, 32, 36:43, 132:140, 148, 177, 200:206, 250, 289:299"),
    I = qcv(terms="20, 40, 60, 150, 190, 222, 255, 277")  
)

(datC <- cm_2long(datA, datB, v.name = "time"))
plot(datC)
(out2 <- cm_distance(datC, replications=1250))

plot(out2)
plot(out2, label.cex=2, label.dist=TRUE, digits=5)

## End(Not run)

Convert cm_combine.dummy Back to Long

Description

cm_combine.dummy back to long.

Usage

cm_dummy2long(cm_long2dummy_obj, rm.var = "time")

Arguments

cm_long2dummy_obj

An object from cm_combine.dummy

rm.var

Name of the repeated measures column. Default is "time".

Value

Returns a dataframe with co-occurrences of provided code columns.

See Also

cm_long2dummy, cm_combine.dummy

Examples

## Not run: 
foo <- list(
    AA = qcv(terms="1:10"),
    BB = qcv(terms="1:2, 3:10, 19"),
    CC = qcv(terms="1:3, 5:6")
)

foo2  <- list(
    AA = qcv(terms="4:8"),
    BB = qcv(terms="1:4, 10:12"),
    CC = qcv(terms="1, 11, 15:20"),
    DD = qcv(terms="")
)

(x <- cm_range2long(foo))
(out1 <- cm_long2dummy(x))

(z <- cm_range2long(foo, foo2, v.name="time"))
out2 <- cm_long2dummy(z, "time")
lapply(out2, head)
cm_combine.dummy(out1, combine.code = list(AB=qcv(AA, BB)))

combines <- list(AB=qcv(AA, BB), ABC=qcv(AA, BB, CC))
A <- cm_combine.dummy(out2, combine.code = combines)
head(A, 10)
B <- cm_combine.dummy(out1, combine.code = combines)
head(B, 10)

cm_dummy2long(A)
cm_dummy2long(B)
plot(cm_dummy2long(A))

## End(Not run)

Stretch and Dummy Code cm_xxx2long

Description

Stretches and dummy codes a cm_xxx2long dataframe to allow for combining columns.

Usage

cm_long2dummy(
  dataframe,
  rm.var = NULL,
  code = "code",
  start = "start",
  end = "end"
)

Arguments

dataframe

A dataframe that contains the person variable.

rm.var

An optional character argument of the name of a repeated measures column.

code

A character argument of the name of a repeated measures column. Default is "code".

start

A character argument of the name of a repeated measures column. Default is "start".

end

A character argument of the name of a repeated measures column. Default is "end".

Value

Returns a dataframe or a list of stretched and dummy coded dataframe(s).

See Also

cm_range2long, cm_time2long, cm_df2long

Examples

## Not run: 
foo <- list(
    AA = qcv(terms="1:10"),
    BB = qcv(terms="1:2, 3:10, 19"),
    CC = qcv(terms="1:3, 5:6")
)

foo2  <- list(
    AA = qcv(terms="4:8"),
    BB = qcv(terms="1:4, 10:12"),
    CC = qcv(terms="1, 11, 15:20"),
    DD = qcv(terms="")
)

(x <- cm_range2long(foo))
cm_long2dummy(x)

(z <- cm_range2long(foo, foo2, v.name="time"))
out <- cm_long2dummy(z, "time")
ltruncdf(out)

## End(Not run)

Range Code Sheet

Description

Generates a range coding sheet for coding words.

Usage

cm_range.temp(codes, text.var = NULL, grouping.var = NULL, file = NULL)

Arguments

codes

Character vector of codes.

text.var

The text variable.

grouping.var

The grouping variables. Also takes a single grouping variable or a list of 1 or more grouping variables.

file

A connection, or a character string naming the file to print to (.txt or .doc is recommended).

References

Miles, M. B. & Huberman, A. M. (1994). An expanded sourcebook: Qualitative data analysis. 2nd ed. Thousand Oaks, CA: SAGE Publications.

See Also

cm_time.temp

Examples

## Not run: 
cm_range.temp(qcv(AA, BB, CC))
with(DATA, cm_range.temp(qcv(AA, BB, CC), state, list(person, adult)))
## cm_range.temp(qcv(AA, BB, CC), file = "foo.txt")
## delete("foo.txt")

## End(Not run)

Transform Codes to Start-End Durations

Description

Transforms the range coding structure(s) from cm_range.temp (in list format) into a data frame of start and end durations in long format.

Usage

cm_range2long(
  ...,
  v.name = "variable",
  list.var = TRUE,
  debug = TRUE,
  object = NULL
)

Arguments

v.name

An optional name for the column created for the list.var argument.

list.var

logical. If TRUE creates a column for the data frame created by each time.list passed to cm_t2l.

debug

logical. If TRUE debugging mode is on. cm_time2long will return possible errors in time span inputs.

object

A list of list object(s) generated by cm_time.temp.

...

list object(s) in the form generated by cm_time.temp.

Value

Generates a data frame of start and end spans for each code.

References

Miles, M. B. & Huberman, A. M. (1994). An expanded sourcebook: Qualitative data analysis. 2nd ed. Thousand Oaks, CA: SAGE Publications.

See Also

cm_df2long, cm_time.temp, cm_df.transcript

Examples

## Not run: 
foo <- list(
    person_greg = qcv(terms='7:11, 20:24, 30:33, 49:56'),
    person_researcher = qcv(terms='42:48'),
    person_sally = qcv(terms='25:29, 37:41'),
    person_sam = qcv(terms='1:6, 16:19, 34:36'),
    person_teacher = qcv(terms='12:15'),
    adult_0 = qcv(terms='1:11, 16:41, 49:56'),
    adult_1 = qcv(terms='12:15, 42:48'),
    AA = qcv(terms="1"),
    BB = qcv(terms="1:2, 3:10, 19"),
    CC = qcv(terms="1:9, 100:150")
)

foo2  <- list(
    person_greg = qcv(terms='7:11, 20:24, 30:33, 49:56'),
    person_researcher = qcv(terms='42:48'),
    person_sally = qcv(terms='25:29, 37:41'),
    person_sam = qcv(terms='1:6, 16:19, 34:36'),
    person_teacher = qcv(terms='12:15'),
    adult_0 = qcv(terms='1:11, 16:41, 49:56'),
    adult_1 = qcv(terms='12:15, 42:48'),
    AA = qcv(terms="40"),
    BB = qcv(terms="50:90"),
    CC = qcv(terms="60:90, 100:120, 150"),
    DD = qcv(terms="")
)

## General ldots Approach
(dat <- cm_range2long(foo, foo2, v.name = "time"))
plot(dat)

## Specify `object` Approach
cm_range2long(object=list(foo=foo))
cm_range2long(object=list(foo=foo, foo2=foo2), v.name="time")
cm_range2long(object=list(a=foo, b=foo2), v.name="time")

## End(Not run)

Time Span Code Sheet

Description

Generates a time span coding sheet and coding format sheet.

Usage

cm_time.temp(
  codes,
  grouping.var = NULL,
  start = ":00",
  end = NULL,
  file = NULL,
  coding = FALSE,
  print = TRUE
)

Arguments

codes

List of codes.

grouping.var

The grouping variables. Also takes a single grouping variable or a list of 1 or more grouping variables.

start

A character string in the form of "00:00" indicating start time (default is ":00").

end

A character string in the form of "00:00" indicating end time.

file

A connection, or a character string naming the file to print to (.txt or .doc is recommended).

coding

logical. If TRUE a coding list is provided with the time span coding sheet. coding is ignored if end = NULL.

print

logical. If TRUE the time spans are printed to the console.

References

Miles, M. B. & Huberman, A. M. (1994). An expanded sourcebook: Qualitative data analysis. 2nd ed. Thousand Oaks, CA: SAGE Publications.

See Also

cm_range.temp,

Examples

## Not run: 
## cm_time.temp(qcv(AA, BB, CC), ":30", "7:40", file = "foo.txt")
## delete("foo.txt")
cm_time.temp(qcv(AA, BB, CC), ":30", "7:40")

x <- list(
    transcript_time_span = qcv(terms="00:00 - 1:12:00"),
    A = qcv(terms="2.40:3.00, 5.01, 6.52:7.00, 9.00"),
    B = qcv(terms="2.40, 3.01:3.02, 5.01, 6.52:7.00, 9.00, 1.12.00:1.19.01"),
    C = qcv(terms="2.40:3.00, 5.01, 6.52:7.00, 9.00, 17.01")
)
cm_time2long(x)
cm_time.temp(qcv(AA, BB, CC))

## End(Not run)

Transform Codes to Start-End Times

Description

Transforms the range coding structure(s) from cm_time.temp (in list format) into a data frame of start and end times in long format.

Usage

cm_time2long(
  ...,
  v.name = "variable",
  list.var = TRUE,
  debug = TRUE,
  object = NULL
)

Arguments

v.name

An optional name for the column created for the list.var argument

list.var

logical. If TRUE creates a column for the data frame created by each time.list passed to cm_t2l.

debug

logical. If TRUE debugging mode is on. cm_time2long will return possible errors in time span inputs.

object

A list of list object(s) generated by cm_time.temp.

...

List object(s) in the form generated by cm_time.temp.

Value

Generates a dataframe of start and end times for each code.

References

Miles, M. B. & Huberman, A. M. (1994). An expanded sourcebook: Qualitative data analysis. 2nd ed. Thousand Oaks, CA: SAGE Publications.

See Also

cm_df2long, cm_time.temp

Examples

## Not run: 
x <- list(
    transcript_time_span = qcv(00:00 - 1:12:00),
    A = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00"),
    B = qcv(terms = "2.40, 3.01:3.02, 5.01, 6.02:7.00, 
        9.00, 1.12.00:1.19.01"),
    C = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00, 17.01")
)
(dat <- cm_time2long(x))
plot(dat)

bar1 <- list(
    transcript_time_span = qcv(00:00 - 1:12:00),
    A = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00"),
    B = qcv(terms = "2.40, 3.01:3.02, 5.01, 6.02:7.00, 9.00,
        1.12.00:1.19.01"),
    C = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00, 16.25:17.01")
)

bar2 <- list(
    transcript_time_span = qcv(00:00 - 1:12:00),
    A = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00"),
    B = qcv(terms = "2.40, 3.01:3.02, 5.01, 6.02:7.00, 9.00,
        1.12.00:1.19.01"),
    C = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00, 17.01")
)

## General ldots Approach
cm_time2long(bar1)
cm_time2long(bar1, bar2, v.name="time")

## Specify `object` Approach
cm_time2long(object=list(bar1=bar1))
cm_time2long(object=list(bar1=bar1, bar2=bar2), v.name="time")
cm_time2long(object=list(a=bar1, b=bar2), v.name="time")

## End(Not run)

Combine Columns to Class

Description

Combine columns from qdap classes or a data.frame.

Usage

colcomb2class(
  dataframe,
  combined.columns,
  class = "list",
  percent = TRUE,
  digits = 2,
  elim.old = TRUE,
  zero.replace = 0,
  override = FALSE
)

Arguments

dataframe

A dataframe or qdap class (e.g., termco, question_type, pos_by, character_table).

combined.columns

A list of named vectors of the colnames/indexes of the numeric columns to be combined (summed). If a vector is unnamed a name will be assigned.

class

The class to assign to the output.

percent

logical. If TRUE output given as percent. If FALSE the output is proportion.

digits

Integer; number of decimal places to round when printing.

elim.old

logical. If TRUE eliminates the columns that are combined together by the named match.list. TRUE outputs the table proportionally (see prop).

zero.replace

Value to replace 0 values with.

override

logical. If TRUE the printing options (e.g., percent, digits, etc.) of the dataframe argument are overrode.

Value

Returns a list with raw counts, percents and combined raw and percents.

Examples

## Not run: 
## `termco` example
ml <- list(
    cat1 = c(" the ", " a ", " an "),
    cat2 = c(" I'" ),
    "good",
    the = c("the", " the ", " the", "the")
)
dat1 <- with(raj.act.1,  termco(dialogue, person, ml))
colcomb2class(dat1, list(cats = c("cat1", "cat2")))

## `question_type` example
dat2 <- question_type(DATA.SPLIT$state, DATA.SPLIT$person)
combs <- list(
    `wh/how` = c("what", "how"), 
    oth = c("shall", "implied_do/does/did")
)
colcomb2class(dat2, combs)

## `pos_by` example
dat3 <- with(DATA, pos_by(state, list(adult, sex)))
colcomb2class(dat3, qcv(DT, EX, FW))


## data.frame example
dat4 <- data.frame(X=LETTERS[1:5], matrix(sample(0:5, 20, TRUE), ncol = 4))
colcomb2class(dat4, list(new = c("X1", "X4")))

## End(Not run)

Separate a Column Pasted by paste2

Description

Separates a paste2 column into separate columns.

Usage

colSplit(column, col.sep = ".", name.sep = "&")

Arguments

column

The pasted vector.

col.sep

The column separator used in paste2.

name.sep

Name separator used in the column (generally for internal use with colsplit2df).

Value

Returns a dataframe of split columns.

See Also

colsplit2df, paste2

Examples

## Not run: 
foo1 <- paste2(CO2[, 1:3])
head(foo1, 12)
bar1 <- colSplit(foo1)
head(bar1, 10)

foo2  <- paste2(mtcars[, 1:3], sep="|")
head(foo2, 12)
bar2 <- colSplit(foo2, col.sep = "|")
head(bar2, 10)

## End(Not run)

Wrapper for colSplit that Returns Dataframe(s)

Description

colsplit2df - Wrapper for colSplit that returns a dataframe.

lcolsplit2df - Wrapper for colsplit2df designed for qdap lists that returns a list dataframes.

Usage

colsplit2df(
  dataframe,
  splitcols = 1,
  new.names = NULL,
  sep = ".",
  keep.orig = FALSE,
  name.sep = "&",
  index.names = FALSE
)

lcolsplit2df(qdap.list, keep.orig = FALSE)

Arguments

dataframe

A dataframe with a column that has been pasted together.

splitcols

The name/index of the column(s) that has been pasted together.

new.names

A character vector of new names to assign to the columns (or list of names if multiple columns are being split). Default attempts to extract the original names before the paste.

sep

The character(s) that was used in paste2 to paste the columns.

keep.orig

logical. If TRUE the original pasted column will be retained as well.

name.sep

The character(s) that was used to paste the column names.

index.names

logical. If TRUE names of columns that are duplicated are indexed with c("name.1", "name.2", ... "name.n").

qdap.list

A qdap list object that contains dataframes with a leading paste2 column.

Value

colsplit2df - returns a dataframe with the paste2 column split into new columns.

lcolsplit2df - returns a list of dataframes with the paste2 column split into new columns.

Warning

This will strip the class of the qdap object.

Note

lcolsplit2df is a convenience function that is less flexible than colsplit2df but operates on multiple dataframes at once.

See Also

colSplit, colpaste2df paste2

Examples

## Not run: 
CO2$`Plant&Type&Treatment` <- paste2(CO2[, 1:3])
CO2 <- CO2[, -c(1:3)]
head(CO2)
head(colsplit2df(CO2, 3))
head(colsplit2df(CO2, 3, qcv(A, B, C)))
head(colsplit2df(CO2, 3, qcv(A, B, C), keep.orig=TRUE))
head(colsplit2df(CO2, "Plant&Type&Treatment"))
CO2 <- datasets::CO2

(dat <- colpaste2df(head(mtcars), list(1:3), sep = "|"))
colsplit2df(dat, 12, sep = "|")

## Multiple split example
E <- list(
    c(1, 2, 3, 4, 5),
    qcv(mpg, hp),
    c("disp", "am")
)

(dat2 <- colpaste2df(head(mtcars), E, sep ="|"))
cols <- c("mpg&cyl&disp&hp&drat", "mpg&hp", "disp&am")
colsplit2df(dat2, cols, sep = "|")

## lcolsplit2df example
(x <- with(DATA.SPLIT, question_type(state, list(sex, adult))))
ltruncdf(x)
z <- lcolsplit2df(x)
ltruncdf(z)

## End(Not run)

Ensure Space After Comma

Description

Adds a space after a comma as strip and many other functions may consider a comma separated string as one word (i.e., "one,two,three" becomes "onetwothree" rather than "one two three").

Usage

comma_spacer(text.var)

Arguments

text.var

The text variable.

Value

Returns a vector of strings with commas that have a space after them.

Examples

## Not run: 
x <- c("the,  dog,went", "I,like,it", "where are you", NA, "why", ",", ",f")
comma_spacer(x)

## End(Not run)

Find Common Words Between Groups

Description

Find common words between grouping variables (e.g., people).

Usage

common(word.list, overlap = "all", equal.or = "more", ...)

Arguments

word.list

A list of named character vectors.

overlap

Minimum/exact amount of overlap.

equal.or

A character vector of c("equal", "greater", "more", "less").

...

In lieu of word.list the user may input n number of character vectors.

Value

Returns a dataframe of all words that match the criteria set by overlap and equal.or.


list Method for common

Description

list Method for common

Usage

## S3 method for class 'list'
common(word.list, overlap = "all", equal.or = "more", ...)

Arguments

word.list

A list of names character vectors.

overlap

Minimum/exact amount of overlap.

equal.or

A character vector of c("equal", "greater", "more", "less").

...

In lieu of word.list the user may input n number of character vectors.


Condense Dataframe Columns

Description

Condense dataframe columns that are a list of vectors to a single vector of strings.

Usage

condense(dataframe, sep = ", ")

Arguments

dataframe

A dataframe with a column(s) that are a list of vectors.

sep

A character string to separate the terms.

Value

Returns a dataframe with condensed columns that can be wrote to csv/xlsx.

See Also

mcsv_w

Examples

## Not run: 
library(qdap)
poldat <- with(DATA.SPLIT, polarity(state, person))
write.csv(x = condense(counts(poldat)), file = "foo.csv")

## End(Not run)

Generic Counts Method

Description

Access the count dataframes from select qdap outputs.

Usage

counts(x, ...)

Arguments

x

A qdap object (list) with a count dataframe (e.g., fry).

...

Arguments passed to counts method of other classes.

Value

Returns a data.frame of counts.

See Also

scores, proportions, preprocessed, visual


Readability Measures

Description

counts.automated_readability_index - View counts from automated_readability_index.

Usage

## S3 method for class 'automated_readability_index'
counts(x, ...)

Arguments

x

The automated_readability_index object.

...

ignored automated_readability_index Method for counts.


Term Counts

Description

View character_table counts.

Usage

## S3 method for class 'character_table'
counts(x, ...)

Arguments

x

The character_table object.

...

ignored

Details

character_table Method for counts


Readability Measures

Description

counts.coleman_liau - View counts from coleman_liau.

Usage

## S3 method for class 'coleman_liau'
counts(x, ...)

Arguments

x

The coleman_liau object.

...

ignored

Details

coleman_liau Method for counts.


Question Counts

Description

View end_mark_by counts.

Usage

## S3 method for class 'end_mark_by'
counts(x, ...)

Arguments

x

The end_mark_by object.

...

ignored

Details

end_mark_by Method for counts


Readability Measures

Description

counts.flesch_kincaid - View counts from flesch_kincaid.

Usage

## S3 method for class 'flesch_kincaid'
counts(x, ...)

Arguments

x

The flesch_kincaid object.

...

ignored

Details

flesch_kincaid Method for counts.


Formality

Description

View formality counts.

Usage

## S3 method for class 'formality'
counts(x, ...)

Arguments

x

The formality object.

...

ignored

Details

formality Method for counts


Readability Measures

Description

counts.fry - View counts from fry.

Usage

## S3 method for class 'fry'
counts(x, ...)

Arguments

x

The fry object.

...

ignored

Details

fry Method for counts.


Readability Measures

Description

counts.linsear_write - View counts from linsear_write.

Usage

## S3 method for class 'linsear_write'
counts(x, ...)

Arguments

x

The linsear_write object.

...

ignored

Details

linsear_write Method for counts.


Question Counts

Description

View object_pronoun_type counts.

Usage

## S3 method for class 'object_pronoun_type'
counts(x, ...)

Arguments

x

The object_pronoun_type object.

...

ignored

Details

object_pronoun_type Method for counts


Polarity

Description

counts.polarity - View counts from polarity.

Usage

## S3 method for class 'polarity'
counts(x, ...)

Arguments

x

The polarity object.

...

ignored

Details

polarity Method for counts.


Parts of Speech

Description

View pos counts.

Usage

## S3 method for class 'pos'
counts(x, ...)

Arguments

x

The pos object.

...

ignored

Details

pos Method for counts


Parts of Speech

Description

View pos_by counts.

Usage

## S3 method for class 'pos_by'
counts(x, ...)

Arguments

x

The pos_by object.

...

ignored

Details

pos_by Method for counts


Question Counts

Description

View pronoun_type counts.

Usage

## S3 method for class 'pronoun_type'
counts(x, ...)

Arguments

x

The pronoun_type object.

...

ignored

Details

pronoun_type Method for counts


Question Counts

Description

View question_type counts.

Usage

## S3 method for class 'question_type'
counts(x, ...)

Arguments

x

The question_type object.

...

ignored

Details

question_type Method for counts


Readability Measures

Description

counts.SMOG - View counts from SMOG.

Usage

## S3 method for class 'SMOG'
counts(x, ...)

Arguments

x

The SMOG object.

...

ignored

Details

SMOG Method for counts.


Question Counts

Description

View subject_pronoun_type counts.

Usage

## S3 method for class 'subject_pronoun_type'
counts(x, ...)

Arguments

x

The subject_pronoun_type object.

...

ignored

Details

subject_pronoun_type Method for counts


Term Counts

Description

View termco counts.

Usage

## S3 method for class 'termco'
counts(x, ...)

Arguments

x

The termco object.

...

ignored

Details

termco Method for counts


Word Length Counts

Description

View word_length counts.

Usage

## S3 method for class 'word_length'
counts(x, ...)

Arguments

x

The word_length object.

...

ignored

Details

word_length Method for counts


Word Position

Description

View word_position counts.

Usage

## S3 method for class 'word_position'
counts(x, ...)

Arguments

x

The word_position object.

...

ignored

Details

word_position Method for counts


Word Stats

Description

View word_stats counts.

Usage

## S3 method for class 'word_stats'
counts(x, ...)

Arguments

x

The word_stats object.

...

ignored

Details

word_stats Method for counts


Cumulative Scores

Description

cumulative - Generate rolling/cumulative scores for select qdap objects.

Usage

cumulative(x, ...)

## S3 method for class 'end_mark'
cumulative(x, ...)

## S3 method for class 'formality'
cumulative(x, ...)

## S3 method for class 'pos'
cumulative(x, ...)

## S3 method for class 'pos_by'
cumulative(x, ...)

## S3 method for class 'animated_formality'
cumulative(x, ...)

## S3 method for class 'lexical_classification'
cumulative(x, ...)

## S3 method for class 'animated_lexical_classification'
cumulative(x, ...)

## S3 method for class 'polarity'
cumulative(x, ...)

## S3 method for class 'animated_polarity'
cumulative(x, ...)

## S3 method for class 'syllable_freq'
cumulative(x, ...)

## S3 method for class 'combo_syllable_sum'
cumulative(x, ...)

Arguments

x

A qdap object with an accompanying cumulative method.

...

ignored


Fictitious Classroom Dialogue

Description

A fictitious dataset useful for small demonstrations.

Usage

data(DATA)

Format

A data frame with 11 rows and 5 variables

Details

  • person. Speaker

  • sex. Gender

  • adult. Dummy coded adult (0-no; 1-yes)

  • state. Statement (dialogue)

  • code. Dialogue coding scheme


Fictitious Split Sentence Classroom Dialogue

Description

A sentSplit version of the DATA dataset.

Usage

data(DATA.SPLIT)

Format

A data frame with 15 rows and 8 variables

Details

  • person. Speaker

  • tot. Turn of talk with sub sentences

  • TOT. Turn of talk

  • sex. Gender

  • adult. Dummy coded adult (0-no; 1-yes)

  • code. Dialogue coding scheme

  • state. Statement (dialogue)

  • stem.text. A stemmed version of the text.var


Fictitious Repeated Measures Classroom Dialogue

Description

A repeated measures version of the DATA dataset.

Usage

data(DATA2)

Format

A data frame with 74 rows and 7 variables

Details

  • day. Day of observation

  • class. Class period/subject of observation

  • person. Speaker

  • sex. Gender

  • adult. Dummy coded adult (0-no; 1-yes)

  • state. Statement (dialogue)

  • code. Dialogue coding scheme


Easy File Handling

Description

delete - Deletes files and directories.

folder - Create a folder/directory.

Usage

delete(file = NULL)

folder(..., folder.name = NULL)

Arguments

file

The name of the file in the working directory or the path to the file to be deleted. If NULL provides a menu of files from the working directory.

folder.name

A character vector of the name(s) of the folder to be created. Default NULL (if the ... is NULL too) creates a file in the working directory with the creation date and time stamp. Use this argument only if the directory names contain spaces.

...

The name(s) of the folder to be created. If both ... and folder.name are NULL creates a file in the working directory with the creation date and time stamp.

Value

delete permanently removes a file/directory.

folder creates a folder/directory.

See Also

unlink, file.remove, dir.create

Examples

## Not run: 
(x <- folder("DELETE.ME"))
which(dir() == "DELETE.ME")
delete("DELETE.ME")
which(dir() == "DELETE.ME")

folder("the/next/big/thing", "hello world", "now/is/the/time")

folder(cat, dog)
lapply(c("cat", "dog"), delete)

## End(Not run)

Map Transcript Files from a Directory to a Script

Description

Generate script text (and optionally output it to the clipboard and/or an external file) that can be used to individually read in every file in a directory and assign it to an object.

Usage

dir_map(
  loc = "DATA/TRANSCRIPTS/CLEANED_TRANSCRIPTS",
  obj.prefix = "dat",
  use.path = TRUE,
  col.names = c("person", "dialogue"),
  file = NULL,
  copy2clip = interactive()
)

Arguments

loc

The path/location of the transcript data files.

obj.prefix

A character string that will be used as the prefix (followed by a unique digit) as the assignment object.

use.path

logical. If TRUE use the actual path to the loc argument. If FALSE, the code may be more portable in that the actual input to loc is supplied to the read.transcript.

col.names

Supplies a vector of column names to the transcript columns.

file

A connection, or a character string naming the file to print to.

copy2clip

logical. If TRUE attempts to copy the output to the clipboard.

Details

Generally, the researcher will want to read in and parse every transcript document separately. The task of writing the script for multiple transcript documents can be tedious. This function is designed to make the process more efficient and less prone to errors.

Value

Prints a read in script text to the console, optionally copies the wrapped text to the clipboard on a Mac or Windows machine and optionally prints to an outside file.

Note

skip is set to 0, however, it is likely that this value will need to be changed for each transcript.

See Also

read.transcript

Examples

## Not run: 
(DIR <- system.file("extdata/transcripts", package = "qdap"))
dir_map(DIR)

## End(Not run)

Discourse Mapping

Description

View the flow of discourse from social actors.

Usage

discourse_map(
  text.var,
  grouping.var,
  edge.constant,
  sep = "_",
  condense = TRUE,
  ...
)

Arguments

text.var

The text variable or a "word_stats" object (i.e., the output of a word_stats function).

grouping.var

The grouping variables. Also takes a single grouping variable or a list of 1 or more grouping variables.

edge.constant

A constant to multiple the edges by. Defaults (if missing) to 2.5 times the number of social actors.

sep

The separator character to use between grouping variables.

condense

logical. If TRUE sentCombine is used to condense text by grouping variable.

...

ignored

Details

For an example of the video generated from the Animate output of discourse_map see: https://www.youtube.com/watch?v=7LcqFZODXNo&feature=youtu.be. An HTML output can be viewed: http://trinker.github.io/qdap_examples/animation_dialogue/.

Value

Returns a list:

raw

The dataframe with to and from columns (the edges) + word counts

edge_word_count

A dataframe of edges and word counts + proportional word count

vertex_word_count

A dataframe of vertices and word counts + proportional word count

plot

An igraph object

Examples

## Not run: 
discourse_map(DATA$state, list(DATA$person, DATA$sex))
x <- with(mraja1, discourse_map(dialogue, person))
x
lview(x)
library(igraph)
plot(visual(x), edge.curved=FALSE)

## Quickly add/remove a title
Title(x) <- "Act 1"
x
Title(x) <- NULL
x

## Augmenting the plot
library(qdapTools)
mygraph <- visual(x)

plot(mygraph, edge.curved=TRUE)

V(mygraph)$sex <- V(mygraph)$name %lc% raj.demographics[, 1:2]
V(mygraph)$color <- ifelse(V(mygraph)$sex=="f", "pink", "lightblue")

plot(mygraph, edge.curved=TRUE)

V(mygraph)$family <- V(mygraph)$name %l+% raj.demographics[, c(1, 3)]
cols <- qcv(blue, red, brown, darkgreen, grey10)
V(mygraph)$label.color <- lookup(V(mygraph)$family, 
    unique(V(mygraph)$family), cols)

plot(mygraph, edge.curved=TRUE)

## Community detection
x <- with(mraja1, discourse_map(dialogue, person))
wc <- walktrap.community(visual(x))
colors <- grDevices::rainbow(max(membership(wc)))
plot(x, vertex.color=colors[membership(wc)])

## Repeated Measures (BASIC EXAMPLE)
##------------------------------

## First merge data and map to discourse per act 
## to separate networks

dat <- key_merge(raj, raj.demographics)
list_dat <- split(dat, dat$act)
plot_dat <- lapply(list_dat, function(x) with(x, discourse_map(dialogue, person)))

opar <- par()$mar
par(mfrow=c(3, 2), mar=c(0, 0, 3, 0))

lapply(seq_along(plot_dat), function(i){
    plot(plot_dat[[i]])
    graphics::mtext(paste("Act", names(plot_dat)[i]), side=3)
})


## Repeated Measures (EXTENDED EXAMPLE)
##------------------------------
fam_key <- data.frame(fam=unique(raj.demographics$fam.aff),
    cols=qcv(blue, grey10, red, orange), 
    stringsAsFactors = FALSE)

par(mfrow=c(3, 2), mar=c(0, 1, 3, 1))
lapply(seq_along(plot_dat), function(i){

    THE_PLOT <- visual(plot_dat[[i]])

    V(THE_PLOT)$sex <- V(THE_PLOT)$name %l% raj.demographics[, 1:2]
    V(THE_PLOT)$color <- ifelse(V(THE_PLOT)$sex=="f", "pink", "lightblue")
    V(THE_PLOT)$family <- V(THE_PLOT)$name %lc+% raj.demographics[, c(1, 3)]
    V(THE_PLOT)$label.color <- lookup(V(THE_PLOT)$family, fam_key)

    plot(THE_PLOT, edge.curved=TRUE)
    graphics::mtext(paste("Act", names(plot_dat)[i]), side=3)
})
frame()
bords <- rep("black", 7)
bords[3] <- "white"
legend(.29, .95, c("Female", "Male", NA, as.character(fam_key[, 1])), 
    fill=c("pink", "lightblue", NA, fam_key[, 2]), border=bords, cex=1.5) 

## Reset graphics margins
par(mar=opar)

## ANIMATION
#===========
test <- discourse_map(DATA$state, list(DATA$person))

## Very quick, hard to see
Animate(test)

pdf("test.pdf")
    par(mar=c(0, 0, 1, 0))
    Animate(test, title="Test Plot")
dev.off()

## Animate it
##-----------
library(animation)
library(igraph)

loc <- folder(animation_dialogue)
ans <- Animate(test)

## Set up the plotting function
oopt <- animation::ani.options(interval = 0.1)

FUN <- function() {
    lapply(seq_along(ans), function(i) {
        par(mar=c(0, 0, 1, 0))
        set.seed(10)
        plot.igraph(ans[[i]], edge.curved=TRUE, layout=layout.circle)
        graphics::mtext("Discourse Map", side=3)
        animation::ani.pause()
    })
}

## Detect OS
type <- if(.Platform$OS.type == "windows") shell else system
saveGIF(FUN(), interval = 0.1, outdir = loc, cmd.fun = type)

saveVideo(FUN(), video.name = "discourse_map.avi", interval = 0.1, outdir = loc)

saveLatex(FUN(), autoplay = TRUE, loop = FALSE, latex.filename = "tester.tex", 
    caption = "animated dialogue", outdir = loc, ani.type = "pdf", 
    ani.dev = "pdf", ani.width = 5, ani.height = 5.5, interval = 0.1)

saveHTML(FUN(), autoplay = FALSE, loop = TRUE, verbose = FALSE, 
    outdir = file.path(loc, "new"), single.opts = 
    "'controls': ['first', 'previous', 'play', 'next', 'last', 'loop', 'speed'], 'delayMin': 0")
    
    
## More Elaborate Layout
test2 <- with(mraja1, discourse_map(dialogue, person))

loc2 <- folder(animation_dialogue2)
ans2 <- Animate(test2)
## Set up the plotting function
oopt <- animation::ani.options(interval = 0.1)

FUN3 <- function() {
    lapply(seq_along(ans2), function(i) {
        par(mar=c(0, 0, 1, 0))
        set.seed(10)
        plot.igraph(ans2[[i]], edge.curved=TRUE, layout=layout.auto)
        graphics::mtext("Discourse Map\nRomeo and Juliet: Act 1", side=3)
        animation::ani.pause()
    })
}

saveHTML(FUN3(), autoplay = FALSE, loop = FALSE, verbose = FALSE,
    outdir = file.path(loc2, "new"), single.opts =
    "'controls': ['first', 'play', 'loop', 'speed'], 'delayMin': 0")
    
saveVideo(FUN3(), video.name = "discourse_map.avi", interval = 0.2, 
    outdir = loc2)    

## End(Not run)

Lexical Dispersion Plot

Description

Generate a lexical dispersion plot of terms.

Usage

dispersion_plot(
  text.var,
  match.terms,
  grouping.var = NULL,
  rm.vars = NULL,
  color = "blue",
  bg.color = "grey90",
  horiz.color = "grey85",
  total.color = "black",
  symbol = "|",
  title = "Lexical Dispersion Plot",
  rev.factor = TRUE,
  wrap = "'",
  xlab = "Dialogue (Words)",
  ylab = NULL,
  size = 4,
  plot = TRUE,
  char2space = "~~",
  apostrophe.remove = FALSE,
  scales = "free",
  space = "free",
  ...
)

Arguments

text.var

The text variable.

match.terms

A vector of quoted terms or a named list of quoted terms. If the latter terms will be combined into a single unified theme named according to the list names. Note that terms within the vectors of the list cannot be duplicated.

grouping.var

The grouping variables. Default NULL generates one word list for all text. Also takes a single grouping variable or a list of 1 or more grouping variables.

rm.vars

The repeated measures variables. Default NULL generates one facet for all text. Also takes a single repeated measures variable or a list of 1 or more grouping variables.

color

The color of the word symbols.

bg.color

The background color.

horiz.color

The color of the horizontal tracking stripe. Use horiz.color = bg.color to eliminate.

total.color

The color to use for summary 'all' group. If NULL totals are dropped.

symbol

The word symbol. Default is "|".

title

Title of the plot

rev.factor

logical. If TRUE reverses the plot order of the factors.

wrap

a character to wrap around the words (enables the reader to visualize spaces). Default is "'", use "" to remove.

xlab

The x label.

ylab

The y label.

size

The size of the plotting symbol.

plot

logical. If TRUE the plot will automatically plot. The user may wish to set to FALSE for use in knitr, sweave, etc. to add additional plot layers.

char2space

A vector of characters to be turned into spaces.

apostrophe.remove

logical. If TRUE removes apostrophes from the output.

scales

Should scales be fixed ("fixed", the default), free ("free"), or free in one dimension ("free_x", "free_y")

space

If "fixed", the default, all panels have the same size. If "free_y" their height will be proportional to the length of the y scale; if "free_x" their width will be proportional to the length of the x scale; or if "free" both height and width will vary.

...

Other argument supplied to strip.

Value

Plots a dispersion plot and invisibly returns the ggplot2 object.

Note

The match.terms is character sensitive. Spacing is an important way to grab specific words and requires careful thought. Using "read" will find the words "bread", "read" "reading", and "ready". If you want to search for just the word "read" you'd supply a vector of c(" read ", " reads", " reading", " reader").

See Also

term_match

Examples

## Not run: 
term_match(raj$dialogue, c(" love ", "love", " night ", "night"))
dispersion_plot(raj$dialogue, c(" love ", "love", " night ", "night"))
dispersion_plot(raj$dialogue, c("love", "night"), rm.vars = raj$act)
with(rajSPLIT , dispersion_plot(dialogue, c("love", "night"), 
    grouping.var = list(fam.aff, sex), rm.vars = act))

## With grouping variables
with(rajSPLIT , dispersion_plot(dialogue, c("love", "night"), 
     grouping.var = sex, rm.vars = act))

## Drop total with `total.color = NULL`
with(rajSPLIT , dispersion_plot(dialogue, c("love", "night"), 
     grouping.var = sex, rm.vars = act, total.color = NULL))

## Change color scheme
with(rajSPLIT, dispersion_plot(dialogue, c("love", "night"), 
    bg.color = "black", grouping.var = list(fam.aff, sex), 
    color = "yellow", total.color = "white", horiz.color="grey20"))
    
## Use `word_list`
## Presidential debates by all
wrds <- word_list(pres_debates2012$dialogue, stopwords = Top200Words)
wrds2 <- spaste(wrds[["rfswl"]][["all"]][, "WORD"])
wrds2 <- c(" governor~~romney ", wrds2[-c(3, 12)])
with(pres_debates2012 , dispersion_plot(dialogue, wrds2, rm.vars = time))

## Presidential debates by person
dat <- pres_debates2012
dat <- dat[dat$person %in% qcv(ROMNEY, OBAMA), ]

wordlist <- c(" tax", " health", " rich ", "america", " truth", 
    " money", "cost", " governnor", " president", " we ", 
    " job", " i ", " you ", " because ", " our ", " years ")

with(dat, dispersion_plot(dialogue, wordlist, total.color = NULL, 
    bg.color = "white", grouping.var = person, rm.vars = time,
    color = "black", horiz.color="grey80"))

wordlist2 <- c(" i'd ", " i'll ", " i'm ", " i've ", " i ", 
    " we'd ", " we'll ", " we're ", " we've ", " we ", 
    " you'd ",  " you'll ", " you're ", " you've ", " you ", " your ",
    " he'd ", " he'll ", " he's ", " he ")

with(dat, dispersion_plot(dialogue, wordlist2, 
    bg.color = "black", grouping.var = person, rm.vars = time,
    color = "yellow", total.color = NULL, horiz.color="grey20"))
   
with(dat, dispersion_plot(dialogue, wordlist2, 
    bg.color = "black", grouping.var = person, rm.vars = time,
    color = "red", total.color = "white", horiz.color="grey20"))

## `match.terms` as a named list        
wordlist3 <- list(
    I = c(" i'd ", " i'll ", " i'm ", " i've ", " i "),
    we = c(" we'd ", " we'll ", " we're ", " we've ", " we "),
    you = c(" you'd ",  " you'll ", " you're ", " you've ", " you ", " your "),
    he = c(" he'd ", " he'll ", " he's ", " he ")
)

with(dat, dispersion_plot(dialogue, wordlist3,
    bg.color = "grey60", grouping.var = person, rm.vars = time,
    color = "blue", total.color = "grey40", horiz.color="grey20"))

colsplit2df(scores(with(dat, termco(dialogue, list(time, person), wordlist3))))

## Extras:
## Reverse facets

x <- with(pres_debates2012 , dispersion_plot(dialogue, wrds2, rm.vars = time))

## function to reverse ggplot2 facets
rev_facet <- function(x) {
    names(x$facet)[1:2] <- names(x$facet)[2:1]
    print(x)
}

rev_facet(x)

## Discourse Markers: See...
## Schiffrin, D. (2001). Discourse markers: Language, meaning, and context. 
##    In D. Schiffrin, D. Tannen, & H. E. Hamilton (Eds.), The handbook of 
##    discourse analysis (pp. 54-75). Malden, MA: Blackwell Publishing.

discoure_markers <- list(
    response_cries = c(" oh ", " ah ", " aha ", " ouch ", " yuk "),
    back_channels = c(" uh-huh ", " uhuh ", " yeah "), 
    summons = " hey ", 
    justification = " because "
)

(markers <- with(pres_debates2012, 
    termco(dialogue, list(person, time), discoure_markers)
))
plot(markers, high="red")

with(pres_debates2012, 
    termco(dialogue, list(person, time), discoure_markers, elim.old = FALSE)
)

with(pres_debates2012, 
    dispersion_plot(dialogue, unlist(discoure_markers), person, time)
)

## End(Not run)

Dissimilarity Statistics

Description

Uses the distance function to calculate dissimilarity statistics by grouping variables.

Usage

Dissimilarity(
  text.var,
  grouping.var = NULL,
  method = "prop",
  diag = FALSE,
  upper = FALSE,
  p = 2,
  ...
)

Arguments

text.var

A text variable or word frequency matrix object.

grouping.var

The grouping variables. Default NULL generates one word list for all text. Also takes a single grouping variable or a list of 1 or more grouping variables.

method

Distance methods (see dist function). If "prop" (the default) the result is 1 - "binary".

diag

logical. If TRUE returns the diagonals of the matrix. If method = "prop" diagonals will not be returned.

upper

logical. If TRUE returns the upper triangle of the matrix.

p

The power of the Minkowski distance.

...

Other arguments passed to wfm.

Value

Returns a matrix of dissimilarity values (the agreement between text).

See Also

dist

Examples

## Not run: 
with(DATA, Dissimilarity(state, list(sex, adult)))
with(DATA, Dissimilarity(state, person, diag = TRUE))

## Clustering: Dendrogram
(x <- with(pres_debates2012, Dissimilarity(dialogue, list(person, time))))
fit <- hclust(x)
plot(fit)
## draw dendrogram with red borders around the 3 clusters 
rect.hclust(fit, k=3, border=c("red", "purple", "seagreen"))

## Clustering: Dendrogram with p.values
library(pvclust)
wfm.mod <- with(pres_debates2012, wfm(dialogue, list(person, time)))
fit <- suppressMessages(pvclust(wfm.mod, method.hclust="ward",
    method.dist="euclidean"))
plot(fit) 
pvrect(fit, alpha=.95)

## Multidimentional Scaling
## Based on blog post from Bodong Chen
## http://bodongchen.com/blog/?p=301

## Fit it: 2-D
(diss <- with(pres_debates2012, Dissimilarity(dialogue, list(person, time), 
    method = "euclidean")))
fit <- cmdscale(diss, eig = TRUE, k = 2)

## Plot it 2-D
points <- data.frame(x = fit$points[, 1], y = fit$points[, 2])
ggplot(points, aes(x = x, y = y)) + 
    geom_point(data = points, aes(x = x, y = y, color = rownames(points))) + 
    geom_text(data = points, aes(x = x, y = y - 0.2, label = row.names(points)))
    
## Fit it: 3-D
library(scatterplot3d)
fit <- cmdscale(diss, eig = TRUE, k = 3)

points <- data.frame(colSplit(names(fit$points[, 1])))
library(qdapTools)
points$colors <- points$X1 %l% data.frame(levels(points$X1), 
    qcv(yellow, yellow, blue, yellow, red, yellow))
points$shape <- points$X2 %l% data.frame(levels(points$X2), c(15, 17, 19))

## Plot it: 3-D
scatterplot3d(fit$points[, 1], fit$points[, 2], fit$points[, 3], 
    color = points$colors, pch = points$shape, 
    main = "Semantic Space Scaled to 3D", xlab = "x", ylab = "y", 
    zlab = "z", type = "h")

legend("bottomright", title="Person",
   qcv(Obama, Romney, Other), fill=qcv(blue, red, yellow))
legend("topleft",  paste("Time", 1:3), pch=c(15, 17, 19))

## Compare to Cosine Similarity
cos_sim <- function(x, y) x %*% y / sqrt(x%*%x * y%*%y)
mat <- matrix(rbinom(500, 0:1, .45), ncol=10)
v_outer(mat, cos_sim)

v_outer(with(DATA, wfm(state, person)), cos_sim)
with(DATA, Dissimilarity(state, person))

## End(Not run)

SPSS Style Frequency Tables

Description

Generates a distribution table for vectors, matrices and dataframes.

Usage

dist_tab(dataframe, breaks = NULL, digits = 2, ...)

Arguments

dataframe

A vector or data.frame object.

breaks

Either a numeric vector of two or more cut points or a single number (greater than or equal to 2) giving the number of intervals into which x is to be cut.

digits

Integer indicating the number of decimal places (round) or significant digits (signif.) to be used. Negative values are allowed

...

Other variables passed to cut.

Value

Returns a list of data frames (or singular data frame for a vector) of frequencies, cumulative frequencies, percentages and cumulative percentages for each interval.

See Also

cut

Examples

## Not run: 
dist_tab(rnorm(10000), 10)
dist_tab(sample(c("red", "blue", "gray"), 100, T), right = FALSE)
dist_tab(CO2, 4)

out1 <- dist_tab(mtcars[, 1:3])
ltruncdf(out1, 4)

out2 <- dist_tab(mtcars[, 1:3], 4)
ltruncdf(out2, 4)

wdst <- with(mraja1spl, word_stats(dialogue, list(sex, fam.aff, died)))
out3 <- dist_tab(wdst$gts[1:4])
ltruncdf(out3, 4)

## End(Not run)

Diversity Statistics

Description

Transcript apply diversity/richness indices.

Usage

diversity(text.var, grouping.var = NULL)

Arguments

text.var

The text variable.

grouping.var

The grouping variables. Default NULL generates one word list for all text. Also takes a single grouping variable or a list of 1 or more grouping variables.

Details

These are the formulas used to calculate the indices:

Shannon index:

H1(X)=i=1Rpi;log;piH_1(X)=-\sum\limits_{i=1}^R{p_i};log;p_i

Shannon, C. E. (1948). A mathematical theory of communication. Bell System

Simpson index:

D=i=1Rpi;ni(ni1)N(N1))D=\frac{\sum_{i=1}^R{p_i};n_i(n_i -1)}{N(N-1))}

Simpson, E. H. (1949). Measurement of diversity. Nature 163, p. 688

Collision entropy:

H2(X)=logi=1npi2H_2(X)=-log\sum_{i=1}^n{p_i}^2

Renyi, A. (1961). On measures of information and entropy. Proceedings of the 4th Berkeley Symposium on Mathematics, Statistics and Probability, 1960. pp. 547-5661.

Berger Parker index:

DBP=NmaxND_{BP}=\frac{N_{max}}{N}

Berger, W. H., & Parker, F. L.(1970). Diversity of planktonic Foramenifera in deep sea sediments. Science 168, pp. 1345-1347.

Brillouin index:

HB=ln(N!)ln(n1)!NH_B=\frac{ln(N!)-\sum{ln(n_1)!}}{N}

Magurran, A. E. (2004). Measuring biological diversity. Blackwell.

Value

Returns a dataframe of various diversity related indices for Shannon, collision, Berger Parker and Brillouin.

References

https://arxiv.org/abs/physics/0512106

Examples

## Not run: 
div.mod <- with(mraja1spl, diversity(dialogue, list(sex, died, fam.aff)))
colsplit2df(div.mod)
plot(div.mod, high = "red", low = "yellow")
plot(div.mod, high = "red", low = "yellow", values = TRUE)

## End(Not run)

Find Duplicated Words in a Text String

Description

Find duplicated word/word chunks in a string. Intended for internal use.

Usage

duplicates(string, threshold = 1)

Arguments

string

A character string.

threshold

An integer of the minimal number of repeats.

Value

Returns a vector of all duplicated words/chunks.

Examples

## Not run: 
duplicates(DATA$state)
duplicates(DATA$state[1])

## End(Not run)

Test for Incomplete Sentences

Description

Test for incomplete sentences and optionally remove them.

Usage

end_inc(dataframe, text.var, warning.report = TRUE, which.mode = FALSE)

Arguments

dataframe

A dataframe that contains the person and text variable.

text.var

A character string of the text variable.

warning.report

logical. If TRUE prints a warning of regarding removal of incomplete sentences.

which.mode

logical. If TRUE outputs two logical vectors: 'NOT' (logical test of not being an incomplete sentence) and 'INC' (logical test of being an incomplete sentence)

Value

Generates a dataframe with incomplete sentences removed.

Examples

## Not run: 
dat <- sentSplit(DATA, "state", stem.col = FALSE)
dat$state[c(2, 5)] <- paste(strip(dat$state[c(2, 5)]), "|")
end_inc(dat, "state")
end_inc(dat, "state", warning.report = FALSE)
end_inc(dat, "state", which.mode = TRUE)

## End(Not run)

Sentence End Marks

Description

end_mark - Grab the sentence end marks for a transcript. This can be useful to categorize based on sentence type.

end_mark_by - Grab the sentence end marks for a transcript by grouping variable(s).

Usage

end_mark(
  text.var,
  missing.end.mark = "_",
  missing.text = NA,
  other.endmarks = NULL
)

end_mark_by(
  text.var,
  grouping.var,
  digits = 3,
  percent = FALSE,
  zero.replace = 0,
  ...
)

Arguments

text.var

The text variable.

missing.end.mark

A value to use for sentences with missing endmarks.

missing.text

A value to use for sentences with missing (NA) text.

other.endmarks

Other 1-2 character endmarks to search for.

grouping.var

The grouping variables. Default NULL generates one word list for all text. Also takes a single grouping variable or a list of 1 or more grouping variables.

digits

Integer; number of decimal places to round when printing.

percent

logical. If TRUE output given as percent. If FALSE the output is proportion.

zero.replace

Value to replace 0 values with.

...

Other arguments passed to end_mark.

Value

Returns a character vector of qdap end marks for each sentence. End marks include:

"."

Declarative sentence.

"?"

Question sentence.

"!"

Exclamatory sentence.

"|"

Incomplete sentence.

"*."

Imperative-declarative sentence.

"*?"

Imperative-question sentence (unlikely to occur)

"*!"

