Title: | Query Composite Hypotheses |
---|---|
Description: | Provides functions for the joint analysis of Q sets of p-values obtained for the same list of items. This joint analysis is performed by querying a composite hypothesis, i.e. an arbitrary complex combination of simple hypotheses, as described in Mary-Huard et al. (2021) <doi:10.1093/bioinformatics/btab592> and De Walsche et al.(2023) <doi:10.1101/2024.03.17.585412>. In this approach, the Q-uplet of p-values associated with each item is distributed as a multivariate mixture, where each of the 2^Q components corresponds to a specific combination of simple hypotheses. The dependence between the p-value series is considered using a Gaussian copula function. A p-value for the composite hypothesis test is derived from the posterior probabilities. |
Authors: | Tristan Mary-Huard [aut, cre] , Annaig De Walsche [aut] , Franck Gauthier [ctb] |
Maintainer: | Tristan