Imperative-exclamatory sentence.

"*|"

Imperative-incomplete sentence.

"no.em"

No end mark.

"blank"

Empty cell/NA.

Examples

## Not run: 
end_mark(DATA.SPLIT$state)
end_mark(mraja1spl$dialogue)
table(end_mark(mraja1spl$dialogue))
plot(end_mark(mraja1spl$dialogue))
ques <- mraja1spl[end_mark(mraja1spl$dialogue) == "?", ] #grab questions
htruncdf(ques)
non.ques <- mraja1spl[end_mark(mraja1spl$dialogue) != "?", ] #non questions
htruncdf(non.ques, 20)
ques.per <- mraja1spl[end_mark(mraja1spl$dialogue) %in% c(".", "?"), ] #grab ? and .
htruncdf(ques.per, 20)

(x_by <- end_mark_by(DATA.SPLIT$state, DATA.SPLIT$person))
scores(x_by)
counts(x_by)
proportions(x_by)
preprocessed(x_by)
plot(scores(x_by))
plot(counts(x_by))
plot(proportions(x_by))
plot(preprocessed(x_by))

#================================#
## End Marks Over Time Examples ##
#================================#
##EXAMPLE 1
sentpres <- lapply(with(pres_debates2012, split(dialogue, time)), function(x) {
    end_mark(x)
})

sentplots <- lapply(seq_along(sentpres), function(i) {
    m <- plot(cumulative(sentpres[[i]]))
    if (i != 2) m <- m + ylab("")
    if (i != 3) m <- m + xlab(NULL)
    m + ggtitle(paste("Debate", i))
})

library(grid)
library(gridExtra)
do.call(grid.arrange, sentplots)

##EXAMPLE 2
sentraj <- lapply(with(rajSPLIT, split(dialogue, act)), function(x) {
    end_mark(x)
})
 
sentplots2 <- lapply(seq_along(sentraj), function(i) {
    m <- plot(cumulative(sentraj[[i]]))
    if (i != 2) m <- m + ylab("")
    if (i != 3) m <- m + xlab(NULL)
    act <- qcv(I, II, III, IV, V)
    m + ggtitle(paste("Act", act[i]))
})

## ggplot2 function to extract legend
g_legend <- function(a.gplot){ 
    tmp <- ggplot_gtable(ggplot_build(a.gplot)) 
    leg <- which(sapply(tmp[["grobs"]], function(x) x[["name"]]) == "guide-box") 
    legend <- tmp[["grobs"]][[leg]] 
    legend
} 

## remove legends from plots
sentplots3 <- lapply(sentplots2, function(x){
    x + theme(legend.position="none") + xlab(NULL) + ylab(NULL)
})

sentplots3[[6]] <- g_legend(sentplots2[[1]]) 

do.call(grid.arrange, sentplots3)

## End(Not run)

Syllable Lookup Environment

Description

A dataset containing a syllable lookup environment (see DICTIONARY).

Usage

data(env.syl)

Format

A environment with the DICTIONARY data set.

Details

For internal use.

References

UCI Machine Learning Repository website


Exclude Elements From a Vector

Description

exclude - Quickly exclude words from a word list

%ex% - Binary operator version of exclude .

Usage

exclude(word.list, ...)

## S3 method for class 'TermDocumentMatrix'
exclude(word.list, ...)

## S3 method for class 'DocumentTermMatrix'
exclude(word.list, ...)

## S3 method for class 'wfm'
exclude(word.list, ...)

## S3 method for class 'list'
exclude(word.list, ...)

## Default S3 method:
exclude(word.list, ...)

word.list %ex% ...

Arguments

word.list

A list/vector of words/terms, a wfm, DocumentTermMatrix, or TermDocumentMatrix to exclude from.

...

A vector (character/numeric) if element(s) to be excluded from the word.list.

Value

Returns a vector with the excluded terms removed.

Examples

## Not run: 
exclude(1:10, 3, 4)
exclude(1:10, 3:4)
Top25Words
exclude(Top25Words, qcv(the, of, and))
exclude(Top25Words, "the", "of", "an")

#Using with term_match and termco 
terms <- term_match(DATA$state, qcv(th), FALSE) 
exclude(terms, "truth")  
#all together
termco(DATA$state, DATA$person, exclude(term_match(DATA$state, qcv(th), 
    FALSE), "truth"))

MTCH.LST <- exclude(term_match(DATA$state, qcv(th, i)), qcv(truth, stinks))
termco(DATA$state, DATA$person, MTCH.LST)

## Works with wfm
dat <- wfm(DATA$state, DATA$person)
the.no <- term_match(DATA$state, c("the", "no"))
exclude(dat, unlist(the.no))

## Works with tm's TermDocumentMatrix/DocumentTermMatrix
dat2 <- as.dtm(DATA$state, DATA$person)
out.dtm <- exclude(dat2, unlist(the.no))
tm::inspect(out.dtm)

dat3 <- as.tdm(DATA$state, DATA$person)
out.tdm <- exclude(dat3, unlist(the.no))
tm::inspect(out.tdm)

## End(Not run)

Filter

Description

Filter.all_words - Filter words from a all_words that meet max/min word length criteria.

Filter.TermDocumentMatrix - Filter words from a TermDocumentMatrix vector that meet max/min word length criteria.

Filter.DocumentTermMatrix - Filter words from a DocumentTermMatrix that meet max/min word length criteria.

Filter - Filter words from various objects that meet max/min word length criteria.

Filter.wfm - Filter words from a wfm that meet max/min word length criteria.

Filter.character - Filter words from a character vector that meet max/min word length criteria.

Filter.fwl - Filter words from a fwl that meet max/min word length criteria.

Filter.fswl - Filter words from a fswl that meet max/min word length criteria.

Filter.rfswl - Filter words from a rfswl that meet max/min word length criteria.

Usage

## S3 method for class 'all_words'
Filter(
  x,
  min = 1,
  max = Inf,
  count.apostrophe = TRUE,
  stopwords = NULL,
  ignore.case = TRUE,
  ...
)

## S3 method for class 'TermDocumentMatrix'
Filter(
  x,
  min = 1,
  max = Inf,
  count.apostrophe = TRUE,
  stopwords = NULL,
  ignore.case = TRUE,
  ...
)

## S3 method for class 'DocumentTermMatrix'
Filter(
  x,
  min = 1,
  max = Inf,
  count.apostrophe = TRUE,
  stopwords = NULL,
  ignore.case = TRUE,
  ...
)

Filter(
  x,
  min = 1,
  max = Inf,
  count.apostrophe = TRUE,
  stopwords = NULL,
  ignore.case = TRUE,
  ...
)

## S3 method for class 'wfm'
Filter(x, min = 1, max = Inf, count.apostrophe = TRUE, stopwords = NULL, ...)

## S3 method for class 'character'
Filter(
  x,
  min = 1,
  max = Inf,
  count.apostrophe = TRUE,
  stopwords = NULL,
  ignore.case = TRUE,
  ...
)

## S3 method for class 'fwl'
Filter(
  x,
  min = 1,
  max = Inf,
  count.apostrophe = TRUE,
  stopwords = NULL,
  ignore.case = TRUE,
  ...
)

## S3 method for class 'fswl'
Filter(
  x,
  min = 1,
  max = Inf,
  count.apostrophe = TRUE,
  stopwords = NULL,
  ignore.case = TRUE,
  ...
)

## S3 method for class 'rfswl'
Filter(
  x,
  min = 1,
  max = Inf,
  count.apostrophe = TRUE,
  stopwords = NULL,
  ignore.case = TRUE,
  ...
)

Arguments

x

A filterable object (e.g., wfm, character).

min

Minimum word length.

max

Maximum word length.

count.apostrophe

logical. If TRUE apostrophes are counted as characters.

stopwords

A vector of stop words to remove.

ignore.case

logical. If TRUE stopwords will be removed regardless of case (ignored if used on a wfm).

...

Other arguments passed to specific Filter methods.

Details

all_words Method for Filter

TermDocumentMatrix Method for Filter

DocumentTermMatrix Method for Filter

character Method for Filter

fwl Method for Filter

fswl Method for Filter

rfswl Method for Filter

Value

Filter.all_words - Returns a matrix of the class "all_words".

Filter.TermDocumentMatrix - Returns a matrix of the class "TermDocumentMatrix".

Filter.DocumentTermMatrix - Returns a matrix of the class "DocumentTermMatrix".

Filter - Returns a matrix of the class "wfm".

Filter.character - Returns a vector of the class "character".

Filter.wfm - Returns a matrix of the class "wfm".

Filter.fwl - Returns a matrix of the class "fwl".

Filter.fswl - Returns a matrix of the class "fswl".

Filter.rfswl - Returns a matrix of the class "rfswl".

Note

The name and idea behind this function is inspired by the dplyr package's filter function and has a similar meaning in that you are grabbing rows (or elements) meeting a particular criteria.

Examples

## Not run: 
Filter(with(DATA, wfm(state, list(sex, adult))), 5)
with(DATA, wfm(state, list(sex, adult)))

## Filter particular words based on max/min values in wfm
v <- with(DATA, wfm(state, list(sex, adult)))
Filter(v, 5)
Filter(v, 5, count.apostrophe = FALSE)
Filter(v, 5, 7)
Filter(v, 4, 4)
Filter(v, 3, 4)
Filter(v, 3, 4, stopwords = Top25Words)

## Filter works on character strings too...
x <- c("Raptors don't like robots!",  "I'd pay $500.00 to rid them.")
Filter(x, 3)
Filter(x, 4)
Filter(x, 4, count.apostrophe = FALSE)
Filter(x, 4, count.apostrophe = FALSE, stopwords="raptors")
Filter(x, 4, stopwords="raptors")
Filter(x, 4, stopwords="raptors", ignore.case = FALSE)

DATA[, "state"] <- Filter(DATA[, "state"], 4)
DATA <- qdap::DATA

## Filter `all_words`
head(all_words(raj$dialogue))
Filter(head(all_words(raj$dialogue)), min = 3)

## End(Not run)

Formality Score

Description

Transcript apply formality score by grouping variable(s) and optionally plot the breakdown of the model.

Usage

formality(
  text.var,
  grouping.var = NULL,
  order.by.formality = TRUE,
  digits = 2,
  ...
)

Arguments

text.var

The text variable (or an object from pos, pos_by or formality. Passing the later three object will greatly reduce run time.

grouping.var

The grouping variables. Default NULL generates one word list for all text. Also takes a single grouping variable or a list of 1 or more grouping variables.

order.by.formality

logical. If TRUE orders the results by formality score.

digits

The number of digits displayed.

...

Other arguments passed to pos_by.

Details

Heylighen & Dewaele(2002)'s formality score is calculated as:

F=50(nfncN+1)F = 50(\frac{n_{f}-n_{c}}{N} + 1)

Where:

f={noun,  adjective,  preposition,  article}f = \left \{noun, \;adjective, \;preposition, \;article\right \}

c={pronoun,  verb,  adverb,  interjection}c = \left \{pronoun, \;verb, \;adverb, \;interjection\right \}

N=(f  +  c  +  conjunctions)N = \sum{(f \;+ \;c \;+ \;conjunctions)}

Value

A list containing at the following components:

text

The text variable

POStagged

Raw part of speech for every word of the text variable

POSprop

Part of speech proportion for every word of the text variable

POSfreq

Part of speech count for every word of the text variable

pos.by.freq

The part of speech count for every word of the text variable by grouping variable(s)

pos.by.prop

The part of speech proportion for every word of the text variable by grouping variable(s)

form.freq.by

The nine broad part of speech categories count for every word of the text variable by grouping variable(s)

form.prop.by

The nine broad part of speech categories proportion for every word of the text variable by grouping variable(s)

formality

Formality scores by grouping variable(s)

pos.reshaped

An expanded formality scores output (grouping, word.count, pos & form.class) by word

Warning

Heylighen & Dewaele (2002) state, "At present, a sample would probably need to contain a few hundred words for the measure to be minimally reliable. For single sentences, the F-value should only be computed for purposes of illustration" (p. 24).

References

Heylighen, F., & Dewaele, J.M. (2002). Variation in the contextuality of language: An empirical measure. Context in Context, Special issue of Foundations of Science, 7 (3), 293-340.

Examples

## Not run: 
with(DATA, formality(state, person))
(x1 <- with(DATA, formality(state, list(sex, adult))))
plot(x1)
plot(x1, short.names = FALSE)

scores(x1)
counts(x1)
proportions(x1)
preprocessed(x1)

plot(scores(x1))
plot(counts(x1))
plot(proportions(x1), high="darkgreen")
plot(preprocessed(x1))

data(rajPOS) #A data set consisting of a pos list object
x2 <- with(raj, formality(rajPOS, act))
plot(x2)
cumulative(x2)
x3 <- with(raj, formality(rajPOS, person))
plot(x3, bar.colors="Dark2")
plot(x3, bar.colors=c("Dark2", "Set1"))
x4 <- with(raj, formality(rajPOS, list(person, act)))
plot(x4, bar.colors=c("Dark2", "Set1"))

rajDEM <- key_merge(raj, raj.demographics) #merge demographics with transcript.
x5 <- with(rajDEM, formality(rajPOS, sex))
plot(x5, bar.colors="RdBu")
x6 <- with(rajDEM, formality(rajPOS, list(fam.aff, sex)))
plot(x6, bar.colors="RdBu")
x7 <- with(rajDEM, formality(rajPOS, list(died, fam.aff)))
plot(x7, bar.colors="RdBu",  point.cex=2, point.pch = 3)
x8 <- with(rajDEM, formality(rajPOS, list(died, sex)))
plot(x8, bar.colors="RdBu",  point.cex=2, point.pch = "|")

names(x8)
colsplit2df(x8$formality)

#pass an object from pos or pos_by
ltruncdf(with(raj, formality(x8 , list(act, person))), 6, 4)

#=============#
## ANIMATION ##
#=============#
## EXAMPLE 1
form_ani <- formality(DATA.SPLIT$state, DATA.SPLIT$person)
forma <- Animate(form_ani, contextual="white", formal="blue", 
    current.color = "yellow", current.speaker.color="grey70")

bgb <- vertex_apply(forma, label.color="grey80", size=20, color="grey40")
bgb <- edge_apply(bgb, label.color="yellow")

print(bgb, bg="black", net.legend.color ="white", pause=1)

## EXAMPLE 2
form_ani2 <- formality(raj.act.1POS, mraja1spl$person)
forma2 <- Animate(form_ani2, contextual="white", formal="blue",
    current.color = "yellow", current.speaker.color="grey70")

bgb2 <- vertex_apply(forma2, label.color="grey80", size=17, color="grey40")
bgb2 <- edge_apply(bgb2, label.color="yellow")
print(bgb2, bg="black", pause=.75, net.legend.color = "white")

## EXAMPLE 3 (bar plot)
Animate(form_ani2, as.network=FALSE)

#=====================#
## Complex Animation ##
#=====================#
library(animation)
library(grid)
library(gridBase)
library(qdap)
library(igraph)
library(plotrix)

form_ani2 <- formality(raj.act.1POS, mraja1spl$person)

## Set up the network version
form_net <- Animate(form_ani2, contextual="white", formal="blue",
    current.color = "yellow", current.speaker.color="grey70")
bgb <- vertex_apply(form_net, label.color="grey80", size=17, color="grey40")
bgb <- edge_apply(bgb, label.color="yellow")


## Set up the bar version
form_bar <- Animate(form_ani2, as.network=FALSE)

## Generate a folder
loc <- folder(animation_formality)

## Set up the plotting function
oopt <- animation::ani.options(interval = 0.1)


FUN <- function(follow=FALSE, theseq = seq_along(bgb)) {

    Title <- "Animated Formality: Romeo and Juliet Act 1"
    Legend <- c(.2, -1, 1.5, -.95)
    Legend.cex <- 1

    lapply(theseq, function(i) {
        if (follow) {
            png(file=sprintf("%s/images/Rplot%s.png", loc, i),
                width=650, height=725)
        }
        ## Set up the layout
        layout(matrix(c(rep(1, 9), rep(2, 4)), 13, 1, byrow = TRUE))

        ## Plot 1
        par(mar=c(2, 0, 2, 0), bg="black")
        #par(mar=c(2, 0, 2, 0))
        set.seed(22)
        plot.igraph(bgb[[i]], edge.curved=TRUE)
        graphics::mtext(Title, side=3, col="white")
        color.legend(Legend[1], Legend[2], Legend[3], Legend[4],
              c("Contextual", "Formal"), attributes(bgb)[["legend"]],
              cex = Legend.cex, col="white")

        ## Plot2
        plot.new()
        vps <- baseViewports()

        uns <- unit(c(-1.3,.5,-.75,.25), "cm")
        p <- form_bar[[i]] +
            theme(plot.margin = uns,
                text=element_text(color="white"),
                legend.text=element_text(color="white"),
                legend.background = element_rect(fill = "black"),
                plot.background = element_rect(fill = "black",
                    color="black"))
        print(p,vp = vpStack(vps$figure,vps$plot))
        animation::ani.pause()

        if (follow) {
            dev.off()
        }
    })

}

FUN()

## Detect OS
type <- if(.Platform$OS.type == "windows") shell else system

saveHTML(FUN(, 1:20), autoplay = FALSE, loop = TRUE, verbose = FALSE,
    ani.height = 1000, ani.width=650,
    outdir = loc, single.opts =
    "'controls': ['first', 'play', 'loop', 'speed'], 'delayMin': 0")

FUN(TRUE)

#==================#
## Static Network ##
#==================#
(formdat <- with(sentSplit(DATA, 4), formality(state, person)))
m <- Network(formdat)
m
print(m, bg="grey97", vertex.color="grey75")

print(m, title="Formality Discourse Map", title.color="white", bg="black",
    legend.text.color="white", vertex.label.color = "grey70", 
    edge.label.color="yellow")
    
## or use themes:
dev.off()
m + qtheme()
m + theme_nightheat
dev.off()
m + theme_nightheat(title="Formality Discourse Map", 
    vertex.label.color = "grey50")
    
#===============================#
## Formality Over Time Example ##
#===============================#
formpres <- lapply(with( pres_debates2012, split(dialogue, time)), function(x) {
    formality(x)
})
formplots <- lapply(seq_along(formpres), function(i) {
    m <- plot(cumulative(formpres[[i]]))
    if (i != 2) m <- m + ylab("")
    if (i != 3) m <- m + xlab(NULL)
    m + ggtitle(paste("Debate", i))
})

library(grid)
library(gridExtra)
do.call(grid.arrange, formplots)

## End(Not run)

Find Frequent Terms

Description

Find the most frequently occurring terms in a text vector.

Usage

freq_terms(
  text.var,
  top = 20,
  at.least = 1,
  stopwords = NULL,
  extend = TRUE,
  ...
)

Arguments

text.var

The text variable.

top

Top number of terms to show.

at.least

An integer indicating at least how many letters a word must be to be included in the output.

stopwords

A character vector of words to remove from the text. qdap has a number of data sets that can be used as stop words including: Top200Words, Top100Words, Top25Words. For the tm package's traditional English stop words use tm::stopwords("english").

extend

logical. If TRUE the top argument is extended to any word that has the same frequency as the top word.

...

Other arguments passed to all_words.

Value

Returns a dataframe with the top occurring words.

See Also

word_list, all_words

Examples

## Not run: 
freq_terms(DATA$state, 5)
freq_terms(DATA$state)
freq_terms(DATA$state, extend = FALSE)
freq_terms(DATA$state, at.least = 4)
(out <- freq_terms(pres_debates2012$dialogue, stopwords = Top200Words))
plot(out)

## All words by sentence (row)
library(qdapTools)
x <- raj$dialogue
list_df2df(setNames(lapply(x, freq_terms, top=Inf), seq_along(x)), "row")
list_df2df(setNames(lapply(x, freq_terms, top=10, stopwords = Dolch), 
    seq_along(x)), "Title")


## All words by person
FUN <- function(x, n=Inf) freq_terms(paste(x, collapse=" "), top=n)
list_df2df(lapply(split(x, raj$person), FUN), "person")

## Plot it
out <- lapply(split(x, raj$person), FUN, n=10)
pdf("Freq Terms by Person.pdf", width=13) 
lapply(seq_along(out), function(i) {
    ## dev.new()
    plot(out[[i]], plot=FALSE) + ggtitle(names(out)[i])
})
dev.off()

## Keep spaces
freq_terms(space_fill(DATA$state, "are you"), 500, char.keep="~~")

## End(Not run)

Gantt Durations

Description

gantt - Generates start and end times of supplied text selections (i.e., text selections are determined by any number of grouping variables).

plot_gantt_base - For internal use.

Usage

gantt(text.var, grouping.var, units = "words", sums = FALSE, col.sep = "_")

plot_gantt_base(
  x,
  sums = NULL,
  fill.colors = NULL,
  box.color = "white",
  title = NULL
)

Arguments

text.var

The text variable

grouping.var

The grouping variables. Also takes a single grouping variable or a list of 1 or more grouping variables.

units

The unit of measurement to analyze. One of the strings "character", "syllable", "word", or "sentence".

sums

logical. If TRUE reports and (optionally (or plots) the total units used by grouping variable(s).

col.sep

The character string to use to separate pasted variables in the merged grouping variable header/name.

x

n object of the class "gantt".

fill.colors

The colors of the Gantt plot bars. Either a single color or a length equal to the number of grouping variable(s). If NULL, rainbow is used.

box.color

A color to wrap the boxes with.

title

An optional title.

Value

Returns a data frame of start and end times by grouping variable(s) or optionally returns a list of two: (1) A data frame of the total units used by grouping variable(s) and (2) a data frame of start and end times by grouping variable(s).

Note

For non-repeated measures data use gantt. For more flexible plotting needs use gantt_wrap over the generic plotting method.

Author(s)

DigEmAll (stackoverflow.com) and Tyler Rinker <[email protected]>.

References

Clark, W. & Gantt, H. (1922) The Gantt chart, a working tool of management. New York, Ronald Press.

See Also

gantt_rep, gantt_wrap, gantt_plot

Examples

## Not run: 
(a <- gantt(DATA$state, DATA$person))  
plot(a)
plot(a, base = TRUE)

(b <- gantt(DATA$state, DATA$person, sums = TRUE)) 
plot(b)
plot(b, base = FALSE) 

(d <- gantt(DATA$state, list(DATA$sex, DATA$adult)))        
plot(d)

x <- gantt(mraja1$dialogue, mraja1$person) 
plot(x, base = TRUE)
plot(x, , base = TRUE, box.color = "black") 

z <- gantt(mraja1$dialogue, mraja1$sex)  
plot(z)  
                                                          
e <- with(mraja1, gantt(dialogue, list(fam.aff, sex, died), 
   units = "characters", sums = TRUE))
plot(e)  
     
f <- gantt(mraja1$dialogue, mraja1$person, units = "syllables",
    sums = TRUE)
plot(f, box.color = "red")
plot(f, base = FALSE)

dat <- gantt(mraja1$dialogue, list(mraja1$fam.aff, mraja1$sex),
    units = "sentences", col.sep = "_")
    
    
## Animate It
##=================
ani_gannt <- with(DATA.SPLIT, gantt(state, person))
Animate(ani_gannt)
Animate(plot(ani_gannt))

library(animation)
loc <- folder(animation_gantt)

## Set up the plotting function
oopt <- animation::ani.options(interval = 0.1)

FUN <- function() {
    out <- Animate(ani_gannt)
    lapply(out, function(x) {
        print(x)
        animation::ani.pause()
    })

}

type <- if(.Platform$OS.type == "windows") shell else system
saveGIF(FUN(), interval = 0.1, outdir = loc, cmd.fun = type)

## End(Not run)

Gantt Plot

Description

A convenience function that wraps gantt, gantt_rep and gantt_wrap into a single plotting function.

Usage

gantt_plot(
  text.var,
  grouping.var = NULL,
  rm.var = NULL,
  fill.var = NULL,
  xlab = "duration (in words)",
  units = "words",
  col.sep = "__",
  ...
)

Arguments

text.var

The text variable.

grouping.var

The grouping variables. Also takes a single grouping variable or a list of 1 or more grouping variables.

rm.var

An optional single vector or list of 1 or 2 of repeated measures to facet by

fill.var

An optional variable to fill the code strips by.

xlab

The name of the x-axis label.

units

The unit of measurement.

col.sep

The column separator.

...

Other arguments passed to gantt_wrap.

Value

Returns a Gantt style visualization. Invisibly returns the ggplot2 list object.

Note

For non-repeated measures data/plotting use gantt; for repeated measures data output use gantt_rep; and for a flexible gantt plot that words with code matrix functions (cm) use gantt_wrap.

References

Clark, W. & Gantt, H. (1922) The Gantt chart, a working tool of management. New York, Ronald Press.

See Also

gantt, gantt_rep, gantt_wrap

Examples

## Not run: 
with(rajSPLIT, gantt_plot(text.var = dialogue,
    grouping.var = person, size=4))

with(rajSPLIT, gantt_plot(text.var = dialogue,
    grouping.var = list(fam.aff, sex), rm.var  = act,
    title = "Romeo and Juliet's dialogue"))

with(rajSPLIT, gantt_plot(dialogue, list(fam.aff, sex), act,
    transform=T))

rajSPLIT2 <- rajSPLIT

rajSPLIT2$newb <- as.factor(sample(LETTERS[1:2], nrow(rajSPLIT2),
    replace=TRUE))

z <- with(rajSPLIT2, gantt_plot(dialogue, list(fam.aff, sex),
    list(act, newb), size = 4))

library(ggplot2); library(scales); library(RColorBrewer); library(grid)
z + theme(panel.spacing = unit(1, "lines")) + scale_colour_grey()
z + scale_colour_brewer(palette="Dark2")

## Fill Variable Example
dat <- rajSPLIT[rajSPLIT$act == 1, ]
dat$end_mark <- factor(end_mark(dat$dialogue))

with(dat, gantt_plot(text.var = dialogue, grouping.var = list(person, sex),
    fill.var=end_mark))

## Repeated Measures with Fill Example
rajSPLIT$end_mark <- end_mark(rajSPLIT$dialogue)

with(rajSPLIT, gantt_plot(text.var = dialogue,
    grouping.var = list(fam.aff), rm.var  = list(act),
    fill.var=end_mark, title = "Romeo and Juliet's dialogue"))

## Repeated Measures Sentence Type Example
with(rajSPLIT, gantt_plot(text.var = dialogue,
    grouping.var = list(fam.aff, sex), rm.var  = list(end_mark, act),
    title = "Romeo and Juliet's dialogue"))

## Reset rajSPLIT
rajSPLIT <- qdap::rajSPLIT

## Animate It
##=================
ani_gantt <- with(mraja1, gantt_plot(dialogue, person))

library(animation)
loc <- folder(animation_gantt)

## Set up the plotting function
oopt <- animation::ani.options(interval = 0.1)

FUN <- function() {
    out <- Animate(ani_gantt)
    lapply(out, function(x) {
        print(x)
        animation::ani.pause()
    })

}

type <- if(.Platform$OS.type == "windows") shell else system
saveVideo(FUN(), video.name = "animation.avi", interval = 0.1, outdir = loc)

saveLatex(FUN(), autoplay = TRUE, loop = FALSE, latex.filename = "tester.tex", 
    caption = "animated dialogue", outdir = loc, ani.type = "pdf", 
    ani.dev = "pdf", ani.width = 5, ani.height = 5.5, interval = 0.1)


saveHTML(FUN(), autoplay = FALSE, loop = TRUE, verbose = FALSE, 
    ani.width=600, ani.height=280,
    outdir = file.path(loc, "new"), single.opts = 
    "'controls': ['first', 'play', 'loop', 'speed'], 'delayMin': 0")


## End(Not run)

Generate Unit Spans for Repeated Measures

Description

Produces start and end times for occurrences for each repeated measure condition.

Usage

gantt_rep(
  rm.var,
  text.var,
  grouping.var = NULL,
  units = "words",
  col.sep = "_",
  name.sep = "_"
)

Arguments

rm.var

An optional single vector or list of 1 or 2 of repeated measures to facet by.

text.var

The text variable.

grouping.var

The grouping variables. Also takes a single grouping variable or a list of 1 or more grouping variables.

units

The unit of measurement to analyze. One of the strings "character", "syllable", "word", or "sentence".

col.sep

The character string to use to separate pasted variables in the pasted columns.

name.sep

The character string to use to separate column names of the pasted columns.

Value

Returns a data frame of start and end times by repeated measure and grouping variable(s)

Note

For non-repeated measures data use gantt. For more flexible plotting needs use gantt_wrap over the generic plotting method.

References

Clark, W. & Gantt, H. (1922) The Gantt chart, a working tool of management. New York, Ronald Press.

See Also

gantt, gantt_wrap, gantt_plot

Examples

## Not run: 
dat <- with(rajSPLIT, gantt_rep(act, dialogue, list(fam.aff, sex),
    units = "words", col.sep = "_"))
head(dat, 20)
plot(dat)

gantt_wrap(dat,  "fam.aff_sex",  facet.vars = "act",
    title = "Repeated Measures Gantt Plot",
    minor.line.freq = 25, major.line.freq = 100)

## Two facets variables
dat2 <- with(DATA2, gantt_rep(list(day, class), state, person,
    units = "words", col.sep = "_"))
head(dat2, 20)
plot(dat2)

## End(Not run)

Gantt Plot

Description

A ggplot2 wrapper that produces a Gantt plot.

Usage

gantt_wrap(
  dataframe,
  plot.var,
  facet.vars = NULL,
  fill.var = NULL,
  title = NULL,
  ylab = plot.var,
  xlab = "duration.default",
  rev.factor = TRUE,
  transform = FALSE,
  ncol = NULL,
  minor.line.freq = NULL,
  major.line.freq = NULL,
  sig.dig.line.freq = 1,
  hms.scale = NULL,
  scale = NULL,
  space = NULL,
  size = 3,
  rm.horiz.lines = FALSE,
  x.ticks = TRUE,
  y.ticks = TRUE,
  legend.position = NULL,
  bar.color = NULL,
  border.color = NULL,
  border.size = 2,
  border.width = 0.1,
  constrain = TRUE,
  plot = TRUE
)

Arguments

dataframe

A data frame with plotting variable(s) and a column of start and end times.

plot.var

A factor plotting variable (y axis).

facet.vars

An optional single vector or list of 1 or 2 to facet by.

fill.var

An optional variable to fill the code strips by.

title

An optional title for the plot.

ylab

An optional y label.

xlab

An optional x label.

rev.factor

logical. If TRUE reverse the current plotting order so the first element in the plotting variable's levels is plotted on top.

transform

logical. If TRUE the repeated facets will be transformed from stacked to side by side.

ncol

if an integer value is passed to this gantt_wrap uses facet_wrap rather than facet_grid.

minor.line.freq

A numeric value for frequency of minor grid lines.

major.line.freq

A numeric value for frequency of major grid lines.

sig.dig.line.freq

An internal rounding factor for minor and major line freq. Generally, default value of 1 suffices for larger range of x scale may need to be set to -2.

hms.scale

logical. If TRUE converts scale to h:m:s format. Default NULL attempts to detect if object is a cm_time2long object

scale

Should scales be fixed ("fixed", the default), free ("free"), or free in one dimension ("free_x", "free_y")

space

If "fixed", the default, all panels have the same size. If "free_y" their height will be proportional to the length of the y scale; if "free_x" their width will be proportional to the length of the x scale; or if "free" both height and width will vary. This setting has no effect unless the appropriate scales also vary.

size

The width of the plot bars.

rm.horiz.lines

logical. If TRUE the horizontal lines will be removed.

x.ticks

logical. If TRUE the x ticks will be displayed.

y.ticks

logical. If TRUE the y ticks will be displayed.

legend.position

The position of legends. ("left", "right", "bottom", "top", or two-element numeric vector).

bar.color

Optional color to constrain all bars.

border.color

The color to plot border around Gantt bars (default is NULL).

border.size

An integer value for the size to plot borders around Gantt bars. Controls length (width also controlled if not specified).

border.width

Controls border width around Gantt bars. Use a numeric value in addition to border size if plot borders appear disproportional.

constrain

logical. If TRUE the Gantt bars touch the edge of the graph.

plot

logical. If TRUE the plot will automatically plot. The user may wish to set to FALSE for use in knitr, sweave, etc. to add additional plot layers.

Value

Returns a Gantt style visualization. Invisibly returns the ggplot2 list object.

Note

For non-repeated measures data/plotting use gantt; for repeated measures data output use gantt_rep; and for a convenient wrapper that takes text and generates plots use gantt_plot.

Author(s)

Andrie de Vries and Tyler Rinker <[email protected]>.

References

Clark, W. & Gantt, H. (1922) The Gantt chart, a working tool of management. New York, Ronald Press.

See Also

gantt, gantt_plot, gantt_rep, facet_grid, facet_wrap

Examples

## Not run: 
dat <- gantt(mraja1$dialogue, list(mraja1$fam.aff, mraja1$sex),
    units = "sentences", col.sep = "_")
htruncdf(dat)
gantt_wrap(dat, "fam.aff_sex", title = "Gantt Plot")
dat$codes <- sample(LETTERS[1:3], nrow(dat), TRUE)
gantt_wrap(dat, "fam.aff_sex", fill.var = "codes",
    legend.position = "bottom")

dat2 <- with(rajSPLIT, gantt_rep(act, dialogue,
    list(fam.aff, sex), units = "words", col.sep = "_"))
htruncdf(dat2)
x <- gantt_wrap(dat2, "fam.aff_sex", facet.vars = "act",
    title = "Repeated Measures Gantt Plot")

library(ggplot2); library(scales); library(RColorBrewer)
x + scale_color_manual(values=rep("black",
    length(levels(dat2$fam.aff_sex))))

## End(Not run)

Gradient Word Cloud

Description

Produces a gradient word cloud colored by a binary grouping variable.

Usage

gradient_cloud(
  text.var,
  bigroup.var,
  rev.binary = FALSE,
  X = "red",
  Y = "blue",
  stem = FALSE,
  stopwords = NULL,
  caps = TRUE,
  caps.list = NULL,
  I.list = TRUE,
  random.order = FALSE,
  rot.per = 0,
  min.freq = 1,
  max.word.size = NULL,
  min.word.size = 0.5,
  breaks = 10,
  cloud.font = NULL,
  title = NULL,
  title.font = NULL,
  title.color = "black",
  title.padj = 0.25,
  title.location = 3,
  title.cex = NULL,
  legend.cex = 0.8,
  legend.location = c(0.025, 0.025, 0.25, 0.04),
  char2space = "~~"
)

Arguments

text.var

The text variable.

bigroup.var

A binary grouping variable.

rev.binary

logical. If TRUE the ordering of the binary levels of bigroup.var is reversed.

X

The first gradient color for variable X.

Y

The second gradient color for variable Y.

stem

logical. If TRUE the text.var will be stemmed.

stopwords

Words to exclude from the cloud. Words will be removed after determining proportional word usage.

caps

logical. If TRUE selected words will be capitalized.

caps.list

A vector of words to capitalize (caps must be TRUE).

I.list

logical. If TRUE capitalizes I words and contractions.

random.order

Plot words in random order. If FALSE, they will be plotted in decreasing frequency.

rot.per

Proportion words with 90 degree rotation.

min.freq

An integer value indicating the minimum frequency a word must appear to be included.

max.word.size

A size argument to control the minimum size of the words.

min.word.size

A size argument to control the maximum size of the words.

breaks

An integer describing the number of breaks (odd numbers will be rounded up).

cloud.font

The font family of the cloud text.

title

A character string used as the plot title.

title.font

The font family of the cloud title.

title.color

A character vector of length one corresponding to the color of the title.

title.padj

Adjustment for the title. For strings parallel to the axes, padj = 0 means right or top alignment, and padj = 1 means left or bottom alignment.

title.location

On which side of the plot (1=bottom, 2=left, 3=top, 4=right).

title.cex

Character expansion factor for the title. NULL and NA are equivalent to 1.0.

legend.cex

Character expansion factor for the legend. NULL and NA are equivalent to 1.0.

legend.location

A vector of length 4 denoting the lower left (x and y left) and upper right (x and y right) coordinates of the rectangle of colors in user coordinates.

char2space

A vector of characters to be turned into spaces.

Details

Breaking is done using quantile. This will ensure a certain percentage of words will be colored at each bin.

Value

Plots a gradient word cloud and invisibly returns the dataframe used to make the cloud.

See Also

trans_cloud, wordcloud, color.legend

Examples

## Not run: 
DATA$state <- space_fill(DATA$state, c("is fun", "too fun", "you liar"))

gradient_cloud(DATA$state, DATA$sex, title="fun")
gradient_cloud(DATA$state, DATA$sex, title="fun", rev.binary = TRUE)
gradient_cloud(DATA$state, DATA$sex, title="fun", max.word.size = 5,
    min.word.size = .025)
    
with(mraja1, gradient_cloud(dialogue, died, stopwords = Top25Words, 
    rot.per = .5, title="Heatcloud", title.color="orange", title.cex=1.75))    
x <- with(subset(mraja1, fam.aff %in% qcv(cap, mont)), 
    gradient_cloud(dialogue, fam.aff))
head(x) 

## 2012 U.S. Presidential Debates
invisible(lapply(split(pres_debates2012, pres_debates2012$time), function(x) {
    x <- x[x$person %in% qcv(ROMNEY, OBAMA), ]
    dev.new()
    gradient_cloud(x$dialogue, x$person, 
        title = paste("Debate", char2end(x$time[1])),
        stopwords = BuckleySaltonSWL,
        X = "blue", Y = "red", 
        max.word.size = 2.2, 
        min.word.size = 0.55
    )
}))
        

## End(Not run)

Hamlet (Complete & Split by Sentence)

Description

A dataset containing the complete dialogue of Hamlet with turns of talk split into sentences.

Usage

data(hamlet)

Format

A data frame with 2007 rows and 7 variables

Details

  • act. The act (akin to repeated measures)

  • tot. The turn of talk

  • scene. The scene (nested within an act)

  • location. Location of the scene

  • person. Character in the play

  • died. Logical coded death variable if yes the character dies in the play

  • dialogue. The spoken dialogue

References

http://www.gutenberg.org


Dataframe Viewing

Description

htruncdf - Convenience function to view the head of a truncated dataframe.

truncdf - Convenience function to view a truncated dataframe.

ltruncdf - Convenience function to view the head of a list of truncated dataframes.

qview - Convenience function to view a summary and head of a dataframe.

lview - Convenience function to view the list (list view) of qdap objects that have print methods that print a single dataframe.

Usage

htruncdf(dataframe, n = 10, width = 10, ...)

truncdf(dataframe, end = 10, begin = 1)

ltruncdf(dat.list, n = 6, width = 10, ...)

qview(dataframe, ...)

lview(x, print = TRUE)

Arguments

dataframe

A data.frame object.

n

Number of rows to display.

width

The width of the columns to be displayed.

end

The last character to be displayed (width).

begin

The first character to be displayed (width).

dat.list

A list of data.frame objects.

x

A class qdap object that is a list which prints as a dataframe.

print

logical. If TRUE prints to the console.

...

Other arguments passed to htruncdf (qview; ltruncdf) or head (htruncdf).

Value

htrundf - returns n number of rows of a truncated dataframe.

trundf - returns a truncated dataframe.

ltruncdf - returns a list of n number of rows of a truncated dataframes.

qview - returns a dataframe head with summary statistics.

lview - prints a list of the qdap object and invisibly returns the unclassed object.

See Also

head

Examples

## Not run: 
truncdf(raj[1:10, ])
truncdf(raj[1:10, ], 40)
htruncdf(raj)
htruncdf(raj, 20)
htruncdf(raj, ,20)
ltruncdf(rajPOS, width = 4)
qview(raj)
qview(CO2)
lview(question_type(DATA.SPLIT$state, DATA.SPLIT$person))
lview(rajPOS)
lview(lm(mpg~hp, data = mtcars))

## End(Not run)

Intuitively Remark Sentences as Imperative

Description

Automatic imperative remarking.

Usage

imperative(
  dataframe,
  person.var,
  text.var,
  lock.incomplete = FALSE,
  additional.names = NULL,
  parallel = FALSE,
  warning = FALSE
)

Arguments

dataframe

A data.frame object.

person.var

The person variable.

text.var

The text variable.

lock.incomplete

logical. If TRUE locks incomplete sentences (sentences ending with "|") from being marked as imperative.

additional.names

Additional names that may be used in a command (people in the context that do not speak).

parallel

logical. If TRUE attempts to run the function on multiple cores. Note that this may not mean a speed boost if you have one core or if the data set is smaller as the cluster takes time to create. With the mraja1spl data set, with an 8 core machine, imperative had 1/3 the running time.

warning

logical. If TRUE provides comma warnings (sentences that contain numerous commas that may be handled incorrectly by the algorithm).

Value

Returns a dataframe with a text variable indicating imperative sentences. Imperative sentences are marked with * followed by the original end mark.

Warning

The algorithm used by imperative is sensitive to English language dialects and types. Commas can indicate a choppy sentence and may indicate a false positive. Sentences marked with 'AAVE' may be the use of African American Vernacular English and not an imperative sentence.

Examples

## Not run: 
dat <- data.frame(name=c("sue", rep(c("greg", "tyler", "phil", 
    "sue"), 2)), statement=c("go get it|", "I hate to read.", 
    "Stop running!", "I like it!", "You are terrible!", "Don't!", 
    "Greg, go to the red, brick office.", "Tyler go to the gym.", 
    "Alex don't run."), stringsAsFactors = FALSE)

imperative(dat, "name", "statement", , c("Alex"))
imperative(dat, "name", "statement", lock.incomplete = TRUE, c("Alex"))
imperative(dat, "name", "statement", , c("Alex"), warning=TRUE)
imperative(dat, "name", "statement", , c("Alex"), warning=TRUE,  
    parallel = TRUE)

## End(Not run)

Denote Incomplete End Marks With "|"

Description

Replaces incomplete sentence end marks (.., ..., .?, ..?, en & em dash etc.) with "|".

Usage

incomplete_replace(text.var, scan.mode = FALSE)

incomp(text.var, scan.mode = FALSE)

Arguments

text.var

The text variable.

scan.mode

logical. If TRUE only scans and reports incomplete sentences.

Value

Returns a text variable (character sting) with incomplete sentence marks (.., ..., .?, ..?, en & em dash etc.) replaced with "|". If scan mode is TRUE returns a data frame with incomplete sentence location.

Examples

## Not run: 
x <- c("the...",  "I.?", "you.", "threw..", "we?")
incomplete_replace(x)
incomp(x)
incomp(x, scan.mode = TRUE)

## End(Not run)

Inspect Text Vectors

Description

inspect_text - Inspect a text vector with adjustable string wrapping; created a pretty printed named list.

Usage

inspect_text(text.var, grouping.var = NULL, ...)

## Default S3 method:
inspect_text(text.var, grouping.var = NULL, ...)

## S3 method for class 'Corpus'
inspect_text(text.var, ...)

Arguments

text.var

The text variable or a wfm object.

grouping.var

The grouping variables. Default NULL generates one word list for all text. Also takes a single grouping variable or a list of 1 or more grouping variables.

...

ignored.

Value

Returns a named list (prints pretty).

Examples

## Not run: 
with(raj, inspect_text(dialogue))
with(raj, inspect_text(dialogue, person))
with(raj, inspect_text(dialogue, list(paste("Act", act), person)))

## With a tm Corpus object
library(tm)
data(crude)
inspect_text(crude)

## End(Not run)

Test If Environment is Global

Description

A logical test to determine if the current environment is the global environment.

Usage

is.global(n = 1)

Arguments

n

The number of generations to go back. If used as a function argument n should be set to 2.

Value

A logical response.

Author(s)

Simon O'Hanlon and Tyler Rinker <[email protected]>

References

http://stackoverflow.com/questions/18637656/detect-if-environment-is-global-enviroment

See Also

globalenv, parent.frame

Examples

is.global()
lapply(1:3, function(i) is.global())
FUN <- function() is.global(); FUN()

FUN2 <- function(x = is.global(2)) x
FUN2()
FUN3 <- function() FUN2(); FUN3()

Merge Demographic Information with Person/Text Transcript

Description

Wrapper function (merge) for merging demographic information with a person/text transcript.

Usage

key_merge(transcript.df, key.df, common.column = NULL, defualt.arrange = TRUE)

Arguments

transcript.df

The text/person transcript dataframe

key.df

The demographic dataframe.

common.column

The column(s) shared by transcript.df and key.df. If NULL function defaults to use any columns with the same name.

defualt.arrange

logical. If TRUE will arrange the columns with text to the far right.

Value

Outputs a merged transcript dataframe with demographic information.

See Also

merge

Examples

## Not run: 
#First view transcript dataframe and demographics dataframe.
ltruncdf(list(raj, raj.demographics), 10, 50)
merged.raj <- key_merge(raj, raj.demographics)
htruncdf(merged.raj, 10, 40)

## End(Not run)

Kullback Leibler Statistic

Description

A proximity measure between two probability distributions applied to speech.

Usage

kullback_leibler(x, y = NULL)

Arguments

x

A numeric vector, matrix or data frame.

y

A second numeric vector if x is also a vector. Default is NULL.

Details

Uses Kullback & Leibler's (1951) formula:

DKL(PQ)=iln(PiQi)PiD_{KL}(P||Q)=\sum_i{ln\left ( \frac{P_{i}}{Q_{i}} \right )}P_{i}

Value

Returns a matrix of the Kullback Leibler measure between each vector of probabilities.

Note

The kullback_leibler function generally receives the output of either wfm or wfdf functions.

References

Kullback, S., & Leibler, R.A. (1951). On Information and sufficiency. Annals of Mathematical Statistics 22 (1): 79-86. doi:10.1214/aoms/1177729694

Examples

## Not run: 
p.df <- wfdf(DATA$state, DATA$person)
p.mat <- wfm(text.var = DATA$state, grouping.var = DATA$person)
kullback_leibler(p.mat)
(x <- kullback_leibler(p.df))
print(x, digits = 5)
kullback_leibler(p.df$greg, p.df$sam)

## p.df2 <- wfdf(raj$dialogue, raj$person)
## x <- kullback_leibler(p.df2)

## End(Not run)

Text Justification

Description

left_just - Left justifies a text/character column.

right_just - A means of undoing a left justification.

Usage

left_just(dataframe, column = NULL, keep.class = FALSE)

right_just(dataframe)

Arguments

dataframe

A data.frame object with the text column.

column

The column to be justified. If NULL all columns are justified.

keep.class

logical. If TRUE will attempt to keep the original classes of the dataframe if the justification is not altered (i.e., numeric will not be honored but factor may be).

Value

Returns a dataframe with selected text column left/right justified.

Note

left_just inserts spaces to achieve the justification. This could interfere with analysis and therefore the output from left_just should only be used for visualization purposes, not analysis.

Examples

## Not run: 
left_just(DATA)
left_just(DATA, "state")
left_just(CO2[1:15,])
right_just(left_just(CO2[1:15,]))

## End(Not run)

Lexical Classification Score

Description

Transcript apply lexical classification score (content to functional word proportion) by grouping variable(s) and optionally plot the breakdown of the model.

Usage

lexical_classification(
  text.var,
  grouping.var = NULL,
  order.by.lexical_classification = TRUE,
  function.words = qdapDictionaries::function.words,
  bracket = "all",
  ...
)

Arguments

text.var

The text variable.

grouping.var

The grouping variables. Default NULL generates one word list for all text. Also takes a single grouping variable or a list of 1 or more grouping variables.

order.by.lexical_classification

logical. If TRUE orders the results by #' lexical_classification score.

function.words

A vector of function words. Default is function.words.

bracket

The bracket type to remove. Use NULL to not remove bracketed substrings. See bracket argument in bracketX for bracket types.

...

Other arguments passed to bracketX.

Details

Content words (i.e., nouns, verbs, adjectives, and adverbs) tend to be the words speakers stresses in language use. Whereas, functional words are the "glue" that holds the content together. Speakers devote much less time and stress to these words (i.e., pronouns, articles, conjunctions, quantifiers, and prepositions).

Value

A list containing at the following components:

content

A data.frame of all content words used and corresponding frequencies

functional

A data.frame of all content words used and corresponding frequencies

raw

Sentence level descriptive statistics on content vs. functional word use (ave.content.rate is also nown as lexical density

lexical_classification

Summarized (grouping variable level) descriptive statistics for content vs. functional word use

References

Chung, C. & Pennebaker, J. (2007). The Psychological Functions of Function Words. In K. Fiedler (Ed.) Social Communication (pp. 343-359). New York: Psychology Press.

Pulvermuller, F. (1999). Words in the brain's language. Behavioral and Brain Sciences, 22, pp. 253-279. doi:10.1017/S0140525X9900182X

Segalowitz, S. J. & Lane, K. (2004). Perceptual fluency and lexical access for function versus content words. Behavioral and Brain Sciences, 27, 307-308. doi:10.1017/S0140525X04310071

Bell, A., Brenier, J. M., Gregory, M., Girand, C. & Jurafsky, D. (2009). Predictability Effects on Durations of Content and Function Words in Conversational English. Journal of Memory and Language, 60(1), 92-111. doi:10.1016/j.jml.2008.06.003

Examples

## Not run: 
lexical_classification("I did not like the dog.")
lexical_classification(DATA.SPLIT$state, DATA.SPLIT$person)

(out <- with(pres_debates2012, lexical_classification(dialogue, list(person, time))))
plot(out)

scores(out)

out2 <- preprocessed(out)
htruncdf(out2)
plot(out2)

plot(out[["content"]])
dev.new()
plot(out[["functional"]])

## cloud of functional vs. content
## Highlight Content Words
set.seed(10)
par(mar = c(0,0,0,0))
list(
        content = out[["content"]],
        functional = out[["functional"]]
    ) %>%
    list_df2df("type") %>%
    dplyr::mutate(colors = ifelse(type == "functional", "gray80", "blue")) %>%
    with(., wordcloud::wordcloud(
        word, 
        freq, 
        min.freq = 8, 
        random.order=FALSE,
        ordered.colors = TRUE,
        colors = colors
    )) 
mtext("2012 Presidential Debates:\nFunctional vs. Content Word Use", padj=1.25)
legend(
    .05, .12, bty = "n",
    legend = c("functional", "content"), 
    fill = c("gray80", "blue"),  
    cex = .7
)

## Highlight Functional Words
set.seed(10)
par(mar = c(0,0,0,0))
list(
        content = out[["content"]],
        functional = out[["functional"]]
    ) %>%
    list_df2df("type") %>%
    dplyr::mutate(colors = ifelse(type == "functional", "red", "gray80")) %>%
    with(., wordcloud::wordcloud(
        word, 
        freq, 
        min.freq = 8, 
        random.order=FALSE,
        ordered.colors = TRUE,
        colors = colors
    )) 
mtext("2012 Presidential Debates:\nFunctional vs. Content Word Use", padj=1.25)
legend(
    .05, .12, bty = "n",
    legend = c("functional", "content"), 
    fill = c("red", "gray80"),  
    cex = .7
)

#=============#
## ANIMATION ##
#=============#
## EXAMPLE 1
lex_ani <- lexical_classification(DATA.SPLIT$state, DATA.SPLIT$person)
lexa <- Animate(lex_ani, content="white", functional="blue",
    current.color = "yellow", current.speaker.color="grey70")

bgb <- vertex_apply(lexa, label.color="grey80", size=20, color="grey40")
bgb <- edge_apply(bgb, label.color="yellow")

print(bgb, bg="black", net.legend.color ="white", pause=1)

## EXAMPLE 2
lex_ani2 <- lexical_classification(mraja1spl$dialogue, mraja1spl$person)
lexa2 <- Animate(lex_ani2, content="white", functional="blue",
    current.color = "yellow", current.speaker.color="grey70")

bgb2 <- vertex_apply(lexa2, label.color="grey80", size=17, color="grey40")
bgb2 <- edge_apply(bgb2, label.color="yellow")
print(bgb2, bg="black", pause=.75, net.legend.color = "white")

## EXAMPLE 3 (bar plot)
Animate(lex_ani2, type="bar")

## EXAMPLE 4 (text plot)
Animate(lex_ani2, type="text")

#======================#
## Complex Animations ##
#======================#
## EXAMPLE 1: Network + Text + Bar
 
library(animation)
library(grid)
library(gridBase)
library(qdap)
library(igraph)
library(plotrix)

lex_ani2 <- lexical_classification(mraja1spl$dialogue, mraja1spl$person)

## Set up the network version
lex_net <- Animate(lex_ani2, contextual="white", lexal="blue",
    current.color = "yellow", current.speaker.color="grey70")
bgb <- vertex_apply(lex_net, label.color="grey80", size=17, color="grey40")
bgb <- edge_apply(bgb, label.color="yellow")


## Set up the bar version
lex_bar <- Animate(lex_ani2, type="bar")

## Set up the text
lex_text <- Animate(lex_ani2, type="text", size = 3, width=125, color="white")

## Generate a folder
loc <- folder(animation_lexical_classification)
setwd(loc)

## Set up the plotting function
oopt <- animation::ani.options(interval = 0.1)


lex_text_bar <- Map(function(x, y){

    uns <- unit(c(-1.6,.5,-.2,.25), "cm")

    x <- x +
        theme(plot.margin = uns,
            text=element_text(color="white"),
            legend.text=element_text(color="white"),
            legend.background = element_rect(fill = "black"),
            panel.border = element_rect(color = "black"),
            panel.background = element_rect(fill = "black"),
            plot.background = element_rect(fill = "black",
                color="black"))

    uns2 <- unit(c(-.5,.5,-.45,.25), "cm")

    y <- y +
        theme(plot.margin = uns2,
            text=element_text(color="white"),
            legend.text=element_text(color="white"),
            legend.background = element_rect(fill = "black"),
            plot.background = element_rect(fill = "black",
                color="black"))

    gA <- ggplotGrob(x)
    gB <- ggplotGrob(y)
    maxWidth <- grid::unit.pmax(gA$widths[2:5], gB$widths[2:5])
    gA$widths[2:5] <- as.list(maxWidth)
    gB$widths[2:5] <- as.list(maxWidth)
    out <- arrangeGrob(gA, gB, ncol=1, heights = grid::unit(c(.3, .7), "native"))
    ## grid.draw(out)
    invisible(out)

}, lex_text, lex_bar)


FUN <- function(follow=FALSE, theseq = seq_along(bgb)) {

    Title <- "Animated Content Rate: Romeo and Juliet Act 1"
    Legend <- c(.2, -1, 1.5, -.95)
    Legend.cex <- 1

    lapply(theseq, function(i) {
        if (follow) {
            png(file=sprintf("%s/images/Rplot%s.png", loc, i),
                width=750, height=875)
        }
        ## Set up the layout
        layout(matrix(c(rep(1, 7), rep(2, 6)), 13, 1, byrow = TRUE))

        ## Plot 1
        par(mar=c(2, 0, 2, 0), bg="black")
        #par(mar=c(2, 0, 2, 0))
        set.seed(22)
        plot.igraph(bgb[[i]], edge.curved=TRUE)
        mtext(Title, side=3, col="white")
        color.legend(Legend[1], Legend[2], Legend[3], Legend[4],
              c("Functional", "Content"), attributes(bgb)[["legend"]],
              cex = Legend.cex, col="white")

        ## Plot2
        plot.new()
        vps <- baseViewports()

        print(lex_text_bar[[i]], vp = vpStack(vps$figure,vps$plot))

        animation::ani.pause()

        if (follow) {
            dev.off()
        }
    })

}

FUN()

## Detect OS
type <- if(.Platform$OS.type == "windows") shell else system


saveHTML(FUN(), autoplay = FALSE, loop = TRUE, verbose = FALSE,
    ani.height = 1000, ani.width=750,
    outdir = loc, single.opts =
    "'controls': ['first', 'previous', 'play', 'next', 'last', 'loop', 'speed'], 'delayMin': 0")

FUN(TRUE)

## EXAMPLE 2: Line + Text + Bar
## Generate a folder
loc2 <- folder(animation_lexical_classification2)
setwd(loc2)

lex_ani2 <- lexical_classification(mraja1spl$dialogue, mraja1spl$person)

## Set up the bar version
lex_bar <- Animate(lex_ani2, type="bar")
cumline <- cumulative(lex_bar)
lex_line <- plot(cumline)
ylims <- range(cumline[[1]][-c(1:100)]) + c(-.1, .1)

## Set up the text
lex_text <- Animate(lex_ani2, type="text", size = 4, width = 80)


lex_line_text_bar <- Map(function(x, y, z){

    mar <- theme(plot.margin = unit(c(0, .5, 0, .25), "cm"))

    gA <- ggplotGrob(x + mar + 
        theme(panel.background = element_rect(fill = NA, colour = NA), 
            panel.border = element_rect(fill = NA, colour = NA),
            plot.background = element_rect(fill = NA, colour = NA)))
    gB <- ggplotGrob(y + mar)
    gC <- ggplotGrob(z + mar + ylab("Average Content Rate") + 
        coord_cartesian(ylim = ylims) +
        ggtitle("Average Content Rate: Romeo & Juliet Act 1"))

    maxWidth <- grid::unit.pmax(gA$widths[2:5], gB$widths[2:5], gC$widths[2:5])
    gA$widths[2:5] <- as.list(maxWidth)
    gB$widths[2:5] <- as.list(maxWidth)
    gC$widths[2:5] <- as.list(maxWidth)
    out <- arrangeGrob(gC, gA, gB, ncol=1, heights = grid::unit(c(.38, .25, .37), "native"))
    ## grid.draw(out)
    invisible(out)

}, lex_text, lex_bar, lex_line)


FUN2 <- function(follow=FALSE, theseq = seq_along(lex_line_text_bar)) {


    lapply(theseq, function(i) {
        if (follow) {
            png(file=sprintf("%s/images/Rplot%s.png", loc2, i),
                width=750, height=875)
        }
 
        print(lex_line_text_bar[[i]])
        animation::ani.pause()

        if (follow) {
            dev.off()
        }
    })

}

FUN2()

## Detect OS
type <- if(.Platform$OS.type == "windows") shell else system

library(animation)
saveHTML(FUN2(), autoplay = FALSE, loop = TRUE, verbose = FALSE,
    ani.height = 1000, ani.width=750,
    outdir = loc2, single.opts =
    "'controls': ['first', 'previous', 'play', 'next', 'last', 'loop', 'speed'], 'delayMin': 0")

FUN2(TRUE)

#==================#
## Static Network ##
#==================#
(lexdat <- with(sentSplit(DATA, 4), lexical_classification(state, person)))
m <- Network(lexdat)
m
print(m, bg="grey97", vertex.color="grey75")

print(m, title="Lexical Content Discourse Map", title.color="white", 
    bg="black", legend.text.color="white", vertex.label.color = "grey70",
    edge.label.color="yellow")

## or use themes:
dev.off()
m + qtheme()
m + theme_nightheat
dev.off()
m + theme_nightheat(title="Lexical Content Discourse Map",
    vertex.label.color = "grey50")
    
#==================================#
## Content Rate Over Time Example ##
#==================================#
lexpres <- lapply(with( pres_debates2012, split(dialogue, time)), function(x) {
    lexical_classification(x)
})
lexplots <- lapply(seq_along(lexpres), function(i) {
    dat <- cumulative(lexpres[[i]])
    m <- plot(dat)
    if (i != 2) m <- m + ylab("")  
    if (i == 2) m <- m + ylab("Average Content Rate") 
    if (i != 3) m <- m + xlab(NULL)
    if (i != 1) m <- m + theme(plot.margin=unit(c(0, 1, 0, .5) + .1, "lines"))
    m + ggtitle(paste("Debate", i)) + 
        coord_cartesian(xlim = c(300, length(dat[[1]])),
            ylim = unlist(range(dat[[1]][-c(1:300)]) + c(-.25, .25)))
})

library(grid)
library(gridExtra)
do.call(grid.arrange, lexplots)

## End(Not run)

Read/Write Multiple csv Files at a Time

Description

mcsv_r - Read and assign multiple csv files at the same time.

mcsv_w - Write multiple csv files into a file at the same time.

Usage

mcsv_r(
  files,
  a.names = NULL,
  l.name = NULL,
  list = TRUE,
  pos = 1,
  envir = as.environment(pos)
)

mcsv_w(
  ...,
  dir = NULL,
  open = FALSE,
  sep = ", ",
  dataframes = NULL,
  pos = 1,
  envir = as.environment(pos)
)

Arguments

files

csv file(s) to read.

a.names

object names to assign the csv file(s) to. If NULL assigns the name(s) of the csv files in the directory, without the file extension, to the objects in the global environment.

l.name

A single character string of a name to assign to the list if dataframes created by the csv files being read in. Default (NULL) uses L1.

list

logical. If TRUE then a list of dataframes is crated in the global environment in addition to the individual dataframes.

pos

where to do the removal. By default, uses the current environment.

envir

the environment to use.

...

data.frame object(s) to write to a file or a list of data.frame objects. If the objects in a list are unnamed V + digit will be assigned. Lists of dataframes (e.g., the output from termco or polarity) can be passed as well.

dir

optional directory names. If NULL a directory will be created in the working directory with the data and time stamp as the folder name.

open

logical. If TRUE opens the directory upon completion.

sep

A character string to separate the terms.

dataframes

An optional character vector of dataframes in lieu of ... argument.

Details

mcsv is short for "multiple csv" and the suffix c(_r, _w) stands for "read" (r) or "write" (w).

Value

mcsv_r - reads in multiple csv files at once.

mcsv_w - creates a directory with multiple csv files. Silently returns the path of the directory.

Note

mcsv_r is useful for reading in multiple csv files from cm_df.temp for interaction with cm_range2long.

See Also

cm_range2long, cm_df.temp, condense, assign

Examples

## Not run: 
## mcsv_r EXAMPLE:
mtcarsb <- mtcars[1:5, ]; CO2b <- CO2[1:5, ]
(a <- mcsv_w(mtcarsb, CO2b, dir="foo"))
rm("mtcarsb", "CO2b")  # gone from .GlobalEnv
(nms <- dir(a))
mcsv_r(file.path(a, nms))
mtcarsb; CO2b
rm("mtcarsb", "CO2b")  # gone from .GlobalEnv
mcsv_r(file.path(a, nms), paste0("foo.dat", 1:2))
foo.dat1; foo.dat2
rm("foo.dat1", "foo.dat2")  # gone from .GlobalEnv
delete("foo")

## mcsv_w EXAMPLES:
(a <- mcsv_w(mtcars, CO2, dir="foo"))
delete("foo")

## Write lists of dataframes as well
poldat <- with(DATA.SPLIT, polarity(state, person))
term <- c("the ", "she", " wh")
termdat <- with(raj.act.1,  termco(dialogue, person, term))
mcsv_w(poldat, termdat, mtcars, CO2, dir="foo2")
delete("foo2")

## End(Not run)

Romeo and Juliet: Act 1 Dialogue Merged with Demographics

Description

A dataset containing act 1 of Romeo and Juliet with demographic information.

Usage

data(mraja1)

Format

A data frame with 235 rows and 5 variables

Details

  • person. Character in the play

  • sex. Gender

  • fam.aff. Family affiliation of character

  • died. Dummy coded death variable (0-no; 1-yes); if yes the character dies in the play

  • dialogue. The spoken dialogue

References

http://shakespeare.mit.edu/romeo_juliet/full.html


Romeo and Juliet: Act 1 Dialogue Merged with Demographics and Split

Description

A dataset containing act 1 of Romeo and Juliet with demographic information and turns of talk split into sentences.

Usage

data(mraja1spl)

Format

A data frame with 508 rows and 7 variables

Details

  • person. Character in the play

  • tot.

  • sex. Gender

  • fam.aff. Family affiliation of character

  • died. Dummy coded death variable (0-no; 1-yes); if yes the character dies in the play

  • dialogue. The spoken dialogue

  • stem.text.

References

http://shakespeare.mit.edu/romeo_juliet/full.html


Multiple gsub

Description

multigsub - A wrapper for gsub that takes a vector of search terms and a vector or single value of replacements.

sub_holder - This function holds the place for particular character values, allowing the user to manipulate the vector and then revert the place holders back to the original values.

Usage

multigsub(
  pattern,
  replacement,
  text.var,
  leadspace = FALSE,
  trailspace = FALSE,
  fixed = TRUE,
  trim = TRUE,
  order.pattern = fixed,
  ...
)

mgsub(
  pattern,
  replacement,
  text.var,
  leadspace = FALSE,
  trailspace = FALSE,
  fixed = TRUE,
  trim = TRUE,
  order.pattern = fixed,
  ...
)

sub_holder(pattern, text.var, alpha.type = TRUE, ...)

Arguments

pattern

Character string to be matched in the given character vector.

replacement

Character string equal in length to pattern or of length one which are a replacement for matched pattern.

text.var

The text variable.

leadspace

logical. If TRUE inserts a leading space in the replacements.

trailspace

logical. If TRUE inserts a trailing space in the replacements.

fixed

logical. If TRUE, pattern is a string to be matched as is. Overrides all conflicting arguments.

trim

logical. If TRUE leading and trailing white spaces are removed and multiple white spaces are reduced to a single white space.

order.pattern

logical. If TRUE and fixed = TRUE, the pattern string is sorted by number of characters to prevent substrings replacing meta strings (e.g., pattern = c("the", "then") resorts to search for "then" first).

...

Additional arguments passed to gsub.

alpha.type

logical. If TRUE alpha (lower case letters) are used for the key. If FALSE numbers are used as the key.

Value

multigsub - Returns a vector with the pattern replaced.

sub_holder - Returns a list with the following:

output

keyed place holder character vector

unhold

A function used to revert back to the original values

Note

The unhold function for sub_holder will only work on keys that have not been disturbed by subsequent alterations. The key follows the pattern of 'qdapplaceholder' followed by lower case letter keys followed by 'qdap'.

See Also

gsub

Examples

## Not run: 
## ======================
##    `mgsub` Function
## ======================

multigsub(c("it's", "I'm"), c("it is", "I am"), DATA$state)
mgsub(c("it's", "I'm"), c("it is", "I am"), DATA$state)
mgsub("[[:punct:]]", "PUNC", DATA$state, fixed = FALSE)

## ====================== 
## `sub_holder` Function
## ======================

## `alpha.type` as TRUE
(fake_dat <- paste(emoticon[1:11,2], DATA$state))
(m <- sub_holder(emoticon[,2], fake_dat))
m$unhold(strip(m$output))
# With Stemming
m$unhold(stemmer(strip(m$output), capitalize = FALSE))

## `alpha.type` as FALSE (numeric keys)
vowels <- LETTERS[c(1, 5, 9, 15, 21)]
(m2 <- sub_holder(vowels, toupper(DATA$state), alpha.type = FALSE))
m2$unhold(gsub("[^0-9]", "", m2$output))
mtabulate(strsplit(m2$unhold(gsub("[^0-9]", "", m2$output)), ""))

## End(Not run)

Nested Standardization

Description

Standardize within a subgroup and then within a group.

Usage

multiscale(numeric.var, grouping.var, original_order = TRUE, digits = 2)

Arguments

numeric.var

A numeric variable.

grouping.var

The grouping variables. Default NULL generates one word list for all text. Also takes a single grouping variable or a list of 1 or more grouping variables.

original_order

logical. IF TRUE orders by the original order. If FALSE orders by group.

digits

Integer; number of decimal places to round.

Value

Returns a list of two:

SCALED_OBSERVATIONS

A dataframe of scaled observations at level one and two of the nesting with possible outliers.

DESCRIPTIVES_BY_GROUP

A data frame of descriptives by group.

See Also

scale

Examples

## Not run: 
dat <- with(mraja1spl, word_stats(dialogue, list(person, sex, fam.aff)))
htruncdf(colsplit2df(dat$ts), ,4)
out1 <- with(colsplit2df(dat$ts), multiscale(word.count, person))
ltruncdf(out1, 10)
out2 <- with(colsplit2df(dat$ts), multiscale(word.count, 
    list(fam.aff, sex)))
ltruncdf(out2, 10)
out3 <- with(colsplit2df(dat$ts), multiscale(word.count, 
    list(fam.aff, sex), original_order = FALSE))
ltruncdf(out3, 10)

## End(Not run)

Replace Missing Values (NA)

Description

Replace missing values (NA) in a vector or dataframe.

Usage

NAer(x, replace = 0)

Arguments

x

A vector or dataframe with missing values (NA).

replace

The value to replace missing values (NA) with.

Value

Returns a vector or dataframe with missing values replaced.

Examples

## Not run: 
set.seed(10)              
(x <- sample(c(rep(NA, 4), 1:10), 20, rep=T))
NAer(x)

set.seed(10)
(y <- data.frame(matrix(x, 5, 4))                           )
NAer(y)
NAer(y, "MISSING")  

## End(Not run)

Names to Gender

Description

A wrapper for the gender function used to predict gender based on first name.

Usage

name2sex(names.list, USE.NAMES = FALSE, ...)

Arguments

names.list

Character vector containing first names.

USE.NAMES

logical. If TRUE names.list is used to name the gender vector.

...

Other arguments passed to gender.

Value

Returns a vector of predicted gender (M/F) based on first name.

See Also

gender

Examples

## Not run: 
name2sex(qcv(mary, jenn, linda, JAME, GABRIEL, OLIVA, 
    tyler, jamie, JAMES, tyrone, cheryl, drew))

## End(Not run)

Generic Network Method

Description

Create a network plot for select qdap outputs.

Usage

Network(x, ...)

Arguments

x

A select qdap object.

...

Arguments passed to Network method of other classes.

Value

Returns a network plot.


Network Formality

Description

Network.formality - Network a formality object.

Usage

## S3 method for class 'formality'
Network(
  x,
  contextual = "yellow",
  formal = "red",
  edge.constant,
  title = NULL,
  digits = 3,
  plus.300.color = "grey40",
  under.300.color = "grey88",
  missing.color = "purple",
  ...
)

Arguments

x

A formality object.

contextual

The color to use for 0% formality (purely contextual).

formal

The color to use for 100% formality (purely formal).

edge.constant

A constant to multiple edge width by.

title

The title to apply to the Networked image(s).

digits

The number of digits to use in the current turn of talk formality.

plus.300.color

The bar color to use for grouping variables exceeding 299 words per Heylighen & Dewaele's (2002) minimum word recommendations.

under.300.color

The bar color to use for grouping variables less than 300 words per Heylighen & Dewaele's (2002) minimum word recommendations.

missing.color

The color to use in a network plot for edges corresponding to missing text data. Use na.omit before hand to remove the missing values all together.

...

Other arguments passed to discourse_map.

Details

formality Method for Network


Network Lexical Classification

Description

Network.lexical_classification - Network a lexical_classification object.

Usage

## S3 method for class 'lexical_classification'
Network(
  x,
  functional = "yellow",
  content = "red",
  edge.constant,
  title = NULL,
  digits = 2,
  ...
)

Arguments

x

A lexical_classification object.

functional

The color to use for 0% lexical_classification (purely functional).

content

The color to use for 100% lexical_classification (purely content).

edge.constant

A constant to multiple edge width by.

title

The title to apply to the Networked image(s).

digits

The number of digits to use in the current turn of talk lexical_classification.

...

Other arguments passed to discourse_map.

Details

lexical_classification Method for Network


Network Polarity

Description

Network.polarity - Network a polarity object.

Usage

## S3 method for class 'polarity'
Network(
  x,
  negative = "blue",
  positive = "red",
  neutral = "yellow",
  edge.constant,
  title = NULL,
  digits = 3,
  ...
)

Arguments

x

A polarity object.

negative

The color to use for negative polarity.

positive

The color to use for positive polarity.

neutral

The color to use for neutral polarity.

edge.constant

A constant to multiple edge width by.

title

The title to apply to the Networked image(s).

digits

The number of digits to use in the current turn of talk polarity.

...

Other arguments passed to discourse_map.

Details

polarity Method for Network


Project Template

Description

Generate a project template to increase efficiency.

Usage

new_project(project = "new", path = getwd(), open = is.global(2), ...)

Arguments

project

A character vector of the project name.

path

The path to where the project should be created. Default is the current working directory.

open

logical. If TRUE the project will be opened in RStudio. The default is to test if new_project is being used in the global environment, if it is then the project directory will be opened.

...

ignored.

Details

The project template includes these main directories and scripts:

  • CODEBOOK - A directory to store coding conventions or demographics data:

    • KEY.csv - A blank template for demographic information

  • CORRESPONDENCE - A directory to store correspondence and agreements with the client:

    • CONTACT_INFO.txt - A text file to put research team members' contact information

  • DATA - A directory to store data:

    • CLEANED_TRANSCRIPTS - A directory to store the cleaned transcripts (If the transcripts are already cleaned you may choose to not utilize the RAW_TRANSCRIPTS directory)

    • CM_DATA - A directory to export/import scripts for cm_xxx family of functions

    • DATA_FOR_REVIEW - A directory to put data that may need to be altered or needs to be inspected more closely

    • RAW_DATA - A directory to store non-transcript data related to the project:

      • ANALYTIC_MEMOS - A directory to put audio files (or shortcuts)

      • AUDIO - A directory to put audio files (or shortcuts)

      • FIELD_NOTES - A directory to put audio files (or shortcuts)

      • PAPER_ARTIFACTS - A directory to put paper artifacts

      • PHOTOGRAPHS - A directory to put photographs

      • VIDEO - A directory to put video files (or shortcuts)

    • TRANSCRIPTS - A directory to put transcription data:

      • CLEANED_TRANSCRIPTS - A directory to store the cleaned transcripts (If the transcripts are already cleaned you may choose to not utilize the RAW_TRANSCRIPTS directory)

      • RAW_TRANSCRIPTS - A directory to store the raw transcripts

  • DOCUMENTATION - A directory to store documents related to the project

  • PLOTS - A directory to store plots

  • REPORTS - A directory with report and presentation related tools.

  • SCRIPTS - A directory to store scripts; already contains the following:

    • 01_clean_data.R - initial cleaning of raw transcripts

    • 02_analysis_I.R - initial analysis

    • 03_plots.R - plotting script

  • TABLES - A directory to export tables to

  • WORD_LISTS - A directory to store word lists that can be sourced and supplied to functions

  • extra_functions.R - A script to store user made functions related to the project

    • email - A function to view, and optionally copy to the clipboard, emails for the client/lead researcher, analyst and/or other project members (information taking from ~/CORRESPONDENCE/CONTACT_INFO.txt file)

    • todo - A function to view, and optionally copy to the clipboard, non-completed tasks from the TO_DO.txt file

  • LOG - A text file documenting project changes/needs etc.

  • PROJECT_WORKFLOW_GUIDE.pdf - A pdf explaining the structure of the project template

  • xxx.Rproj - A project file used by RRtudio; clicking this will open the project in RStudio.

  • TO_DO - A text file documenting project tasks

The template comes with a .Rproj file. This makes operating in RStudio very easy. The file can be kept on the desktop or a git application such as github, bitbucket or dropbox, depending on what the client/research team is comfortable utilizing.

Value

Creates a project template.


Generate ngrams

Description

Transcript apply ngrams.

Usage

ngrams(text.var, grouping.var = NULL, n = 2, ...)

Arguments

text.var

The text variable

grouping.var

The grouping variables. Default NULL generates one word list for all text. Also takes a single grouping variable or a list of 1 or more grouping variables.

n

The max number of grams calculate

...

Further arguments passed to strip function.

Value

Returns a list of:

raw

A list of pasted single vectors of the ngrams per row.

group

A list of pasted vectors of ngrams grouped by grouping.var.

unlist1

A list of a single vector of pasted ngrams per grouping.var in the order used.

unlist2

A list of a single vector of pasted ngrams per grouping.var in alphabetical order.

group_n

A list of a list of vectors of ngrams per grouping.var & n (not pasted).

all

A single vector of pasted ngrams sorted alphabetically.

all_n

A list of lists a single vectors of ngrams sorted alphabetically (not pasted).

Examples

## Not run: 
ngrams(DATA$state, DATA$person, 2)
ngrams(DATA$state, DATA$person, 3)
ngrams(DATA$state, , 3)
with(mraja1, ngrams(dialogue, list(sex, fam.aff), 3))

## Alternative ngram analysis:
n_gram <- function(x, n = 2, sep = " "){

    m <- qdap::bag_o_words(x)
    if (length(m) < n) return(character(0))
    starts <- 1:(length(m) - (n - 1))
    ends <- n:length(m) 
    Map(function(x, y){
            paste(m[x:y], collapse=sep)
        }, starts, ends
    )
}

dat <- sentSplit(DATA, "state")

dat[["grams"]] <- sapply(dat[["state"]], function(x) { 
    unbag(n_gram(x, sep = "~~"))
})

m <- with(dat, as.tdm(grams, person))
rownames(m) <- gsub("~~", " ", rownames(m))
as.matrix(m)
rowSums(as.matrix(m))



dat2 <- sentSplit(raj, "dialogue")

dat2[["grams"]] <- sapply(dat2[["dialogue"]], function(x) { 
    unbag(n_gram(x, sep = "~~"))
})

m2 <- with(dat2, as.tdm(grams, person))
rownames(m2) <- gsub("~~", " ", rownames(m2))
qheat(t(as.matrix(tm:::weightTfIdf(tm::removeSparseTerms(m2, .7)))), high="red")

sort(rowSums(as.matrix(m2)))

## End(Not run)

Count Object Pronouns Per Grouping Variable

Description

Count the number of object pronouns per grouping variables.

Usage

object_pronoun_type(
  text.var,
  grouping.var = NULL,
  object.pronoun.list = NULL,
  ...
)

Arguments

text.var

The text variable

grouping.var

The grouping variables. Default NULL generates one word list for all text. Also takes a single grouping variable or a list of 1 or more grouping variables.

object.pronoun.list

A named list of object pronouns. See Details for more.

...

Other arguments passed to termco

Details

The following object pronoun categories are the default searched terms:

  • me = c(" me ", " my ", " mine ")

  • us = c(" us ", " our ", " ours ")

  • you = c(" you'd ", " you'll ", " you're ", " you've ", " you ", " your ")

  • him = c(" him ", " his ")

  • her = c(" her ", " hers ")

  • them = c(" them ")

  • their = c(" their ", "theirs ")

  • it = c(" it'd ", " it'll ", " it's ", " it ")

Value

Returns a list, of class "object_pronoun_type", of data frames regarding object pronoun word counts:

preprocessed

List of uncollapsed dataframes (raw, prop, rnp) of the class "termco" that contain all searchable object pronouns.

raw

raw word counts by grouping variable

prop

proportional word counts by grouping variable; proportional to each individual's object pronoun use

rnp

a character combination data frame of raw and proportional object pronoun use

See Also

subject_pronoun_type, pronoun_type

Examples

## Not run: 
dat <- pres_debates2012
dat <- dat[dat$person %in% qcv(ROMNEY, OBAMA), ]
(out <- object_pronoun_type(dat$dialogue, dat$person))
plot(out)
plot(out, 2)
plot(out, 3)
plot(out, 3, ncol=2)

scores(out)
counts(out)
proportions(out)
preprocessed(out)

plot(scores(out))
plot(counts(out))
plot(proportions(out))

## End(Not run)

Detect Outliers in Text

Description

Locate possible outliers for text variables given numeric word function.

Usage

outlier_detect(
  text.var,
  grouping.var = NULL,
  FUN = word_count,
  scale.by = "grouping"
)

Arguments

text.var

The text variable.

grouping.var

The grouping variables. Default NULL generates one word list for all text. Also takes a single grouping variable or a list of 1 or more grouping variables.

FUN

A word function with a numeric vector output (e.g., syllable_sum, character_count or word_count).

scale.by

A character string indicating which dimensions to scale by. One of "all", "grouping", or "both". Default NULL scales by all.

Value

Returns a dataframe with possible outliers.

Examples

## Not run: 
with(DATA, outlier_detect(state))
with(DATA, outlier_detect(state, FUN = character_count))
with(DATA, outlier_detect(state, person, FUN = character_count))
with(DATA, outlier_detect(state, list(sex, adult), FUN = character_count))
with(DATA, outlier_detect(state, FUN = syllable_sum))
htruncdf(with(raj, outlier_detect(dialogue, person)), 15, 45)

## End(Not run)

Locate Outliers in Numeric String

Description

Locate and label possible outliers in a string.

Usage

outlier_labeler(x, standardize = TRUE, ...)

Arguments

x

A numeric vector.

standardize

logical. If TRUE scales the vector first.

...

Other arguments passed to scale.

Value

Returns a matrix (one column) of possible outliers coded as "3sd", "2sd" and "1.5sd", corresponding to >= to 3, 2, or 1.5 standard deviations.

See Also

scale

Examples

## Not run: 
outlier_labeler(mtcars$hp)[20:32]
by(mtcars$mpg, mtcars$cyl, outlier_labeler)
tapply(mtcars$mpg, mtcars$cyl, outlier_labeler)

## End(Not run)

Paste an Unspecified Number Of Text Columns

Description

paste2 - Paste unspecified columns or a list of vectors together.

colpaste2df - Wrapper for paste2 that returns a dataframe with columns pasted together.

Usage

paste2(multi.columns, sep = ".", handle.na = TRUE, trim = TRUE)

colpaste2df(
  mat,
  combined.columns,
  sep = ".",
  name.sep = "&",
  keep.orig = TRUE,
  ...
)

Arguments

multi.columns

The multiple columns or a list of vectors to paste together.

sep

The character to be used in paste2 to paste the columns.

handle.na

logical. If TRUE returns NA if any column/vector contains a missing value.

trim

logical. If TRUE leading/trailing white space is removed.

mat

A matrix or dataframe.

combined.columns

A list of named vectors of the colnames/indexes of the numeric columns to be pasted. If a vector is unnamed a name will be assigned.

name.sep

The character to be used to paste the column names.

keep.orig

logical. If TRUE the original columns (i.e., combined.columns) will be retained as well.

...

Other arguments passed to paste2.

Value

paste2 - Returns a vector with row-wise elements pasted together.

colpaste2df - Returns a dataframe with pasted columns.

Note

paste differs from paste2 because paste does not allowed an unspecified number of columns to be pasted. This behavior can be convenient for inside of functions when the number of columns being pasted is unknown.

See Also

paste, colsplit2df

Examples

## Not run: 
## paste2 examples
v <- rep(list(state.abb[1:8],  month.abb[1:8]) , 5)
n <- sample(5:10, 1)
paste(v[1:n]) #odd looking return
paste2(v[1:n]) 
paste2(v[1:n], sep="|") 
paste2(mtcars[1:10,], sep="|") 
paste(mtcars[1:10,], sep="|") #odd looking return
paste2(CO2[1:10,], sep="|-|") 

## colpaste2df examples
A <- list(
    a = c(1, 2, 3),
    b = qcv(mpg, hp),
    c = c("disp", "am")
)
B <- list(
    c(1, 2, 3),
    new.col = qcv(mpg, hp),
    c("disp", "am")
)
E <- list(
    c(1, 2, 3, 4, 5),
    qcv(mpg, hp),
    c("disp", "am")
)

colpaste2df(head(mtcars), A)
colpaste2df(head(mtcars), B)
colpaste2df(head(mtcars), E)
colpaste2df(head(mtcars), qcv(am, disp, drat), sep ="_", name.sep = "|")
colpaste2df(head(CO2), list(c(1, 2, 3, 4, 5), qcv("conc", "uptake")))

## End(Not run)

Phrase Nets

Description

Create Many Eyes style phrase nets.

Usage

phrase_net(
  text.var,
  freq = 4,
  r = 0.35,
  edge.constant = 6,
  vertex.constant = 3,
  ...
)

Arguments

text.var

The text variable.

freq

The minimum word frequency occurrence.

r

The minimum correlation value

edge.constant

A constant to multiple the edges by.

vertex.constant

A constant to multiple the vertex label sizes by.

...

Other arguments passed to Filter.

Value

Returns an igraph object.

Note

While Many Eyes phrase nets inspired this function the two outputs are not identical. The phrase_net function operates off of correlations between words in sentences.

References

http://trinker.github.io/many-eye/

Examples

## Not run: 
x <- "Questions must be at least 2 days old to be eligible for a bounty.
    There can only be 1 active bounty per question at any given time.
    Users must have at least 75 reputation to offer a bounty, and may
    only have a maximum of 3 active bounties at any given time. The
    bounty period lasts 7 days. Bounties must have a minimum duration of
    at least 1 day. After the bounty ends, there is a grace period of 24
    hours to manually award the bounty. If you do not award your bounty
    within 7 days (plus the grace period), the highest voted answer
    created after the bounty started with at least 2 upvotes will be
    awarded half the bounty amount. If there's no answer meeting that
    criteria, the bounty is not awarded to anyone. If the bounty was
    started by the question owner, and the question owner accepts an
    answer during the bounty period, and the bounty expires without an
    explicit award - we assume the bounty owner liked the answer they
    accepted and award it the full bounty amount at the time of bounty
    expiration. In any case, you will always give up the amount of
    reputation specified in the bounty, so if you start a bounty, be sure
    to follow up and award your bounty to the best answer! As an
    additional bonus, bounty awards are immune to the daily reputation
    cap and community wiki mode."

phrase_net(sent_detect(x), r=.5)
library(igraph)
plot(phrase_net(sent_detect(x), r=.5), edge.curved = FALSE)

## Declaration of Independence Example
y <- readLines("http://www.constitution.org/usdeclar.txt")
y <- paste(y[grep("When, in the", y):length(y)], collapse=" ")
phrase_net(sent_detect(y), r=.7)


## Multiple grouping variables
z <- lapply(split(raj.act.1$dialogue, raj.act.1$person), paste, collapse = " ")
par(mfrow=c(2, 5), mai = c(.05, 0.15, 0.15, 0.15))
lapply(seq_along(z), function(i) {
    x <- try(phrase_net(sent_detect(z[i]), r=.6))
    if (!inherits(x, "try-error")) {
        print(x)
        box()
        mtext(names(z)[i])
    }
}) 


lapply(seq_along(z), function(i) {
    x <- try(phrase_net(sent_detect(z[i]), r=.6))
    if (!inherits(x, "try-error")) {
        dev.new()
        print(x)
        mtext(names(z)[i], padj=-1, cex=1.7, col="red")
    }
}) 

## End(Not run)

Plots an animated_character Object

Description

Plots an animated_character object.

Usage

## S3 method for class 'animated_character'
plot(x, ...)

Arguments

x

The animated_character object.

...

Other arguments passed to print.animated_character.


Plots an animated_discourse_map Object

Description

Plots an animated_discourse_map object.

Usage

## S3 method for class 'animated_discourse_map'
plot(x, ...)

Arguments

x

The animated_discourse_map object.

...

Other arguments passed to print.animated_discourse_map .


Plots a animated_formality Object

Description

Plots a animated_formality object.

Usage

## S3 method for class 'animated_formality'
plot(x, ...)

Arguments

x

The animated_formality object.

...

Other arguments passed to print.animated_formality .


Plots an animated_lexical_classification Object

Description

Plots an animated_lexical_classification object.

Usage

## S3 method for class 'animated_lexical_classification'
plot(x, ...)

Arguments

x

The animated_lexical_classification object.

...

Other arguments passed to print.animated_lexical_classification .


Plots an animated_polarity Object

Description

Plots an animated_polarity object.

Usage

## S3 method for class 'animated_polarity'
plot(x, ...)

Arguments

x

The animated_polarity object.

...

Other arguments passed to print.animated_polarity .


Plots a automated_readability_index Object

Description

Plots a automated_readability_index object.

Usage

## S3 method for class 'automated_readability_index'
plot(x, ...)

Arguments

x

The readability_score object.

...

ignored


Plots a character_table Object

Description

Plots a character_table object.

Usage

## S3 method for class 'character_table'
plot(
  x,
  label = FALSE,
  lab.digits = 1,
  percent = NULL,
  zero.replace = NULL,
  ...
)

Arguments

x

The character_table object

label

logical. If TRUE the cells of the heat map plot will be labeled with count and proportional values.

lab.digits

Integer values specifying the number of digits to be printed if label is TRUE.

percent

logical. If TRUE output given as percent. If FALSE the output is proportion. If NULL uses the value from question_type. Only used if label is TRUE.

zero.replace

Value to replace 0 values with. If NULL uses the value from question_type. Only used if label is TRUE.

...

Other arguments passed to qheat


Plots a cm_distance object

Description

Plots a cm_distance object.

Usage

## S3 method for class 'cm_distance'
plot(
  x,
  digits = 3,
  constant = 1,
  label.dist = FALSE,
  layout = igraph::layout.fruchterman.reingold,
  label.cex = 1,
  label.cex.scale.by.n = FALSE,
  alpha = NULL,
  label.color = "black",
  use.vertex.shape = FALSE,
  arrow.size = 0.6,
  ...
)

Arguments

x

A cm_distance object.

digits

The number of digits to use if distance labels are included on the edges.

constant

A constant to weight the edges by.

label.dist

logical. If TRUE distance measures are placed on the edges.

layout

A layout; see layout.

label.cex

A constant to use for the label size.

label.cex.scale.by.n

logical. If TRUE the label size is scaled by the number of uses of the code.

alpha

The cut off value for pvalue inclusion of edges.

label.color

Color of the vertex labels.

use.vertex.shape

logical. If TRUE the vertex label if plotted on a circle.

arrow.size

The size of the arrows. Currently this is a constant, so it is the same for every edge.

...

Further arguments passed to the chosen layout.

Value

Returns the igraph object.

Note

This plotting method is not particularly well developed. It is suggested that the user further develop the graph via direct use of the igraph package.


Plots a cmspans object

Description

Plots a cmspans object.

Usage

## S3 method for class 'cmspans'
plot(x, plot.var = NULL, facet.vars = NULL, title = "Gantt Plot", ...)

Arguments

x

The sums_cmspans object

plot.var

A factor plotting variable (y axis).

facet.vars

An optional single vector or list of 1 or 2 to facet by.

title

An optional title.

...

Other arguments passed to gantt_wrap.


Plots a coleman_liau Object

Description

Plots a coleman_liau object.

Usage

## S3 method for class 'coleman_liau'
plot(x, ...)

Arguments

x

The readability_score object.

...

ignored


Plots a combo_syllable_sum Object

Description

Plots a combo_syllable_sum object.

Usage

## S3 method for class 'combo_syllable_sum'
plot(x, ...)

Arguments

x

The combo_syllable_sum object.

...

ignored


Plots a cumulative_animated_formality Object

Description

Plots a cumulative_animated_formality object.

Usage

## S3 method for class 'cumulative_animated_formality'
plot(x, ...)

Arguments

x

The cumulative_animated_formality object.

...

ignored


Plots a cumulative_animated_lexical_classification Object

Description

Plots a cumulative_animated_lexical_classification object.

Usage

## S3 method for class 'cumulative_animated_lexical_classification'
plot(x, ...)

Arguments

x

The cumulative_animated_lexical_classification object.

...

ignored


Plots a cumulative_animated_polarity Object

Description

Plots a cumulative_animated_polarity object.

Usage

## S3 method for class 'cumulative_animated_polarity'
plot(x, ...)

Arguments

x

The cumulative_animated_polarity object.

...

ignored


Plots a cumulative_combo_syllable_sum Object

Description

Plots a cumulative_combo_syllable_sum object.

Usage

## S3 method for class 'cumulative_combo_syllable_sum'
plot(x, ...)

Arguments

x

The cumulative_combo_syllable_sum object.

...

ignored


Plots a cumulative_end_mark Object

Description

Plots a cumulative_end_mark object.

Usage

## S3 method for class 'cumulative_end_mark'
plot(x, ...)

Arguments

x

The cumulative_end_mark object.

...

ignored


Plots a cumulative_formality Object

Description

Plots a cumulative_formality object.

Usage

## S3 method for class 'cumulative_formality'
plot(x, ...)

Arguments

x

The cumulative_formality object.

...

ignored


Plots a cumulative_lexical_classification Object

Description

Plots a cumulative_lexical_classification object.

Usage

## S3 method for class 'cumulative_lexical_classification'
plot(x, ...)

Arguments

x

The cumulative_lexical_classification object.

...

ignored


Plots a cumulative_polarity Object

Description

Plots a cumulative_polarity object.

Usage

## S3 method for class 'cumulative_polarity'
plot(x, ...)

Arguments

x

The cumulative_polarity object.

...

ignored


Plots a cumulative_syllable_freq Object

Description

Plots a cumulative_syllable_freq object.

Usage

## S3 method for class 'cumulative_syllable_freq'
plot(x, ...)

Arguments

x

The cumulative_syllable_freq object.

...

ignored


Plots a discourse_map Object

Description

Plots a discourse_map object.

Usage

## S3 method for class 'discourse_map'
plot(x, ...)

Arguments

x

The discourse_map object.

...

Other arguments passed to print.discourse_map.


Plots a diversity object

Description

Plots a diversity object.

Usage

## S3 method for class 'diversity'
plot(x, ...)

Arguments

x

The diversity object

...

Other arguments passed to qheat


Plots an end_mark Object

Description

Plots an end_mark object.

Usage

## S3 method for class 'end_mark'
plot(x, ...)

Arguments

x

The end_mark object.

...

ignored


Plots a end_mark_by Object

Description

Plots a end_mark_by object.

Usage

## S3 method for class 'end_mark_by'
plot(x, values = FALSE, ...)

Arguments

x

The end_mark_by object.

values

logical. If TRUE the cell values will be included on the heatmap.

...

Other arguments passed to qheat.


Plots a end_mark_by_count Object

Description

Plots a end_mark_by_count object.

Usage

## S3 method for class 'end_mark_by_count'
plot(x, values = TRUE, ...)

Arguments

x

The end_mark_by_count object.

values

logical. If TRUE the cell values will be included on the heatmap.

...

Arguments passed to qheat.


Plots a end_mark_by_preprocessed Object

Description

Plots a end_mark_by_preprocessed object.

Usage

## S3 method for class 'end_mark_by_preprocessed'
plot(x, ncol = 1, ...)

Arguments

x

The end_mark_by_preprocessed object.

ncol

The number of columns to use for facet_wrap.

...

ignored


Plots a end_mark_by_proportion Object

Description

Plots a end_mark_by_proportion object.

Usage

## S3 method for class 'end_mark_by_proportion'
plot(x, values = TRUE, ...)

Arguments

x

The end_mark_by_proportion object.

values

logical. If TRUE the cell values will be included on the heatmap.

...

Arguments passed to qheat.


Plots a end_mark_by_score Object

Description

Plots a end_mark_by_score object.

Usage

## S3 method for class 'end_mark_by_score'
plot(x, values = TRUE, ...)

Arguments

x

The end_mark_by_score object.

values

logical. If TRUE the cell values will be included on the heatmap.

...

Arguments passed to qheat.


Plots a flesch_kincaid Object

Description

Plots a flesch_kincaid object.

Usage

## S3 method for class 'flesch_kincaid'
plot(x, ...)

Arguments

x

The readability_score object.

...

ignored


Plots a formality Object

Description

Plots a formality object including the parts of speech used to calculate contextual/formal speech.

Usage

## S3 method for class 'formality'
plot(
  x,
  point.pch = 20,
  point.cex = 0.5,
  point.colors = c("gray65", "red"),
  bar.colors = NULL,
  short.names = TRUE,
  min.wrdcnt = NULL,
  order.by.formality = TRUE,
  plot = TRUE,
  ...
)

Arguments

x

The formality object.

point.pch

The plotting symbol.

point.cex

The plotting symbol size.

point.colors

A vector of colors (length of two) to plot word count and formality score.

bar.colors

A palette of colors to supply to the bars in the visualization. If two palettes are provided to the two bar plots respectively.

short.names

logical. If TRUE shortens the length of legend and label names for more compact plot width.

min.wrdcnt

A minimum word count threshold that must be achieved to be considered in the results. Default includes all subgroups.

order.by.formality

logical. If TRUE the group formality plot will be ordered by average formality score, otherwise alphabetical order is assumed.

plot

logical. If TRUE the plot will automatically plot. The user may wish to set to FALSE for use in knitr, sweave, etc. to add additional plot layers.

...

ignored

Value

Invisibly returns the ggplot2 objects that form the larger plot.


Plots a formality_scores Object

Description

Plots a formality_scores object.

Usage

## S3 method for class 'formality_scores'
plot(x, ...)

Arguments

x

The formality_scores object.

...

ignored


Plots a freq_terms Object

Description

Plots a freq_terms object.

Usage

## S3 method for class 'freq_terms'
plot(x, plot = TRUE, ...)

Arguments

x

The freq_terms object.

plot

logical. If TRUE the plot will automatically plot. The user may wish to set to FALSE for use in knitr, sweave, etc. to add additional plot layers.

...

ignored.


Plots a gantt object

Description

Plots a gantt object.

Usage

## S3 method for class 'gantt'
plot(x, base = FALSE, title = NULL, ...)

Arguments

x

The sums_gantt object

base

logical. If TRUE prints in base graphics system. If FALSE prints in ggplot graphics system.

title

An optional title.

...

Other arguments passed to gantt_wrap or plot_gantt_base


Plots a kullback_leibler object

Description

Plots a kullback_leibler object.

Usage

## S3 method for class 'kullback_leibler'
plot(x, digits = 3, ...)

Arguments

x

The kullback_leibler object

digits

Number of decimal places to print.

...

Other arguments passed to qheat


Plots a lexical Object

Description

Plots a lexical object.

Usage

## S3 method for class 'lexical'
plot(
  x,
  min.freq = 1,
  rot.per = 0,
  random.order = FALSE,
  title = TRUE,
  title.color = "blue",
  ...
)

Arguments

x

The lexical object.

min.freq

Words with frequency below min.freq will not be plotted.

rot.per

Proportion words with 90 degree rotation.

random.order

logical. If codeTRUE plot words in random order. If FALSE, they will be plotted in decreasing frequency.

title

The title of the plot. Use NULL to eliminate.

title.color

The color of the title.

...

Other arguments passed to wordcloud.


Plots a lexical_classification Object

Description

Plots a lexical_classification object as a heat map Gantt plot with lexical_classification over time (measured in words) and lexical_classification scores per sentence. In the dotplot plot the black dots are the average lexical_classification per grouping variable.

Usage

## S3 method for class 'lexical_classification'
plot(
  x,
  bar.size = 5,
  low = "blue",
  mid = "grey99",
  high = "red",
  ave.lexical_classification.shape = "+",
  alpha = 1/4,
  shape = 19,
  point.size = 2.5,
  jitter = 0.1,
  nrow = NULL,
  na.rm = TRUE,
  order.by.lexical_classification = TRUE,
  plot = TRUE,
  error.bars = TRUE,
  error.bar.height = 0.5,
  error.bar.size = 0.5,
  error.bar.color = "black",
  error.bar.alpha = 0.6,
  ...
)

Arguments

x

The lexical_classification object.

bar.size

The size of the bars used in the Gantt plot.

low

The color to be used for lower values.

mid

The color to be used for mid-range values (default is a less striking color).

high

The color to be used for higher values.

ave.lexical_classification.shape

The shape of the average lexical_classification score used in the dot plot.

alpha

Transparency level of points (ranges between 0 and 1).

shape

The shape of the points used in the dot plot.

point.size

The size of the points used in the dot plot.

jitter

Amount of vertical jitter to add to the points.

nrow

The number of rows in the dotplot legend (used when the number of grouping variables makes the legend too wide). If NULL no legend if plotted.

na.rm

logical. Should missing values be removed?

order.by.lexical_classification

logical. If TRUE the group lexical_classification plot will be ordered by average lexical_classification score, otherwise alphabetical order is assumed.

plot

logical. If TRUE the plot will automatically plot. The user may wish to set to FALSE for use in knitr, sweave, etc. to add additional plot layers.

error.bars

logical. If TRUE error bars are added to the lexical_classification dot plot using the standard error of the mean lexical_classification score.

error.bar.height

The height of the error bar ends.

error.bar.size

The size/thickness of the error bars.

error.bar.color

The color of the error bars. If NULL each bar will be colored by grouping variable.

error.bar.alpha

The alpha level of the error bars.

...

ignored

Value

Invisibly returns the ggplot2 objects that form the larger plot.


Plots a lexical_classification_preprocessed Object

Description

Plots a lexical_classification_preprocessed object.

Usage

## S3 method for class 'lexical_classification_preprocessed'
plot(x, jitter = 0.1, text.size = 3.5, alpha = 0.3, ncol = 3, ...)

Arguments

x

The lexical_classification_preprocessed object.

jitter

The amount to jitter the points by in the bocplots.

text.size

The text size to use for plotting the mean in the boxplots.

alpha

The alpha level to use for points.

ncol

The number of columns to use for facet_wrap.

...

ignored


Plots a lexical_classification_score Object

Description

Plots a lexical_classification_score object.

Usage

## S3 method for class 'lexical_classification_score'
plot(
  x,
  error.bar.height = 0.35,
  error.bar.size = 0.5,
  error.bar.alpha = 0.3,
  ...
)

Arguments

x

The lexical_classification_score object.

error.bar.height

The height of the error bar ends.

error.bar.size

The size/thickness of the error bars.

error.bar.alpha

The alpha level of the error bars.

...

ignored


Plots a linsear_write Object

Description

Plots a linsear_write object.

Usage

## S3 method for class 'linsear_write'
plot(x, alpha = 0.4, ...)

Arguments

x

The readability_score object.

alpha

The alpha level for the points and smooth fill in the scatterplot (length one or two; if two 1-points, 2-smooth fill).

...

ignored


Plots a linsear_write_count Object

Description

Plots a linsear_write_count object.

Usage

## S3 method for class 'linsear_write_count'
plot(x, ...)

Arguments

x

The linsear_write_count object.

...

ignored


Plots a linsear_write_scores Object

Description

Plots a linsear_write_scores object.

Usage

## S3 method for class 'linsear_write_scores'
plot(x, alpha = c(0.4, 0.08), ...)

Arguments

x

The readability_score object.

alpha

The alpha level for the points and smooth fill in the scatterplot (length one or two; if two 1-points, 2-smooth fill).

...

Other arguments passed to geom_smooth.


Plots a Network Object

Description

Plots a Network object.

Usage

## S3 method for class 'Network'
plot(x, ...)

Arguments

x

The Network object.

...

Other arguments passed to print.Network .


Plots an object_pronoun_type Object

Description

Plots an object_pronoun_type object.

Usage

## S3 method for class 'object_pronoun_type'
plot(x, type = 1, ...)

Arguments

x

The object_pronoun_type object.

type

An integer of 1, 2, 3) corresponding to 1 - heat map; 2 - lexical dispersion plot; 3 - facetted bar graph.

...

Other arguments passed to qheat, dispersion_plot, or facet_wrap.


Plots a polarity Object

Description

Plots a polarity object as a heat map Gantt plot with polarity over time (measured in words) and polarity scores per sentence. In the dotplot plot the black dots are the average polarity per grouping variable.

Usage

## S3 method for class 'polarity'
plot(
  x,
  bar.size = 5,
  low = "blue",
  mid = "grey99",
  high = "red",
  ave.polarity.shape = "+",
  alpha = 1/4,
  shape = 19,
  point.size = 2.5,
  jitter = 0.1,
  nrow = NULL,
  na.rm = TRUE,
  order.by.polarity = TRUE,
  plot = TRUE,
  error.bars = TRUE,
  error.bar.height = 0.5,
  error.bar.size = 0.5,
  error.bar.color = "black",
  ...
)

Arguments

x

The polarity object.

bar.size

The size of the bars used in the Gantt plot.

low

The color to be used for lower values.

mid

The color to be used for mid-range values (default is a less striking color).

high

The color to be used for higher values.

ave.polarity.shape

The shape of the average polarity score used in the dot plot.

alpha

Transparency level of points (ranges between 0 and 1).

shape

The shape of the points used in the dot plot.

point.size

The size of the points used in the dot plot.

jitter

Amount of vertical jitter to add to the points.

nrow

The number of rows in the dotplot legend (used when the number of grouping variables makes the legend too wide). If NULL no legend if plotted.

na.rm

logical. Should missing values be removed?

order.by.polarity

logical. If TRUE the group polarity plot will be ordered by average polarity score, otherwise alphabetical order is assumed.

plot

logical. If TRUE the plot will automatically plot. The user may wish to set to FALSE for use in knitr, sweave, etc. to add additional plot layers.

error.bars

logical. If TRUE error bars are added to the polarity dot plot using the standard error of the mean polarity score.

error.bar.height

The height of the error bar ends.

error.bar.size

The size/thickness of the error bars.

error.bar.color

The color of the error bars. If NULL each bar will be colored by grouping variable.

...

ignored

Value

Invisibly returns the ggplot2 objects that form the larger plot.


Plots a polarity_count Object

Description

Plots a polarity_count object as a heat map Gantt plot with polarity over time (measured in words) and polarity scores per sentence. In the dotplot plot the black dots are the average polarity per grouping variable.

Usage

## S3 method for class 'polarity_count'
plot(
  x,
  bar.size = 5,
  low = "blue",
  mid = "grey99",
  high = "red",
  ave.polarity.shape = "+",
  alpha = 1/4,
  shape = 19,
  point.size = 2.5,
  jitter = 0.1,
  nrow = NULL,
  na.rm = TRUE,
  order.by.polarity = TRUE,
  plot = TRUE,
  error.bars = TRUE,
  error.bar.height = 0.5,
  error.bar.size = 0.5,
  error.bar.color = "black",
  ...
)

Arguments

x

The polarity_count object.

bar.size

The size of the bars used in the Gantt plot.

low

The color to be used for lower values.

mid

The color to be used for mid-range values (default is a less striking color).

high

The color to be used for higher values.

ave.polarity.shape

The shape of the average polarity score used in the dot plot.

alpha

Transparency level of points (ranges between 0 and 1).

shape

The shape of the points used in the dot plot.

point.size

The size of the points used in the dot plot.

jitter

Amount of vertical jitter to add to the points.

nrow

The number of rows in the dotplot legend (used when the number of grouping variables makes the legend too wide). If NULL no legend if plotted.

na.rm

logical. Should missing values be removed?

order.by.polarity

logical. If TRUE the group polarity plot will be ordered by average polarity score, otherwise alphabetical order is assumed.

plot

logical. If TRUE the plot will automatically plot. The user may wish to set to FALSE for use in knitr, sweave, etc. to add additional plot layers.

error.bars

logical. If TRUE error bars are added to the polarity dot plot using the standard error of the mean polarity score.

error.bar.height

The height of the error bar ends.

error.bar.size

The size/thickness of the error bars.

error.bar.color

The color of the error bars. If NULL each bar will be colored by grouping variable.

...

ignored

Value

Invisibly returns the ggplot2 objects that form the larger plot.


Plots a polarity_score Object

Description

Plots a polarity_score object.

Usage

## S3 method for class 'polarity_score'
plot(
  x,
  error.bar.height = 0.35,
  error.bar.size = 0.5,
  error.bar.alpha = 0.3,
  ...
)

Arguments

x

The polarity_score object.

error.bar.height

The height of the error bar ends.

error.bar.size

The size/thickness of the error bars.

error.bar.alpha

The alpha level of the error bars.

...

ignored


Plots a pos Object

Description

Plots a pos object.

Usage

## S3 method for class 'pos'
plot(x, ...)

Arguments

x

The pos object

...

ignored


Plots a pos_by Object

Description

Plots a pos_by object.

Usage

## S3 method for class 'pos_by'
plot(
  x,
  label = FALSE,
  lab.digits = 1,
  percent = NULL,
  zero.replace = NULL,
  ...
)

Arguments

x

The pos_by object

label

logical. If TRUE the cells of the heat map plot will be labeled with count and proportional values.

lab.digits

Integer values specifying the number of digits to be printed if label is TRUE.

percent

logical. If TRUE output given as percent. If FALSE the output is proportion. If NULL uses the value from question_type. Only used if label is TRUE.

zero.replace

Value to replace 0 values with. If NULL uses the value from question_type. Only used if label is TRUE.

...

Other arguments passed to qheat.


Plots a pos_preprocessed Object

Description

Plots a pos_preprocessed object.

Usage

## S3 method for class 'pos_preprocessed'
plot(x, ...)

Arguments

x

The pos_preprocessed object.

...

ignored


Plots an pronoun_type Object

Description

Plots an pronoun_type object.

Usage

## S3 method for class 'pronoun_type'
plot(x, type = 1, ...)

Arguments

x

The pronoun_type object.

type

An integer of 1, 2, 3) corresponding to 1 - heat map; 2 - lexical dispersion plot; 3 - facetted bar graph.

...

Other arguments passed to qheat, dispersion_plot, or facet_wrap.


Plots a question_type Object

Description

Plots a question_type object.

Usage

## S3 method for class 'question_type'
plot(
  x,
  label = FALSE,
  lab.digits = 1,
  percent = NULL,
  zero.replace = NULL,
  ...
)

Arguments

x

The question_type object.

label

logical. If TRUE the cells of the heat map plot will be labeled with count and proportional values.

lab.digits

Integer values specifying the number of digits to be printed if label is TRUE.

percent

logical. If TRUE output given as percent. If FALSE the output is proportion. If NULL uses the value from question_type. Only used if label is TRUE.

zero.replace

Value to replace 0 values with. If NULL uses the value from question_type. Only used if label is TRUE.

...

Other arguments passed to qheat.


Plots a question_type_preprocessed Object

Description

Plots a question_type_preprocessed object.

Usage

## S3 method for class 'question_type_preprocessed'
plot(x, ...)

Arguments

x

The question_type_preprocessed object.

...

Arguments passed to gantt_plot.


Plots a readability_count Object

Description

Plots a readability_count object.

Usage

## S3 method for class 'readability_count'
plot(x, alpha = 0.3, ...)

Arguments

x

The readability_count object.

alpha

The alpha level to use for points.

...

ignored


Plots a readability_score Object

Description

Plots a readability_score object.

Usage

## S3 method for class 'readability_score'
plot(x, alpha = 0.3, auto.label, grid, div.col, ...)

Arguments

x

The readability_score object.

alpha

The alpha level to be used for the points.

auto.label

logical. For plotting fry only, if TRUE labels automatically added. If FALSE the user clicks interactively.

grid

logical. For plotting fry only, if TRUE a micro grid is displayed similar to Fry's original depiction, though this makes visualizing more difficult.

div.col

For plotting fry only, the color of the grade level division lines.

...

ignored


Plots a rmgantt object

Description

Plots a rmgantt object.

Usage

## S3 method for class 'rmgantt'
plot(x, title, transform = FALSE, ...)

Arguments

x

The sums_rmgantt object

title

An optional title.

transform

logical. If TRUE and there are two repeated measures the faceting is reversed.

...

Other arguments passed to gantt_wrap


Plots a sent_split Object

Description

Plots a sent_split object.

Usage

## S3 method for class 'sent_split'
plot(x, text.var = NULL, rm.var = NULL, ...)

Arguments

x

The sent_split object.

text.var

The text variable (character string).

rm.var

An optional repeated measures character vector of 1 or 2 to facet by. If NULL the rm.var from sentSplit is used. To avoid this behavior use FALSE.

...

Other arguments passed to tot_plot.


Plots a SMOG Object

Description

Plots a SMOG object.

Usage

## S3 method for class 'SMOG'
plot(x, ...)

Arguments

x

The readability_score object.

...

ignored


Plots an subject_pronoun_type Object

Description

Plots an subject_pronoun_type object.

Usage

## S3 method for class 'subject_pronoun_type'
plot(x, type = 1, ...)

Arguments

x

The subject_pronoun_type object.

type

An integer of 1, 2, 3) corresponding to 1 - heat map; 2 - lexical dispersion plot; 3 - facetted bar graph.

...

Other arguments passed to qheat, dispersion_plot, or facet_wrap.


Plot Summary Stats for a Summary of a cmspans Object

Description

Plots a heat map of summary statistics for sum_cmspans objects (the object produced by calling summary on a cmspans object).

Usage

## S3 method for class 'sum_cmspans'
plot(
  x,
  digits = 3,
  sep = ".",
  name.sep = "&",
  values = TRUE,
  high = "red",
  transpose = TRUE,
  plot = TRUE,
  facet.vars = "time",
  rev.codes = !transpose,
  rev.stats = !transpose,
  ...
)

Arguments

x

The sum_cmspans object (the object produced by calling summary on a cmspans object)

digits

The number of digits displayed if values is TRUE.

sep

The character that was used in paste2 to paste the columns.

name.sep

The character that was used to paste the column names.

values

logical. If TRUE the cell values will be included on the heatmap.

high

The color to be used for higher values.

transpose

logical. If TRUE the dataframe is rotated 90 degrees.

plot

logical. If TRUE the plot will automatically plot. The user may wish to set to FALSE for use in knitr, sweave, etc. to add additional plot layers.

facet.vars

A character vector of names to facet by. Default is "time".

rev.codes

logical If TRUE the plotting order of the code groups is reversed.

rev.stats

logical If TRUE the plotting order of the code descriptive statistics is reversed.

...

Other arguments passed to qheat.

See Also

summary.cmspans


Plots a sums_gantt object

Description

Plots a sums_gantt object.

Usage

## S3 method for class 'sums_gantt'
plot(x, base = TRUE, title = NULL, ...)

Arguments

x

The sums_gantt object

base

logical. If TRUE prints in base graphics system. If FALSE prints in ggplot graphics system.

title

An optional title.

...

Other arguments passed to gantt_wrap or plot_gantt_base


Plots a syllable_freq Object

Description

Plots a syllable_freq object.

Usage

## S3 method for class 'syllable_freq'
plot(x, ...)

Arguments

x

The syllable_freq object.

...

ignored


Plots a table_count Object

Description

Plots a table_count object.

Usage

## S3 method for class 'table_count'
plot(x, values = TRUE, high = "red", ...)

Arguments

x

The table_count object.

values

logical. If TRUE the cell values will be included on the heatmap.

high

The color to be used for higher values.

...

Other arguments passed to qheat.


Plots a table_proportion Object

Description

Plots a table_proportion object.

Usage

## S3 method for class 'table_proportion'
plot(x, values = TRUE, high = "red", ...)

Arguments

x

The table_proportion object.

values

logical. If TRUE the cell values will be included on the heatmap.

high

The color to be used for higher values.

...

Other arguments passed to qheat.


Plots a table_score Object

Description

Plots a table_score object.

Usage

## S3 method for class 'table_score'
plot(x, values = TRUE, high = "red", ...)

Arguments

x

The table_score object.

values

logical. If TRUE the cell values will be included on the heatmap.

high

The color to be used for higher values.

...

Other arguments passed to qheat.


Plots a termco object

Description

Plots a termco object.

Usage

## S3 method for class 'termco'
plot(
  x,
  label = FALSE,
  lab.digits = 1,
  percent = NULL,
  zero.replace = NULL,
  ...
)

Arguments

x

The termco object.

label

logical. If TRUE the cells of the heat map plot will be labeled with count and proportional values.

lab.digits

Integer values specifying the number of digits to be printed if label is TRUE.

percent

logical. If TRUE output given as percent. If FALSE the output is proportion. If NULL uses the value from termco. Only used if label is TRUE.

zero.replace

Value to replace 0 values with. If NULL uses the value from termco. Only used if label is TRUE.

...

Other arguments passed to qheat.


Plots a type_token_ratio Object

Description

Plots a type_token_ratio object.

Usage

## S3 method for class 'type_token_ratio'
plot(x, ...)

Arguments

x

The type_token_ratio object.

...

ignored.


Plots a weighted_wfm object

Description

Plots a weighted_wfm object.

Usage

## S3 method for class 'weighted_wfm'
plot(
  x,
  non.zero = FALSE,
  digits = 0,
  by.column = NULL,
  high = ifelse(non.zero, "black", "blue"),
  grid = ifelse(non.zero, "black", "white"),
  plot = TRUE,
  ...
)

Arguments

x

The weighted_wfm object

non.zero

logical. If TRUE all values converted to dummy coded based on x_ij > 0.

digits

The number of digits displayed if values is TRUE.

by.column

logical. If TRUE applies scaling to the column. If FALSE applies scaling by row (use NULL to turn off scaling).

high

The color to be used for higher values.

grid

The color of the grid (Use NULL to remove the grid).

plot

logical. If TRUE the plot will automatically plot. The user may wish to set to FALSE for use in knitr, sweave, etc. to add additional plot layers.

...

Other arguments passed to qheat.


Plots a wfdf object

Description

Plots a wfdf object.

Usage

## S3 method for class 'wfdf'
plot(x, ...)

Arguments

x

The wfdf object

...

Other arguments passed to plot.wfm.


Plots a wfm object

Description

Plots a wfm object.

Usage

## S3 method for class 'wfm'
plot(
  x,
  non.zero = FALSE,
  digits = 0,
  by.column = NULL,
  high = ifelse(non.zero, "black", "blue"),
  grid = ifelse(non.zero, "black", "white"),
  plot = TRUE,
  ...
)

Arguments

x

The wfm object

non.zero

logical. If TRUE all values converted to dummy coded based on x_ij > 0.

digits

The number of digits displayed if values is TRUE.

by.column

logical. If TRUE applies scaling to the column. If FALSE applies scaling by row (use NULL to turn off scaling).

high

The color to be used for higher values.

grid

The color of the grid (Use NULL to remove the grid).

plot

logical. If TRUE the plot will automatically plot. The user may wish to set to FALSE for use in knitr, sweave, etc. to add additional plot layers.

...

Other arguments passed to qheat.


Plots a word_cor object

Description

Plots a word_cor object.

Usage

## S3 method for class 'word_cor'
plot(
  x,
  label = TRUE,
  lab.digits = 3,
  high = "red",
  low = "white",
  grid = NULL,
  ncol = NULL,
  ...
)

Arguments

x

The word_cor object

label

logical. If TRUE the cells of the heat map plot will be labeled with count and proportional values.

lab.digits

Integer values specifying the number of digits to be printed if label is TRUE.

high

The color to be used for higher values.

low

The color to be used for lower values.

grid

The color of the grid (Use NULL to remove the grid).

ncol

The number of columns to arrange the facets in (specifying an integer results in the use of facet_wrap, specifying NULL utilizes a single column with facet_grid. The second approach limits columns but allows the y scale's space to be free.

...

Other arguments passed to qheat if matrix and other arguments passed to geom_point if a list.


Plots a word_length Object

Description

Plots a word_length object.

Usage

## S3 method for class 'word_length'
plot(
  x,
  label = FALSE,
  lab.digits = 1,
  percent = NULL,
  zero.replace = NULL,
  ...
)

Arguments

x

The word_length object.

label

logical. If TRUE the cells of the heat map plot will be labeled with count and proportional values.

lab.digits

Integer values specifying the number of digits to be printed if label is TRUE.

percent

logical. If TRUE output given as percent. If FALSE the output is proportion. If NULL uses the value from word_length. Only used if label is TRUE.

zero.replace

Value to replace 0 values with. If NULL uses the value from word_length. Only used if label is TRUE.

...

Other arguments passed to qheat.


Plots a word_position object

Description

Plots a word_position object.

Usage

## S3 method for class 'word_position'
plot(x, qheat = TRUE, scale = TRUE, ...)

Arguments

x

The word_position object.

qheat

logical. If TRUE qheat is used to plot. If FALSE heatmap is used.

scale

logical. If TRUE scales heatmap by row. If FALSE no scaling occurs.

...

Other arguments passed to qheat or heatmap.


Plots a word_proximity object

Description

Plots a word_proximity object.

Usage

## S3 method for class 'word_proximity'
plot(
  x,
  label = TRUE,
  lab.digits = NULL,
  high = "red",
  low = "white",
  grid = NULL,
  ...
)

Arguments

x

The word_proximity object

label

logical. If TRUE the cells of the heat map plot will be labeled with count and proportional values.

lab.digits

Integer values specifying the number of digits to be printed if label is TRUE.

high

The color to be used for higher values.

low

The color to be used for lower values.

grid

The color of the grid (Use NULL to remove the grid).

...

Other arguments passed to qheat.


Plots a word_stats object

Description

Plots a word_stats object.

Usage

## S3 method for class 'word_stats'
plot(x, label = FALSE, lab.digits = NULL, ...)

Arguments

x

The word_stats object

label

logical. If TRUE the cells of the heat map plot will be labeled with count and proportional values.

lab.digits

Integer values specifying the number of digits to be printed if label is TRUE.

...

Other arguments passed to qheat.


Plots a word_stats_counts Object

Description

Plots a word_stats_counts object.

Usage

## S3 method for class 'word_stats_counts'
plot(x, alpha = 0.3, ...)

Arguments

x

The word_stats_counts object.

alpha

The alpha level to use for points.

...

ignored


Polarity Score (Sentiment Analysis)

Description

polarity - Approximate the sentiment (polarity) of text by grouping variable(s).

Usage

polarity(
  text.var,
  grouping.var = NULL,
  polarity.frame = qdapDictionaries::key.pol,
  constrain = FALSE,
  negators = qdapDictionaries::negation.words,
  amplifiers = qdapDictionaries::amplification.words,
  deamplifiers = qdapDictionaries::deamplification.words,
  question.weight = 0,
  amplifier.weight = 0.8,
  n.before = 4,
  n.after = 2,
  rm.incomplete = FALSE,
  digits = 3,
  ...
)

Arguments

text.var

The text variable.

grouping.var

The grouping variables. Default NULL generates one word list for all text. Also takes a single grouping variable or a list of 1 or more grouping variables.

polarity.frame

A dataframe or hash key of positive/negative words and weights.

constrain

logical. If TRUE polarity values are constrained to be between -1 and 1 using the following transformation:

[(11exp(δ))2]1\left[\left( 1 - \frac{1}{exp(\delta)}\right ) \cdot 2 \right] - 1

negators

A character vector of terms reversing the intent of a positive or negative word.

amplifiers

A character vector of terms that increase the intensity of a positive or negative word.

deamplifiers

A character vector of terms that decrease the intensity of a positive or negative word.

question.weight

The weighting of questions (values from 0 to 1). Default 0 corresponds with the belief that questions (pure questions) are not polarized. A weight may be applied based on the evidence that the questions function with polarity.

amplifier.weight

The weight to apply to amplifiers/deamplifiers (values from 0 to 1). This value will multiply the polarized terms by 1 + this value.

n.before

The number of words to consider as valence shifters before the polarized word.

n.after

The number of words to consider as valence shifters after the polarized word.

rm.incomplete

logical. If TRUE text rows ending with qdap's incomplete sentence end mark (|) will be removed from the analysis.

digits

Integer; number of decimal places to round when printing.

...

Other arguments supplied to strip.

Details

The equation used by the algorithm to assign value to polarity of each sentence fist utilizes the sentiment dictionary (Hu and Liu, 2004) to tag polarized words. A context cluster (xiTx_i^{T}) of words is pulled from around this polarized word (default 4 words before and two words after) to be considered as valence shifters. The words in this context cluster are tagged as neutral (xi0x_i^{0}), negator (xiNx_i^{N}), amplifier (xiax_i^{a}), or de-amplifier (xidx_i^{d}). Neutral words hold no value in the equation but do affect word count (nn). Each polarized word is then weighted ww based on the weights from the polarity.frame argument and then further weighted by the number and position of the valence shifters directly surrounding the positive or negative word. The researcher may provide a weight cc to be utilized with amplifiers/de-amplifiers (default is .8; deamplifier weight is constrained to -1 lower bound). Last, these context cluster (xiTx_i^{T}) are summed and divided by the square root of the word count (n\sqrt{n}) yielding an unbounded polarity score (δ\delta). Note that context clusters containing a comma before the polarized word will only consider words found after the comma.

δ=xiTn\delta=\frac{x_i^T}{\sqrt{n}}

Where:

xiT=((1+c(xiAxiD))w(1)xiN)x_i^T=\sum{((1 + c(x_i^{A} - x_i^{D}))\cdot w(-1)^{\sum{x_i^{N}}})}

xiA=(wnegxia)x_i^{A}=\sum{(w_{neg}\cdot x_i^{a})}

xiD=max(xiD,1)x_i^D = \max(x_i^{D'}, -1)

xiD=(wnegxia+xid)x_i^{D'}= \sum{(- w_{neg}\cdot x_i^{a} + x_i^{d})}

wneg=(xiN)mod2w_{neg}= \left(\sum{x_i^{N}}\right) \bmod {2}

Value

Returns a list of:

all

A dataframe of scores per row with:

  • group.var - the grouping variable

  • wc - word count

  • polarity - sentence polarity score

  • pos.words - words considered positive

  • neg.words - words considered negative

  • text.var - the text variable

group

A dataframe with the average polarity score by grouping variable:

  • group.var - the grouping variable

  • total.sentences - Total sentences spoken.

  • total.words - Total words used.

  • ave.polarity - The sum of all polarity scores for that group divided by number of sentences spoken.

  • sd.polarity - The standard deviation of that group's sentence level polarity scores.

  • stan.mean.polarity - A standardized polarity score calculated by taking the average polarity score for a group divided by the standard deviation.

digits

integer value od number of digits to display; mostly internal use

Note

The polarity score is dependent upon the polarity dictionary used. This function defaults to the word polarity dictionary used by Hu, M., & Liu, B. (2004), however, this may not be appropriate for the context of children in a classroom. The user may (is encouraged) to provide/augment the dictionary (see the sentiment_frame function). For instance the word "sick" in a high school setting may mean that something is good, whereas "sick" used by a typical adult indicates something is not right or negative connotation (deixis).

Also note that polarity assumes you've run sentSplit.

References

Hu, M., & Liu, B. (2004). Mining opinion features in customer reviews. National Conference on Artificial Intelligence.

https://www.slideshare.net/jeffreybreen/r-by-example-mining-twitter-for

http://hedonometer.org/papers.html Links to papers on hedonometrics

See Also

https://github.com/trestletech/Sermon-Sentiment-Analysis

Examples

## Not run: 
with(DATA, polarity(state, list(sex, adult)))
(poldat <- with(sentSplit(DATA, 4), polarity(state, person)))
counts(poldat)
scores(poldat)
plot(poldat)

poldat2 <- with(mraja1spl, polarity(dialogue, 
    list(sex, fam.aff, died)))
colsplit2df(scores(poldat2))
plot(poldat2)
plot(scores(poldat2))
cumulative(poldat2)

poldat3 <- with(rajSPLIT, polarity(dialogue, person))
poldat3[["group"]][, "OL"] <- outlier_labeler(scores(poldat3)[, 
    "ave.polarity"])
poldat3[["all"]][, "OL"] <- outlier_labeler(counts(poldat3)[, 
    "polarity"])
htruncdf(scores(poldat3), 10)
htruncdf(counts(poldat3), 15, 8)
plot(poldat3)
plot(poldat3, nrow=4)
qheat(scores(poldat3)[, -7], high="red", order.b="ave.polarity")

## Create researcher defined sentiment.frame
POLKEY <- sentiment_frame(positive.words, negative.words)
POLKEY
c("abrasive", "abrupt", "happy") %hl% POLKEY

# Augmenting the sentiment.frame
mycorpus <- c("Wow that's a raw move.", "His jokes are so corny")
counts(polarity(mycorpus))

POLKEY <- sentiment_frame(c(positive.words, "raw"), c(negative.words, "corny"))
counts(polarity(mycorpus, polarity.frame=POLKEY))

## ANIMATION
#===========
(deb2 <- with(subset(pres_debates2012, time=="time 2"),
    polarity(dialogue, person)))

bg_black <- Animate(deb2, neutral="white", current.speaker.color="grey70")
print(bg_black, pause=.75)

bgb <- vertex_apply(bg_black, label.color="grey80", size=20, color="grey40")
bgb <- edge_apply(bgb, label.color="yellow")
print(bgb, bg="black", pause=.75)

## Save it
library(animation)
library(igraph)
library(plotrix)

loc <- folder(animation_polarity)

## Set up the plotting function
oopt <- animation::ani.options(interval = 0.1)

FUN <- function() {
    Title <- "Animated Polarity: 2012 Presidential Debate 2"
    Legend <- c(-1.1, -1.25, -.2, -1.2)
    Legend.cex <- 1
    lapply(seq_along(bgb), function(i) {
        par(mar=c(2, 0, 1, 0), bg="black")
        set.seed(10)
        plot.igraph(bgb[[i]], edge.curved=TRUE)
        mtext(Title, side=3, col="white")
        color.legend(Legend[1], Legend[2], Legend[3], Legend[4],
              c("Negative", "Neutral", "Positive"), attributes(bgb)[["legend"]],
              cex = Legend.cex, col="white")
        animation::ani.pause()
    })
}

FUN()

## Detect OS
type <- if(.Platform$OS.type == "windows") shell else system

saveHTML(FUN(), autoplay = FALSE, loop = TRUE, verbose = FALSE,
    ani.height = 500, ani.width=500,
    outdir = file.path(loc, "new"), single.opts =
    "'controls': ['first', 'play', 'loop', 'speed'], 'delayMin': 0")

## Detect OS
type <- if(.Platform$OS.type == "windows") shell else system

saveHTML(FUN(), autoplay = FALSE, loop = TRUE, verbose = FALSE,
    ani.height = 1000, ani.width=650,
    outdir = loc, single.opts =
    "'controls': ['first', 'play', 'loop', 'speed'], 'delayMin': 0")
    
 ## Animated corresponding text plot
 Animate(deb2, type="text")
 
#=====================#
## Complex Animation ##
#=====================#
library(animation)
library(grid)
library(gridBase)
library(qdap)
library(qdapTools)
library(igraph)
library(plotrix)
library(gridExtra)

deb2dat <- subset(pres_debates2012, time=="time 2")
deb2dat[, "person"] <- factor(deb2dat[, "person"])
(deb2 <- with(deb2dat, polarity(dialogue, person)))

## Set up the network version
bg_black <- Animate(deb2, neutral="white", current.speaker.color="grey70")
bgb <- vertex_apply(bg_black, label.color="grey80", size=30, label.size=22,
    color="grey40")
bgb <- edge_apply(bgb, label.color="yellow")

## Set up the bar version
deb2_bar <- Animate(deb2, as.network=FALSE)

## Generate a folder
loc2 <- folder(animation_polarity2)

## Set up the plotting function
oopt <- animation::ani.options(interval = 0.1)


FUN2 <- function(follow=FALSE, theseq = seq_along(bgb)) {

    Title <- "Animated Polarity: 2012 Presidential Debate 2"
    Legend <- c(.2, -1.075, 1.5, -1.005)
    Legend.cex <- 1

    lapply(theseq, function(i) {
        if (follow) {
            png(file=sprintf("%s/images/Rplot%s.png", loc2, i), 
                width=650, height=725)
        }
        ## Set up the layout
        layout(matrix(c(rep(1, 9), rep(2, 4)), 13, 1, byrow = TRUE))

        ## Plot 1
        par(mar=c(2, 0, 2, 0), bg="black")
        #par(mar=c(2, 0, 2, 0))
        set.seed(20)
        plot.igraph(bgb[[i]], edge.curved=TRUE)
        mtext(Title, side=3, col="white")
        color.legend(Legend[1], Legend[2], Legend[3], Legend[4],
              c("Negative", "Neutral", "Positive"), attributes(bgb)[["legend"]],
              cex = Legend.cex, col="white")

        ## Plot2
        plot.new()              
        vps <- baseViewports()

        uns <- unit(c(-1.3,.5,-.75,.25), "cm")
        p <- deb2_bar[[i]] + 
            theme(plot.margin = uns,
                text=element_text(color="white"),
                plot.background = element_rect(fill = "black", 
                    color="black")) 
        print(p,vp = vpStack(vps$figure,vps$plot))
        animation::ani.pause()

        if (follow) {
            dev.off()
        }
    })

}

FUN2()

## Detect OS
type <- if(.Platform$OS.type == "windows") shell else system

saveHTML(FUN2(), autoplay = FALSE, loop = TRUE, verbose = FALSE,
    ani.height = 1000, ani.width=650,
    outdir = loc2, single.opts =
    "'controls': ['first', 'play', 'loop', 'speed'], 'delayMin': 0")

FUN2(TRUE)

#=====================#
library(animation)
library(grid)
library(gridBase)
library(qdap)
library(qdapTools)
library(igraph)
library(plotrix)
library(gplots)

deb2dat <- subset(pres_debates2012, time=="time 2")
deb2dat[, "person"] <- factor(deb2dat[, "person"])
(deb2 <- with(deb2dat, polarity(dialogue, person)))

## Set up the network version
bg_black <- Animate(deb2, neutral="white", current.speaker.color="grey70")
bgb <- vertex_apply(bg_black, label.color="grey80", size=30, label.size=22,
    color="grey40")
bgb <- edge_apply(bgb, label.color="yellow")

## Set up the bar version
deb2_bar <- Animate(deb2, as.network=FALSE)

## Set up the line version
deb2_line <- plot(cumulative(deb2_bar))

## Generate a folder
loc2b <- folder(animation_polarity2)

## Set up the plotting function
oopt <- animation::ani.options(interval = 0.1)

FUN2 <- function(follow=FALSE, theseq = seq_along(bgb)) {

    Title <- "Animated Polarity: 2012 Presidential Debate 2"
    Legend <- c(.2, -1.075, 1.5, -1.005)
    Legend.cex <- 1

    lapply(theseq, function(i) {
        if (follow) {
            png(file=sprintf("%s/images/Rplot%s.png", loc2b, i),
                width=650, height=725)
        }
        ## Set up the layout
        layout(matrix(c(rep(1, 9), rep(2, 4)), 13, 1, byrow = TRUE))

        ## Plot 1
        par(mar=c(2, 0, 2, 0), bg="black")
        #par(mar=c(2, 0, 2, 0))
        set.seed(20)
        plot.igraph(bgb[[i]], edge.curved=TRUE)
        mtext(Title, side=3, col="white")
        color.legend(Legend[1], Legend[2], Legend[3], Legend[4],
              c("Negative", "Neutral", "Positive"), attributes(bgb)[["legend"]],
              cex = Legend.cex, col="white")

        ## Plot2
        plot.new()
        vps <- baseViewports()

        uns <- unit(c(-1.3,.5,-.75,.25), "cm")
        p <- deb2_bar[[i]] +
            theme(plot.margin = uns,
                text=element_text(color="white"),
                plot.background = element_rect(fill = "black",
                    color="black"))
        print(p,vp = vpStack(vps$figure,vps$plot))
        animation::ani.pause()

        if (follow) {
            dev.off()
        }
    })

}

FUN2()

## Detect OS
type <- if(.Platform$OS.type == "windows") shell else system

saveHTML(FUN2(), autoplay = FALSE, loop = TRUE, verbose = FALSE,
    ani.height = 1000, ani.width=650,
    outdir = loc2b, single.opts =
    "'controls': ['first', 'play', 'loop', 'speed'], 'delayMin': 0")

FUN2(TRUE)

## Increased complexity
## --------------------

## Helper function to cbind ggplots
cbinder <- function(x, y){

    uns_x <- unit(c(-1.3,.15,-.75,.25), "cm")
    uns_y <- unit(c(-1.3,.5,-.75,.15), "cm")

    x <- x + theme(plot.margin = uns_x,
        text=element_text(color="white"),
        plot.background = element_rect(fill = "black",
        color="black")
    )

    y <- y + theme(plot.margin = uns_y,
        text=element_text(color="white"),
        plot.background = element_rect(fill = "black", 
        color="black")
    )

    plots <- list(x, y)
    grobs <- list()
    heights <- list()
    
    for (i in 1:length(plots)){
        grobs[[i]] <- ggplotGrob(plots[[i]])
        heights[[i]] <- grobs[[i]]$heights[2:5]
    }
    
    maxheight <- do.call(grid::unit.pmax, heights)
    
    for (i in 1:length(grobs)){
         grobs[[i]]$heights[2:5] <- as.list(maxheight)
    }
    
    do.call("arrangeGrob", c(grobs, ncol = 2))
}

deb2_combo <- Map(cbinder, deb2_bar, deb2_line)

## Generate a folder
loc3 <- folder(animation_polarity3)


FUN3 <- function(follow=FALSE, theseq = seq_along(bgb)) {

    Title <- "Animated Polarity: 2012 Presidential Debate 2"
    Legend <- c(.2, -1.075, 1.5, -1.005)
    Legend.cex <- 1

    lapply(theseq, function(i) {
        if (follow) {
            png(file=sprintf("%s/images/Rplot%s.png", loc3, i),
                width=650, height=725)
        }
        ## Set up the layout
        layout(matrix(c(rep(1, 9), rep(2, 4)), 13, 1, byrow = TRUE))

        ## Plot 1
        par(mar=c(2, 0, 2, 0), bg="black")
        #par(mar=c(2, 0, 2, 0))
        set.seed(20)
        plot.igraph(bgb[[i]], edge.curved=TRUE)
        mtext(Title, side=3, col="white")
        color.legend(Legend[1], Legend[2], Legend[3], Legend[4],
              c("Negative", "Neutral", "Positive"), attributes(bgb)[["legend"]],
              cex = Legend.cex, col="white")

        ## Plot2
        plot.new()
        vps <- baseViewports()
        p <- deb2_combo[[i]]
        print(p,vp = vpStack(vps$figure,vps$plot))
        animation::ani.pause()

        if (follow) {
            dev.off()
        }
    })
}

FUN3()

type <- if(.Platform$OS.type == "windows") shell else system

saveHTML(FUN3(), autoplay = FALSE, loop = TRUE, verbose = FALSE,
    ani.height = 1000, ani.width=650,
    outdir = loc3, single.opts =
    "'controls': ['first', 'play', 'loop', 'speed'], 'delayMin': 0")

FUN3(TRUE)

##-----------------------------##
## Constraining between -1 & 1 ##
##-----------------------------##
## The old behavior of polarity constrained the output to be between -1 and 1
## this can be replicated via the `constrain = TRUE` argument:

polarity("really hate anger")
polarity("really hate anger", constrain=TRUE)

#==================#
## Static Network ##
#==================#
(poldat <- with(sentSplit(DATA, 4), polarity(state, person)))
m <- Network(poldat)
m
print(m, bg="grey97", vertex.color="grey75")

print(m, title="Polarity Discourse Map", title.color="white", bg="black",
    legend.text.color="white", vertex.label.color = "grey70", 
    edge.label.color="yellow")
    
## or use themes:
dev.off()
m + qtheme()
m + theme_nightheat
dev.off()
m+ theme_nightheat(title="Polarity Discourse Map")

#===============================#
## CUMULATIVE POLARITY EXAMPLE ##
#===============================#
#        Hedonometrics          #           
#===============================#
poldat4 <- with(rajSPLIT, polarity(dialogue, act, constrain = TRUE))

polcount <- na.omit(counts(poldat4)$polarity)
len <- length(polcount)

cummean <- function(x){cumsum(x)/seq_along(x)}

cumpolarity <- data.frame(cum_mean = cummean(polcount), Time=1:len)

## Calculate background rectangles
ends <- cumsum(rle(counts(poldat4)$act)$lengths)
starts <- c(1, head(ends + 1, -1))
rects <- data.frame(xstart = starts, xend = ends + 1, 
    Act = c("I", "II", "III", "IV", "V"))

library(ggplot2)
ggplot() + theme_bw() +
    geom_rect(data = rects, aes(xmin = xstart, xmax = xend, 
        ymin = -Inf, ymax = Inf, fill = Act), alpha = 0.17) +
    geom_smooth(data = cumpolarity, aes(y=cum_mean, x = Time)) +
    geom_hline(y=mean(polcount), color="grey30", size=1, alpha=.3, linetype=2) + 
    annotate("text", x = mean(ends[1:2]), y = mean(polcount), color="grey30", 
        label = "Average Polarity", vjust = .3, size=3) +
    geom_line(data = cumpolarity, aes(y=cum_mean, x = Time), size=1) +
    ylab("Cumulative Average Polarity") + xlab("Duration") +
    scale_x_continuous(expand = c(0,0)) +
    geom_text(data=rects, aes(x=(xstart + xend)/2, y=-.04, 
        label=paste("Act", Act)), size=3) + 
    guides(fill=FALSE) +
    scale_fill_brewer(palette="Set1")

## End(Not run)

Parts of Speech Tagging

Description

pos - Apply part of speech tagger to transcript(s).

pos_by - Apply part of speech tagger to transcript(s) by zero or more grouping variable(s).

pos_tags - Useful for interpreting the parts of speech tags created by pos and pos_by.

Usage

pos(
  text.var,
  parallel = FALSE,
  cores = detectCores()/2,
  progress.bar = TRUE,
  na.omit = FALSE,
  digits = 1,
  percent = TRUE,
  zero.replace = 0,
  gc.rate = 10
)

pos_by(
  text.var,
  grouping.var = NULL,
  digits = 1,
  percent = TRUE,
  zero.replace = 0,
  ...
)

pos_tags(type = "pretty")

Arguments

text.var

The text variable.

parallel

logical. If TRUE attempts to run the function on multiple cores. Note that this may not mean a speed boost if you have one core or if the data set is smaller as the cluster takes time to create.

cores

The number of cores to use if parallel = TRUE. Default is half the number of available cores.

progress.bar

logical. If TRUE attempts to provide a OS appropriate progress bar. If parallel is TRUE this argument is ignored. Note that setting this argument to TRUE may slow down the function.

na.omit

logical. If TRUE missing values (NA) will be omitted.

digits

Integer; number of decimal places to round when printing.

percent

logical. If TRUE output given as percent. If FALSE the output is proportion.

zero.replace

Value to replace 0 values with.

gc.rate

An integer value. This is a necessary argument because of a problem with the garbage collection in the openNLP function that pos wraps. Consider adjusting this argument upward if the error java.lang.OutOfMemoryError occurs.

grouping.var

The grouping variables. Default NULL generates one word list for all text. Also takes a single grouping variable or a list of 1 or more grouping variables.

type

An optional character string giving the output of the pos tags. This must be one of the strings "pretty" (a left justified version of the output optimized for viewing but not good for export), "matrix" (a matrix version of the output), "dataframe"\ "df" (a dataframe version of the output), "all" (a list of all three of the previous output types).

...

Other argument supplied to pos.

Value

pos - returns a list of 4:

text

The original text

POStagged

The original words replaced with parts of speech in context.

POSprop

Dataframe of the proportion of parts of speech by row.

POSfreq

Dataframe of the frequency of parts of speech by row.

POSrnp

Dataframe of the frequency and proportions of parts of speech by row.

percent

The value of percent used for plotting purposes.

zero.replace

The value of zero.replace used for plotting purposes.

pos_by - returns a list of 6:

text

The original text

POStagged

The original words replaced with parts of speech in context.

POSprop

Dataframe of the proportion of parts of speech by row.

POSfreq

Dataframe of the frequency of parts of speech by row.

POSrnp

Dataframe of the frequency and proportions of parts of speech by row.

pos.by.prop

Dataframe of the proportion of parts of speech by grouping variable.

pos.by.freq

Dataframe of the frequency of parts of speech by grouping variable.

pos.by.rnp

Dataframe of the frequency and proportions of parts of speech by grouping variable.

percent

The value of percent used for plotting purposes.

zero.replace

The value of zero.replace used for plotting purposes.

Note

Note that contractions are treated as two words; for example the word count on "what's" is 2 for "what + is". This is not consistent with the word_count treatment of contractions but makes sense in a part of speech framework where a phrase such as "She's cool" is treated as a pronoun, verb and adjective respectively for "She + is + cool".

References

http:/opennlp.apache.org

See Also

Maxent_POS_Tag_Annotator, colcomb2class

Examples

## Not run: 
posdat <- pos(DATA$state)
ltruncdf(posdat, 7, 4)
## str(posdat)
names(posdat)
posdat$text           #original text

## Methods
preprocessed(posdat)  #words replaced with parts of speech
counts(posdat)        #frequency of parts of speech by row
proportions(posdat)   #proportion of parts of speech by row

## Methods Plotting
plot(preprocessed(posdat))
plot(counts(posdat))
plot(proportions(posdat))
plot(posdat)

out1 <- pos(DATA$state, parallel = TRUE) # not always useful
ltruncdf(out1, 7, 4)

#use pos_tags to interpret part of speech tags used by pos & pos_by
pos_tags()[1:10, ]
pos_tags("matrix")[1:10, ]
pos_tags("dataframe")[1:10, ]
pos_tags("df")[1:10, ]
ltruncdf(pos_tags("all"), 3)

posbydat <- with(DATA, pos_by(state, sex))
names(posbydat)

## Methods
scores(posbydat)   
preprocessed(posbydat)
counts(posbydat)     
proportions(posbydat)   

## Methods Plotting
plot(preprocessed(posbydat))
plot(counts(posbydat))
plot(proportions(posbydat))
plot(posbydat)

ltruncdf(posbydat, 7, 4)
truncdf(posbydat$pos.by.prop, 4)

POSby <- with(DATA, pos_by(state, list(adult, sex)))
plot(POSby, values = TRUE, digits = 2)
#or more quickly - reuse the output from before
out2 <- with(DATA, pos_by(posbydat, list(adult, sex)))

## Definite/Indefinite Noun 
## 2 approached compared...
## The later is more efficient but less accurate

## ------------------------##
## Part off speech tagging ##
## ------------------------##
pos_after <- function(text.var, words, pos){

    posses <- strsplit(as.character(text.var[["POStagged"]][["POStagged"]]), "\\s+")
    namespos <- lapply(posses, function(x) {
        y <- unlist(strsplit(x, "/"))
        setNames(y[c(TRUE, FALSE)], y[c(FALSE, TRUE)])
    })

    lapply(namespos, function(x, thewords = words, thepos = pos){
        locs <- which(x %in% thewords)
        locs <- locs[!is.na(locs)]

        if (identical(unclass(locs), integer(0))) return(NA_character_)

        nounlocs <- which(names(x) %in% thepos)

        unname(x[unique(sapply(locs, function(x){ 
            min(nounlocs[nounlocs - x > 0])
        }))])
    })  
}

out2 <- setNames(lapply(list(a=c("a", "an"), the="the"), function(x) {
    o <- pos_after(rajPOS, x, c("NN", "NNS", "NNP", "NNPS"))
    m <- stats::setNames(data.frame(sort(table(unlist(o))), 
        stringsAsFactors = FALSE), c("word", "freq"))
    m[m$freq> 3, ]
}), c("a", "the"))


dat2 <- setNames(Reduce(function(x, y) {
    merge(x, y, by = "word", all = TRUE)}, out2), c("Word", "A", "THE"))

dat2 <- reshape2::melt(dat2, id="Word", variable.name="Article", value.name="freq")

dat2 <- dat2[order(dat2$freq, dat2$Word), ]

ord2 <- aggregate(freq ~ Word, dat2, sum)

dat2$Word <- factor(dat2$Word, levels=ord2[order(ord2[[2]]), 1])
rownames(dat2) <- NULL
ggplot(dat2, aes(x=freq, y=Word)) +
    geom_point()+ facet_grid(~Article) +
    ggtitle("Part Of Speech Parsing Approach")

dev.new()

## --------------------##
## Regular Expressions ##
## --------------------##

library(qdapRegex);library(ggplot2);library(reshape2)

out <- setNames(lapply(c("@after_a", "@after_the"), function(x) {
    o <- rm_default(stringi:::stri_trans_tolower(raj$dialogue),
        pattern = x, extract=TRUE)
    m <- stats::setNames(data.frame(sort(table(unlist(o))), 
        stringsAsFactors = FALSE), c("word", "freq"))
    m[m$freq> 3, ]
}), c("a", "the"))

dat <- setNames(Reduce(function(x, y) {
    merge(x, y, by = "word", all = TRUE)}, out), c("Word", "A", "THE"))

dat <- reshape2::melt(dat, id="Word", variable.name="Article", value.name="freq")

dat <- dat[order(dat$freq, dat$Word), ]

ord <- aggregate(freq ~ Word, dat, sum)

dat$Word <- factor(dat$Word, levels=ord[order(ord[[2]]), 1])
rownames(dat) <- NULL
ggplot(dat, aes(x=freq, y=Word)) + 
    geom_point()+ facet_grid(~Article) + 
    ggtitle("Regex Approach")

## End(Not run)

Search for Potential Missing Values

Description

Search for potential missing values (i.e., sentences that are merely a punctuation mark) and optionally replace with missing value (NA). Useful in the initial cleaning process.

Usage

potential_NA(text.var, n = 3)

Arguments

text.var

The text variable.

n

Number of characters to consider for missing (default is 3).

Value

Returns a dataframe of potential missing values row numbers and text.

Examples

## Not run: 
DATA$state[c(3, 7)] <- "."
potential_NA(DATA$state, 20)
potential_NA(DATA$state)
# USE TO SELCTIVELY REPLACE CELLS WITH MISSING VALUES
DATA$state[potential_NA(DATA$state, 20)$row[-c(3)]] <- NA
DATA
DATA <- qdap::DATA

## End(Not run)

Generic Preprocessed Method

Description

Access the preprocessed dataframes/lists from select qdap outputs.

Usage

preprocessed(x, ...)

Arguments

x

A qdap object (list) with a dataframe/list of preprocessed data (e.g., pos_by).

...

Arguments passed to preprocessed method of other classes.

Value

Returns a data.frame or list of preprocessed data.

See Also

scores, counts, proportions, visual


Check Spelling

Description

View check_spelling_interactive preprocessed.

Usage

## S3 method for class 'check_spelling_interactive'
preprocessed(x, ...)

Arguments

x

The check_spelling_interactive object.

...

ignored

Details

check_spelling_interactive Method for preprocessed


Question Counts

Description

View end_mark_by preprocessed.

Usage

## S3 method for class 'end_mark_by'
preprocessed(x, ...)

Arguments

x

The end_mark_by object.

...

ignored

Details

end_mark_by Method for preprocessed


Formality

Description

View formality preprocessed.

Usage

## S3 method for class 'formality'
preprocessed(x, ...)

Arguments

x

The formality object.

...

ignored

Details

formality Method for preprocessed


Lexical Classification

Description

preprocessed.lexical_classification - View preprocessed from lexical_classification.

Usage

## S3 method for class 'lexical_classification'
preprocessed(x, ...)

Arguments

x

The lexical_classification object.

...

ignored

Details

lexical_classification Method for preprocessed.


Question Counts

Description

View object_pronoun_type preprocessed.

Usage

## S3 method for class 'object_pronoun_type'
preprocessed(x, ...)

Arguments

x

The object_pronoun_type object.

...

ignored

Details

object_pronoun_type Method for preprocessed


Parts of Speech

Description

View pos preprocessed.

Usage

## S3 method for class 'pos'
preprocessed(x, ...)

Arguments

x

The pos object.

...

ignored

Details

pos Method for preprocessed


Parts of Speech

Description

View pos_by preprocessed.

Usage

## S3 method for class 'pos_by'
preprocessed(x, ...)

Arguments

x

The pos_by object.

...

ignored

Details

pos_by Method for preprocessed


Question Counts

Description

View pronoun_type preprocessed.

Usage

## S3 method for class 'pronoun_type'
preprocessed(x, ...)

Arguments

x

The pronoun_type object.

...

ignored

Details

pronoun_type Method for preprocessed


Question Counts

Description

View question_type preprocessed.

Usage

## S3 method for class 'question_type'
preprocessed(x, ...)

Arguments

x

The question_type object.

...

ignored

Details

question_type Method for preprocessed


Question Counts

Description

View subject_pronoun_type preprocessed.

Usage

## S3 method for class 'subject_pronoun_type'
preprocessed(x, ...)

Arguments

x

The subject_pronoun_type object.

...

ignored

Details

subject_pronoun_type Method for preprocessed


Word Position

Description

View word_position preprocessed.

Usage

## S3 method for class 'word_position'
preprocessed(x, ...)

Arguments

x

The word_position object.

...

ignored

Details

word_position Method for preprocessed


First 2012 U.S. Presidential Debate

Description

A dataset containing the raw version of the first presidential debate.

Usage

data(pres_debate_raw2012)

Format

A data frame with 94 rows and 2 variables

Details

  • person. The speaker

  • dialogue. The words spoken


2012 U.S. Presidential Debates

Description

A dataset containing a cleaned version of all three presidential debates for the 2012 election.

Usage

data(pres_debates2012)

Format

A data frame with 2912 rows and 4 variables

Details

  • person. The speaker

  • tot. Turn of talk

  • dialogue. The words spoken

  • time. Variable indicating which of the three debates the dialogue is from


Prints an adjacency_matrix Object

Description

Prints an adjacency_matrix object.

Usage

## S3 method for class 'adjacency_matrix'
print(x, ...)

Arguments

x

The adjacency_matrix object.

...

ignored


Prints an all_words Object

Description

Prints an all_words object.

Usage

## S3 method for class 'all_words'
print(x, ...)

Arguments

x

The all_words object.

...

ignored


Prints an animated_character Object

Description

Prints an animated_character object.

Usage

## S3 method for class 'animated_character'
print(x, pause = 0, ...)

Arguments

x

The animated_character object.

pause

The length of time to pause between plots.

...

ignored.


Prints an animated_discourse_map Object

Description

Prints an animated_discourse_map object.

Usage

## S3 method for class 'animated_discourse_map'
print(
  x,
  title = NULL,
  seed = sample(1:10000, 1),
  layout = layout.auto,
  pause = 0,
  ...
)

Arguments

x

The animated_discourse_map object.

title

The title of the plot.

seed

The seed to use in plotting the graph.

layout

igraph layout to use.

pause

The length of time to pause between plots.

...

Other Arguments passed to plot.igraph.


Prints a animated_formality Object

Description

Prints a animated_formality object.

Usage

## S3 method for class 'animated_formality'
print(
  x,
  title = NULL,
  seed = sample(1:10000, 1),
  layout = layout.auto,
  pause = 0,
  legend = c(-0.5, -1.5, 0.5, -1.45),
  legend.cex = 1,
  bg = NULL,
  net.legend.color = "black",
  ...
)

Arguments

x

The animated_formality object.

title

The title of the plot.

seed

The seed to use in plotting the graph.

layout

igraph layout to use.

pause

The length of time to pause between plots.

legend

The coordinates of the legend. See color.legend for more information.

legend.cex

character expansion factor. NULL and NA are equivalent to 1.0. See mtext for more information.

bg

The color to be used for the background of the device region. See par for more information.

net.legend.color

The text legend color for the network plot.

...

Other Arguments passed to plot.igraph.


Prints an animated_lexical_classification Object

Description

Prints an animated_lexical_classification object.

Usage

## S3 method for class 'animated_lexical_classification'
print(
  x,
  title = NULL,
  seed = sample(1:10000, 1),
  layout = layout.auto,
  pause = 0,
  legend = c(-0.5, -1.5, 0.5, -1.45),
  legend.cex = 1,
  bg = NULL,
  net.legend.color = "black",
  ...
)

Arguments

x

The animated_lexical_classification object.

title

The title of the plot.

seed

The seed to use in plotting the graph.

layout

igraph layout to use.

pause

The length of time to pause between plots.

legend

The coordinates of the legend. See color.legend for more information.

legend.cex

character expansion factor. NULL and NA are equivalent to 1.0. See mtext for more information.

bg

The color to be used for the background of the device region. See par for more information.

net.legend.color

The text legend color for the network plot.

...

Other Arguments passed to plot.igraph.


Prints an animated_polarity Object

Description

Prints an animated_polarity object.

Usage

## S3 method for class 'animated_polarity'
print(
  x,
  title = NULL,
  seed = sample(1:10000, 1),
  layout = layout.auto,
  pause = 0,
  legend = c(-0.5, -1.5, 0.5, -1.45),
  legend.cex = 1,
  bg = NULL,
  net.legend.color = "black",
  ...
)

Arguments

x

The animated_polarity object.

title

The title of the plot.

seed

The seed to use in plotting the graph.

layout

igraph layout to use.

pause

The length of time to pause between plots.

legend

The coordinates of the legend. See color.legend for more information.

legend.cex

character expansion factor. NULL and NA are equivalent to 1.0. See mtext for more information.

bg

The color to be used for the background of the device region. See par for more information.

net.legend.color

The text legend color for the network plot.

...

Other Arguments passed to plot.igraph.


Prints an automated_readability_index Object

Description

Prints an automated_readability_index object.

Usage

## S3 method for class 'automated_readability_index'
print(x, digits = 3, ...)

Arguments

x

The automated_readability_index object.

digits

The number of digits displayed if values is TRUE.

...

ignored


Prints a boolean_qdap object

Description

Prints a boolean_qdap object

Usage

## S3 method for class 'boolean_qdap'
print(x, ...)

Arguments

x

The boolean_qdap object

...

ignored


Prints a character_table object

Description

Prints a character_table object.

Usage

## S3 method for class 'character_table'
print(x, digits = 2, percent = NULL, zero.replace = NULL, ...)

Arguments

x

The character_table object

digits

Integer values specifying the number of digits to be printed.

percent

logical. If TRUE output given as percent. If FALSE the output is proportion. If NULL uses the value from termco. Only used if label is TRUE.

zero.replace

Value to replace 0 values with. If NULL uses the value from termco. Only used if label is TRUE.

...

ignored


Prints a check_spelling Object

Description

Prints a check_spelling object.

Usage

## S3 method for class 'check_spelling'
print(x, ...)

Arguments

x

The check_spelling object.

...

ignored


Prints a check_spelling_interactive Object

Description

Prints a check_spelling_interactive object.

Usage

## S3 method for class 'check_spelling_interactive'
print(x, ...)

Arguments

x

The check_spelling_interactive object.

...

ignored


Prints a check_text Object

Description

Prints a check_text object.

Usage

## S3 method for class 'check_text'
print(x, include.text = TRUE, file = NULL, ...)

Arguments

x

The check_text object.

include.text

logical. If TRUE the offending text is printed as well.

file

A connection, or a character string naming the file to print to. If NULL prints to the console.

...

ignored


Prints a cm_distance Object

Description

Prints a cm_distance object.

Usage

## S3 method for class 'cm_distance'
print(
  x,
  mean.digits = 0,
  sd.digits = 2,
  sd.mean.digits = 3,
  pval.digits = 3,
  new.order = NULL,
  na.replace = "-",
  diag.replace = na.replace,
  print = TRUE,
  ...
)

Arguments

x

The cm_distance object.

mean.digits

The number of digits to print for the mean code distances.

sd.digits

The number of digits to print for the standard deviations of the code distances.

sd.mean.digits

The number of digits to print for the standardized mean distances.

pval.digits

The number of digits to print for the p-values.

new.order

An integer vector reordering the columns and rows of the output. Omission of a column number will result in omission from the output.

na.replace

A character to replace NA values with.

diag.replace

A character to replace the diagonal of the mean distance matrix.

print

logical. If TRUE prints to the console. FALSE may be used to extract the invisibly returned output without printing to the console.

...

ignored


Prints an coleman_liau Object

Description

Prints an coleman_liau object.

Usage

## S3 method for class 'coleman_liau'
print(x, digits = 3, ...)

Arguments

x

The coleman_liau object.

digits

The number of digits displayed if values is TRUE.

...

ignored


Prints a colsplit2df Object.

Description

Prints a colsplit2df object.

Usage

## S3 method for class 'colsplit2df'
print(x, ...)

Arguments

x

The colsplit2df object

...

ignored


Prints an combo_syllable_sum object

Description

Prints an combo_syllable_sum object

Usage

## S3 method for class 'combo_syllable_sum'
print(x, ...)

Arguments

x

The combo_syllable_sum object

...

ignored


Prints a cumulative_animated_formality Object

Description

Prints a cumulative_animated_formality object.

Usage

## S3 method for class 'cumulative_animated_formality'
print(x, ...)

Arguments

x

The cumulative_animated_formality object.

...

ignored


Prints a cumulative_animated_lexical_classification Object

Description

Prints a cumulative_animated_lexical_classification object.

Usage

## S3 method for class 'cumulative_animated_lexical_classification'
print(x, ...)

Arguments

x

The cumulative_animated_lexical_classification object.

...

ignored


Prints a cumulative_animated_polarity Object

Description

Prints a cumulative_animated_polarity object.

Usage

## S3 method for class 'cumulative_animated_polarity'
print(x, ...)

Arguments

x

The cumulative_animated_polarity object.

...

ignored


Prints a cumulative_combo_syllable_sum Object

Description

Prints a cumulative_combo_syllable_sum object.

Usage

## S3 method for class 'cumulative_combo_syllable_sum'
print(x, ...)

Arguments

x

The cumulative_combo_syllable_sum object.

...

ignored


Prints a cumulative_end_mark Object

Description

Prints a cumulative_end_mark object.

Usage

## S3 method for class 'cumulative_end_mark'
print(x, ...)

Arguments

x

The cumulative_end_mark object.

...

ignored


Prints a cumulative_formality Object

Description

Prints a cumulative_formality object.

Usage

## S3 method for class 'cumulative_formality'
print(x, ...)

Arguments

x

The cumulative_formality object.

...

ignored


Prints a cumulative_lexical_classification Object

Description

Prints a cumulative_lexical_classification object.

Usage

## S3 method for class 'cumulative_lexical_classification'
print(x, ...)

Arguments

x

The cumulative_lexical_classification object.

...

ignored


Prints a cumulative_polarity Object

Description

Prints a cumulative_polarity object.

Usage

## S3 method for class 'cumulative_polarity'
print(x, ...)

Arguments

x

The cumulative_polarity object.

...

ignored


Prints a cumulative_syllable_freqObject

Description

Prints a cumulative_syllable_freq object.

Usage

## S3 method for class 'cumulative_syllable_freq'
print(x, ...)

Arguments

x

The cumulative_syllable_freqobject.

...

ignored


Prints a discourse_map Object

Description

Prints a discourse_map object.

Usage

## S3 method for class 'discourse_map'
print(x, edge.curved = TRUE, title = NULL, ...)

Arguments

x

The discourse_map object.

edge.curved

logical. If TRUE edges are plotted with curves.

title

The title of the plot.

...

Other Arguments passed to plot.igraph.


Prints a Dissimilarity object

Description

Prints a Dissimilarity object.

Usage

## S3 method for class 'Dissimilarity'
print(x, digits = 3, ...)

Arguments

x

The Dissimilarity object

digits

Number of decimal places to print.

...

ignored


Prints a diversity object

Description

Prints a diversity object.

Usage

## S3 method for class 'diversity'
print(x, digits = 3, ...)

Arguments

x

The diversity object

digits

Number of decimal places to print.

...

ignored


Prints an end_mark object

Description

Prints an end_mark object

Usage

## S3 method for class 'end_mark'
print(x, ...)

Arguments

x

The end_mark object

...

ignored


Prints an end_mark_by object

Description

Prints an end_mark_by object

Usage

## S3 method for class 'end_mark_by'
print(x, ...)

Arguments

x

The end_mark_by object

...

ignored


Prints a end_mark_by_preprocessed object

Description

Prints a end_mark_by_preprocessed object

Usage

## S3 method for class 'end_mark_by_preprocessed'
print(x, ...)

Arguments

x

The end_mark_by_preprocessed object

...

ignored


Prints an flesch_kincaid Object

Description

Prints an flesch_kincaid object.

Usage

## S3 method for class 'flesch_kincaid'
print(x, digits = 3, ...)

Arguments

x

The flesch_kincaid object.

digits

The number of digits displayed if values is TRUE.

...

ignored


Prints a formality Object

Description

Prints a formality object.

Usage

## S3 method for class 'formality'
print(x, digits, ...)

Arguments

x

The formality object.

digits

The number of digits to print.

...

ignored


Prints a formality_scores object

Description

Prints a formality_scores object

Usage

## S3 method for class 'formality_scores'
print(x, ...)

Arguments

x

The formality_scores object

...

ignored


Prints an fry Object

Description

Prints an fry object.

Usage

## S3 method for class 'fry'
print(x, digits = 3, auto.label, grid, div.col, plot, ...)

Arguments

x

The fry object.

digits

The number of digits displayed if values is TRUE.

auto.label

logical. If TRUE labels automatically added. If FALSE the user clicks interactively.

grid

logical. If TRUE a micro grid is displayed similar to Fry's original depiction, though this makes visualizing more difficult.

div.col

The color of the grade level division lines.

plot

logical. If TRUE a graph is plotted corresponding to Fry's graphic representation.

...

ignored


Prints an inspect_text Object

Description

Prints an inspect_text object.

Usage

## S3 method for class 'inspect_text'
print(x, file = "", ...)

Arguments

x

The inspect_text object.

file

A connection, or a character string naming the file to print to. If "" (the default), prints to the standard output connection, the console unless redirected by sink.

...

Other arguments passed to strwrap.


Prints a kullback_leibler Object.

Description

Prints a kullback_leibler object.

Usage

## S3 method for class 'kullback_leibler'
print(x, digits = 3, ...)

Arguments

x

The kullback_leibler object

digits

Number of decimal places to print.

...

ignored


Prints an lexical_classification Object

Description

Prints an lexical_classification object.

Usage

## S3 method for class 'lexical_classification'
print(x, ...)

Arguments

x

The lexical_classification object.

...

Other arguments passed to print.lexical_classification_by.


Prints a lexical_classification Object

Description

Prints a lexical_classification_by object.

Usage

## S3 method for class 'lexical_classification_by'
print(x, ave.digits = 1, se.digits = 2, trunc = 25, ...)

Arguments

x

The lexical_classification_by object.

ave.digits

The number of average lexical distribution proportion digits to print.

se.digits

The number of standard error of the lexical distribution proportion digits to print.

trunc

The width to truncate content/function word lists.

...

ignored


Prints a lexical_classification_preprocessed Object

Description

Prints a lexical_classification_preprocessed object.

Usage

## S3 method for class 'lexical_classification_preprocessed'
print(x, ...)

Arguments

x

The lexical_classification_preprocessed object.

...

ignored


Prints a lexical_classification_score Object

Description

Prints a lexical_classification_score object.

Usage

## S3 method for class 'lexical_classification_score'
print(x, digits = 3, ...)

Arguments

x

The lexical_classification_score object.

digits

The number of digits displayed if values is TRUE.

...

ignored


Prints an linsear_write Object

Description

Prints an linsear_write object.

Usage

## S3 method for class 'linsear_write'
print(x, digits = 3, ...)

Arguments

x

The linsear_write object.

digits

The number of digits displayed if values is TRUE.

...

ignored


Prints a linsear_write_count Object

Description

Prints a linsear_write_count object.

Usage

## S3 method for class 'linsear_write_count'
print(x, digits = 3, ...)

Arguments

x

The linsear_write_count object.

digits

The number of digits displayed.

...

ignored


Prints a linsear_write_scores Object

Description

Prints a linsear_write_scores object.

Usage

## S3 method for class 'linsear_write_scores'
print(x, digits = 3, ...)

Arguments

x

The linsear_write_scores object.

digits

The number of digits displayed.

...

ignored


Prints a Network Object

Description

Prints a Network object.

Usage

## S3 method for class 'Network'
print(
  x,
  title = NA,
  title.color = "black",
  seed = sample(1:10000, 1),
  layout = igraph::layout.auto,
  legend = c(-0.5, -1.5, 0.5, -1.45),
  legend.cex = 1,
  bg = NULL,
  legend.text.color = "black",
  legend.gradient = NULL,
  vertex.color = "grey80",
  vertex.size = 9,
  vertex.frame.color = NA,
  vertex.label.color = "grey40",
  vertex.label.cex = 1.1,
  edge.label.color = "black",
  edge.label.cex = 0.9,
  ...
)

Arguments

x

The Network object.

title

The title of the plot. NULL eliminates title. NA uses title attribute of the Network object.

title.color

The color of the title.

seed

The seed to use in plotting the graph.

layout

igraph layout to use.

legend

The coordinates of the legend. See color.legend for more information.

legend.cex

character expansion factor. NULL and NA are equivalent to 1.0. See mtext for more information.

bg

The color to be used for the background of the device region. See par for more information.

legend.text.color

The legend text color.

legend.gradient

A vector of ordered colors to use for the gradient fills in the network edges.

vertex.color

The font family to be used for vertex labels.

vertex.size

The size of the vertex.

vertex.frame.color

The color of the vertex border.

vertex.label.color

The color of the labels.

vertex.label.cex

The font size for vertex labels.

edge.label.color

The color for the edge labels. Use NA to remove.

edge.label.cex

The font size of the edge labels.

...

Other Arguments passed to plot.igraph.

Note

The output from Network is an igraph object and can be altered and plotted directly using igraph. The qdap print method is offered as a quick approach to styling the figure. For more control use V, E, and plot.igraph.


Prints an ngrams object

Description

Prints an ngrams object

Usage

## S3 method for class 'ngrams'
print(x, ...)

Arguments

x

The ngrams object

...

ignored


Prints a object_pronoun_type object

Description

Prints a object_pronoun_type object

Usage

## S3 method for class 'object_pronoun_type'
print(x, ...)

Arguments

x

The object_pronoun_type object

...

ignored


Prints a phrase_net Object

Description

Prints a phrase_net object.

Usage

## S3 method for class 'phrase_net'
print(x, edge.curved = TRUE, ...)

Arguments

x

The phrase_net object.

edge.curved

logical. If TRUE edges are plotted with curves.

...

Other Arguments passed to plot.igraph.


Prints an polarity Object

Description

Prints an polarity object.

Usage

## S3 method for class 'polarity'
print(x, digits = 3, ...)

Arguments

x

The polarity object.

digits

The number of digits displayed if values is TRUE.

...

ignored


Prints a polarity_count Object

Description

Prints a polarity_count object.

Usage

## S3 method for class 'polarity_count'
print(x, digits = 3, ...)

Arguments

x

The polarity_count object.

digits

The number of digits displayed.

...

ignored


Prints a polarity_score Object

Description

Prints a polarity_score object.

Usage

## S3 method for class 'polarity_score'
print(x, digits = 3, ...)

Arguments

x

The polarity_score object.

digits

The number of digits displayed if values is TRUE.

...

ignored


Prints an polysyllable_sum object

Description

Prints an polysyllable_sum object

Usage

## S3 method for class 'polysyllable_sum'
print(x, ...)

Arguments

x

The polysyllable_sum object

...

ignored


Prints a pos Object.

Description

Prints a pos object.

Usage

## S3 method for class 'pos'
print(x, digits = 1, percent = NULL, zero.replace = NULL, ...)

Arguments

x

The pos object

digits

Integer values specifying the number of digits to be printed.

percent

logical. If TRUE output given as percent. If FALSE the output is proportion. If NULL uses the value from termco. Only used if label is TRUE.

zero.replace

Value to replace 0 values with. If NULL uses the value from termco. Only used if label is TRUE.

...

ignored


Prints a pos_by Object.

Description

Prints a pos_by object.

Usage

## S3 method for class 'pos_by'
print(x, digits = 1, percent = NULL, zero.replace = NULL, ...)

Arguments

x

The pos_by object

digits

Integer values specifying the number of digits to be printed.

percent

logical. If TRUE output given as percent. If FALSE the output is proportion. If NULL uses the value from termco. Only used if label is TRUE.

zero.replace

Value to replace 0 values with. If NULL uses the value from termco. Only used if label is TRUE.

...

ignored


Prints a pos_preprocessed object

Description

Prints a pos_preprocessed object

Usage

## S3 method for class 'pos_preprocessed'
print(x, ...)

Arguments

x

The pos_preprocessed object

...

ignored


Prints a pronoun_type object

Description

Prints a pronoun_type object

Usage

## S3 method for class 'pronoun_type'
print(x, ...)

Arguments

x

The pronoun_type object

...

ignored


Prints a qdap_context object

Description

Prints a qdap_context object

Usage

## S3 method for class 'qdap_context'
print(
  x,
  file = NULL,
  pretty = TRUE,
  width = 70,
  sep.block = TRUE,
  double_space = TRUE,
  ...
)

Arguments

x

The qdap_context object

file

The name of the file (can print csv, xlsx, txt, doc and other text based files). If NULL file prints to the console.

pretty

logical. If TRUE generates a prettier text version of the output (cannot be used with csv/xlsx file types). If FALSE a semi-structured dataframe is generated.

width

A positive integer giving the target column for wrapping lines in the output.

sep.block

logical. If TRUE the blocked events are separated with text lines.

double_space

logical. If TRUE and pretty = TRUE double spacing between speech chunks (speakers) is used.

...

ignored


Prints a qdapProj Object

Description

Prints a qdapProj object.

Usage

## S3 method for class 'qdapProj'
print(x, ...)

Arguments

x

The qdapProj object.

...

ignored


Prints a question_type object

Description

Prints a question_type object

Usage

## S3 method for class 'question_type'
print(x, ...)

Arguments

x

The question_type object

...

ignored


Prints a question_type_preprocessed object

Description

Prints a question_type_preprocessed object

Usage

## S3 method for class 'question_type_preprocessed'
print(x, ...)

Arguments

x

The question_type_preprocessed object

...

ignored


Prints a readability_count Object

Description

Prints a readability_count object.

Usage

## S3 method for class 'readability_count'
print(x, digits = 3, ...)

Arguments

x

The readability_count object.

digits

The number of digits displayed.

...

ignored


Prints a readability_score Object

Description

Prints a readability_score object.

Usage

## S3 method for class 'readability_score'
print(x, digits = 3, ...)

Arguments

x

The readability_score object.

digits

The number of digits displayed if values is TRUE.

...

ignored


Prints a sent_split object

Description

Prints a sent_split object

Usage

## S3 method for class 'sent_split'
print(x, ...)

Arguments

x

The sent_split object

...

ignored


Prints an SMOG Object

Description

Prints an SMOG object.

Usage

## S3 method for class 'SMOG'
print(x, digits = 3, ...)

Arguments

x

The SMOG object.

digits

The number of digits displayed if values is TRUE.

...

ignored


Prints a sub_holder object

Description

Prints a sub_holder object

Usage

## S3 method for class 'sub_holder'
print(x, ...)

Arguments

x

The sub_holder object

...

ignored


Prints a subject_pronoun_type object

Description

Prints a subject_pronoun_type object

Usage

## S3 method for class 'subject_pronoun_type'
print(x, ...)

Arguments

x

The subject_pronoun_type object

...

ignored


Prints a sum_cmspans object

Description

Prints a sum_cmspans object.

Usage

## S3 method for class 'sum_cmspans'
print(x, digits = NULL, ...)

Arguments

x

The sum_cmspans object

digits

Integer; number of decimal places to round in the display of the output.

...

ignored


Prints a sums_gantt object

Description

Prints a sums_gantt object.

Usage

## S3 method for class 'sums_gantt'
print(x, ...)

Arguments

x

The sums_gantt object

...

ignored


Prints an syllable_sum object

Description

Prints an syllable_sum object

Usage

## S3 method for class 'syllable_sum'
print(x, ...)

Arguments

x

The syllable_sum object

...

ignored


Prints a table_count object

Description

Prints a table_count object

Usage

## S3 method for class 'table_count'
print(x, ...)

Arguments

x

The table_count object

...

ignored


Prints a table_proportion object

Description

Prints a table_proportion object

Usage

## S3 method for class 'table_proportion'
print(x, ...)

Arguments

x

The table_proportion object

...

ignored


Prints a table_score object

Description

Prints a table_score object

Usage

## S3 method for class 'table_score'
print(x, ...)

Arguments

x

The table_score object

...

ignored


Prints a termco object.

Description

Prints a termco object.

Usage

## S3 method for class 'termco'
print(x, digits = NULL, percent = NULL, zero.replace = NULL, ...)

Arguments

x

The termco object

digits

Integer values specifying the number of digits to be printed.

percent

logical. If TRUE output given as percent. If FALSE the output is proportion. If NULL uses the value from termco. Only used if label is TRUE.

zero.replace

Value to replace 0 values with. If NULL uses the value from termco. Only used if label is TRUE.

...

ignored


Prints a trunc object

Description

Prints a trunc object

Usage

## S3 method for class 'trunc'
print(x, ...)

Arguments

x

The trunc object

...

ignored


Prints a type_token_ratio Object

Description

Prints a type_token_ratio object.

Usage

## S3 method for class 'type_token_ratio'
print(x, digits = 3, ...)

Arguments

x

The type_token_ratio object.

digits

The number of type-token ratio digits to print.

...

ignored


Prints a wfm Object

Description

Prints a wfm object.

Usage

## S3 method for class 'wfm'
print(x, digits = 3, width = 10000, ...)

Arguments

x

The wfm object.

digits

The number of digits displayed if values is TRUE.

width

The width to temporarily set for printing (default = 10000). See options for more.

...

ignored


Prints a wfm_summary Object

Description

Prints a wfm_summary object.

Usage

## S3 method for class 'wfm_summary'
print(x, ...)

Arguments

x

The wfm_summary object.

...

ignored


Prints a which_misspelled Object

Description

Prints a which_misspelled object.

Usage

## S3 method for class 'which_misspelled'
print(x, ...)

Arguments

x

The which_misspelled object.

...

ignored


Prints a word_associate object

Description

Prints a word_associate object.

Usage

## S3 method for class 'word_associate'
print(x, ...)

Arguments

x

The word_associate object

...

ignored


Prints a word_cor object

Description

Prints a word_cor object

Usage

## S3 method for class 'word_cor'
print(x, digits = 3, ...)

Arguments

x

The word_cor object

digits

The number of digits to print

...

ignored


Prints a word_length object

Description

Prints a word_length object

Usage

## S3 method for class 'word_length'
print(x, ...)

Arguments

x

The word_length object

...

ignored


Prints a word_list Object

Description

Prints a word_list object.

Usage

## S3 method for class 'word_list'
print(x, ...)

Arguments

x

The word_list object

...

ignored


Prints a word_position object.

Description

Prints a word_position object.

Usage

## S3 method for class 'word_position'
print(x, ...)

Arguments

x

The word_position object

...

Values passed to plot.word_position


Prints a word_proximity object

Description

Prints a word_proximity object

Usage

## S3 method for class 'word_proximity'
print(x, digits = NULL, ...)

Arguments

x

The word_proximity object

digits

The number of digits to print

...

ignored


Prints a word_stats object

Description

Prints a word_stats object.

Usage

## S3 method for class 'word_stats'
print(x, digits = NULL, ...)

Arguments

x

The word_stats object

digits

Integer; number of decimal places to round in the display of the output.

...

ignored


Prints a word_stats_counts object

Description

Prints a word_stats_counts object

Usage

## S3 method for class 'word_stats_counts'
print(x, ...)

Arguments

x

The word_stats_counts object

...

ignored


Count Object/Subject Pronouns Per Grouping Variable

Description

Count the number of subject/object pronouns per grouping variables.

Usage

pronoun_type(text.var, grouping.var = NULL, pronoun.list = NULL, ...)

Arguments

text.var

The text variable

grouping.var

The grouping variables. Default NULL generates one word list for all text. Also takes a single grouping variable or a list of 1 or more grouping variables.

pronoun.list

A named list of subject/object pronouns. See Details for more.

...

Other arguments passed to termco

Details

The following subject/object pronoun categories are the default searched terms:

  • I = c(" i'd ", " i'll ", " i'm ", " i've ", " i ")

  • we = c(" we'd ", " we'll ", " we're ", " we've ", " we ")

  • you = c(" you'd ", " you'll ", " you're ", " you've ", " you ", " your ")

  • he = c(" he'd ", " he'll ", " he's ", " he ")

  • she = c(" she'd ", " she'll ", " she's ", " she ")

  • they = c(" they'd ", " they'll ", " they're ", "they've ", " they ")

  • it = c(" it'd ", " it'll ", " it's ", " it ")

  • me = c(" me ", " my ", " mine ")

  • us = c(" us ", " our ", " ours ")

  • him = c(" him ", " his ")

  • her = c(" her ", " hers ")

  • them = c(" them ")

  • their = c(" their ", "theirs ")

Value

Returns a list, of class "pronoun_type", of data frames regarding subject/object pronoun word counts:

preprocessed

List of uncollapsed dataframes (raw, prop, rnp) of the class "termco" that contain all searchable subject/object pronouns.

raw

raw word counts by grouping variable

prop

proportional word counts by grouping variable; proportional to each individual's subject/object pronoun use

rnp

a character combination data frame of raw and proportional subject/object pronoun use

References

Fairclough, N. (1989). Language and power. London: Longman.

Fairclough, N. (2003). Analysing discourse: Textual analysis for social research. Oxford and New York: Routledge.

Okamura, A. (2009). Use of personal pronouns in two types of monologic academic speech. The Economic Journal of Takasaki City University of Economics, 52(1). 17-26.

Us and them: Social categorization and the process of intergroup bias. Perdue, C. W., Dovidio, J. F., Gurtman, M. B., & Tyler, R. B. (1990). Journal of Personality and Social Psychology, 59(3), 475-486. doi: 10.1037/0022-3514.59.3.475

See Also

object_pronoun_type, subject_pronoun_type

Examples

## Not run: 
dat <- pres_debates2012
dat <- dat[dat$person %in% qcv(ROMNEY, OBAMA), ]
(out <- pronoun_type(dat$dialogue, dat$person))
plot(out)
plot(out, 2)
plot(out, 3)
plot(out, 3, ncol=2)

scores(out)
counts(out)
proportions(out)
preprocessed(out)

plot(scores(out))
plot(counts(out))
plot(proportions(out))

(out2 <- pronoun_type(hamlet$dialogue, hamlet$person))
plot(out2, 3, ncol=7)

## End(Not run)

Convert Raw Numeric Matrix or Data Frame to Proportions

Description

Convert a raw matrix or dataframe to proportions/percents. Divides each element of a column by the column sum.

Usage

prop(mat, digits = 2, percent = FALSE, by.column = TRUE, round = FALSE)

Arguments

mat

A numeric matrix or dataframe.

digits

Integer; number of decimal places to round.

percent

logical. If TRUE output given as percent. If FALSE the output is proportion.

by.column

logical. If TRUE applies to the column. If FALSE applies by row.

round

logical. If TRUE rounds the returned values (controlled by digits).

Value

Returns a matrix with proportionally scaled values.

Examples

## Not run: 
y <- wfdf(DATA$state, DATA$person, stopwords = c("your", "yours"), 
    margins = TRUE)
prop(wfm(y), 4)[1:10, ]        #as a proportion
prop(wfm(y), 4, TRUE)[1:10, ]  #as a percentage
heatmap(prop(wfm(y), 4))
wdstraj <- word_stats(rajSPLIT$dialogue, rajSPLIT$person)
prop(wdstraj$gts[, -1], 5)[1:15, 1:6]

## End(Not run)

Generic Proportions Method

Description

Access the proportions dataframes from select qdap outputs.

Usage

proportions(x, ...)

Arguments

x

A qdap object (list) with a proportions dataframe (e.g., termco).

...

Arguments passed to proportions method of other classes.

Value

Returns a data.frame of proportions.

See Also

scores, counts, preprocessed, visual


Term Counts

Description

View character_table proportions.

Usage

## S3 method for class 'character_table'
proportions(x, ...)

Arguments

x

The character_table object.

...

ignored

Details

character_table Method for proportions


Question Counts

Description

View end_mark_by proportions.

Usage

## S3 method for class 'end_mark_by'
proportions(x, ...)

Arguments

x

The end_mark_by object.

...

ignored

Details

end_mark_by Method for proportions


Formality

Description

View formality proportions.

Usage

## S3 method for class 'formality'
proportions(x, ...)

Arguments

x

The formality object.

...

ignored

Details

formality Method for proportions


Question Counts

Description

View object_pronoun_type proportions.

Usage

## S3 method for class 'object_pronoun_type'
proportions(x, ...)

Arguments

x

The object_pronoun_type object.

...

ignored

Details

object_pronoun_type Method for proportions


Parts of Speech

Description

View pos proportions.

Usage

## S3 method for class 'pos'
proportions(x, ...)

Arguments

x

The pos object.

...

ignored

Details

pos Method for proportions


Parts of Speech

Description

View pos_by proportions.

Usage

## S3 method for class 'pos_by'
proportions(x, ...)

Arguments

x

The pos_by object.

...

ignored

Details

pos_by Method for proportions


Question Counts

Description

View pronoun_type proportions.

Usage

## S3 method for class 'pronoun_type'
proportions(x, ...)

Arguments

x

The pronoun_type object.

...

ignored

Details

pronoun_type Method for proportions


Question Counts

Description

View question_type proportions.

Usage

## S3 method for class 'question_type'
proportions(x, ...)

Arguments

x

The question_type object.

...

ignored

Details

question_type Method for proportions


Question Counts

Description

View subject_pronoun_type proportions.

Usage

## S3 method for class 'subject_pronoun_type'
proportions(x, ...)

Arguments

x

The subject_pronoun_type object.

...

ignored

Details

subject_pronoun_type Method for proportions


Term Counts

Description

View termco proportions.

Usage

## S3 method for class 'termco'
proportions(x, ...)

Arguments

x

The termco object.

...

ignored

Details

termco Method for proportions


Word Length Counts

Description

View word_length proportions.

Usage

## S3 method for class 'word_length'
proportions(x, ...)

Arguments

x

The word_length object.

...

ignored

Details

word_length Method for proportions


Word Position

Description

View word_position proportions.

Usage

## S3 method for class 'word_position'
proportions(x, ...)

Arguments

x

The word_position object.

...

ignored

Details

word_position Method for proportions


Combine Columns

Description

Quickly combine columns (summed) and rename.

Usage

qcombine(mat, combined.columns, elim.old = TRUE)

Arguments

mat

A matrix or dataframe with numeric combine columns.

combined.columns

A list of named vectors of the colnames/indexes of the numeric columns to be combined (summed). If a vector is unnamed a name will be assigned.

elim.old

logical. If TRUE eliminates the columns that are combined together by the named match.list. TRUE outputs the table proportionally (see prop).

Value

Returns a dataframe with combines columns.

See Also

transform

Examples

## Not run: 
A <- list(
    a = c(1, 2, 3),
    b = qcv(mpg, hp),
    c = c("disp", "am")
)
B <- list(
    c(1, 2, 3),
    d = qcv(mpg, hp),
    c("disp", "am")
)

qcombine(head(mtcars), A)
qcombine(head(mtcars), B)
qcombine(head(mtcars), B, elim.old = FALSE)

## End(Not run)

Quick Character Vector

Description

Create a character vector without the use of quotation marks.

Usage

qcv(
  ...,
  terms = NULL,
  space.wrap = FALSE,
  trailing = FALSE,
  leading = FALSE,
  split = " ",
  rm.blank = TRUE
)

Arguments

terms

An optional argument to present the terms as one long character string. This is useful if the split (separator) is not a comma (e.g., spaces are the term separators).

space.wrap

logical. If TRUE wraps the vector of terms with a leading/trailing space.

trailing

logical. If TRUE wraps the vector of terms with a trailing space.

leading

logical. If TRUE wraps the vector of terms with a leading space.

split

Character vector of length one to use for splitting (i.e., the separator used in the vector). For use with the argument terms.

rm.blank

logical. If TRUE removes all blank spaces from the vector.

...

Character objects. Either ... or terms argument must be utilized.

Value

Returns a character vector.

See Also

c

Examples

## Not run: 
qcv(I, like, dogs)
qcv(terms = "I, like, dogs") #default separator is " "
qcv(terms = "I, like, dogs", split = ",")
qcv(terms = "I  like dogs")
qcv(I, like, dogs, space.wrap = TRUE)
qcv(I, like, dogs, trailing = TRUE)
qcv(I, like, dogs, leading = TRUE)
exclude(Top25Words, qcv(the, of, and))
qcv(terms = "mpg cyl  disp  hp drat    wt  qsec vs am gear carb")

## End(Not run)

qdap: Quantitative Discourse Analysis Package

Description

This package automates many of the tasks associated with quantitative discourse analysis of transcripts containing discourse. The package provides parsing tools for preparing transcript data, coding tools and analysis tools for richer understanding of the data. Many functions allow the user to aggregate data by any number of grouping variables, providing analysis and seamless integration with other R packages which enable higher level analysis and visualization of text. This empowers the researcher with more flexible, efficient and targeted methods and tools.


Create qdap Specific Data Structure

Description

Creating this qdap specific data structure enables short hand with subsequent qdap function calls that utilize the text.var argument. Combined with the %&% operator, the user n need not specify a data set or the text.var argument (as many qdap functions contain a text.var argument).

Change text.var column of a qdap_df object.

Usage

qdap_df(dataframe, text.var)

Text(object)

Text(object) <- value

Arguments

dataframe

A data.frame with a text variable. Generally, sentSplit should be run first (sentSplit actually produces a data.frame that is of the class "qdap_df").

text.var

The name of the text.var column.

object

A data.frame of the class "qdap_df".

value

A character string of the updated text.var column.

Value

Returns a data.frame of the class "qdap_df".

References

Inspired by dplyr's tbl_df structure.

See Also

%&%, sentSplit

Examples

## Not run: 
dat <- qdap_df(DATA, state)
dat %&% trans_cloud(grouping.var=person)
dat %&% trans_cloud(grouping.var=person, text.var=stemmer(DATA$state))
dat %&% termco(grouping.var=person, match.list=list("fun", "computer"))
class(dat)

## Change text column in `qdap_df` (Example 1)
dat2 <- sentSplit(DATA, "state", stem.col = TRUE)
class(dat2)
dat2 %&% trans_cloud()
Text(dat2)
## change the `text.var` column
Text(dat2) <- "stem.text"
dat2 %&% trans_cloud()

## Change text column in `qdap_df` (Example 2)
(dat2$fake_dat <- paste(emoticon[1:11,2], dat2$state))
Text(dat2) <- "fake_dat"
(m <- dat2 %&% sub_holder(emoticon[,2]))
m$unhold(strip(m$output))

## Various examples with qdap functions
dat <- sentSplit(DATA, "state")
dat %&% trans_cloud(grouping.var=person)
dat %&% termco(person, match.list=list("fun", "computer"))
dat %&% trans_venn(person)
dat %&% polarity(person)
dat %&% formality(person)
dat %&% automated_readability_index(person)
dat %&% Dissimilarity(person)
dat %&% gradient_cloud(sex)
dat %&% dispersion_plot(c("fun", "computer"))
dat %&% discourse_map(list(sex, adult))
dat %&% gantt_plot(person)
dat %&% word_list(adult)
dat %&% end_mark_by(person)
dat %&% end_mark()
dat %&% word_stats(person)
dat %&% wfm(person)
dat %&% word_cor(person, "i")
dat %&% sentCombine(person)
dat %&% question_type(person)
dat %&% word_network_plot()
dat %&% character_count()
dat %&% char_table(person)
dat %&% phrase_net(2, .1)
dat %&% boolean_search("it||!")
dat %&% trans_context(person, which(end_mark(DATA.SPLIT[, "state"]) == "?"))
dat %&% mgsub(c("it's", "I'm"), c("it is", "I am"))

## combine with magrittr/dplyr chaining
dat %&% wfm(person) %>% plot()
dat %&% polarity(person) %>% scores()
dat %&% polarity(person) %>% counts()
dat %&% polarity(person) %>% scores()
dat %&% polarity(person) %>% scores() %>% plot()
dat %&% polarity(person) %>% scores %>% plot

## End(Not run)

Quick Heatmap

Description

A quick heatmap function for visualizing typical qdap dataframe/matrix outputs.

Usage

qheat(
  mat,
  low = "white",
  high = "darkblue",
  values = FALSE,
  digits = 1,
  text.size = 3,
  text.color = "grey40",
  xaxis.col = "black",
  yaxis.col = "black",
  order.by = NULL,
  grid = "white",
  by.column = TRUE,
  auto.size = FALSE,
  mat2 = NULL,
  plot = TRUE,
  facet.vars = NULL,
  facet.flip = FALSE,
  diag.na = FALSE,
  diag.values = "",
  ...
)

## Default S3 method:
qheat(
  mat,
  low = "white",
  high = "darkblue",
  values = FALSE,
  digits = 1,
  text.size = 3,
  text.color = "grey40",
  xaxis.col = "black",
  yaxis.col = "black",
  order.by = NULL,
  grid = "white",
  by.column = TRUE,
  auto.size = FALSE,
  mat2 = NULL,
  plot = TRUE,
  facet.vars = NULL,
  facet.flip = FALSE,
  diag.na = FALSE,
  diag.values = "",
  ...
)

## S3 method for class 'diversity'
qheat(
  mat,
  low = "white",
  high = "darkblue",
  values = FALSE,
  digits = 1,
  text.size = 3,
  text.color = "grey40",
  xaxis.col = "black",
  yaxis.col = "black",
  order.by = NULL,
  grid = "white",
  by.column = TRUE,
  auto.size = FALSE,
  mat2 = NULL,
  plot = TRUE,
  facet.vars = NULL,
  facet.flip = FALSE,
  diag.na = FALSE,
  diag.values = "",
  ...
)

## S3 method for class 'termco'
qheat(
  mat,
  low = "white",
  high = "darkblue",
  values = FALSE,
  digits = 1,
  text.size = 3,
  text.color = "grey40",
  xaxis.col = "black",
  yaxis.col = "black",
  order.by = NULL,
  grid = "white",
  by.column = TRUE,
  auto.size = FALSE,
  mat2 = NULL,
  plot = TRUE,
  facet.vars = NULL,
  facet.flip = FALSE,
  diag.na = FALSE,
  diag.values = "",
  ...
)

## S3 method for class 'word_stats'
qheat(
  mat,
  low = "white",
  high = "darkblue",
  values = FALSE,
  digits = 1,
  text.size = 3,
  text.color = "grey40",
  xaxis.col = "black",
  yaxis.col = "black",
  order.by = NULL,
  grid = "white",
  by.column = TRUE,
  auto.size = FALSE,
  mat2 = NULL,
  plot = TRUE,
  facet.vars = NULL,
  facet.flip = FALSE,
  diag.na = FALSE,
  diag.values = "",
  ...
)

## S3 method for class 'character_table'
qheat(
  mat,
  low = "white",
  high = "darkblue",
  values = FALSE,
  digits = 1,
  text.size = 3,
  text.color = "grey40",
  xaxis.col = "black",
  yaxis.col = "black",
  order.by = NULL,
  grid = "white",
  by.column = TRUE,
  auto.size = FALSE,
  mat2 = NULL,
  plot = TRUE,
  facet.vars = NULL,
  facet.flip = FALSE,
  diag.na = FALSE,
  diag.values = "",
  ...
)

## S3 method for class 'question_type'
qheat(
  mat,
  low = "white",
  high = "darkblue",
  values = FALSE,
  digits = 1,
  text.size = 3,
  text.color = "grey40",
  xaxis.col = "black",
  yaxis.col = "black",
  order.by = NULL,
  grid = "white",
  by.column = TRUE,
  auto.size = FALSE,
  mat2 = NULL,
  plot = TRUE,
  facet.vars = NULL,
  facet.flip = FALSE,
  diag.na = FALSE,
  diag.values = "",
  ...
)

## S3 method for class 'pos_by'
qheat(
  mat,
  low = "white",
  high = "darkblue",
  values = FALSE,
  digits = 1,
  text.size = 3,
  text.color = "grey40",
  xaxis.col = "black",
  yaxis.col = "black",
  order.by = NULL,
  grid = "white",
  by.column = TRUE,
  auto.size = FALSE,
  mat2 = NULL,
  plot = TRUE,
  facet.vars = NULL,
  facet.flip = FALSE,
  diag.na = FALSE,
  diag.values = "",
  ...
)

Arguments

mat

A matrix or dataframe produced by many qdap functions in which the first column is the grouping variable and the rest of the matrix is numeric. Also accepts objects directly from word_stats and question_type.

low

The color to be used for lower values.

high

The color to be used for higher values.

values

logical. If TRUE the cell values will be included on the heatmap.

digits

The number of digits displayed if values is TRUE.

text.size

A integer size to plot the text if values is TRUE.

text.color

A character vector to plot the text if values is TRUE.

xaxis.col

A single character vector color choice for the high values.

yaxis.col

A single character vector color choice for the low values.

order.by

An optional character vector of a variable name to order the columns by. To reverse use a negative (-) before the column name.

grid

The color of the grid (Use NULL to remove the grid).

by.column

logical. If TRUE applies scaling to the column. If FALSE applies scaling by row (use NULL to turn off scaling).

auto.size

logical. If TRUE the visual will be resized to create square cells.

mat2

A second matrix equal in dimensions to mat that will be used for cell labels if values is TRUE.

plot

logical. If TRUE the plot will automatically plot. The user may wish to set to FALSE for use in knitr, sweave, etc. to add additional plot layers.

facet.vars

A character vector of 1 or 2 column names to facet by.

facet.flip

logical If TRUE the direction of the faceting is reversed.

diag.na

logical. If TRUE and mat is a symmetrical matrix the diagonals are set to NA. This is useful with correlation matrices because the diagonal of ones do not affect the scaling of the heatmap.

diag.values

The string to be used for the diagonal labels (values) if diag.na is set to TRUE. Default is to not print a value.

...

Not currently used.

Details

qheat is useful for finding patterns and anomalies in large qdap generated dataframes and matrices.

Note

qheat is a fast way of working with data formats produced by qdap. The function isn't designed to be extended beyond exploratory qdap usage.

Examples

## Not run: 
dat <- sentSplit(DATA, "state")
ws.ob <- with(dat, word_stats(state, list(sex, adult), tot=tot))
qheat(ws.ob)
qheat(ws.ob) + coord_flip()
qheat(ws.ob, order.by = "sptot", 
    xaxis.col = c("red", "black", "green", "blue"))
qheat(ws.ob, order.by = "sptot")
qheat(ws.ob, order.by = "-sptot")
qheat(ws.ob, values = TRUE)
qheat(ws.ob, values = TRUE, text.color = "red")
qheat(ws.ob, "yellow", "red", grid = FALSE)
qheat(mtcars, facet.vars = "cyl")
qheat(mtcars, facet.vars = c("gear", "cyl"))
qheat(t(mtcars), by.column=FALSE)
qheat(cor(mtcars), diag.na=TRUE, diag.value="", by.column=NULL, values = TRUE)

dat1 <- data.frame(G=LETTERS[1:5], matrix(rnorm(20), ncol = 4))
dat2 <- data.frame(matrix(LETTERS[1:25], ncol=5))
qheat(dat1, values=TRUE)
qheat(dat1, values=TRUE, mat2=dat2)

## End(Not run)

Quick Preparation of Text

Description

Wrapper for bracketX, replace_number, replace_symbol, replace_abbreviation and scrubber to quickly prepare text for analysis. Care should be taken with this function to ensure data is properly formatted and complete.

Usage

qprep(
  text.var,
  rm.dash = TRUE,
  bracket = "all",
  missing = NULL,
  names = FALSE,
  abbreviation = qdapDictionaries::abbreviations,
  replace = NULL,
  ignore.case = TRUE,
  num.paste = TRUE,
  ...
)

Arguments

text.var

The text variable.

rm.dash

logical. If TRUE dashes will be removed.

bracket

The type of bracket (and encased text) to remove. This is one of the strings "curly", "square", "round", "angle" and "all". These strings correspond to: {, [, (, < or all four types. Also takes the argument NULL which turns off this parsing technique.

missing

Value to assign to empty cells.

names

logical. If TRUE the sentences are given as the names of the counts.

abbreviation

A two column key of abbreviations (column 1) and long form replacements (column 2) or a vector of abbreviations. Default is to use qdap's abbreviations data set. Also takes the argument NULL which turns off this parsing technique.

replace

A vector of long form replacements if a data frame is not supplied to the abbreviation argument.

ignore.case

logical. If TRUE replaces without regard to capitalization.

num.paste

logical. If TURE a the elements of larger numbers are separated with spaces. If FALSE the elements will be joined without spaces. Also takes the argument NULL which turns off this parsing technique.

...

Other arguments passed to replace_symbol.

Note

Care should be taken with this function to ensure data is properly formatted and complete.

See Also

bracketX, replace_abbreviation, replace_number, replace_symbol

Examples

## Not run: 
x <- "I like 60 (laughter) #d-bot and $6 @ the store w/o 8p.m."
qprep(x)

## End(Not run)

Add themes to a Network object.

Description

qtheme - This function builds generic themes to add a theme to a Network object rather than individual print arguments.

theme_nightheat A night heat theme.

theme_badkitchen A 70s kitchen theme.

theme_cafe A cafe theme.

theme_grayscale A grayscale theme.

theme_norah A Norah theme.

theme_hipster A hipster theme.

theme_duskheat A duskheat theme.

Usage

qtheme(
  x = "generic",
  title,
  title.color,
  layout,
  legend,
  legend.cex,
  legend.text.color,
  legend.gradient,
  bg,
  vertex.color,
  vertex.size,
  vertex.frame.color,
  vertex.label.color,
  vertex.label.cex,
  edge.label.color,
  edge.label.cex
)

theme_nightheat(
  x = pars[["x"]],
  title = pars[["title"]],
  title.color = pars[["title.color"]],
  layout = pars[["layout"]],
  legend = pars[["legend"]],
  legend.cex = pars[["legend.cex"]],
  legend.gradient = pars[["legend.gradient"]],
  bg = pars[["bg"]],
  legend.text.color = pars[["legend.text.color"]],
  vertex.color = pars[["vertex.color"]],
  vertex.size = pars[["vertex.size"]],
  vertex.frame.color = pars[["vertex.frame.color"]],
  vertex.label.color = pars[["vertex.label.color"]],
  vertex.label.cex = pars[["vertex.label.cex"]],
  edge.label.color = pars[["edge.label.color"]],
  edge.label.cex = pars[["edge.label.cex"]],
  ...
)

theme_badkitchen(
  x = pars[["x"]],
  title = pars[["title"]],
  title.color = pars[["title.color"]],
  layout = pars[["layout"]],
  legend = pars[["legend"]],
  legend.cex = pars[["legend.cex"]],
  legend.gradient = pars[["legend.gradient"]],
  bg = pars[["bg"]],
  legend.text.color = pars[["legend.text.color"]],
  vertex.color = pars[["vertex.color"]],
  vertex.size = pars[["vertex.size"]],
  vertex.frame.color = pars[["vertex.frame.color"]],
  vertex.label.color = pars[["vertex.label.color"]],
  vertex.label.cex = pars[["vertex.label.cex"]],
  edge.label.color = pars[["edge.label.color"]],
  edge.label.cex = pars[["edge.label.cex"]],
  ...
)

theme_cafe(
  x = pars[["x"]],
  title = pars[["title"]],
  title.color = pars[["title.color"]],
  layout = pars[["layout"]],
  legend = pars[["legend"]],
  legend.cex = pars[["legend.cex"]],
  legend.gradient = pars[["legend.gradient"]],
  bg = pars[["bg"]],
  legend.text.color = pars[["legend.text.color"]],
  vertex.color = pars[["vertex.color"]],
  vertex.size = pars[["vertex.size"]],
  vertex.frame.color = pars[["vertex.frame.color"]],
  vertex.label.color = pars[["vertex.label.color"]],
  vertex.label.cex = pars[["vertex.label.cex"]],
  edge.label.color = pars[["edge.label.color"]],
  edge.label.cex = pars[["edge.label.cex"]],
  ...
)

theme_grayscale(
  x = pars[["x"]],
  title = pars[["title"]],
  title.color = pars[["title.color"]],
  layout = pars[["layout"]],
  legend = pars[["legend"]],
  legend.cex = pars[["legend.cex"]],
  legend.gradient = pars[["legend.gradient"]],
  bg = pars[["bg"]],
  legend.text.color = pars[["legend.text.color"]],
  vertex.color = pars[["vertex.color"]],
  vertex.size = pars[["vertex.size"]],
  vertex.frame.color = pars[["vertex.frame.color"]],
  vertex.label.color = pars[["vertex.label.color"]],
  vertex.label.cex = pars[["vertex.label.cex"]],
  edge.label.color = pars[["edge.label.color"]],
  edge.label.cex = pars[["edge.label.cex"]],
  ...
)

theme_greyscale(
  x = pars[["x"]],
  title = pars[["title"]],
  title.color = pars[["title.color"]],
  layout = pars[["layout"]],
  legend = pars[["legend"]],
  legend.cex = pars[["legend.cex"]],
  legend.gradient = pars[["legend.gradient"]],
  bg = pars[["bg"]],
  legend.text.color = pars[["legend.text.color"]],
  vertex.color = pars[["vertex.color"]],
  vertex.size = pars[["vertex.size"]],
  vertex.frame.color = pars[["vertex.frame.color"]],
  vertex.label.color = pars[["vertex.label.color"]],
  vertex.label.cex = pars[["vertex.label.cex"]],
  edge.label.color = pars[["edge.label.color"]],
  edge.label.cex = pars[["edge.label.cex"]],
  ...
)

theme_norah(
  x = pars[["x"]],
  title = pars[["title"]],
  title.color = pars[["title.color"]],
  layout = pars[["layout"]],
  legend = pars[["legend"]],
  legend.cex = pars[["legend.cex"]],
  legend.gradient = pars[["legend.gradient"]],
  bg = pars[["bg"]],
  legend.text.color = pars[["legend.text.color"]],
  vertex.color = pars[["vertex.color"]],
  vertex.size = pars[["vertex.size"]],
  vertex.frame.color = pars[["vertex.frame.color"]],
  vertex.label.color = pars[["vertex.label.color"]],
  vertex.label.cex = pars[["vertex.label.cex"]],
  edge.label.color = pars[["edge.label.color"]],
  edge.label.cex = pars[["edge.label.cex"]],
  ...
)

theme_hipster(
  x = pars[["x"]],
  title = pars[["title"]],
  title.color = pars[["title.color"]],
  layout = pars[["layout"]],
  legend = pars[["legend"]],
  legend.cex = pars[["legend.cex"]],
  legend.gradient = pars[["legend.gradient"]],
  bg = pars[["bg"]],
  legend.text.color = pars[["legend.text.color"]],
  vertex.color = pars[["vertex.color"]],
  vertex.size = pars[["vertex.size"]],
  vertex.frame.color = pars[["vertex.frame.color"]],
  vertex.label.color = pars[["vertex.label.color"]],
  vertex.label.cex = pars[["vertex.label.cex"]],
  edge.label.color = pars[["edge.label.color"]],
  edge.label.cex = pars[["edge.label.cex"]],
  ...
)

theme_duskheat(
  x = pars[["x"]],
  title = pars[["title"]],
  title.color = pars[["title.color"]],
  layout = pars[["layout"]],
  legend = pars[["legend"]],
  legend.cex = pars[["legend.cex"]],
  legend.gradient = pars[["legend.gradient"]],
  bg = pars[["bg"]],
  legend.text.color = pars[["legend.text.color"]],
  vertex.color = pars[["vertex.color"]],
  vertex.size = pars[["vertex.size"]],
  vertex.frame.color = pars[["vertex.frame.color"]],
  vertex.label.color = pars[["vertex.label.color"]],
  vertex.label.cex = pars[["vertex.label.cex"]],
  edge.label.color = pars[["edge.label.color"]],
  edge.label.cex = pars[["edge.label.cex"]],
  ...
)

Arguments

x

The name of the qtheme.

title

The title of the plot. NULL eliminates title. NA uses title attribute of the Network object.

title.color

The color of the title.

layout

igraph layout to use.

legend

The coordinates of the legend. See color.legend for more information.

legend.cex

character expansion factor. NULL and NA are equivalent to 1.0. See mtext for more information.

legend.text.color

The text legend text color.

legend.gradient

A vector of ordered colors to use for the gradient fills in the network edges.

bg

The color to be used for the background of the device region. See par for more information.

vertex.color

The font family to be used for vertex labels.

vertex.size

The size of the vertex.

vertex.frame.color

The color of the vertex border.

vertex.label.color

The color of the labels.

vertex.label.cex

The font size for vertex labels.

edge.label.color

The color for the edge labels. Use NA to remove.

edge.label.cex

The font size of the edge labels.

...

Additional arguments supplied to qtheme.

Examples

## Not run: 
(poldat <- with(sentSplit(DATA, 4), polarity(state, person)))
m <- Network(poldat)
m

m + theme_nightheat
m + theme_cafe
m + theme_grayscale
m + theme_norah
m + theme_hipster
m + theme_badkitchen
m + theme_duskheat

## make your own themes
theme_irish <- qtheme(x = "irish", bg = "grey25", 
    vertex.label.color = "grey50", legend.text.color = "white",
    legend.gradient = c("darkgreen", "white", "darkorange"), 
    edge.label.color="white", vertex.size= 20)

m + theme_irish

## End(Not run)

Count of Question Type

Description

Transcript apply question counts.

Usage

question_type(
  text.var,
  grouping.var = NULL,
  neg.cont = FALSE,
  percent = TRUE,
  zero.replace = 0,
  digits = 2,
  contraction = qdapDictionaries::contractions,
  bracket = "all",
  amplifiers = qdapDictionaries::amplification.words,
  ...
)

Arguments

text.var

The text variable

grouping.var

The grouping variables. Default NULL generates one word list for all text. Also takes a single grouping variable or a list of 1 or more grouping variables.

neg.cont

logical. If TRUE provides separate counts for the negative contraction forms of the interrogative words.

percent

logical. If TRUE output given as percent. If FALSE the output is proportion.

zero.replace

Value to replace 0 values with.

digits

Integer; number of decimal places to round when printing.

contraction

A two column key of contractions (column 1) and expanded form replacements (column 2) or a vector of contractions. Default is to use qdapDictionaries's contractions data set.

bracket

The type of bracket (and encased text) to remove. This is one or more of the strings "curly", "square", "round", "angle" and "all". These strings correspond to: {, [, (, < or all four types.

amplifiers

A character vector of terms that increase the intensity of a positive or negative word. Default is to use qdapDictionaries's amplification.words data set.

...

Other arguments passed to bracketX.

Details

The algorithm searches for the following interrogative words (and optionally, their negative contraction form as well):

1) whose 2) whom 3) who 4) where 5) what 6) which 7) why 8) when 9) were* 10) was* 11) does* 12) did* 13) do* 14) is 15) are* 16) will* 17) how 18) should 19) could 20) would* 21) shall 22) may 23) might* 24) must* 25) can* 26) has 27) have* 28) had* 29) ok 30) right 31) correct 32) implied do/does/did

The interrogative word that is found first (with the exception of "ok", "right"/"alright", and "correct") in the question determines the sentence type. "ok", "right"/"alright", and "correct" sentence types are determined if the sentence is a question with no other interrogative words found and "ok", "right"/"alright", or "correct" is the last word of the sentence. Those interrogative sentences beginning with the word "you", "wanna", or "want" are categorized as implying do/does/did question type, though the use of do/does/did is not explicit. Those sentence beginning with "you" followed by a select interrogative word (and or their negative counter parts) above (marked with *) or 1-2 amplifier(s) followed by the select interrogative word are categorized by the select word rather than an implied do/does/did question type. A sentence that is marked "ok" over rides an implied do/does/did label. Those with undetermined sentence type are labeled unknown.

Value

Returns a list of:

raw

A dataframe of the questions used in the transcript and their type.

count

A dataframe of total questions (tot.quest) and counts of question types (initial interrogative word) by grouping variable(s).

rnp

Dataframe of the frequency and proportions of question types by grouping variable.

inds

The indices of the original text variable that contain questions.

missing

The row numbers of the missing data (excluded from analysis).

percent

The value of percent used for plotting purposes.

zero.replace

The value of zero.replace used for plotting purposes.

See Also

colcomb2class, bracketX

Examples

## Not run: 
## Inspect the algorithm classification
x <- c("Kate's got no appetite doesn't she?",
    "Wanna tell Daddy what you did today?",
    "You helped getting out a book?", "umm hum?",
    "Do you know what it is?", "What do you want?",
    "Who's there?", "Whose?", "Why do you want it?",
    "Want some?", "Where did it go?", "Was it fun?")

left_just(preprocessed(question_type(x))[, c(2, 6)])

## Transcript/dialogue examples
(x <- question_type(DATA.SPLIT$state, DATA.SPLIT$person))

## methods
scores(x)
plot(scores(x))
counts(x)
plot(counts(x))
proportions(x)
plot(proportions(x))
truncdf(preprocessed(x), 15)
plot(preprocessed(x))

plot(x)
plot(x, label = TRUE)
plot(x, label = TRUE, text.color = "red")
question_type(DATA.SPLIT$state, DATA.SPLIT$person, percent = FALSE)
DATA[8, 4] <- "Won't I distrust you?"
question_type(DATA.SPLIT$state, DATA.SPLIT$person)
DATA <- qdap::DATA
with(DATA.SPLIT, question_type(state, list(sex, adult)))

out1 <- with(mraja1spl, question_type(dialogue, person))
## out1
out2 <- with(mraja1spl, question_type(dialogue, list(sex, fam.aff)))
## out2
out3 <- with(mraja1spl, question_type(dialogue, list(sex, fam.aff),
   percent = FALSE))
plot(out3, label = TRUE, lab.digits = 3)

## End(Not run)

Romeo and Juliet (Unchanged & Complete)

Description

A dataset containing the original transcript from Romeo and Juliet as it was scraped from: http://shakespeare.mit.edu/romeo_juliet/full.html.

Usage

data(raj)

Format

A data frame with 840 rows and 3 variables

Details

  • person. Character in the play

  • dialogue. The spoken dialogue

  • act. The act (akin to repeated measures)

References

http://shakespeare.mit.edu/romeo_juliet/full.html


Romeo and Juliet: Act 1

Description

A dataset containing Romeo and Juliet: Act 1.

Usage

data(raj.act.1)

Format

A data frame with 235 rows and 2 variables

Details

  • person. Character in the play

  • dialogue. The spoken dialogue

References

http://shakespeare.mit.edu/romeo_juliet/full.html


Romeo and Juliet: Act 1 Parts of Speech by Person A dataset containing a list from pos_by using the mraja1spl data set (see pos_by for more information).

Description

Romeo and Juliet: Act 1 Parts of Speech by Person

A dataset containing a list from pos_by using the mraja1spl data set (see pos_by for more information).

Usage

data(raj.act.1POS)

Format

A list with 10 elements http://shakespeare.mit.edu/romeo_juliet/full.html

Details

text

The original text

POStagged

The original words replaced with parts of speech in context.

POSprop

Dataframe of the proportion of parts of speech by row.

POSfreq

Dataframe of the frequency of parts of speech by row.

POSrnp

Dataframe of the frequency and proportions of parts of speech by row

percent

The value of percent used for plotting purposes.

zero.replace

The value of zero.replace used for plotting purposes.

pos.by.freq

Dataframe of the frequency of parts of speech by grouping variable.

pos.by.prop

Dataframe of the proportion of parts of speech by grouping variable.

pos.by.rnp

Dataframe of the frequency and proportions of parts of speech by grouping variable.


Romeo and Juliet: Act 2

Description

A dataset containing Romeo and Juliet: Act 2.

Usage

data(raj.act.2)

Format

A data frame with 205 rows and 2 variables

Details

  • person. Character in the play

  • dialogue. The spoken dialogue

References

http://shakespeare.mit.edu/romeo_juliet/full.html


Romeo and Juliet: Act 3

Description

A dataset containing Romeo and Juliet: Act 3.

Usage

data(raj.act.3)

Format

A data frame with 197 rows and 2 variables

Details

  • person. Character in the play

  • dialogue. The spoken dialogue

References

http://shakespeare.mit.edu/romeo_juliet/full.html


Romeo and Juliet: Act 4

Description

A dataset containing Romeo and Juliet: Act 4.

Usage

data(raj.act.4)

Format

A data frame with 115 rows and 2 variables

Details

  • person. Character in the play

  • dialogue. The spoken dialogue

References

http://shakespeare.mit.edu/romeo_juliet/full.html


Romeo and Juliet: Act 5

Description

A dataset containing Romeo and Juliet: Act 5.

Usage

data(raj.act.5)

Format

A data frame with 88 rows and 2 variables

Details

  • person. Character in the play

  • dialogue. The spoken dialogue

References

http://shakespeare.mit.edu/romeo_juliet/full.html


Romeo and Juliet Demographics

Description

A dataset containing Romeo and Juliet demographic information for the characters.

Usage

data(raj.demographics)

Format

A data frame with 34 rows and 4 variables

Details

  • person. Character in the play

  • sex. Gender

  • fam.aff. Family affiliation of character

  • died. Dummy coded death variable (0-no; 1-yes); if yes the character dies in the play

References

http://shakespeare.mit.edu/romeo_juliet/full.html


Romeo and Juliet Split in Parts of Speech

Description

A dataset containing a list from pos using the raj data set (see pos for more information).

Usage

data(rajPOS)

Format

A list with 4 elements

Details

text

The original text

POStagged

The original words replaced with parts of speech in context.

POSprop

Dataframe of the proportion of parts of speech by row.

POSfreq

Dataframe of the frequency of parts of speech by row.

References

http://shakespeare.mit.edu/romeo_juliet/full.html


Romeo and Juliet (Complete & Split)

Description

A dataset containing the complete dialogue of Romeo and Juliet with turns of talk split into sentences.

Usage

data(rajSPLIT)

Format

A data frame with 2151 rows and 8 variables

Details

  • person. Character in the play

  • sex. Gender

  • fam.aff. Family affiliation of character

  • died. Dummy coded death variable (0-no; 1-yes); if yes the character dies in the play

  • dialogue. The spoken dialogue

  • act. The act (akin to repeated measures)

  • stem.text. Text that has been stemmed

References

http://shakespeare.mit.edu/romeo_juliet/full.html


Generate Random Dialogue Data

Description

random_sent - Generates a random sample of sentences (sentences are sampled at the word level and there for are likely nonsensical).

random_data - Generate random dialogue, people, and demographic variables

Usage

random_sent(
  n = 10,
  len = 14,
  range = len - 1,
  dictionary = qdapDictionaries::Top200Words,
  endmark.fun = function() sample(c(".", "!", "|", "?"), 1, prob = c(0.85, 0.05, 0.05,
    0.05))
)

random_data(
  n = 10,
  ...,
  n.people = 10,
  ages = 7:10,
  people.names = unique(tolower(qdapDictionaries::NAMES[[1]]))
)

Arguments

n

Number of sentences to create.

len

Average length of sentences (in words).

range

Range around len that number of words may vary. This may be a recycled single integer vector or an integer vector of length 2.

dictionary

A dictionary of words to sample from.

endmark.fun

A function to create random end marks.

n.people

An integer of the number of people to include in the sample (number of people is sampled from; if n is smaller not all people may be included).

ages

The possible ages to choose from (numeric).

people.names

A vector of names to choose from at least as large as n.people.

...

Other arguments passed to random_sent

Value

random_sent - Returns a random vector of sentence strings.

random_data - Returns a data.frame of people, dialogue, and demographic variables of the class sent_split.

Examples

## Not run: 
random_sent()
random_sent(200, 10)

dict <- sort(unique(bag_o_words(pres_debates2012[["dialogue"]])))
random_sent(dictionary=dict)

random_data()
random_data(ages = seq(10, 20, by = .5))
random_data(50) %&% word_stats(person)
random_data(100) %&% word_stats(list(race, sex))
random_data(dictionary = dict)

## End(Not run)

Rank Frequency Plot

Description

rank_freq_mplot - Plot a faceted word rank versus frequencies by grouping variable(s).

rank_freq_plot - Plot word rank versus frequencies.

Usage

rank_freq_mplot(
  text.var,
  grouping.var = NULL,
  ncol = 4,
  jitter = 0.2,
  log.freq = TRUE,
  log.rank = TRUE,
  hap.col = "red",
  dis.col = "blue",
  alpha = 1,
  shape = 1,
  title = "Rank-Frequency Plot",
  digits = 2,
  plot = TRUE
)

rank_freq_plot(
  words,
  frequencies,
  plot = TRUE,
  title.ext = NULL,
  jitter.ammount = 0.1,
  log.scale = TRUE,
  hap.col = "red",
  dis.col = "blue"
)

Arguments

text.var

The text variable.

grouping.var

The grouping variables. Default NULL generates one word list for all text. Also takes a single grouping variable or a list of 1 or more grouping variables.

ncol

integer value indicating the number of columns in the facet wrap.

jitter

Amount of horizontal jitter to add to the points.

log.freq

logical. If TRUE plots the frequencies in the natural log scale.

log.rank

logical. If TRUE plots the ranks in the natural log scale.

hap.col

Color of the hapax legomenon points.

dis.col

Color of the dis legomenon points.

alpha

Transparency level of points (ranges between 0 and 1).

shape

An integer specifying the symbol used to plot the points.

title

Optional plot title.

digits

Integer; number of decimal places to round.

plot

logical. If TRUE provides a rank frequency plot.

words

A vector of words.

frequencies

A vector of frequencies corresponding to the words argument.

title.ext

The title extension that extends: "Rank-Frequency Plot ..."

jitter.ammount

Amount of horizontal jitter to add to the points.

log.scale

logical. If TRUE plots the rank and frequency as a log scale.

Value

Returns a rank-frequency plot and a list of three dataframes:

WORD_COUNTS

The word frequencies supplied to rank_freq_plot or created by rank_freq_mplot.

RANK_AND_FREQUENCY_STATS

A dataframe of rank and frequencies for the words used in the text.

LEGOMENA_STATS

A dataframe displaying the percent hapax legomena and percent dis legomena of the text.

Note

rank_freq_mplot utilizes the ggplot2 package, whereas, rank_freq_plot employs base graphics. rank_freq_mplot is more general & flexible; in most cases rank_freq_mplot should be preferred.

References

Zipf, G. K. (1949). Human behavior and the principle of least effort. Cambridge, Massachusetts: Addison-Wesley. p. 1.

Examples

## Not run: 
#rank_freq_mplot EXAMPLES:
x1 <- rank_freq_mplot(DATA$state, DATA$person, ncol = 2, jitter = 0)
ltruncdf(x1, 10)
x2 <- rank_freq_mplot(mraja1spl$dialogue, mraja1spl$person, ncol = 5, 
    hap.col = "purple")
ltruncdf(x2, 10)
invisible(rank_freq_mplot(mraja1spl$dialogue, mraja1spl$person, ncol = 5, 
    log.freq = FALSE, log.rank = FALSE, jitter = .6))
invisible(rank_freq_mplot(raj$dialogue, jitter = .5, alpha = 1/15))
invisible(rank_freq_mplot(raj$dialogue, jitter = .5, shape = 19, alpha = 1/15))

#rank_freq_plot EXAMPLES:
mod <- with(mraja1spl , word_list(dialogue, person, cut.n = 10, 
    cap.list=unique(mraja1spl$person)))         
x3 <- rank_freq_plot(mod$fwl$Romeo$WORD, mod$fwl$Romeo$FREQ, title.ext = 'Romeo')  
ltruncdf(x3, 10)
ltruncdf(rank_freq_plot(mod$fwl$Romeo$WORD, mod$fwl$Romeo$FREQ, plot = FALSE)           , 10)
invisible(rank_freq_plot(mod$fwl$Romeo$WORD, mod$fwl$Romeo$FREQ, title.ext = 'Romeo',     
    jitter.ammount = 0.15, hap.col = "darkgreen", dis.col = "purple"))                  
invisible(rank_freq_plot(mod$fwl$Romeo$WORD, mod$fwl$Romeo$FREQ, title.ext = 'Romeo',  
    jitter.ammount = 0.5, log.scale=FALSE))  
invisible(lapply(seq_along(mod$fwl), function(i){
    dev.new()
    rank_freq_plot(mod$fwl[[i]]$WORD, mod$fwl[[i]]$FREQ, 
        title.ext = names(mod$fwl)[i], jitter.ammount = 0.5, log.scale=FALSE)
}))

## End(Not run)

Minimal Raw Time Span Data Set

Description

A dataset containing a list of named vectors of time spans.

Usage

data(raw.time.span)

Format

A list with 3 elements


Read Transcripts Into R

Description

Read .docx, .csv or .xlsx files into R.

Usage

read.transcript(
  file,
  col.names = NULL,
  text.var = NULL,
  merge.broke.tot = TRUE,
  header = FALSE,
  dash = "",
  ellipsis = "...",
  quote2bracket = FALSE,
  rm.empty.rows = TRUE,
  na.strings = c("999", "NA", "", " "),
  sep = NULL,
  skip = 0,
  nontext2factor = TRUE,
  text,
  comment.char = "",
  ...
)

Arguments

file

The name of the file which the data are to be read from. Each row of the table appears as one line of the file. If it does not contain an absolute path, the file name is relative to the current working directory, getwd().

col.names

A character vector specifying the column names of the transcript columns.

text.var

A character string specifying the name of the text variable will ensure that variable is classed as character. If NULL read.transcript attempts to guess the text.variable (dialogue).

merge.broke.tot

logical. If TRUE and if the file being read in is .docx with broken space between a single turn of talk read.transcript will attempt to merge these into a single turn of talk.

header

logical. If TRUE the file contains the names of the variables as its first line.

dash

A character string to replace the en and em dashes special characters (default is to remove).

ellipsis

A character string to replace the ellipsis special characters (default is text ...).

quote2bracket

logical. If TRUE replaces curly quotes with curly braces (default is FALSE). If FALSE curly quotes are removed.

rm.empty.rows

logical. If TRUE read.transcript attempts to remove empty rows.

na.strings

A vector of character strings which are to be interpreted as NA values.

sep

The field separator character. Values on each line of the file are separated by this character. The default of NULL instructs read.transcript to use a separator suitable for the file type being read in.

skip

Integer; the number of lines of the data file to skip before beginning to read data.

nontext2factor

logical. If TRUE attempts to convert any non-text to a factor.

text

Character string: if file is not supplied and this is, then data are read from the value of text. Notice that a literal string can be used to include (small) data sets within R code.

comment.char

A character vector of length one containing a single character or an empty string. Use "" to turn off the interpretation of comments altogether.

...

Further arguments to be passed to read.table.

Value

Returns a dataframe of dialogue and people.

Warning

read.transcript may contain errors if the file being read in is .docx. The researcher should carefully investigate each transcript for errors before further parsing the data.

Note

If a transcript is a .docx file read transcript expects two columns (generally person and dialogue) with some sort of separator (default is colon separator). .doc files must be converted to .docx before reading in.

Author(s)

Bryan Goodrich and Tyler Rinker <[email protected]>.

References

https://github.com/trinker/qdap/wiki/Reading-.docx-%5BMS-Word%5D-Transcripts-into-R

See Also

dir_map

Examples

## Not run: 
#Note: to view the document below use the path:
system.file("extdata/transcripts/", package = "qdap")
(doc1 <- system.file("extdata/transcripts/trans1.docx", package = "qdap"))
(doc2 <- system.file("extdata/transcripts/trans2.docx", package = "qdap"))
(doc3 <- system.file("extdata/transcripts/trans3.docx", package = "qdap"))
(doc4 <- system.file("extdata/transcripts/trans4.xlsx", package = "qdap"))

dat1 <- read.transcript(doc1)
truncdf(dat1, 40)
dat2 <- read.transcript(doc1, col.names = c("person", "dialogue"))
truncdf(dat2, 40)
dat2b <- rm_row(dat2, "person", "[C") #remove bracket row
truncdf(dat2b, 40)

## read.transcript(doc2) #throws an error (need skip)
dat3 <- read.transcript(doc2, skip = 1); truncdf(dat3, 40)

## read.transcript(doc3, skip = 1) #incorrect read; wrong sep
dat4 <- read.transcript(doc3, sep = "-", skip = 1); truncdf(dat4, 40)

dat5 <- read.transcript(doc4); truncdf(dat5, 40) #an .xlsx file
trans <- "sam: Computer is fun. Not too fun.
greg: No it's not, it's dumb.
teacher: What should we do?
sam: You liar, it stinks!"

read.transcript(text=trans)

## Read in text specify spaces as sep
## EXAMPLE 1

read.transcript(text="34    The New York Times reports a lot of words here.
12    Greenwire reports a lot of words.
31    Only three words.
 2    The Financial Times reports a lot of words.
 9    Greenwire short.
13    The New York Times reports a lot of words again.", 
    col.names=qcv(NO,    ARTICLE), sep="   ")

## EXAMPLE 2

read.transcript(text="34..    The New York Times reports a lot of words here.
12..    Greenwire reports a lot of words.
31..    Only three words.
 2..    The Financial Times reports a lot of words.
 9..    Greenwire short.
13..    The New York Times reports a lot of words again.", 
    col.names=qcv(NO,    ARTICLE), sep="\\.\\.")

## End(Not run)

Replace Abbreviations

Description

This function replaces abbreviations with long form.

Usage

replace_abbreviation(
  text.var,
  abbreviation = qdapDictionaries::abbreviations,
  replace = NULL,
  ignore.case = TRUE
)

Arguments

text.var

The text variable.

abbreviation

A two column key of abbreviations (column 1) and long form replacements (column 2) or a vector of abbreviations. Default is to use qdapDictionaries's abbreviations data set.

replace

A vector of long form replacements if a data frame is not supplied to the abbreviation argument.

ignore.case

logical. If TRUE replaces without regard to capitalization.

Value

Returns a vector with abbreviations replaced.

See Also

bracketX, qprep, replace_contraction, replace_number, replace_symbol

Examples

## Not run: 
x <- c("Mr. Jones is here at 7:30 p.m.",  
    "Check it out at www.github.com/trinker/qdap",
    "i.e. He's a sr. dr.; the best in 2012 A.D.",
    "the robot at t.s. is 10ft. 3in.")

replace_abbreviation(x)

#create abbreviation and replacement vectors
abv <- c("in.", "ft.", "t.s.")
repl <- c("inch", "feet", "talkstats")

replace_abbreviation(x, abv, repl)

(KEY <- rbind(abbreviations, data.frame(abv = abv, rep = repl)))
replace_abbreviation(x, KEY)

## End(Not run)

Replace Contractions

Description

This function replaces contractions with long form.

Usage

replace_contraction(
  text.var,
  contraction = qdapDictionaries::contractions,
  replace = NULL,
  ignore.case = TRUE,
  sent.cap = TRUE
)

Arguments

text.var

The text variable.

contraction

A two column key of contractions (column 1) and expanded form replacements (column 2) or a vector of contractions. Default is to use qdapDictionaries's contractions data set.

replace

A vector of expanded form replacements if a data frame is not supplied to the contraction argument.

ignore.case

logical. If TRUE replaces without regard to capitalization.

sent.cap

logical. If TRUE capitalizes the beginning of every sentence.

Value

Returns a vector with contractions replaced.

See Also

bracketX, qprep, replace_abbreviation, replace_number, replace_symbol

Examples

## Not run: 
x <- c("Mr. Jones isn't going.",  
    "Check it out what's going on.",
    "He's here but didn't go.",
    "the robot at t.s. wasn't nice", 
    "he'd like it if i'd go away")

replace_contraction(x)

## End(Not run)

Replace Numbers With Text Representation

Description

Replaces numeric represented numbers with words (e.g., 1001 becomes one thousand one).

Usage

replace_number(text.var, num.paste = TRUE, remove = FALSE)

Arguments

text.var

The text variable.

num.paste

logical. If TRUE a the elements of larger numbers are separated with spaces. If FALSE the elements will be joined without spaces.

remove

logical. If TRUE numbers are removed from the text.

Value

Returns a vector with abbreviations replaced.

Note

The user may want to use replace_ordinal first to remove ordinal number notation. For example replace_number would turn "21st" into "twenty onest", whereas replace_ordinal would generate "twenty first".

References

Fox, J. (2005). Programmer's niche: How do you spell that number? R News. Vol. 5(1), pp. 51-55.

See Also

bracketX, qprep, replace_abbreviation, replace_contraction, replace_symbol, replace_ordinal

Examples

## Not run: 
x <- c("I like 346,457 ice cream cones.", "They are 99 percent good")
y <- c("I like 346457 ice cream cones.", "They are 99 percent good")
replace_number(x)
replace_number(y)
replace_number(x, FALSE)
replace_number(x, remove=TRUE)

## End(Not run)

Replace Mixed Ordinal Numbers With Text Representation

Description

Replaces mixed text/numeric represented ordinal numbers with words (e.g., "1st" becomes "first").

Usage

replace_ordinal(text.var, num.paste = TRUE, remove = FALSE)

Arguments

text.var

The text variable.

num.paste

logical. If TRUE a the elements of larger numbers are separated with spaces. If FALSE the elements will be joined without spaces.

remove

logical. If TRUE ordinal numbers are removed from the text.

Note

Currently only implemented for ordinal values 1 through 100

See Also

bracketX, qprep, replace_abbreviation, replace_contraction, replace_symbol, replace_number

Examples

## Not run: 
x <- c(
    "I like the 1st one not the 22nd one.", 
    "For the 100th time stop!"
)
replace_ordinal(x)
replace_ordinal(x, FALSE)
replace_ordinal(x, remove = TRUE)
"I like the 1st 1 not the 22nd 1." %>% replace_ordinal %>% replace_number

## End(Not run)

Replace Symbols With Word Equivalents

Description

This function replaces symbols with word equivalents (e.g., @ becomes "at".

Usage

replace_symbol(
  text.var,
  dollar = TRUE,
  percent = TRUE,
  pound = TRUE,
  at = TRUE,
  and = TRUE,
  with = TRUE
)

Arguments

text.var

The text variable.

dollar

logical. If TRUE replaces dollar sign ($) with "dollar".

percent

logical. If TRUE replaces percent sign (%) with "percent".

pound

logical. If TRUE replaces pound sign (#) with "number".

at

logical. If TRUE replaces at sign (@) with "at".

and

logical. If TRUE replaces and sign (&) with "and".

with

logical. If TRUE replaces with sign (w/) with "with".

Value

Returns a character vector with symbols replaced..

See Also

bracketX, qprep, replace_abbreviation, replace_contraction, replace_number,

Examples

## Not run: 
x <- c("I am @ Jon's & Jim's w/ Marry", 
    "I owe $41 for food", 
    "two is 10% of a #")
replace_symbol(x)

## End(Not run)

Replace Cells in a Matrix or Data Frame

Description

Replace elements of a dataframe, matrix or vector with least restrictive class.

Usage

replacer(dat, replace = 0, with = "-")

Arguments

dat

Data; either a dataframe, matrix or vector.

replace

Element to replace.

with

Replacement element.

Value

Returns a dataframe, matrix or vector with the element replaced.

Examples

## Not run: 
replacer(mtcars[1:10, ], 0, "REP")
replacer(mtcars[1:10, ], 4, NA)
replacer(c("a", "b"), "a", "foo")
#replace missing values (NA)
dat <- data.frame(matrix(sample(c(1:3, NA), 25, TRUE), ncol=5))
replacer(dat, NA, "FOO")

## End(Not run)

Remove Rows That Contain Markers

Description

rm_row - Remove rows from a data set that contain a given marker/term.

rm_empty_row - Removes the empty rows of a data set that are common in reading in data (default method in read.transcript).

Usage

rm_row(
  dataframe,
  search.column,
  terms,
  contains = FALSE,
  ignore.case = FALSE,
  keep.rownames = FALSE,
  ...
)

rm_empty_row(dataframe)

Arguments

dataframe

A dataframe object.

search.column

Column name to search for markers/terms.

terms

Terms/markers of the rows that are to be removed from the dataframe. The term/marker must appear at the beginning of the string and is case sensitive.

contains

logical. If TRUE rm_row searches for the terms anywhere within the string. If FALSE rm_row searches only the beginning of the string.

ignore.case

logical. If TRUE case is ignored during matching, if FALSEthe pattern matching is case sensitive.

keep.rownames

logical. If TRUE the original, non-sequential, rownames will be used.

...

Other arguments passed to grepl.

Value

rm_row - returns a dataframe with the termed/markered rows removed.

rm_empty_row - returns a dataframe with empty rows removed.

Examples

## Not run: 
#rm_row EXAMPLE:
rm_row(DATA, "person", c("sam", "greg"))
rm_row(DATA, 1, c("sam", "greg"))
rm_row(DATA, "state", c("Comp"))
rm_row(DATA, "state", c("I "))
rm_row(DATA, "state", c("you"), contains = TRUE, ignore.case=TRUE)

#rm_empty_row EXAMPLE:
(dat <- rbind.data.frame(DATA[, c(1, 4)], matrix(rep(" ", 4), 
   ncol =2, dimnames=list(12:13, colnames(DATA)[c(1, 4)]))))
rm_empty_row(dat)

## End(Not run)

Remove Stop Words

Description

Removal of stop words in a variety of contexts .

%sw% - Binary operator version of rm_stopwords that defaults to separate = FALSE..

Usage

rm_stopwords(
  text.var,
  stopwords = qdapDictionaries::Top25Words,
  unlist = FALSE,
  separate = TRUE,
  strip = FALSE,
  unique = FALSE,
  char.keep = NULL,
  names = FALSE,
  ignore.case = TRUE,
  apostrophe.remove = FALSE,
  ...
)

rm_stop(
  text.var,
  stopwords = qdapDictionaries::Top25Words,
  unlist = FALSE,
  separate = TRUE,
  strip = FALSE,
  unique = FALSE,
  char.keep = NULL,
  names = FALSE,
  ignore.case = TRUE,
  apostrophe.remove = FALSE,
  ...
)

text.var %sw% stopwords

Arguments

text.var

A character string of text or a vector of character strings.

stopwords

A character vector of words to remove from the text. qdap has a number of data sets that can be used as stop words including: Top200Words, Top100Words, Top25Words. For the tm package's traditional English stop words use tm::stopwords("english").

unlist

logical. If TRUE unlists into one vector. General use intended for when separate is FALSE.

separate

logical. If TRUE separates sentences into words. If FALSE retains sentences.

strip

logical. IF TRUE strips the text of all punctuation except apostrophes.

unique

logical. If TRUE keeps only unique words (if unlist is TRUE) or sentences (if unlist is FALSE). General use intended for when unlist is TRUE.

char.keep

If strip is TRUE this argument provides a means of retaining supplied character(s).

names

logical. If TRUE will name the elements of the vector or list with the original text.var.

ignore.case

logical. If TRUE stopwords will be removed regardless of case. Additionally, case will be stripped from the text. If FALSE stop word removal is contingent upon case. Additionally, case is not stripped.

apostrophe.remove

logical. If TRUE removes apostrophe's from the output.

...

further arguments passed to strip function.

Value

Returns a vector of sentences, vector of words, or (default) a list of vectors of words with stop words removed. Output depends on supplied arguments.

See Also

strip, bag_o_words, stopwords

Examples

## Not run: 
rm_stopwords(DATA$state)
rm_stopwords(DATA$state, tm::stopwords("english"))
rm_stopwords(DATA$state, Top200Words)
rm_stopwords(DATA$state, Top200Words, strip = TRUE)
rm_stopwords(DATA$state, Top200Words, separate = FALSE)
rm_stopwords(DATA$state, Top200Words, separate = FALSE, ignore.case = FALSE)
rm_stopwords(DATA$state, Top200Words, unlist = TRUE)
rm_stopwords(DATA$state, Top200Words, unlist = TRUE, strip=TRUE)
rm_stop(DATA$state, Top200Words, unlist = TRUE, unique = TRUE)

c("I like it alot", "I like it too") %sw% qdapDictionaries::Top25Words

## End(Not run)

Minimal Time Span Data Set

Description

A fictitious dataset containing time spans for codes A and B.

Usage

data(sample.time.span)

Format

A data frame with 9 rows and 6 variables

Details

  • code. The qualitative code.

  • start. The integer start time.

  • end. The integer end time.

  • Start. The chron start time.

  • End. The chron end time.

  • variable. An arbitrary single time repeated measures variable (ignore).


Generic Scores Method

Description

Access the scores dataframes from select qdap outputs.

Usage

scores(x, ...)

Arguments

x

A qdap object (list) with a dataframe of scores (e.g., fry, formality).

...

Arguments passed to scores method of other classes.

Value

Returns a data.frame of scores.

See Also

counts

proportions

preprocessed


Readability Measures

Description

scores.automated_readability_index - View scores from automated_readability_index.

Usage

## S3 method for class 'automated_readability_index'
scores(x, ...)

Arguments

x

The automated_readability_index object.

...

ignored

Details

automated_readability_index Method for scores


Term Counts

Description

View character_table scores.

Usage

## S3 method for class 'character_table'
scores(x, ...)

Arguments

x

The character_table object.

...

ignored

Details

character_table Method for scores


Readability Measures

Description

scores.coleman_liau - View scores from coleman_liau.

Usage

## S3 method for class 'coleman_liau'
scores(x, ...)

Arguments

x

The coleman_liau object.

...

ignored

Details

coleman_liau Method for scores


Question Counts

Description

View end_mark_by scores.

Usage

## S3 method for class 'end_mark_by'
scores(x, ...)

Arguments

x

The end_mark_by object.

...

ignored

Details

end_mark_by Method for scores


Readability Measures

Description

scores.flesch_kincaid - View scores from flesch_kincaid.

Usage

## S3 method for class 'flesch_kincaid'
scores(x, ...)

Arguments

x

The flesch_kincaid object.

...

ignored

Details

flesch_kincaid Method for scores


Formality

Description

View formality scores.

Usage

## S3 method for class 'formality'
scores(x, ...)

Arguments

x

The formality object.

...

ignored

Details

formality Method for scores


Readability Measures

Description

scores.fry - View scores from fry.

Usage

## S3 method for class 'fry'
scores(x, ...)

Arguments

x

The fry object.

...

ignored

Details

fry Method for scores


Lexical Classification

Description

scores.lexical_classification - View scores from lexical_classification.

Usage

## S3 method for class 'lexical_classification'
scores(x, ...)

Arguments

x

The lexical_classification object.

...

ignored

Details

lexical_classification Method for scores


Readability Measures

Description

scores.linsear_write - View scores from linsear_write.

Usage

## S3 method for class 'linsear_write'
scores(x, ...)

Arguments

x

The linsear_write object.

...

ignored

Details

linsear_write Method for scores


Question Counts

Description

View object_pronoun_type scores.

Usage

## S3 method for class 'object_pronoun_type'
scores(x, ...)

Arguments

x

The object_pronoun_type object.

...

ignored

Details

object_pronoun_type Method for scores


Polarity

Description

scores.polarity - View scores from polarity.

Usage

## S3 method for class 'polarity'
scores(x, ...)

Arguments

x

The polarity object.

...

ignored

Details

polarity Method for scores


Parts of Speech

Description

View pos_by scores.

Usage

## S3 method for class 'pos_by'
scores(x, ...)

Arguments

x

The pos_by object.

...

ignored

Details

pos_by Method for scores


Question Counts

Description

View pronoun_type scores.

Usage

## S3 method for class 'pronoun_type'
scores(x, ...)

Arguments

x

The pronoun_type object.

...

ignored

Details

pronoun_type Method for scores


Question Counts

Description

View question_type scores.

Usage

## S3 method for class 'question_type'
scores(x, ...)

Arguments

x

The question_type object.

...

ignored

Details

question_type Method for scores


Readability Measures

Description

scores.SMOG - View scores from SMOG.

Usage

## S3 method for class 'SMOG'
scores(x, ...)

Arguments

x

The SMOG object.

...

ignored

Details

SMOG Method for scores


Question Counts

Description

View subject_pronoun_type scores.

Usage

## S3 method for class 'subject_pronoun_type'
scores(x, ...)

Arguments

x

The subject_pronoun_type object.

...

ignored

Details

subject_pronoun_type Method for scores


Term Counts

Description

View termco scores.

Usage

## S3 method for class 'termco'
scores(x, ...)

Arguments

x

The termco object.

...

ignored

Details

termco Method for scores


Word Length Counts

Description

View word_length scores.

Usage

## S3 method for class 'word_length'
scores(x, ...)

Arguments

x

The word_length object.

...

ignored

Details

word_length Method for scores


Word Position

Description

View word_position scores.

Usage

## S3 method for class 'word_position'
scores(x, ...)

Arguments

x

The word_position object.

...

ignored

Details

word_position Method for scores


Word Stats

Description

View question_type scores.

Usage

## S3 method for class 'word_stats'
scores(x, ...)

Arguments

x

The question_type object.

...

ignored

Details

question_type Method for scores


Clean Imported Text

Description

Use to clean text variables when importing a new data set. Removes extra white spaces other textual anomalies that may cause errors.

Usage

scrubber(
  text.var,
  num2word = FALSE,
  rm.quote = TRUE,
  fix.comma = TRUE,
  fix.space = TRUE,
  ...
)

Arguments

text.var

The text variable.

num2word

logical If TRUE replaces a numbers with text representations.

rm.quote

logical If TRUE removes any \".

fix.comma

logical If TRUE removes any spaces before a comma.

fix.space

logical. If TRUE extra spaces before endmarks are removed.

...

Other arguments passed to replace_number.

Value

Returns a parsed character vector.

See Also

strip

Examples

## Not run: 
x <- c("I like 456 dogs\t  , don't you?", 'The end"')
scrubber(x)
scrubber(x, TRUE)

## End(Not run)

Power Score (Sentiment Analysis)

Description

sentiment_frame - Generate a sentiment lookup hash table for use with the xxx.frame argument of various sentiment functions.

Usage

sentiment_frame(positives, negatives, pos.weights = 1, neg.weights = -1)

Arguments

positives

A character vector of positive words.

negatives

A character vector of negative words.

pos.weights

A vector of weights to weight each positive word by. Length must be equal to length of postives or length 1 (if 1 weight will be recycled).

neg.weights

A vector of weights to weight each negative word by. Length must be equal to length of negatives or length 1 (if 1 weight will be recycled).


Sentence Splitting

Description

sentSplit - Splits turns of talk into individual sentences (provided proper punctuation is used). This procedure is usually done as part of the data read in and cleaning process.

sentCombine - Combines sentences by the same grouping variable together.

TOT - Convert the tot column from sentSplit to turn of talk index (no sub sentence). Generally, for internal use.

sent_detect - Detect and split sentences on endmark boundaries.

sent_detect_nlp - Detect and split sentences on endmark boundaries using openNLP & NLP utilities which matches the onld version of the openNLP package's now removed sentDetect function.

Usage

sentSplit(
  dataframe,
  text.var,
  rm.var = NULL,
  endmarks = c("?", ".", "!", "|"),
  incomplete.sub = TRUE,
  rm.bracket = TRUE,
  stem.col = FALSE,
  text.place = "right",
  verbose = is.global(2),
  ...
)

sentCombine(text.var, grouping.var = NULL, as.list = FALSE)

TOT(tot)

sent_detect(
  text.var,
  endmarks = c("?", ".", "!", "|"),
  incomplete.sub = TRUE,
  rm.bracket = TRUE,
  ...
)

sent_detect_nlp(text.var, ...)

Arguments

dataframe

A dataframe that contains the person and text variable.

text.var

The text variable.

rm.var

An optional character vector of 1 or 2 naming the variables that are repeated measures (This will restart the "tot" column).

endmarks

A character vector of endmarks to split turns of talk into sentences.

incomplete.sub

logical. If TRUE detects incomplete sentences and replaces with "|".

rm.bracket

logical. If TRUE removes brackets from the text.

stem.col

logical. If TRUE stems the text as a new column.

text.place

A character string giving placement location of the text column. This must be one of the strings "original", "right" or "left".

verbose

logical. If TRUE select diagnostics from check_text are reported.

grouping.var

The grouping variables. Default NULL generates one word list for all text. Also takes a single grouping variable or a list of 1 or more grouping variables.

as.list

logical. If TRUE returns the output as a list. If FALSE the output is returned as a dataframe.

tot

A tot column from a sentSplit output.

...

Additional options passed to stem2df.

Value

sentSplit - returns a dataframe with turn of talk broken apart into sentences. Optionally a stemmed version of the text variable may be returned as well.

sentCombine - returns a list of vectors with the continuous sentences by grouping.var pasted together. returned as well.

TOT - returns a numeric vector of the turns of talk without sentence sub indexing (e.g. 3.2 become 3).

sent_detect - returns a character vector of sentences split on endmark.

sent_detect - returns a character vector of sentences split on endmark.

Warning

sentSplit requires the dialogue (text) column to be cleaned in a particular way. The data should contain qdap punctuation marks (c("?", ".", "!", "|")) at the end of each sentence. Additionally, extraneous punctuation such as abbreviations should be removed (see replace_abbreviation). Trailing sentences such as I thought I... will be treated as incomplete and marked with "|" to denote an incomplete/trailing sentence.

Suggestion

It is recommended that the user runs check_text on the output of sentSplit's text column.

Author(s)

Dason Kurkiewicz and Tyler Rinker <[email protected]>.

See Also

bracketX, incomplete_replace, stem2df , TOT

Examples

## Not run: 
## `sentSplit` EXAMPLE:
(out <- sentSplit(DATA, "state"))
out %&% check_text()  ## check output text
sentSplit(DATA, "state", stem.col = TRUE)
sentSplit(DATA, "state", text.place = "left")
sentSplit(DATA, "state", text.place = "original")
sentSplit(raj, "dialogue")[1:20, ]

## plotting
plot(out)
plot(out, grouping.var = "person")

out2 <- sentSplit(DATA2, "state", rm.var = c("class", "day"))
plot(out2)
plot(out2, grouping.var = "person")
plot(out2, grouping.var = "person", rm.var = "day")
plot(out2, grouping.var = "person", rm.var = c("day", "class"))

## `sentCombine` EXAMPLE:
dat <- sentSplit(DATA, "state") 
sentCombine(dat$state, dat$person)
truncdf(sentCombine(dat$state, dat$sex), 50)

## `TOT` EXAMPLE:
dat <- sentSplit(DATA, "state") 
TOT(dat$tot)

## `sent_detect`
sent_detect(DATA$state)

## NLP based sentence splitting 
sent_detect_nlp(DATA$state)

## End(Not run)

Replace Spaces

Description

Replace spaces in words groups that should be grouped together.

Usage

space_fill(
  text.var,
  terms,
  sep = "~~",
  rm.extra = TRUE,
  ignore.case = TRUE,
  fixed = FALSE,
  ...
)

Arguments

text.var

The text variable.

terms

A character vector of grouped word terms to insert a new separating/space character.

sep

A character string to separate the terms.

rm.extra

logical. Should trailing, leading and > 1 continuous white spaces be removed?

ignore.case

logical. If FALSE, the pattern matching is case sensitive and if TRUE, case is ignored during matching.

fixed

logical. If TRUE, pattern is a string to be matched as is. Overrides all conflicting arguments.

...

Other arguments passed to gsub.

Details

space_fill is useful for keeping grouped words together. Many functions in qdap take a char.keep or char2space argument. This can be used to prepare multi word phrases (e.g., proper nouns) as a single unit.

Value

Returns a character vector with extra, trailing and/or leading spaces removed.

Note

link[qdap]{strip} by default does not remove the double tilde "~~" character.

Examples

## Not run: 
x <- c("I want to hear the Dr. Martin Luther King Jr. speech.",
    "I also want to go to the white House to see President Obama speak.")

keeps <- c("Dr. Martin Luther King Jr.", "The White House", "President Obama")
space_fill(x, keeps)
strip(space_fill(x, keeps))

## End(Not run)

Add Leading/Trailing Spaces

Description

Adds trailing and/or leading spaces to a vector of terms.

Usage

spaste(terms, trailing = TRUE, leading = TRUE)

Arguments

terms

A character vector of terms to insert trailing and/or leading spaces.

trailing

logical. If TRUE inserts a trailing space in the terms.

leading

logical. If TRUE inserts a leading space in the terms.

Value

Returns a character vector with trailing and/or leading spaces.

Examples

## Not run: 
spaste(Top25Words)
spaste(Top25Words, FALSE)
spaste(Top25Words, trailing = TRUE, leading = FALSE) #or
spaste(Top25Words, , FALSE)

## End(Not run)

Break and Stretch if Multiple Persons per Cell

Description

Look for cells with multiple people and create separate rows for each person.

Usage

speakerSplit(
  dataframe,
  person.var = 1,
  sep = c("and", "&", ","),
  track.reps = FALSE
)

Arguments

dataframe

A dataframe that contains the person variable.

person.var

The person variable to be stretched.

sep

The separator(s) to search for and break on. Default is: c("and", "&", ",")

track.reps

logical. If TRUE leaves the row names of person variable cells that were repeated and stretched.

Value

Returns an expanded dataframe with person variable stretched and accompanying rows repeated.

Examples

## Not run: 
DATA$person <- as.character(DATA$person)
DATA$person[c(1, 4, 6)] <- c("greg, sally, & sam", 
    "greg, sally", "sam and sally")

speakerSplit(DATA)
speakerSplit(DATA, track.reps=TRUE)

DATA$person[c(1, 4, 6)] <- c("greg_sally_sam", 
    "greg.sally", "sam; sally")

speakerSplit(DATA, sep = c(".", "_", ";"))

DATA <- qdap::DATA  #reset DATA

## End(Not run)

Stem Text

Description

stemmer - Stems a vector of text strings (A wrapper for the tm package's stemDocument.

stem_words - Wrapper for stemmer that stems a vector of words.

stem2df - Wrapper for stemmer that stems a vector of text strings and returns a dataframe with the vector added..

Usage

stemmer(
  text.var,
  rm.bracket = TRUE,
  capitalize = TRUE,
  warn = TRUE,
  char.keep = "~~",
  ...
)

stem_words(...)

stem2df(dataframe, text.var, stem.name = NULL, ...)

Arguments

text.var

The text variable. In stemmer this is a vector text string. For stem2df this is a character vector of length one naming the text column.

rm.bracket

logical. If TRUE brackets are removed from the text.

capitalize

logical. If TRUE selected terms are capitalized.

warn

logical. If TRUE warns about rows not ending with standard qdap punctuation endmarks.

char.keep

A character vector of symbols that should be kept within sentences.

...

Various:
stemmer - Other arguments passed to capitalizer
stem_words - Words or terms.
stem2df - Other arguments passed to stemmer

dataframe

A dataframe object.

stem.name

A character vector of length one for the stemmed column. If NULL defaults to "stem.text".

Value

stemmer - returns a character vector with stemmed text.

stem_words - returns a vector of individually stemmed words.

stem2df - returns a dataframe with a character vector with stemmed text.

See Also

capitalizer

Examples

## Not run: 
#stemmer EXAMPLE:
stemmer(DATA$state)
out1 <- stemmer(raj$dialogue)
htruncdf(out1, 20, 60)

#stem_words EXAMPLE:
stem_words(doggies, jumping, swims)

#stem2df EXAMPLE:
out2 <- stem2df(DATA, "state", "new")
truncdf(out2, 30)

## End(Not run)

Strip Text

Description

Strip text of unwanted characters.

Usage

strip(
  x,
  char.keep = "~~",
  digit.remove = TRUE,
  apostrophe.remove = TRUE,
  lower.case = TRUE
)

## S3 method for class 'character'
strip(
  x,
  char.keep = "~~",
  digit.remove = TRUE,
  apostrophe.remove = TRUE,
  lower.case = TRUE
)

## S3 method for class 'factor'
strip(
  x,
  char.keep = "~~",
  digit.remove = TRUE,
  apostrophe.remove = TRUE,
  lower.case = TRUE
)

## Default S3 method:
strip(
  x,
  char.keep = "~~",
  digit.remove = TRUE,
  apostrophe.remove = TRUE,
  lower.case = TRUE
)

## S3 method for class 'list'
strip(
  x,
  char.keep = "~~",
  digit.remove = TRUE,
  apostrophe.remove = TRUE,
  lower.case = TRUE
)

Arguments

x

The text variable.

char.keep

A character vector of symbols (i.e., punctuation) that strip should keep. The default is to strip every symbol except apostrophes and a double tilde "~~". The double tilde "~~" is included for a convenient means of keeping word groups together in functions that split text apart based on spaces. To remove double tildes "~~" set char.keep to NULL.

digit.remove

logical. If TRUE strips digits from the text.

apostrophe.remove

logical. If TRUE removes apostrophes from the output.

lower.case

logical. If TRUE forces all alpha characters to lower case.

Value

Returns a vector of text that has been stripped of unwanted characters.

See Also

rm_stopwords

Examples

## Not run: 
DATA$state #no strip applied
strip(DATA$state)
strip(DATA$state, apostrophe.remove=FALSE)
strip(DATA$state, char.keep = c("?", "."))

## End(Not run)

Wrap Character Strings to Format Paragraphs

Description

A wrapper for as.character that writes to the Mac/Windows clipboard.

Usage

strWrap(text = "clipboard", width = 70, copy2clip = interactive())

Arguments

text

character vector, or an object which can be converted to a character vector by as.character.

width

A positive integer giving the target column for wrapping lines in the output.

copy2clip

logical. If TRUE attempts to copy the output to the clipboard.

Value

Prints a wrapped text vector to the console and copies the wrapped text to the clipboard on a Mac or Windows machine.

See Also

strwrap

Examples

## Not run: 
x <- paste2(DATA$state, sep = " " )
strWrap(x)
strWrap(x, 10)
#should be copied to the clipboard on a Mac or Windows machine.

## End(Not run)

Count Subject Pronouns Per Grouping Variable

Description

Count the number of subject pronouns per grouping variables.

Usage

subject_pronoun_type(
  text.var,
  grouping.var = NULL,
  subject.pronoun.list = NULL,
  ...
)

Arguments

text.var

The text variable

grouping.var

The grouping variables. Default NULL generates one word list for all text. Also takes a single grouping variable or a list of 1 or more grouping variables.

subject.pronoun.list

A named list of subject pronouns. See Details for more.

...

Other arguments passed to termco

Details

The following subject pronoun categories are the default searched terms:

  • I - c(" i'd ", " i'll ", " i'm ", " i've ", " i ")

  • we - c(" we'd ", " we'll ", " we're ", " we've ", " we ")

  • you - c(" you'd ", " you'll ", " you're ", " you've ", " you ", " your ")

  • he - c(" he'd ", " he'll ", " he's ", " he ")

  • she - c(" she'd ", " she'll ", " she's ", " she ")

  • it - c(" it'd ", " it'll ", " it's ", " it ")

  • they - c(" they'd ", " they'll ", " they're ", "they've ", " they ")

Value

Returns a list, of class "subject_pronoun_type", of data frames regarding subject pronoun word counts:

preprocessed

List of uncollapsed dataframes (raw, prop, rnp) of the class "termco" that contain all searchable subject pronouns.

raw

raw word counts by grouping variable

prop

proportional word counts by grouping variable; proportional to each individual's subject pronoun use

rnp

a character combination data frame of raw and proportional subject pronoun use

See Also

object_pronoun_type, pronoun_type

Examples

## Not run: 
dat <- pres_debates2012
dat <- dat[dat$person %in% qcv(ROMNEY, OBAMA), ]
(out <- subject_pronoun_type(dat$dialogue, dat$person))
plot(out)
plot(out, 2)
plot(out, 3)
plot(out, 3, ncol=2)

scores(out)
counts(out)
proportions(out)
preprocessed(out)

plot(scores(out))
plot(counts(out))
plot(proportions(out))

## End(Not run)

Summarize a cmspans object

Description

Summarize a cmspans object

Usage

## S3 method for class 'cmspans'
summary(
  object,
  grouping.var = NULL,
  rm.var = NULL,
  total.span = TRUE,
  aggregate = FALSE,
  percent = TRUE,
  digits = 2,
  ...
)

Arguments

object

The cmspans object

grouping.var

The grouping variables. Also takes a single grouping variable or a list of 1 or more grouping variables.

rm.var

An optional single vector or list of 1 or 2 of repeated measures to aggregate by.

total.span

logical or an option list of vectors (length 1 or 2) of the total duration of the event. If FALSE the "total" column is divided by the sum of the total duration for all codes in that rm.var to arrive at "total_percent". If TRUE and object is from cm_time2long the difference for the time span from the transcript_time_span of the list used in cm_time2long are utilized to divide the "total" column. The user may also provide a list of vectors with each vector representing a single total time duration or provide the start and end time of the event. The user may give input in numeric seconds or in character "hh:mm:ss" form.

aggregate

logical. If TRUE the output will be aggregated (i.e., the output will collapse the rm.var).

percent

logical. If TRUE output given as percent. If FALSE the output is proportion.

digits

Integer; number of decimal places to round when printing.

...

Other argument passed to qheat in plot (ignored in summary).

See Also

plot.sum_cmspans

Examples

## Not run: 
## Example 1
foo <- list(
    person_greg = qcv(terms='7:11, 20:24, 30:33, 49:56'),
    person_researcher = qcv(terms='42:48'),
    person_sally = qcv(terms='25:29, 37:41'),
    person_sam = qcv(terms='1:6, 16:19, 34:36'),
    person_teacher = qcv(terms='12:15'),
    adult_0 = qcv(terms='1:11, 16:41, 49:56'),
    adult_1 = qcv(terms='12:15, 42:48'),
    AA = qcv(terms="1"),
    BB = qcv(terms="1:2, 3:10, 19"),
    CC = qcv(terms="1:9, 100:150")
)

foo2  <- list(
    person_greg = qcv(terms='7:11, 20:24, 30:33, 49:56'),
    person_researcher = qcv(terms='42:48'),
    person_sally = qcv(terms='25:29, 37:41'),
    person_sam = qcv(terms='1:6, 16:19, 34:36'),
    person_teacher = qcv(terms='12:15'),
    adult_0 = qcv(terms='1:11, 16:41, 49:56'),
    adult_1 = qcv(terms='12:15, 42:48'),
    AA = qcv(terms="40"),
    BB = qcv(terms="50:90"),
    CC = qcv(terms="60:90, 100:120, 150"),
    DD = qcv(terms="")
)

v <- cm_2long(foo, foo2, v.name = "time")
plot(v)
summary(v)
plot(summary(v))

## Example 2
x <- list(
    transcript_time_span = qcv(00:00 - 1:12:00),
    A = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00"),
    B = qcv(terms = "2.40, 3.01:3.02, 5.01, 6.02:7.00,
        9.00, 1.12.00:1.19.01"),
    C = qcv(terms = "2.40:3.00, 5.01, 6.02:7.00, 9.00, 17.01")
)
z <-cm_2long(x)

summary(z)
summary(z, total.span = FALSE)
summary(z, total.span = c(0, 3333))
summary(z, total.span = c("00:01:00", "03:02:00"))
plot(summary(z))

## suppress printing measurement units
suppressMessages(print(summary(z)))

## remove print method
as.data.frame(summary(z))

## End(Not run)

Summarize a wfdf object

Description

Summarize a wfdf object with familiar tm package look.

Usage

## S3 method for class 'wfdf'
summary(object, ...)

Arguments

object

The wfdf object

...

Ignored.

Details

Non-/sparse entries is the ratio of non-zeros to zero counts. Sparsity is that ratio represented as a percent. Hapax legomenon is the number(percent) of terms that appear only once in the dialogue. Dis legomenon is the number(percent) of terms that appear exactly two times once.

Examples

## Not run: 
x <- with(DATA, wfdf(state, list(sex, adult)))
summary(x)

## End(Not run)

Summarize a wfm object

Description

Summarize a wfm object with familiar tm package look.

Usage

## S3 method for class 'wfm'
summary(object, ...)

Arguments

object

The wfm object

...

Ignored.

Details

Non-/sparse entries is the ratio of non-zeros to zero counts. Sparsity is that ratio represented as a percent. Hapax legomenon is the number(percent) of terms that appear only once in the dialogue. Dis legomenon is the number(percent) of terms that appear exactly two times once.

Examples

## Not run: 
x <- with(DATA, wfm(state, list(sex, adult)))
summary(x)

## End(Not run)

Syllabication

Description

syllable_sum - Count the number of syllables per row of text.

syllable_count - Count the number of syllables in a single text string.

polysyllable_sum - Count the number of polysyllables per row of text.

combo_syllable_sum - Count the number of both syllables and polysyllables per row of text.

Usage

syllable_sum(text.var, parallel = FALSE, ...)

syllable_count(
  text,
  remove.bracketed = TRUE,
  algorithm.report = FALSE,
  env = qdap::env.syl
)

polysyllable_sum(text.var, parallel = FALSE)

combo_syllable_sum(text.var, parallel = FALSE)

Arguments

text.var

The text variable

parallel

logical. If TRUE attempts to run the function on multiple cores. Note that this may not mean a speed boost if you have one core or if the data set is smaller as the cluster takes time to create.

text

A single character vector of text.

remove.bracketed

logical. If TRUE brackets are removed from the analysis.

algorithm.report

logical. If TRUE generates a report of words not found in the dictionary (i.e., syllables were calculated with an algorithm).

env

A lookup environment to lookup the number of syllables in found words.

...

Other arguments passed to syllable_count.

Details

The worker function of all the syllable functions is syllable_count, though it is not intended for direct use on a transcript. This function relies on a combined dictionary lookup (based on the Nettalk Corpus (Sejnowski & Rosenberg, 1987)) and backup algorithm method.

Value

syllable_sum - returns a vector of syllable counts per row.

syllable_count - returns a dataframe of syllable counts and algorithm/dictionary uses and, optionally, a report of words not found in the dictionary.

polysyllable_sum - returns a vector of polysyllable counts per row.

combo_syllable_sum - returns a dataframe of syllable and polysyllable counts per row.

References

Sejnowski, T.J., and Rosenberg, C.R. (1987). "Parallel networks that learn to pronounce English text" in Complex Systems, 1, 145-168.

Examples

## Not run: 
syllable_count("Robots like Dason lie.")
syllable_count("Robots like Dason lie.", algorithm.report = TRUE)

syllable_sum(DATA$state)
x1 <- syllable_sum(rajSPLIT$dialogue)
plot(x1)
cumulative(x1)

polysyllable_sum(DATA$state)
x2 <- polysyllable_sum(rajSPLIT$dialogue)
plot(x2)
cumulative(x2)

combo_syllable_sum(DATA$state)
x3 <- combo_syllable_sum(rajSPLIT$dialogue)
plot(x3) 
cumulative(x3)

## End(Not run)

Search For Synonyms

Description

synonyms - Search for synonyms that match term(s).

synonyms_frame - Generate a synonym lookup hash key for use with the synonym.frame argument in the synonym function.

Usage

synonyms(
  terms,
  return.list = TRUE,
  multiwords = TRUE,
  report.null = TRUE,
  synonym.frame = qdapDictionaries::key.syn
)

syn(
  terms,
  return.list = TRUE,
  multiwords = TRUE,
  report.null = TRUE,
  synonym.frame = qdapDictionaries::key.syn
)

synonyms_frame(synonym.list, prior.frame)

syn_frame(synonym.list, prior.frame)

Arguments

terms

The terms to find synonyms for.

return.list

logical. If TRUE returns the output for multiple synonyms as a list by search term rather than a vector.

multiwords

logical. IF TRUE retains vector elements that contain phrases (defined as having one or more spaces) rather than a single word.

report.null

logical. If TRUE reports the words that no match was found at the head of the output.

synonym.frame

A dataframe or hash key of positive/negative words and weights.

synonym.list

A named list of lists (or vectors) of synonyms.

prior.frame

A prior synonyms data.frame in the format produced by synonyms_frame.

Value

Returns a list of vectors or vector of possible words that match term(s).

References

The synonyms dictionary (see key.syn) was generated by web scraping the Reverso (https://dictionary.reverso.net/english-synonyms/) Online Dictionary. The word list fed to Reverso is the unique words from the combination of DICTIONARY and labMT.

Examples

## Not run: 
synonyms(c("the", "cat", "job", "environment", "read", "teach"))
head(syn(c("the", "cat", "job", "environment", "read", "teach"), 
    return.list = FALSE), 30)
syn(c("the", "cat", "job", "environment", "read", "teach"), multiwords = FALSE)

## User defined synonym lookup
syn_dat <- list(
    like = list(c("want", "desire"), c("love", "care")),
    show = list(c("reveal"), c("movie", "opera")),
    R = c("old friend", "statistics language")
)

synonyms_frame(syn_dat)
syn(c("R", "show"), synonym.frame = syn_frame(syn_dat))

syns.hash <- syn_frame(syn_dat, prior.frame = qdapDictionaries::key.syn)
syn(c("R", "show", "like", "robot"), synonym.frame = syns.hash)

## End(Not run)

Search For and Count Terms

Description

termco - Search a transcript by any number of grouping variables for categories (themes) of grouped root terms. While there are other termco functions in the termco family (e.g., termco_d) termco is a more powerful and flexible wrapper intended for general use.

termco_d - Search a transcript by any number of grouping variables for root terms.

term_match - Search a transcript for words that exactly match term(s).

termco2mat - Convert a termco dataframe to a matrix for use with visualization functions (e.g., heatmap.2).

Usage

termco(
  text.var,
  grouping.var = NULL,
  match.list,
  short.term = TRUE,
  ignore.case = TRUE,
  elim.old = TRUE,
  percent = TRUE,
  digits = 2,
  apostrophe.remove = FALSE,
  char.keep = NULL,
  digit.remove = NULL,
  zero.replace = 0,
  ...
)

termco_d(
  text.var,
  grouping.var = NULL,
  match.string,
  short.term = FALSE,
  ignore.case = TRUE,
  zero.replace = 0,
  percent = TRUE,
  digits = 2,
  apostrophe.remove = FALSE,
  char.keep = NULL,
  digit.remove = TRUE,
  ...
)

term_match(text.var, terms, return.list = TRUE, apostrophe.remove = FALSE)

termco2mat(
  dataframe,
  drop.wc = TRUE,
  short.term = TRUE,
  rm.zerocol = FALSE,
  no.quote = TRUE,
  transform = TRUE,
  trim.terms = TRUE
)

Arguments

text.var

The text variable.

grouping.var

The grouping variables. Default NULL generates one word list for all text. Also takes a single grouping variable or a list of 1 or more grouping variables.

match.list

A list of named character vectors.

short.term

logical. If TRUE column names are trimmed versions of the match list, otherwise the terms are wrapped with 'term(phrase)'

ignore.case

logical. If TRUE case is ignored.

elim.old

logical. If TRUE eliminates the columns that are combined together by the named match.list.

percent

logical. If TRUE output given as percent. If FALSE the output is proportion.

digits

Integer; number of decimal places to round when printing.

apostrophe.remove

logical. If TRUE removes apostrophes from the text before examining.

char.keep

A character vector of symbol character (i.e., punctuation) that strip should keep. The default is to strip everything except apostrophes. termco attempts to auto detect characters to keep based on the elements in match.list.

digit.remove

logical. If TRUE strips digits from the text before counting. termco attempts to auto detect if digits should be retained based on the elements in match.list.

zero.replace

Value to replace 0 values with.

match.string

A vector of terms to search for. When using inside of term_match the term(s) must be words or partial words but do not have to be when using termco_d (i.e., they can be phrases, symbols etc.).

terms

The terms to search for in the text.var. Similar to match.list but these terms must be words or partial words rather than multiple words and symbols.

return.list

logical. If TRUE returns the output for multiple terms as a list by term rather than a vector.

dataframe

A termco (or termco_d) dataframe or object.

drop.wc

logical. If TRUE the word count column will be dropped.

rm.zerocol

logical. If TRUE any column containing all zeros will be removed from the matrix.

no.quote

logical. If TRUE the matrix will be printed without quotes if it's character.

transform

logical. If TRUE the matrix will be transformed.

trim.terms

logical. If TRUE trims the column header/names to ensure there is not a problem with spacing when using in other R functions.

...

Other argument supplied to strip.

Value

termco & termco_d - both return a list, of class "termco", of data frames and information regarding word counts:

raw

raw word counts by grouping variable

prop

proportional word counts by grouping variable; proportional to each individual's word use

rnp

a character combination data frame of raw and proportional

zero_replace

value to replace zeros with; mostly internal use

percent

The value of percent used for plotting purposes.

digits

integer value of number of digits to display; mostly internal use

term_match - returns a list or vector of possible words that match term(s).

termco2mat - returns a matrix of term counts.

Warning

Percentages are calculated as a ratio of counts of match.list elements to word counts. Word counts do not contain symbols or digits. Using symbols, digits or small segments of full words (e.g., "to") could total more than 100%.

Note

The match.list/match.string is (optionally) case and character sensitive. Spacing is an important way to grab specific words and requires careful thought. Using "read" will find the words "bread", "read" "reading", and "ready". If you want to search for just the word "read" you'd supply a vector of c(" read ", " reads", " reading", " reader"). To search for non character arguments (i.e., numbers and symbols) additional arguments from strip must be passed.

See Also

termco_c, colcomb2class

Examples

## Not run: 
#termco examples:

term <- c("the ", "she", " wh")
(out <- with(raj.act.1,  termco(dialogue, person, term)))

plot(out)
scores(out)
plot(scores(out))
counts(out)
plot(counts(out))
proportions(out)
plot(proportions(out))

# General form for match.list as themes
#
# ml <- list(
#     cat1 = c(),
#     cat2 = c(),
#     catn = c()
# )

ml <- list(
    cat1 = c(" the ", " a ", " an "),
    cat2 = c(" I'" ),
    "good",
    the = c("the", " the ", " the", "the")
)

(dat <- with(raj.act.1,  termco(dialogue, person, ml)))
scores(dat)  #useful for presenting in tables
counts(dat)  #prop and raw counts are useful for performing calculations
proportions(dat)
datb <- with(raj.act.1, termco(dialogue, person, ml,
    short.term = FALSE, elim.old=FALSE))
ltruncdf(datb, 20, 6)
    
(dat2 <- data.frame(dialogue=c("@bryan is bryan good @br",
    "indeed", "@ brian"), person=qcv(A, B, A)))

ml2 <- list(wrds=c("bryan", "indeed"), "@", bryan=c("bryan", "@ br", "@br"))

with(dat2, termco(dialogue, person, match.list=ml2))

with(dat2, termco(dialogue, person, match.list=ml2, percent = FALSE))

DATA$state[1] <- "12 4 rgfr  r0ffrg0"
termco(DATA$state, DATA$person, '0', digit.remove=FALSE)
DATA <- qdap::DATA

#Using with term_match and exclude    
exclude(term_match(DATA$state, qcv(th), FALSE), "truth")
termco(DATA$state, DATA$person, exclude(term_match(DATA$state, qcv(th), 
    FALSE), "truth"))
MTCH.LST <- exclude(term_match(DATA$state, qcv(th, i)), qcv(truth, stinks))
termco(DATA$state, DATA$person, MTCH.LST)

syns <- synonyms("doubt")
syns[1]
termco(DATA$state, DATA$person, unlist(syns[1]))
synonyms("doubt", FALSE)
termco(DATA$state, DATA$person, list(doubt = synonyms("doubt", FALSE)))
termco(DATA$state, DATA$person, syns)

#termco_d examples:
termco_d(DATA$state, DATA$person, c(" the", " i'"))
termco_d(DATA$state, DATA$person, c(" the", " i'"), ignore.case=FALSE)
termco_d(DATA$state, DATA$person, c(" the ", " i'"))

# termco2mat example:
MTCH.LST <- exclude(term_match(DATA$state, qcv(a, i)), qcv(is, it, am, shall))
termco_obj <- termco(DATA$state, DATA$person, MTCH.LST)
termco2mat(termco_obj)
plot(termco_obj)
plot(termco_obj, label = TRUE)
plot(termco_obj, label = TRUE, text.color = "red")
plot(termco_obj, label = TRUE, text.color="red", lab.digits=3)

## REVERSE TERMCO (return raw words found per variable)
df <- data.frame(x=1:6,
    y = c("the fluffy little bat" , "the man was round like a ball",
        "the fluffy little bat" , "the man was round like a ball",
        "he ate the chair" , "cough, cough"),
    stringsAsFactors=FALSE)

l <- list("bat" ,"man", "ball", "heavy")
z <- counts(termco(df$y, qdapTools::id(df), l))[, -2]

counts2list(z[, -1], z[, 1])

## politness
politness <- c("please", "excuse me", "thank you", "you welcome", 
    "you're welcome", "i'm sorry", "forgive me", "pardon me")

with(pres_debates2012, termco(dialogue, person, politness))
with(hamlet, termco(dialogue, person, politness))

## Term Use Percentage per N Words
dat <- with(raj, chunker(dialogue, person, n.words = 100, rm.unequal = TRUE))
dat2 <- list2df(dat, "Dialogue", "Person")
dat2[["Duration"]] <- unlist(lapply(dat, id, pad=FALSE))
dat2 <- qdap_df(dat2, "Dialogue")

Top5 <- sapply(split(raj$dialogue, raj$person), wc, FALSE) %>%
    sort(decreasing=TRUE) %>% 
    list2df("wordcount", "person") %>%
    `[`(1:5, 2)

propdat <- dat2 %&% 
    termco(list(Person, Duration), as.list(Top25Words[1:5]), percent = FALSE) %>% 
    proportions %>%
    colsplit2df %>% 
    reshape2::melt(id=c("Person", "Duration", "word.count"), variable="Word") %>%
    dplyr::filter(Person %in% Top5)

head(propdat)

ggplot(propdat, aes(y=value, x=Duration, group=Person, color=Person)) +
    geom_line(size=1.25) +
    facet_grid(Word~., scales="free_y") +
    ylab("Percent of Word Use")  +
    xlab("Per 100 Words") + 
    scale_y_continuous(labels = percent)

ggplot(propdat, aes(y=value, x=Duration, group=Word, color=Word)) +
    geom_line(size=1.25) +
    facet_grid(Person~.) +
    ylab("Percent of Word Use")  +
    xlab("Per 100 Words") + 
    scale_y_continuous(labels = percent)

ggplot(propdat, aes(y=value, x=Duration, group=Word)) +
    geom_line() +
    facet_grid(Word~Person, scales="free_y") +
    ylab("Percent of Word Use")  +
    xlab("Per 100 Words") + 
    scale_y_continuous(labels = percent) +
    ggthemes::theme_few()
    
## Discourse Markers: See...
## Schffrin, D. (2001). Discourse markers: Language, meaning, and context. 
##    In D. Schiffrin, D. Tannen, & H. E. Hamilton (Eds.), The handbook of 
##    discourse analysis (pp. 54-75). Malden, MA: Blackwell Publishing.

discoure_markers <- list(
    response_cries = c(" oh ", " ah ", " aha ", " ouch ", " yuk "),
    back_channels = c(" uh-huh ", " uhuh ", " yeah "), 
    summons = " hey ", 
    justification = " because "
)

(markers <- with(pres_debates2012, 
    termco(dialogue, list(person, time), discoure_markers)
))
plot(markers, high="red")

with(pres_debates2012, 
    termco(dialogue, list(person, time), discoure_markers, elim.old = FALSE)
)

with(pres_debates2012, 
    dispersion_plot(dialogue, unlist(discoure_markers), person, time)
)

## End(Not run)

Combine Columns from a termco Object

Description

Combines the columns of a termco object. Generally intended for internal use but documented for completeness.

Usage

termco_c(
  termco.object,
  combined.columns,
  new.name,
  short.term = TRUE,
  zero.replace = NULL,
  elim.old = TRUE,
  percent = NULL,
  digits = 2
)

Arguments

termco.object

An object generated by either termco, termco_d or termco_c.

combined.columns

The names/indexes of the columns to be combined.

new.name

A character vector of length one to name the new combined column.

short.term

logical. If TRUE column names are trimmed versions of the match list, otherwise the terms are wrapped with 'term(phrase)'

zero.replace

Value to replace zeros with.

elim.old

logical. If TRUE eliminates the columns that are combined together by the named match.list.

percent

logical. If TRUE output given as percent. If FALSE the output is proportion.

digits

Integer; number of decimal places to round when printing.

Value

Returns a return a list, of class "termco", of data frames and information regarding word counts:

raw

raw word counts by grouping variable

prop

proportional word counts by grouping variable; proportional to each individual's word use

rnp

a character combination data frame of raw and proportional

zero_replace

value to replace zeros with; mostly internal use

percent

The value of percent used for plotting purposes.

digits

integer value od number of digits to display; mostly internal use

See Also

termco


Add Title to Select qdap Plots

Description

Add title to select qdap objects that store a plot.

Usage

Title(object)

Title(object) <- value

Arguments

object

A select qdap object that stores a plot.

value

The value to assign to title.


Visualize Word Length by Turn of Talk

Description

Uses a bar graph to visualize patterns in sentence length and grouping variables by turn of talk.

Usage

tot_plot(
  dataframe,
  text.var,
  grouping.var = NULL,
  facet.vars = NULL,
  tot = TRUE,
  transform = FALSE,
  ncol = NULL,
  ylab = NULL,
  xlab = NULL,
  bar.space = 0,
  scale = NULL,
  space = NULL,
  plot = TRUE
)

Arguments

dataframe

A dataframe that contains the text variable and optionally the grouping.var and tot variables.

text.var

The text variable (character string).

grouping.var

The grouping variables to color by. Default NULL colors everything in "black". Also takes a single grouping variable or a list of 1 or more grouping variables.

facet.vars

An optional single vector or list of 1 or 2 to facet by.

tot

The turn of talk variable (character string). May be TRUE (assumes "tot" is the variable name), FALSE (use row numbers), or a character string of the turn of talk column.

transform

logical. If TRUE the repeated facets will be transformed from stacked to side by side.

ncol

number of columns. gantt_wrap uses facet_wrap rather than facet_grid.

ylab

Optional y label.

xlab

Optional x label.

bar.space

The amount space between bars (ranging between 1 and 0).

scale

Should scales be fixed ("fixed", the default), free ("free"), or free in one dimension ("free_x", "free_y")

space

If "fixed", the default, all panels have the same size. If "free_y" their height will be proportional to the length of the y scale; if "free_x" their width will be proportional to the length of the x scale; or if "free" both height and width will vary. This setting has no effect unless the appropriate scales also vary.

plot

logical. If TRUE the plot will automatically plot. The user may wish to set to FALSE for use in knitr, sweave, etc. to add additional plot layers.

Value

Invisibly returns the ggplot2 object.

Examples

## Not run: 
dataframe <- sentSplit(DATA, "state")
tot_plot(dataframe, "state")
tot_plot(DATA, "state", tot=FALSE)
tot_plot(dataframe, "state", bar.space=.03)
tot_plot(dataframe, "state", "sex")
tot_plot(dataframe, "state", "person", tot = "sex")
tot_plot(mraja1, "dialogue", "fam.aff", tot=FALSE)
tot_plot(mraja1, "dialogue", "died", tot=FALSE)
tot_plot(mraja1, "dialogue", c("sex", "fam.aff"), tot=FALSE) + 
    scale_fill_hue(l=40) 
tot_plot(mraja1, "dialogue", c("sex", "fam.aff"), tot=FALSE)+ 
    scale_fill_brewer(palette="Spectral")
tot_plot(mraja1, "dialogue", c("sex", "fam.aff"), tot=FALSE)+ 
    scale_fill_brewer(palette="Set1")

## repeated measures
rajSPLIT2 <- do.call(rbind, lapply(split(rajSPLIT, rajSPLIT$act), head, 25))
tot_plot(rajSPLIT2, "dialogue", "fam.aff", facet.var = "act")

## add mean and +/- 2 sd
tot_plot(mraja1, "dialogue", grouping.var = c("sex", "fam.aff"), tot=FALSE)+
    scale_fill_brewer(palette="Set1") +
    geom_hline(aes(yintercept=mean(word.count))) +
    geom_hline(aes(yintercept=mean(word.count) + (2 *sd(word.count)))) +
    geom_hline(aes(yintercept=mean(word.count) + (3 *sd(word.count)))) +
    geom_text(parse=TRUE, hjust=0, vjust=0, family="serif", size = 4, aes(x = 2, 
        y = mean(word.count) + 2, label = "bar(x)")) +
    geom_text(hjust=0, vjust=0, family="serif", size = 4, aes(x = 1, 
        y = mean(word.count) + (2 *sd(word.count)) + 2, label = "+2 sd")) +
    geom_text(hjust=0, vjust=0, family="serif", size = 4, aes(x = 1, 
        y = mean(word.count) + (3 *sd(word.count)) + 2, label = "+3 sd")) 

## End(Not run)

Word Clouds by Grouping Variable

Description

Produces word clouds with optional theme coloring by grouping variable.

Usage

trans_cloud(
  text.var = NULL,
  grouping.var = NULL,
  word.list = NULL,
  stem = FALSE,
  target.words = NULL,
  expand.target = TRUE,
  target.exclude = NULL,
  stopwords = NULL,
  min.freq = 1,
  caps = TRUE,
  caps.list = NULL,
  random.order = FALSE,
  rot.per = 0,
  cloud.colors = NULL,
  title = TRUE,
  cloud.font = NULL,
  title.font = NULL,
  title.color = "black",
  title.padj = -4.5,
  title.location = 3,
  title.cex = NULL,
  title.names = NULL,
  proportional = FALSE,
  max.word.size = NULL,
  min.word.size = 0.5,
  legend = NULL,
  legend.cex = 0.8,
  legend.location = c(-0.03, 1.03),
  char.keep = "~~",
  char2space = "~~"
)

Arguments

text.var

The text variable.

grouping.var

The grouping variables. Default NULL generates one word list for all text. Also takes a single grouping variable or a list of 1 or more grouping variables.

word.list

A frequency word list passed from word_list.

stem

logical. If TRUE the text.var will be stemmed.

target.words

A named list of vectors of words whose length corresponds to cloud.colors (+1 length in cloud colors for non-matched terms).

expand.target

logical. If TRUE agrep will be used to expand the target.words.

target.exclude

A vector of words to exclude from the target.words.

stopwords

Words to exclude from the cloud.

min.freq

An integer value indicating the minimum frequency a word must appear to be included.

caps

logical. If TRUE selected words will be capitalized.

caps.list

A vector of words to capitalize (caps must be TRUE).

random.order

Plot words in random order. If false, they will be plotted in decreasing frequency.

rot.per

Proportion words with 90 degree rotation.

cloud.colors

A vector of colors equal to the length of target words +1.

title

logical. If TRUE adds a title corresponding to the grouping.var.

cloud.font

The font family of the cloud text.

title.font

The font family of the cloud title.

title.color

A character vector of length one corresponding to the color of the title.

title.padj

Adjustment for the title. For strings parallel to the axes, padj = 0 means right or top alignment, and padj = 1 means left or bottom alignment.

title.location

On which side of the plot (1=bottom, 2=left, 3=top, 4=right).

title.cex

Character expansion factor for the title. NULL and NA are equivalent to 1.0.

title.names

Optional vector of title names equal in length to the grouping.var that will override the default use of the grouping.var names.

proportional

logical. If TRUE scales the word clouds across grouping.var to allow cloud to cloud comparisons.

max.word.size

A size argument to control the minimum size of the words.

min.word.size

A size argument to control the maximum size of the words.

legend

A character vector of names corresponding to the number of vectors in target.words.

legend.cex

Character expansion factor for the legend. NULL and NA are equivalent to 1.0.

legend.location

The x and y co-ordinates to be used to position the legend.

char.keep

A character vector of symbol character (i.e., punctuation) that strip should keep. The default is to strip everything except apostrophes. This enables the use of special characters to be turned into spaces or for characters to be retained.

char2space

A vector of characters to be turned into spaces. If char.keep is NULL, char2space will activate this argument.

Value

Returns a series of word cloud plots with target words (themes) colored.

See Also

wordcloud, gradient_cloud

Examples

## Not run: 
terms <- list(
    I=c("i", "i'm"),
    mal=qcv(stinks, dumb, distrust),
    articles=qcv(the, a, an),
    pronoun=qcv(we, you)
)

with(DATA, trans_cloud(state, person, target.words=terms, 
    cloud.colors=qcv(red, green, blue, black, gray65), 
    expand.target=FALSE, proportional=TRUE, legend=c(names(terms), 
    "other")))

with(DATA, trans_cloud(state, person, target.words=terms,
    stopwords=exclude(with(DATA, unique(bag_o_words(state))), 
        unique(unlist(terms))), 
    cloud.colors=qcv(red, green, blue, black, gray65), 
    expand.target=FALSE, proportional=TRUE, legend=names(terms)))
    
    
#color the negated phrases opposite:
DATA <- qdap::DATA
DATA[1, 4] <- "This is not good!"
DATA[8, 4] <- "I don't distrust you."

DATA$state <- space_fill(DATA$state, paste0(negation.words, " "), 
    rm.extra = FALSE)

txt <- gsub("~~", " ", breaker(DATA$state))
rev.neg <- sapply(negation.words, paste, negative.words)
rev.pos <- sapply(negation.words, paste, positive.words)


tw <- list(
    positive=c(positive.words, rev.neg[rev.neg %in% txt]), 
    negative=c(negative.words, rev.pos[rev.pos %in% txt])
)


with(DATA, trans_cloud(state, person,
    target.words=tw,
    cloud.colors=qcv(darkgreen, red, gray65),
    expand.target=FALSE, proportional=TRUE, legend=names(tw)))

DATA <- qdap::DATA  ## Reset DATA

## End(Not run)

Print Context Around Indices

Description

Print (or save to an external file) n text elements before and after indices.

Usage

trans_context(
  text.var,
  grouping.var,
  inds,
  n.before = 3,
  tot = TRUE,
  n.after = n.before,
  ord.inds = TRUE
)

Arguments

text.var

The text variable.

grouping.var

The grouping variables. Also takes a single grouping variable or a list of 1 or more grouping variables.

inds

A list of integer indices to print context for.

n.before

The number of rows before the indexed occurrence.

tot

logical. If TRUE condenses sub-units (e.g., sentences) into turns of talk for that grouping.var.

n.after

The number of rows after the indexed occurrence.

ord.inds

logical. If TRUE inds is ordered least to greatest.

Value

Returns a dataframe of the class "qdap_context" that can be printed (i.e., saved) in flexible outputs. The dataframe can be printed as a dataframe style or pretty text output. The resulting file contains n rows before and after each index of a vector of indices.

See Also

boolean_search, question_type, end_mark

Examples

## Not run: 
(x <- with(DATA, trans_context(state, person, inds=c(1, 4, 7, 11))))
print(x, pretty=FALSE)
print(x, double_space = FALSE)
print(x, file="foo.xlsx")
print(x, file="foo.csv")
print(x, file="foo.txt")
print(x, file="foo.txt", pretty = FALSE)
print(x, file="foo.doc")

## With `end_mark`
inds1 <- which(end_mark(DATA.SPLIT[, "state"]) == "?")
with(DATA.SPLIT, trans_context(state, person, inds=inds1))
with(DATA.SPLIT, trans_context(state, person, n.before = 0, inds=inds1))

## With `boolean_search`
inds2 <- boolean_search(DATA.SPLIT$state, " I &&.")
with(DATA.SPLIT, trans_context(state, person, inds=inds2))

inds3 <- boolean_search(DATA$state, " I ||.")
with(DATA.SPLIT, trans_context(state, person, inds=inds3))
with(DATA.SPLIT, trans_context(state, list(person, sex), inds=inds3))
with(DATA.SPLIT, trans_context(state, list(sex, adult), inds=inds3))

inds4 <- boolean_search(raj$dialogue, spaste(paste(negation.words, collapse = " || ")))
trans_context(raj$dialogue, raj$person, inds4)

### With `question_type`
(x <- question_type(DATA.SPLIT$state, DATA.SPLIT$person))

## All questions
with(DATA.SPLIT, trans_context(state, person, inds=x$inds))

## Specific question types
y <- x[["raw"]]
inds5 <- y[y[, "q.type"] %in% qcv(what, how), "n.row"]
with(DATA.SPLIT, trans_context(state, person, inds=inds5))
with(DATA.SPLIT, trans_context(state, person, inds=inds5, tot=F))

## End(Not run)

Venn Diagram by Grouping Variable

Description

Produce a Venn diagram by grouping variable.

Usage

trans_venn(
  text.var,
  grouping.var,
  stopwords = NULL,
  rm.duplicates = TRUE,
  title = TRUE,
  title.font = NULL,
  title.color = "black",
  title.cex = NULL,
  title.name = NULL,
  legend = TRUE,
  legend.cex = 0.8,
  legend.location = "bottomleft",
  legend.text.col = "black",
  legend.horiz = FALSE,
  ...
)

Arguments

text.var

The text variable.

grouping.var

The grouping variables. Default NULL generates one word list for all text. Also takes a single grouping variable or a list of 1 or more grouping variables.

stopwords

Words to exclude from the analysis.

rm.duplicates

logical. If TRUE removes the duplicated words from the analysis (only single usage is considered).

title

logical. IF TRUE adds a title corresponding to the grouping.var.

title.font

The font family of the cloud title.

title.color

A character vector of length one corresponding to the color of the title.

title.cex

Character expansion factor for the title. NULL and NA are equivalent to 1.0

title.name

A title for the plot.

legend

logical. If TRUE uses the names from the target.words list corresponding to cloud.colors.

legend.cex

Character expansion factor for the legend. NULL and NA are equivalent to 1.0.

legend.location

The x and y co-ordinates to be used to position the legend. The location may also be specified by setting x to a single keyword from the list "bottomright", "bottom", "bottomleft", "left", "topleft", "top", "topright", "right" and "center". This places the legend on the inside of the plot frame at the given location.

legend.text.col

The color used for the legend text.

legend.horiz

logical; if TRUE, set the legend horizontally rather than vertically.

...

Other arguments passed to plot.

Value

Returns a Venn plot by grouping variable(s).

Warning

The algorithm used to overlap the Venn circles becomes increasingly overburdened and less accurate with increased grouping variables. An alternative is to use a network plot with {codeDissimilarity measures labeling the edges between nodes (grouping variables) or a heat map (qheat).

See Also

venneuler

Examples

## Not run: 
with(DATA , trans_venn(state, person, legend.location = "topright"))
#the plot below will take a considerable amount of time to plot
with(raj.act.1 , trans_venn(dialogue, person, legend.location = "topleft"))

## End(Not run)

Remove Leading/Trailing White Space

Description

Remove leading/trailing white space.

Usage

Trim(x)

Arguments

x

The text variable.

Value

Returns a vector with the leading/trailing white spaces removed.

Examples

## Not run: 
(x <- c("  talkstats.com ", "   really? ", " yeah"))
Trim(x)

## End(Not run)

Type-Token Ratio

Description

Calculate type-token ratio by grouping variable.

Usage

type_token_ratio(text.var, grouping.var = NULL, n.words = 1000, ...)

Arguments

text.var

The text variable

grouping.var

The grouping variables. Default NULL generates one word list for all text. Also takes a single grouping variable or a list of 1 or more grouping variables.

n.words

An integer specifying the number of words in each chunk.

...

ignored.

Value

Returns a list of class type_text_ratio. This object contains a type-token ratio for the overall text and a data frame type-token ratios per grouping vriable.

References

Baker, P. (2006) Using Corpora in Discourse Analysis. London: Continuum.

Examples

with(raj, type_token_ratio(dialogue, person))
plot(with(raj, type_token_ratio(dialogue, person)))

Find Unique Words by Grouping Variable

Description

Find unique words used by grouping variable.

Usage

unique_by(text.var, grouping.var)

Arguments

text.var

The text variable

grouping.var

The grouping variables. Default NULL generates one word list for all text. Also takes a single grouping variable or a list of 1 or more grouping variables.

Value

Returns a list of unique words by grouping variable.

Examples

## Not run: 
dat <- pres_debates2012[pres_debates2012$time == "time 3", ]
with(dat, unique_by(dialogue, person))
with(pres_debates2012, unique_by(dialogue, list(time, person)))

with(DATA, unique_by(state, person))

## End(Not run)

Apply Parameter to List of Igraph Vertices/Edges

Description

vertex_apply - Uniformly apply igraph vertex plotting parameters to a list of igraph objects.

edge_apply - Uniformly apply igrph edge plotting parameters to a list of igraph objects.

Usage

vertex_apply(x, ..., hold.ends = NULL)

edge_apply(x, ..., hold.ends = c("label.color"))

Arguments

x

A list of igraph objects.

hold.ends

A vector of parameters passed to ... that should not be altered for the first and last (ends) objects in the list.

...

Arguments passed igraph's V and E. See https://igraph.org/redirect.html for more.

Value

Returns a list of igraph objects.

Examples

## Not run: 
x <- with(DATA.SPLIT, polarity(state, person))
bg_black <- Animate(x, neutral="white")
print(bg_black)

bgb <- vertex_apply(bg_black, label.color="grey80", size=20, color="grey40")
bgb <- edge_apply(bgb, label.color="yellow")
print(bgb, bg="black", pause=.75)

## End(Not run)

Generic visual Method

Description

Access the visual-graph-plot object from select qdap outputs.

Usage

visual(x, ...)

Arguments

x

A qdap object (list) with a visual-graph-plot object (e.g., discourse_map).

...

Arguments passed to visual method of other classes.

Value

Returns a plot object.

See Also

scores, counts, preprocessed, proportions


Discourse Map

Description

visual.discourse_map - View visual from discourse_map.

Usage

## S3 method for class 'discourse_map'
visual(x, ...)

Arguments

x

The discourse_map object.

...

ignored

Details

discourse_map Method for visual


Weight a qdap Object

Description

Weight a word_proximity object.

Usage

weight(x, type = "scale", ...)

Arguments

x

A qdap object with a weight method.

type

A weighting type of: c("scale_log", "scale", "rev_scale", "rev_scale_log", "log", "sqrt", "scale_sqrt", "rev_sqrt", "rev_scale_sqrt"). The weight type section name (i.e. A_B_C where A, B, and C are sections) determines what action will occur. log will use log, sqrt will use sqrt, scale will standardize the values. rev will multiply by -1 to give the inverse sign. This enables a comparison similar to correlations rather than distance.

...

ignored.

Value

Returns a weighted list of matrices.

Note

A constant of .000000000001 is added to each element when log is used to deal with the problem of log(0).


Word Frequency Matrix

Description

wfm - Generate a word frequency matrix by grouping variable(s).

wfdf - Generate a word frequency data frame by grouping variable.

wfm_expanded - Expand a word frequency matrix to have multiple rows for each word.

wfm_combine - Combines words (rows) of a word frequency matrix (wfdf) together.

weight - Weight a word frequency matrix for analysis where such weighting is sensible.

weight.wfdf - Weight a word frequency matrix for analysis where such weighting is sensible.

as.wfm - Attempts to coerce a matrix to a wfm.

Usage

wfm(
  text.var = NULL,
  grouping.var = NULL,
  output = "raw",
  stopwords = NULL,
  char2space = "~~",
  ...
)

## S3 method for class 'wfdf'
wfm(
  text.var = NULL,
  grouping.var = NULL,
  output = "raw",
  stopwords = NULL,
  char2space = "~~",
  ...
)

## S3 method for class 'character'
wfm(
  text.var = NULL,
  grouping.var = NULL,
  output = "raw",
  stopwords = NULL,
  char2space = "~~",
  ...
)

## S3 method for class 'factor'
wfm(
  text.var = NULL,
  grouping.var = NULL,
  output = "raw",
  stopwords = NULL,
  char2space = "~~",
  ...
)

wfdf(
  text.var,
  grouping.var = NULL,
  stopwords = NULL,
  margins = FALSE,
  output = "raw",
  digits = 2,
  char2space = "~~",
  ...
)

wfm_expanded(text.var, grouping.var = NULL, ...)

wfm_combine(wf.obj, word.lists, matrix = TRUE)

## S3 method for class 'wfm'
weight(x, type = "prop", ...)

## S3 method for class 'wfdf'
weight(x, type = "prop", ...)

as.wfm(x, ...)

## S3 method for class 'matrix'
as.wfm(x, ...)

## Default S3 method:
as.wfm(x, ...)

## S3 method for class 'TermDocumentMatrix'
as.wfm(x, ...)

## S3 method for class 'DocumentTermMatrix'
as.wfm(x, ...)

## S3 method for class 'data.frame'
as.wfm(x, ...)

## S3 method for class 'wfdf'
as.wfm(x, ...)

## S3 method for class 'Corpus'
as.wfm(x, col = "docs", row = "text", ...)

## S3 method for class 'Corpus'
wfm(text.var, ...)

Arguments

text.var

The text variable.

grouping.var

The grouping variables. Default NULL generates one word list for all text. Also takes a single grouping variable or a list of 1 or more grouping variables.

output

Output type (either "proportion" or "percent").

stopwords

A vector of stop words to remove.

char2space

A vector of characters to be turned into spaces. If char.keep is NULL, char2space will activate this argument.

margins

logical. If TRUE provides grouping.var and word variable totals.

digits

An integer indicating the number of decimal places (round) or significant digits (signif) to be used. Negative values are allowed.

wf.obj

A wfm or wfdf object.

word.lists

A list of character vectors of words to pass to wfm_combine

matrix

logical. If TRUE returns the output as a wfm rather than a wfdf object.

x

An object with words for row names and integer values.

type

The type of weighting to use: c("prop", "max", "scaled"). All weight by column. "prop" uses a proportion weighting and all columns sum to 1. "max" weights in proportion to the max value; all values are integers and column sums may not be equal. "scaled" uses scale to scale with center = FALSE; output is not integer and column sums may not be equal.

col

The column name (generally not used).

row

The row name (generally not used).

...

Other arguments supplied to Corpus or TermDocumentMatrix. If as.wfm this is other arguments passed to as.wfm methods (currently ignored).

Value

wfm - returns a word frequency of the class matrix.

wfdf - returns a word frequency of the class data.frame with a words column and optional margin sums.

wfm_expanded - returns a matrix similar to a word frequency matrix (wfm) but the rows are expanded to represent the maximum usages of the word and cells are dummy coded to indicate that number of uses.

wfm_combine - returns a word frequency matrix (wfm) or dataframe (wfdf) with counts for the combined word.lists merged and remaining terms (else).

weight - Returns a weighted matrix for use with other R packages. The output is not of the class "wfm".

as.wfm - Returns a matrix of the class "wfm".

Note

Words can be kept as one by inserting a double tilde ("~~"), or other character strings passed to char2space, as a single word/entry. This is useful for keeping proper names as a single unit.

Examples

## Not run: 
## word frequency matrix (wfm) example:
with(DATA, wfm(state, list(sex, adult)))[1:15, ]
with(DATA, wfm(state, person))[1:15, ]
Filter(with(DATA, wfm(state, list(sex, adult))), 5)
with(DATA, wfm(state, list(sex, adult)))

## Filter particular words based on max/min values in wfm
v <- with(DATA, wfm(state, list(sex, adult)))
Filter(v, 5)
Filter(v, 5, count.apostrophe = FALSE)
Filter(v, 5, 7)
Filter(v, 4, 4)
Filter(v, 3, 4)
Filter(v, 3, 4, stopwords = Top25Words)

## insert double tilde ("~~") to keep phrases(i.e., first last name)
alts <- c(" fun", "I ")
state2 <- space_fill(DATA$state, alts, rm.extra = FALSE)
with(DATA, wfm(state2, list(sex, adult)))[1:18, ]

## word frequency dataframe (wfdf) example:
with(DATA, wfdf(state, list(sex, adult)))[1:15, ]
with(DATA, wfdf(state, person))[1:15, ]

## wfm_expanded example:
z <- wfm(DATA$state, DATA$person)
wfm_expanded(z)[30:45, ] #two "you"s

## wf_combine examples:
#===================
## raw no margins (will work) 
x <- wfm(DATA$state, DATA$person) 
                    
## raw with margin (will work) 
y <- wfdf(DATA$state, DATA$person, margins = TRUE) 

## Proportion matrix
z2 <- wfm(DATA$state, DATA$person, output="proportion")

WL1 <- c(y[, 1])                                                                      
WL2 <- list(c("read", "the", "a"), c("you", "your", "you're"))                       
WL3 <- list(bob = c("read", "the", "a"), yous = c("you", "your", "you're"))          
WL4 <- list(bob = c("read", "the", "a"), yous = c("a", "you", "your", "your're"))     
WL5 <- list(yous = c("you", "your", "your're"))                                       
WL6 <- list(c("you", "your", "your're"))  #no name so will be called words 1          
WL7 <- c("you", "your", "your're")                             
                                                               
wfm_combine(z2, WL2) #Won't work not a raw frequency matrix     
wfm_combine(x, WL2)  #Works (raw and no margins)                     
wfm_combine(y, WL2)  #Works (raw with margins)                           
wfm_combine(y, c("you", "your", "your're"))                        
wfm_combine(y, WL1)                                                  
wfm_combine(y, WL3)                                                   
## wfm_combine(y, WL4) #Error         
wfm_combine(y, WL5)                                         
wfm_combine(y, WL6)                                              
wfm_combine(y, WL7)                                           
                                                                  
worlis <- c("you", "it", "it's", "no", "not", "we")              
y <- wfdf(DATA$state, list(DATA$sex, DATA$adult), margins = TRUE)  
z <- wfm_combine(y, worlis)                      
                                                                 
chisq.test(z)                                                      
chisq.test(wfm(y)) 

## Dendrogram
presdeb <- with(pres_debates2012, wfm(dialogue, list(person, time)))
library(sjPlot)
sjc.dend(t(presdeb), 2:4)

## Words correlated within turns of talk
## EXAMPLE 1
library(qdapTools)
x <- factor(with(rajSPLIT, paste(act, pad(TOT(tot)), sep = "|")))
dat <- wfm(rajSPLIT$dialogue, x)

cor(t(dat)[, c("romeo", "juliet")])
cor(t(dat)[, c("romeo", "banished")])
cor(t(dat)[, c("romeo", "juliet", "hate", "love")])
qheat(cor(t(dat)[, c("romeo", "juliet", "hate", "love")]), 
    diag.na = TRUE, values = TRUE, digits = 3, by.column = NULL)
    
dat2 <- wfm(DATA$state, id(DATA))
qheat(cor(t(dat2)), low = "yellow", high = "red", 
    grid = "grey90", diag.na = TRUE, by.column = NULL)
    
## EXAMPLE 2
x2 <- factor(with(pres_debates2012, paste(time, pad(TOT(tot)), sep = "|")))
dat2 <- wfm(pres_debates2012$dialogue, x2)
wrds <- word_list(pres_debates2012$dialogue, 
    stopwords = c("it's", "that's", Top200Words))
wrds2 <- tolower(sort(wrds$rfswl[[1]][, 1]))
qheat(word_cor(t(dat2), word = wrds2, r = NULL),
    diag.na = TRUE, values = TRUE, digits = 3, by.column = NULL, 
    high="red", low="yellow", grid=NULL)
    
## EXAMPLE 3
library(gridExtra); library(ggplot2); library(grid)
dat3 <- lapply(qcv(OBAMA, ROMNEY), function(x) {
    with(pres_debates2012, wfm(dialogue[person == x], x2[person == x]))
})


# Presidential debates by person
dat5 <- pres_debates2012
dat5 <- dat5[dat5$person %in% qcv(ROMNEY, OBAMA), ]

disp <- with(dat5, dispersion_plot(dialogue, wrds2, grouping.var = person, 
    total.color = NULL, rm.vars=time))


cors <- lapply(dat3, function(m) {
    word_cor(t(m), word = wrds2, r = NULL)
})

plots <- lapply(cors, function(x) {
    qheat(x, diag.na = TRUE, values = TRUE, digits = 3, plot = FALSE,
    by.column = NULL, high="red", low="yellow", grid=NULL)
})

plots <- lapply(1:2, function(i) {
    plots[[i]] + ggtitle(qcv(OBAMA, ROMNEY)[i]) +
    theme(axis.title.x = element_blank(),
        plot.margin = unit(rep(0, 4), "lines"))
})

grid.arrange(disp, arrangeGrob(plots[[1]], plots[[2]], ncol=1), ncol=2)

## With `word_cor`
worlis <- list(
    pronouns = c("you", "it", "it's", "we", "i'm", "i"),
    negative = qcv(no, dumb, distrust, not, stinks),
    literacy = qcv(computer, talking, telling)
)
y <- wfdf(DATA$state, qdapTools::id(DATA, prefix = TRUE))
z <- wfm_combine(y, worlis)

word_cor(t(z), word = names(worlis), r = NULL)

## Plotting method
plot(y, TRUE)
plot(z)

## Correspondence Analysis
library(ca)

dat <- pres_debates2012
dat <- dat[dat$person %in% qcv(ROMNEY, OBAMA), ]

speech <- stemmer(dat$dialogue)
mytable1 <- with(dat, wfm(speech, list(person, time), stopwords = Top25Words))

fit <- ca(mytable1)
summary(fit)
plot(fit)
plot3d.ca(fit, labels=1)


mytable2 <- with(dat, wfm(speech, list(person, time), stopwords = Top200Words))

fit2 <- ca(mytable2)
summary(fit2)
plot(fit2)
plot3d.ca(fit2, labels=1)

## Weight a wfm
WFM <- with(DATA, wfm(state, list(sex, adult)))
plot(weight(WFM, "scaled"), TRUE)
weight(WFM, "prop")
weight(WFM, "max")
weight(WFM, "scaled")

## End(Not run)

Find Associated Words

Description

Find words associated with a given word(s) or a phrase(s). Results can be output as a network graph and/or wordcloud.

Usage

word_associate(
  text.var,
  grouping.var = NULL,
  match.string,
  text.unit = "sentence",
  extra.terms = NULL,
  target.exclude = NULL,
  stopwords = NULL,
  network.plot = FALSE,
  wordcloud = FALSE,
  cloud.colors = c("black", "gray55"),
  title.color = "blue",
  nw.label.cex = 0.8,
  title.padj = -4.5,
  nw.label.colors = NULL,
  nw.layout = NULL,
  nw.edge.color = "gray90",
  nw.label.proportional = TRUE,
  nw.title.padj = NULL,
  nw.title.location = NULL,
  title.font = NULL,
  title.cex = NULL,
  nw.edge.curved = TRUE,
  cloud.legend = NULL,
  cloud.legend.cex = 0.8,
  cloud.legend.location = c(-0.03, 1.03),
  nw.legend = NULL,
  nw.legend.cex = 0.8,
  nw.legend.location = c(-1.54, 1.41),
  legend.override = FALSE,
  char2space = "~~",
  ...
)

Arguments

text.var

The text variable.

grouping.var

The grouping variables. Default NULL generates one word list for all text. Also takes a single grouping variable or a list of 1 or more grouping variables.

match.string

A list of vectors or vector of terms to associate in the text.

text.unit

The text unit (either "sentence" or "tot". This argument determines what unit to find the match string words within. For example if "sentence" is chosen the function pulls all text for sentences the match string terms are found in.

extra.terms

Other terms to color beyond the match string.

target.exclude

A vector of words to exclude from the match.string.

stopwords

Words to exclude from the analysis.

network.plot

logical. If TRUE plots a network plot of the words.

wordcloud

logical. If TRUE plots a wordcloud plot of the words.

cloud.colors

A vector of colors equal to the length of match.string +1.

title.color

A character vector of length one corresponding to the color of the title.

nw.label.cex

The magnification to be used for network plot labels relative to the current setting of cex. Default is .8.

title.padj

Adjustment for the title. For strings parallel to the axes, padj = 0 means right or top alignment, and padj = 1 means left or bottom alignment.

nw.label.colors

A vector of colors equal to the length of match.string +1.

nw.layout

layout types supported by igraph. See layout.

nw.edge.color

A character vector of length one corresponding to the color of the plot edges.

nw.label.proportional

logical. If TRUE scales the network plots across grouping.var to allow plot to plot comparisons.

nw.title.padj

Adjustment for the network plot title. For strings parallel to the axes, padj = 0 means right or top alignment, and padj = 1 means left or bottom alignment.

nw.title.location

On which side of the network plot (1=bottom, 2=left, 3=top, 4=right).

title.font

The font family of the cloud title.

title.cex

Character expansion factor for the title. NULL and NA are equivalent to 1.0.

nw.edge.curved

logical. If TRUE edges will be curved rather than straight paths.

cloud.legend

A character vector of names corresponding to the number of vectors in match.string. Both nw.legend and cloud.legend can be set separately; or one may be set and by default the other will assume those legend labels. If the user does not desire this behavior use the legend.override argument.

cloud.legend.cex

Character expansion factor for the wordcloud legend. NULL and NA are equivalent to 1.0.

cloud.legend.location

The x and y co-ordinates to be used to position the wordcloud legend. The location may also be specified by setting x to a single keyword from the list "bottomright", "bottom", "bottomleft", "left", "topleft", "top", "topright", "right" and "center". This places the legend on the inside of the plot frame at the given location.

nw.legend

A character vector of names corresponding to the number of vectors in match.string. Both nw.legend and cloud.legend can be set separately; or one may be set and by default the other will assume those legend labels. If the user does not desire this behavior use the legend.override argument.

nw.legend.cex

Character expansion factor for the network plot legend. NULL and NA are equivalent to 1.0.

nw.legend.location

The x and y co-ordinates to be used to position the network plot legend. The location may also be specified by setting x to a single keyword from the list "bottomright", "bottom", "bottomleft", "left", "topleft", "top", "topright", "right" and "center". This places the legend on the inside of the plot frame at the given location.

legend.override

By default if legend labels are supplied to either cloud.legend or nw.legend may be set and if the other remains NULL it will assume the supplied vector to the previous legend argument. If this behavior is not desired legend.override should be set to TRUE.

char2space

Currently a road to nowhere. Eventually this will allow the retention of characters as is allowed in trans_cloud already.

...

Other arguments supplied to trans_cloud.

Value

Returns a list:

word frequency matrices

Word frequency matrices for each grouping variable.

dialogue

A list of dataframes for each word list (each vector supplied to match.string) and a final dataframe of all combined text units that contain any match string.

match.terms

A list of vectors of word lists (each vector supplied to match.string).

Optionally, returns a word cloud and/or a network plot of the text unit containing the match.string terms.

See Also

trans_cloud, word_network_plot, wordcloud, graph.adjacency

Examples

## Not run: 
ms <- c(" I ", "you")
et <- c(" it", " tell", "tru")
out1 <- word_associate(DATA2$state, DATA2$person, match.string = ms, 
    wordcloud = TRUE,  proportional = TRUE, 
    network.plot = TRUE,  nw.label.proportional = TRUE, extra.terms = et,  
    cloud.legend =c("A", "B", "C"),
    title.color = "blue", cloud.colors = c("red", "purple", "gray70"))

#======================================
#Note: You don't have to name the vectors in the lists but I do for clarity
ms <- list(
    list1 = c(" I ", " you", "not"), 
    list2 = c(" wh")          
)

et <- list(
    B = c(" the", "do", "tru"), 
    C = c(" it", " already", "we")
)

out2 <- word_associate(DATA2$state, DATA2$person, match.string = ms, 
    wordcloud = TRUE,  proportional = TRUE, 
    network.plot = TRUE,  nw.label.proportional = TRUE, extra.terms = et,  
    cloud.legend =c("A", "B", "C", "D"),
    title.color = "blue", cloud.colors = c("red", "blue", "purple", "gray70"))

out3 <- word_associate(DATA2$state, list(DATA2$day, DATA2$person), match.string = ms)

#======================================
m <- list(
    A1 = c("you", "in"), #list 1
    A2 = c(" wh")        #list 2
)

n <- list(
    B = c(" the", " on"), 
    C = c(" it", " no")
)

out4 <- word_associate(DATA2$state, list(DATA2$day, DATA2$person), 
    match.string = m)
out5 <- word_associate(raj.act.1$dialogue, list(raj.act.1$person), 
    match.string = m)
out6 <- with(mraja1spl, word_associate(dialogue, list(fam.aff, sex), 
     match.string = m))
names(out6)
lapply(out6$dialogue, htruncdf, n = 20, w = 20)

#======================================
DATA2$state2 <- space_fill(DATA2$state, c("is fun", "too fun"))

ms <- list(
    list1 = c(" I ", " you", "is fun", "too fun"), 
    list2 = c(" wh")      
)

et <- list(
    B = c(" the", " on"), 
    C = c(" it", " no")
)

out7 <- word_associate(DATA2$state2, DATA2$person, match.string = ms, 
    wordcloud = TRUE,  proportional = TRUE, 
    network.plot = TRUE,  nw.label.proportional = TRUE, extra.terms = et,  
    cloud.legend =c("A", "B", "C", "D"),
    title.color = "blue", cloud.colors = c("red", "blue", "purple", "gray70"))
    
DATA2 <- qdap::DATA2

## End(Not run)

Find Correlated Words

Description

Find associated words within grouping variable(s).

Usage

word_cor(
  text.var,
  grouping.var = qdapTools::id(text.var),
  word,
  r = 0.7,
  values = TRUE,
  method = "pearson",
  ...
)

Arguments

text.var

The text variable (or frequency matrix).

grouping.var

The grouping variables. Default uses each row as a group. Also takes a single grouping variable or a list of 1 or more grouping variables. Unlike other qdap functions, this cannot be NULL.

word

The word(s) vector to find associated words for.

r

The correlation level find associated words for. If positive this is the minimum value, if negative this is the maximum value.

values

logical. If TRUE returns the named correlates (names are the words). If FALSE only the associated words are returned.

method

A character string indicating which correlation coefficient is to be computed ("pearson", "kendall", or "spearman").

...

Other arguments passed to wfm.

Value

Returns a vector of associated words or correlation matrix if r = NULL.

Note

Note that if a word has no variablity in it's usage across grouping variable(s) the sd will result in 0, thus cor will will likely return a warning as in this example: cor(rep(3, 10), rnorm(10)).

References

The plotting method for the list output was inspired by Ben Marwick; see https://stackoverflow.com/a/19925445/1000343 for more.

See Also

word_proximity, findAssocs, word_associate, wfm, cor

Examples

## Not run: 
x <- factor(with(rajSPLIT, paste(act, pad(TOT(tot)), sep = "|")))
word_cor(rajSPLIT$dialogue, x, "romeo", .45)
word_cor(rajSPLIT$dialogue, x, "love", .5)  

## Negative correlation
word_cor(rajSPLIT$dialogue, x, "you", -.1)
with(rajSPLIT, word_cor(dialogue, list(person, act), "hate"))

words <- c("hate", "i", "love", "ghost")
with(rajSPLIT, word_cor(dialogue, x, words, r = .5))
with(rajSPLIT, word_cor(dialogue, x, words, r = .4))

## Set `r = NULL` to get matrix between words
with(rajSPLIT, word_cor(dialogue, x, words, r = NULL))

## Plotting 
library(tm)
data("crude")
oil_cor1 <- apply_as_df(crude, word_cor, word = "oil", r=.7)
plot(oil_cor1)

oil_cor2 <- apply_as_df(crude, word_cor, word = qcv(texas, oil, money), r=.7)
plot(oil_cor2)
plot(oil_cor2, ncol=2)

oil_cor3 <- apply_as_df(crude, word_cor, word = qcv(texas, oil, money), r=NULL)
plot(oil_cor3)

## Run on multiple times/person/nested
## Split and apply to data sets
## Suggested use of stemming
DATA3 <- split(DATA2, DATA2$person)

## Find correlations between words per turn of talk by person
## Throws multiple warning because small data set
library(qdapTools)
lapply(DATA3, function(x) {
    word_cor(x[, "state"], qdapTools::id(x), qcv(computer, i, no, good), r = NULL)
})

## Find words correlated per turn of talk by person
## Throws multiple warning because small data set
lapply(DATA3, function(x) {
    word_cor(x[, "state"], qdapTools::id(x), qcv(computer, i, no, good))
})


## A real example
dat <- pres_debates2012 
dat$TOT <- factor(with(dat, paste(time, pad(TOT(tot)), sep = "|")))
dat <- dat[dat$person %in% qcv(OBAMA, ROMNEY), ]
dat$person <- factor(dat$person)
dat.split <- with(dat, split(dat, list(person, time)))

wrds <- qcv(america, debt, dollar, people, tax, health)
lapply(dat.split, function(x) {
    word_cor(x[, "dialogue"], x[, "TOT"], wrds, r=NULL)
})

## Supply a matrix (make sure to use `t` on a `wfm` matrix)
worlis <- list(
    pronouns = c("you", "it", "it's", "we", "i'm", "i"),
    negative = qcv(no, dumb, distrust, not, stinks),
    literacy = qcv(computer, talking, telling)
)
y <- wfdf(DATA$state, qdapTools::id(DATA, prefix = TRUE))
z <- wfm_combine(y, worlis)

out <- word_cor(t(z), word = c(names(worlis), "else.words"), r = NULL)
out
plot(out)

## Additional plotting/viewing
require(tm)
data("crude")

out1 <- word_cor(t(as.wfm(crude)), word = "oil", r=.7)
vect2df(out1[[1]], "word", "cor")

plot(out1)
qheat(vect2df(out1[[1]], "word", "cor"), values=TRUE, high="red", 
    digits=2, order.by ="cor", plot=FALSE) + coord_flip()


out2 <- word_cor(t(as.wfm(crude)), word = c("oil", "country"), r=.7)
plot(out2)

## End(Not run)

Word Counts

Description

word_count - Transcript apply word counts.

character_count - Transcript apply character counts.

character_table - Computes a table of character counts by grouping . variable(s).

Usage

word_count(
  text.var,
  byrow = TRUE,
  missing = NA,
  digit.remove = TRUE,
  names = FALSE
)

wc(text.var, byrow = TRUE, missing = NA, digit.remove = TRUE, names = FALSE)

character_count(
  text.var,
  byrow = TRUE,
  missing = NA,
  apostrophe.remove = TRUE,
  digit.remove = TRUE,
  count.space = FALSE
)

character_table(
  text.var,
  grouping.var = NULL,
  percent = TRUE,
  prop.by.row = TRUE,
  zero.replace = 0,
  digits = 2,
  ...
)

char_table(
  text.var,
  grouping.var = NULL,
  percent = TRUE,
  prop.by.row = TRUE,
  zero.replace = 0,
  digits = 2,
  ...
)

Arguments

text.var

The text variable

byrow

logical. If TRUE counts by row, if FALSE counts all words.

missing

Value to insert for missing values (empty cells).

digit.remove

logical. If TRUE removes digits before counting words.

names

logical. If TRUE the sentences are given as the names of the counts.

apostrophe.remove

logical. If TRUE apostrophes will be counted in the character count.

count.space

logical. If TRUE spaces are counted as characters.

grouping.var

The grouping variables. Default NULL generates one word list for all text. Also takes a single grouping variable or a list of 1 or more grouping variables.

percent

logical. If TRUE output given as percent. If FALSE the output is proportion.

prop.by.row

logical. If TRUE applies proportional to the row. If FALSE applies by column.

zero.replace

Value to replace 0 values with.

digits

Integer; number of decimal places to round when printing.

...

Other arguments passed to prop.

Value

word_count - returns a word count by row or total.

character_count - returns a character count by row or total.

character_table - returns a list: dataframe of character counts by grouping variable.

raw

Dataframe of the frequency of characters by grouping variable.

prop

Dataframe of the proportion of characters by grouping variable.

rnp

Dataframe of the frequency and proportions of characters by grouping variable.

percent

The value of percent used for plotting purposes.

zero.replace

The value of zero.replace used for plotting purposes.

Note

wc is a convenient short hand for word_count.

See Also

syllable_count, prop, colcomb2class

Examples

## Not run: 
## WORD COUNT
word_count(DATA$state)
wc(DATA$state)
word_count(DATA$state, names = TRUE)
word_count(DATA$state, byrow=FALSE, names = TRUE)
sum(word_count(DATA$state))

sapply(split(raj$dialogue, raj$person), wc, FALSE) %>%
    sort(decreasing=TRUE) %>% 
    list2df("wordcount", "person") %>%
    `[`(, 2:1)

## PLOT WORD COUNTS
raj2 <- raj
raj2$scaled <- unlist(tapply(wc(raj$dialogue), raj2$act, scale))
raj2$scaled2 <- unlist(tapply(wc(raj$dialogue), raj2$act, scale, scale = FALSE))
raj2$ID <- factor(unlist(tapply(raj2$act, raj2$act, seq_along)))

ggplot(raj2, aes(x = ID, y = scaled, fill =person)) +
    geom_bar(stat="identity") +
    facet_grid(act~.) + 
    ylab("Scaled") + xlab("Turn of Talk") +
    guides(fill = guide_legend(nrow = 5, byrow = TRUE)) +
    theme(legend.position="bottom") +
    ggtitle("Scaled and Centered")


ggplot(raj2, aes(x = ID, y = scaled2, fill =person)) +
    geom_bar(stat="identity") +
    facet_grid(act~.) + 
    ylab("Scaled") + xlab("Turn of Talk") +
    guides(fill = guide_legend(nrow = 5, byrow = TRUE)) +
    theme(legend.position="bottom") +
    ggtitle("Mean Difference")
  
    
raj$wc <- wc(raj$dialogue)
raj$cum.wc <- unlist(with(raj, tapply(wc, act, cumsum)))
raj$turn <- unlist(with(raj, tapply(act, act, seq_along)))
ggplot(raj, aes(y=cum.wc, x=turn)) + 
    geom_step(direction = "hv") + 
    facet_wrap(~act)
        
## CHARACTER COUNTS
character_count(DATA$state)
character_count(DATA$state, byrow=FALSE)
sum(character_count(DATA$state))

## CHARACTER TABLE
x <- character_table(DATA$state, DATA$person)
plot(x)
plot(x, label = TRUE)
plot(x, label = TRUE, text.color = "red")
plot(x, label = TRUE, lab.digits = 1, zero.replace = "PP7")

scores(x)
counts(x)
proportions(x)

plot(scores(x))
plot(counts(x))
plot(proportions(x))

## combine columns
colcomb2class(x, list(vowels = c("a", "e", "i", "o", "u")))

## char_table(DATA$state, DATA$person)
## char_table(DATA$state, DATA$person, percent = TRUE)
## character_table(DATA$state, list(DATA$sex, DATA$adult))

library(ggplot2);library(reshape2)
dat <- character_table(DATA$state, list(DATA$sex, DATA$adult))
dat2 <- colsplit2df(melt(counts(dat)), keep.orig = TRUE)
head(dat2, 15)

ggplot(data = dat2, aes(y = variable, x = value, colour=sex)) +
    facet_grid(adult~.) +
    geom_line(size=1, aes(group =variable), colour = "black") +
    geom_point()

ggplot(data = dat2, aes(x = variable, y = value)) +
    geom_bar(aes(fill = variable), stat = "identity") +
    facet_grid(sex ~ adult, margins = TRUE) +
    theme(legend.position="none")

## End(Not run)

Differences In Word Use Between Groups

Description

Look at the differences in word uses between grouping variable(s). Look at all possible "a" vs. "b" combinations or "a" vs. all others.

Usage

word_diff_list(
  text.var,
  grouping.var,
  vs.all = FALSE,
  vs.all.cut = 1,
  stopwords = NULL,
  alphabetical = FALSE,
  digits = 2
)

Arguments

text.var

The text variable.

grouping.var

The grouping variables. Default NULL generates one word list for all text. Also takes a single grouping variable or a list of 1 or more grouping variables.

vs.all

logical. If TRUE looks at each grouping variable against all others ("a" vs. all comparison). If FALSE looks at each "a" vs. "b", comparison (e.g., for groups "a", "b", and "c"; "a" vs. "b", "a" vs. "c" and "b" vs. "c" will be considered).

vs.all.cut

Controls the number of other groups that may share a word (default is 1).

stopwords

A vector of stop words to remove.

alphabetical

logical. If TRUE orders the word lists alphabetized by word. If FALSE order first by frequency and then by word.

digits

the number of digits to be displayed in the proportion column (default is 3).

Value

An list of word data frames comparing grouping variables word use against one another. Each dataframe contains three columns:

word

The words unique to that group

freq

The number of times that group used that word

prop

The proportion of that group's overall word use dedicated to that particular word

Examples

## Not run: 
out1 <- with(DATA, word_diff_list(text.var = state, 
    grouping.var = list(sex, adult)))
lapply(unlist(out1, recursive = FALSE), head, n=3)

out2 <- with(DATA, word_diff_list(state, person))
lapply(unlist(out2, recursive = FALSE), head, n=3)

out3 <- with(DATA, word_diff_list(state, grouping.var = list(sex, adult), 
    vs.all=TRUE, vs.all.cut=2))


out4 <- with(mraja1, word_diff_list(text.var = dialogue, 
    grouping.var = list(mraja1$sex, mraja1$fam.aff)))


out5 <- word_diff_list(mraja1$dialogue, mraja1$person)

out6 <- word_diff_list(mraja1$dialogue, mraja1$fam.aff, stopwords = Top25Words)

out7 <- word_diff_list(mraja1$dialogue, mraja1$fam.aff, vs.all=TRUE, vs.all.cut=2)
lapply(out7, head, n=3)

## End(Not run)

Count of Word Lengths Type

Description

Transcript apply word length counts.

Usage

word_length(
  text.var,
  grouping.var = NULL,
  percent = TRUE,
  zero.replace = 0,
  digits = 2,
  ...
)

Arguments

text.var

The text variable.

grouping.var

The grouping variables. Default NULL generates one word list for all text. Also takes a single grouping variable or a list of 1 or more grouping variables.

percent

logical. If TRUE output given as percent. If FALSE the output is proportion.

zero.replace

Value to replace 0 values with.

digits

Integer; number of decimal places to round when printing.

...

Other arguments passed to bag_o_words.

Value

Returns a list of:

count

Dataframe of word length counts by grouping variable(s).

prop

Dataframe of the proportions of word length counts by grouping variable.

rnp

Dataframe of the frequency and proportions of word length counts by grouping variable.

percent

The value of percent used for plotting purposes.

zero.replace

The value of zero.replace used for plotting purposes.

Examples

## Not run: 
(x <- with(DATA, word_length(state, person)))
plot(x)
scores(x)
proportions(x)
counts(x)
plot(scores(x))
plot(proportions(x))
plot(counts(x))

(x2 <- word_length(DATA[["state"]]))
(x2 <- word_length(DATA[["state"]], apostrophe.remove=TRUE))

## Example Visualizations with Presidential Debate Data
library(tidyr)
(x_long <- proportions(x) %>% 
    gather("Letter_Length", "Proportion", -c(1:2)))
ggplot(x_long, aes(x = Letter_Length, y = Proportion, color=person, group=person)) +
    geom_line(size=.8)


(x3 <- with(pres_debates2012, word_length(dialogue, person)))
(x_long2 <- proportions(x3) %>% 
    gather("Letter_Length", "Proportion", -c(1:2)))
ggplot(x_long, aes(x = Letter_Length, weight = Proportion, fill=person, group=person)) +
    geom_bar()

ggplot(x_long, aes(x = Letter_Length, weight = Proportion, fill=person)) +
    geom_bar() + 
    facet_wrap(~person, ncol=1)
        
ggplot(x_long, aes(x = Letter_Length, weight = Proportion, fill=person)) +
    geom_bar() + 
    coord_flip() + 
    facet_wrap(~person, ncol=1)

ggplot(x_long, aes(x = person, weight = Proportion)) +
    geom_bar(fill="grey40") + 
    coord_flip() + 
    facet_grid(Letter_Length~.)

## End(Not run)

Raw Word Lists/Frequency Counts

Description

Transcript Apply Raw Word Lists and Frequency Counts by grouping variable(s).

Usage

word_list(
  text.var,
  grouping.var = NULL,
  stopwords = NULL,
  alphabetical = FALSE,
  cut.n = 20,
  cap = TRUE,
  cap.list = NULL,
  cap.I = TRUE,
  rm.bracket = TRUE,
  char.keep = NULL,
  apostrophe.remove = FALSE,
  ...
)

Arguments

text.var

The text variable.

grouping.var

The grouping variables. Default NULL generates one word list for all text. Also takes a single grouping variable or a list of 1 or more grouping variables.

stopwords

A vector of stop words to remove.

alphabetical

If TRUE the output of frequency lists is ordered alphabetically. If FALSE the list is ordered by frequency rank.

cut.n

Cut off point for reduced frequency stop word list (rfswl).

cap

logical. If TRUE capitalizes words from the cap.list.

cap.list

Vector of words to capitalize.

cap.I

logical. If TRUE capitalizes words containing the personal pronoun I.

rm.bracket

logical If TRUE all brackets and bracketed text are removed from analysis.

char.keep

A character vector of symbols (i.e., punctuation) that word_list should keep. The default is to remove every symbol except apostrophes.

apostrophe.remove

logical. If TRUE removes apostrophes from the output.

...

Other arguments passed to strip.

Value

An object of class "word_list" is a list of lists of vectors or dataframes containing the following components:

cwl

complete word list; raw words

swl

stop word list; same as rwl with stop words removed

fwl

frequency word list; a data frame of words and corresponding frequency counts

fswl

frequency stopword word list; same as fwl but with stop words removed

rfswl

reduced frequency stopword word list; same as fswl but truncated to n rows

Examples

## Not run: 
word_list(raj.act.1$dialogue)

out1 <- with(raj, word_list(text.var = dialogue, 
    grouping.var = list(person, act)))
names(out1)
lapply(out1$cwl, "[", 1:5)

with(DATA, word_list(state, person))
with(DATA, word_list(state, person, stopwords = Top25Words))
with(DATA, word_list(state, person, cap = FALSE, cap.list=c("do", "we")))

## End(Not run)

Word Network Plot

Description

A network plot of words. Shows the interconnected and supporting use of words between textual units containing key terms.

Usage

word_network_plot(
  text.var,
  grouping.var = 1:length(text.var),
  target.words = NULL,
  stopwords = qdapDictionaries::Top100Words,
  label.cex = 0.8,
  label.size = 0.5,
  edge.curved = TRUE,
  vertex.shape = "circle",
  edge.color = "gray70",
  label.colors = "black",
  layout = NULL,
  title.name = NULL,
  title.padj = -4.5,
  title.location = 3,
  title.font = NULL,
  title.cex = 0.8,
  log.labels = FALSE,
  title.color = "black",
  legend = NULL,
  legend.cex = 0.8,
  legend.location = c(-1.54, 1.41),
  plot = TRUE,
  char2space = "~~",
  ...
)

Arguments

text.var

The text variable.

grouping.var

The grouping variables. Default uses the sequence along the length of text variable (this may be the connection of sentences or turn of talk as the textual unit). Also takes a single grouping variable or a list of 1 or more grouping variables.

target.words

A named list of vectors of words whose length corresponds to label.colors (+1 length in cloud colors for non-matched terms).

stopwords

Words to exclude from the analysis (default is Top100Words).

label.cex

The magnification to be used for network plot labels relative to the current setting of cex. Default is .8.

label.size

An optional sizing constant to add to labels if log.labels is TRUE.

edge.curved

logical. If TRUE edges will be curved rather than straight paths.

vertex.shape

The shape of the vertices (see igraph.vertex.shapes for more).

edge.color

A character vector of length one corresponding to the color of the plot edges.

label.colors

A character vector of length one corresponding to the color of the labels.

layout

Layout types supported by igraph. See layout.

title.name

The title of the plot.

title.padj

Adjustment for the network plot title. For strings parallel to the axes, padj = 0 means right or top alignment, and padj = 1 means left or bottom alignment.

title.location

On which side of the network plot (1=bottom, 2=left, 3=top, 4=right).

title.font

The font family of the cloud title.

title.cex

Character expansion factor for the title. NULL and NA are equivalent to 1.0.

log.labels

logical. If TRUE uses a proportional log label for more readable labels. The formula is: log(SUMS)/max(log(SUMS))). label.size adds more control over the label sizes.

title.color

A character vector of length one corresponding to the color of the title.

legend

A character vector of names corresponding to the number of vectors in match.string.

legend.cex

Character expansion factor for the network plot legend. NULL and NA are equivalent to 1.0.

legend.location

The x and y co-ordinates to be used to position the network plot legend. The location may also be specified by setting x to a single keyword from the list "bottomright", "bottom", "bottomleft", "left", "topleft", "top", "topright", "right" and "center". This places the legend on the inside of the plot frame at the given location.

plot

logical. If TRUE plots a network plot of the words.

char2space

A vector of characters to be turned into spaces. If char.keep is NULL, char2space will activate this argument.

...

Other arguments passed to strip.

Note

Words can be kept as one by inserting a double tilde ("~~"), or other character strings passed to char2space, as a single word/entry. This is useful for keeping proper names as a single unit.

See Also

word_network_plot, graph.adjacency

Examples

## Not run: 
word_network_plot(text.var=DATA$state)
word_network_plot(text.var=DATA$state, stopwords=NULL)
word_network_plot(text.var=DATA$state, DATA$person)
word_network_plot(text.var=DATA$state, DATA$person, stopwords=NULL)
word_network_plot(text.var=DATA$state, grouping.var=list(DATA$sex,
    DATA$adult))
word_network_plot(text.var=DATA$state, grouping.var=DATA$person,
    title.name = "TITLE", log.labels=TRUE)
word_network_plot(text.var=raj.act.1$dialogue, grouping.var=raj.act.1$person,
  stopwords = Top200Words)

#insert double tilde ("~~") to keep dual words (e.g., first last name)
alts <- c(" fun", "I ")
state2 <- mgsub(alts, gsub("\\s", "~~", alts), DATA$state)
word_network_plot(text.var=state2, grouping.var=DATA$person)

## Invisibly returns the igraph model
x <- word_network_plot(text.var=DATA$state, DATA$person)
str(x)
library(igraph)
plot(x, vertex.size=0, vertex.color="white", edge.curved = TRUE)

x2 <- word_network_plot(text.var=DATA$state, grouping.var=DATA$person,
    title.name = "TITLE", log.labels = TRUE, label.size = 1.2)
l <- layout.drl(x2, options=list(simmer.attraction=0))
plot(x2, vertex.size=0, layout = l)

## End(Not run)

Word Position

Description

Find counts of the positioning of words within a sentence.

Usage

word_position(
  text.var,
  match.terms,
  digits = 2,
  percent = TRUE,
  zero.replace = 0,
  ...
)

Arguments

text.var

The text variable.

match.terms

A character vector of quoted terms to find the positions of.

digits

Integer; number of decimal places to round when printing.

percent

logical. If TRUE output given as percent. If FALSE the output is proportion.

zero.replace

Value to replace 0 values with.

...

Currently ignored.

Value

Returns a list, of class "word_position", of data frames and information regarding word positions:

raw

raw word position counts in long format (may be more useful for plotting)

count

integer word position counts

prop

proportional word position counts; proportional to each total word uses

rnp

a character combination data frame of count and proportional

zero_replace

value to replace zeros with; mostly internal use

percent

The value of percent used for plotting purposes.

digits

integer value of number of digits to display; mostly internal use

Note

Default printing is a heatmap plot.

Examples

## Not run: 
position <- with(DATA, word_position(sent_detect(state), Top25Words))
position
lview(position)
plot(position)
scores(position)
preprocessed(position)
counts(position)
proportions(position)
plot(proportions(position))

stopwords <- unique(c(contractions[[1]], Top200Words))
topwords <- freq_terms(pres_debates2012[["dialogue"]], top = 40, 
    at.least = 4, stopwords = stopwords)[[1]]
word_position(pres_debates2012[["dialogue"]], topwords)
plot(word_position(pres_debates2012[["dialogue"]], topwords), FALSE)
plot(word_position(pres_debates2012[["dialogue"]], topwords), TRUE, scale=FALSE)

wordlist <- c("tax", "health", "rich", "america", "truth", "money", "cost", 
    "governnor", "president", "we", "job", "i", "you", "because", 
    "our", "years")

word_position(pres_debates2012[["dialogue"]], wordlist)

## BY VARIABLES
library(gridExtra)
pres_deb_by_time <- with(pres_debates2012, split(dialogue, time))
out1 <-lapply(pres_deb_by_time, word_position, wordlist)
do.call("grid.arrange", c(lapply(out1, plot), ncol=1))

pres_deb_by_person <- with(pres_debates2012, split(dialogue, person))
out2 <-lapply(pres_deb_by_person, word_position, wordlist)
plots <- lapply(names(out2), function(x) plot(out2[[x]], scale=FALSE) + 
    ggtitle(x))
do.call("grid.arrange", c(plots, ncol=2))

## As a histogram
## theme taken from: http://jonlefcheck.net/2013/03/11/black-theme-for-ggplot2-2/
theme_black <- function(base_size=12,base_family="") {
  theme_grey(base_size=base_size,base_family=base_family) %+replace%
    theme(
      # Specify axis options
      axis.line=element_blank(), 
      axis.text.x=element_text(size=base_size*0.8,color="grey55",
                               lineheight=0.9,vjust=1), 
      axis.text.y=element_text(size=base_size*0.8,color="grey55",
                               lineheight=0.9,hjust=1), 
      axis.ticks=element_line(color="grey55",size = 0.2), 
      axis.title.x=element_text(size=base_size,color="grey55",vjust=1), 
      axis.title.y=element_text(size=base_size,color="grey55",angle=90,
                                vjust=0.5), 
      axis.ticks.length=unit(0.3,"lines"), 
      axis.ticks.margin=unit(0.5,"lines"),
      # Specify legend options
      legend.background=element_rect(color=NA,fill="black"), 
      legend.key=element_rect(color="grey55", fill="black"), 
      legend.key.size=unit(1.2,"lines"), 
      legend.key.height=NULL, 
      legend.key.width=NULL,     
      legend.text=element_text(size=base_size*0.8,color="grey55"), 
      legend.title=element_text(size=base_size*0.8,face="bold",hjust=0,
                                color="grey55"), 
      legend.position="right", 
      legend.text.align=NULL, 
      legend.title.align=NULL, 
      legend.direction="vertical", 
      legend.box=NULL,
      # Specify panel options
      panel.background=element_rect(fill="black",color = NA), 
      panel.border=element_rect(fill=NA,color="grey55"), 
      panel.grid.major=element_blank(), 
      panel.grid.minor=element_blank(), 
      panel.spacing=unit(0.25,"lines"),  
      # Specify facetting options
      strip.background=element_rect(fill="grey30",color="grey10"), 
      strip.text.x=element_text(size=base_size*0.8,color="grey55"), 
      strip.text.y=element_text(size=base_size*0.8,color="grey55",
                                angle=-90), 
      # Specify plot options
      plot.background=element_rect(color="black",fill="black"), 
      plot.title=element_text(size=base_size*1.2,color="grey55"), 
      plot.margin=unit(c(1,1,0.5,0.5),"lines")
    )
}

out3 <- list_df2df(lapply(out2[1:2], preprocessed), "Person")
out3 %>% ggplot(aes(x=position)) + 
    geom_histogram(binwidth = 1, fill="white") +
    facet_grid(Person~word) +
    theme_black() + ylab("Count") + xlab("Position")

## MOVE TO THE MICRO THROUGH QUALITATIVE ANALYSIS
locs <- unlist(setNames(lapply(wordlist, function(x){
     sapply(c("ROMNEY", "OBAMA"), function(y){
         which(pres_debates2012[["person"]] ==y & grepl(x, pres_debates2012[["dialogue"]]))
     })
}), wordlist), recursive=FALSE)

fdl <- qdap:::folder(pres_context)
Map(function(x, y){
    if (identical(integer(0), x)) return(NULL)
    z <- with(pres_debates2012, trans_context(dialogue, person, inds=x, n.before=1))
    z[["text"]] <- gsub(beg2char(y, "."), 
        paste0("[[", beg2char(y, "."), "]]"), z[["text"]])
    print(z, file=file.path(fdl, sprintf("%s.doc", y)))
}, locs, names(locs))

## End(Not run)

Proximity Matrix Between Words

Description

word_proximity - Generate proximity measures to ascertain a mean distance measure between word uses.

Usage

word_proximity(
  text.var,
  terms,
  grouping.var = NULL,
  parallel = TRUE,
  cores = parallel::detectCores()/2
)

## S3 method for class 'word_proximity'
weight(x, type = "scale", ...)

Arguments

text.var

The text variable.

terms

A vector of quoted terms.

grouping.var

The grouping variables. Default NULL generates one word list for all text. Also takes a single grouping variable or a list of 1 or more grouping variables.

parallel

logical. If TRUE attempts to run the function on multiple cores. Note that this may not mean a speed boost if you have one core or if the data set is smaller as the cluster takes time to create.

cores

The number of cores to use if parallel = TRUE. Default is half the number of available cores.

x

An object to be weighted.

type

A weighting type of: c("scale_log", "scale", "rev_scale", "rev_scale_log", "log", "sqrt", "scale_sqrt", "rev_sqrt", "rev_scale_sqrt"). The weight type section name (i.e. A_B_C where A, B, and C are sections) determines what action will occur. log will use log, sqrt will use sqrt, scale will standardize the values. rev will multiply by -1 to give the inverse sign. This enables a comparison similar to correlations rather than distance.

...

ignored.

Details

Note that row names are the first word and column names are the second comparison word. The values for Word A compared to Word B will not be the same as Word B compared to Word A. This is because, unlike a true distance measure, word_proximity's matrix is asymmetrical. word_proximity computes the distance by taking each sentence position for Word A and comparing it to the nearest sentence location for Word B.

Value

Returns a list of matrices of proximity measures in the unit of average sentences between words (defaults to scaled).

Note

The match.terms is character sensitive. Spacing is an important way to grab specific words and requires careful thought. Using "read" will find the words "bread", "read" "reading", and "ready". If you want to search for just the word "read" you'd supply a vector of c(" read ", " reads", " reading", " reader").

See Also

word_proximity

Examples

## Not run: 
wrds <- word_list(pres_debates2012$dialogue, 
    stopwords = c("it's", "that's", Top200Words))
wrds2 <- tolower(sort(wrds$rfswl[[1]][, 1]))

(x <- with(pres_debates2012, word_proximity(dialogue, wrds2)))
plot(x)
plot(weight(x))
plot(weight(x, "rev_scale_log"))

(x2 <- with(pres_debates2012, word_proximity(dialogue, wrds2, person)))

## The spaces around `terms` are important
(x3 <- with(DATA, word_proximity(state, spaste(qcv(the, i)))))
(x4 <- with(DATA, word_proximity(state, qcv(the, i))))

## End(Not run)

Descriptive Word Statistics

Description

Transcript apply descriptive word statistics.

Usage

word_stats(
  text.var,
  grouping.var = NULL,
  tot = NULL,
  parallel = FALSE,
  rm.incomplete = FALSE,
  digit.remove = FALSE,
  apostrophe.remove = FALSE,
  digits = 3,
  ...
)

Arguments

text.var

The text variable or a "word_stats" object (i.e., the output of a word_stats function).

grouping.var

The grouping variables. Default NULL generates one word list for all text. Also takes a single grouping variable or a list of 1 or more grouping variables.

tot

Optional turns of talk variable that yields turn of talk measures.

parallel

logical. If TRUE attempts to run the function on multiple cores. Note that this may not mean a speed boost if you have one core or if the data set is smaller as the cluster takes time to create (parallel is slower until approximately 10,000 rows). To reduce run time pass a "word_stats" object to the word_stats function.

rm.incomplete

logical. If TRUE incomplete statements are removed from calculations in the output.

digit.remove

logical. If TRUE removes digits from calculating the output.

apostrophe.remove

logical. If TRUE removes apostrophes from calculating the output.

digits

Integer; number of decimal places to round when printing.

...

Any other arguments passed to end_inc.

Details

Note that a sentence is classified with only one endmark. An imperative sentence is classified only as imperative (not as a state, quest, or exclm as well). If a sentence is both imperative and incomplete the sentence will be counted as incomplete rather than imperative. labeled as both imperative

Value

Returns a list of three descriptive word statistics:

ts

A data frame of descriptive word statistics by row

gts

A data frame of word/sentence statistics per grouping variable:

  • n.tot - number of turns of talk

  • n.sent - number of sentences

  • n.words - number of words

  • n.char - number of characters

  • n.syl - number of syllables

  • n.poly - number of polysyllables

  • sptot - syllables per turn of talk

  • wptot - words per turn of talk

  • wps - words per sentence

  • cps - characters per sentence

  • sps - syllables per sentence

  • psps - poly-syllables per sentence

  • cpw - characters per word

  • spw - syllables per word

  • n.state - number of statements

  • n.quest - number of questions

  • n.exclm - number of exclamations

  • n.incom - number of incomplete statements

  • p.state - proportion of statements

  • p.quest - proportion of questions

  • p.exclm - proportion of exclamations

  • p.incom - proportion of incomplete statements

  • n.hapax - number of hapax legomenon

  • n.dis - number of dis legomenon

  • grow.rate - proportion of hapax legomenon to words

  • prop.dis - proportion of dis legomenon to words

mpun

An account of sentences with an improper/missing end mark

word.elem

A data frame with word element columns from gts

sent.elem

A data frame with sentence element columns from gts

omit

Counter of omitted sentences for internal use (only included if some rows contained missing values)

percent

The value of percent used for plotting purposes.

zero.replace

The value of zero.replace used for plotting purposes.

digits

integer value od number of digits to display; mostly internal use

Warning

It is assumed the user has run sentSplit on their data, otherwise some counts may not be accurate.

See Also

end_inc

Examples

## Not run: 
word_stats(mraja1spl$dialogue, mraja1spl$person)

(desc_wrds <- with(mraja1spl, word_stats(dialogue, person, tot = tot)))

## Recycle for speed boost
with(mraja1spl, word_stats(desc_wrds, person, tot = tot)) 

scores(desc_wrds)
counts(desc_wrds)
htruncdf(counts(desc_wrds), 15, 6)
plot(scores(desc_wrds))
plot(counts(desc_wrds))

names(desc_wrds)
htruncdf(desc_wrds$ts, 15, 5)
htruncdf(desc_wrds$gts, 15, 6)
desc_wrds$mpun 
desc_wrds$word.elem
desc_wrds$sent.elem 
plot(desc_wrds)
plot(desc_wrds, label=TRUE, lab.digits = 1)

## Correlation Visualization
qheat(cor(scores(desc_wrds)[, -1]), diag.na = TRUE, by.column =NULL,
    low = "yellow", high = "red", grid = FALSE)

## Parallel (possible speed boost)
with(mraja1spl, word_stats(dialogue, list(sex, died, fam.aff))) 
with(mraja1spl, word_stats(dialogue, list(sex, died, fam.aff), 
    parallel = TRUE)) 
    
## Recycle for speed boost
word_stats(desc_wrds, mraja1spl$sex)

## End(Not run)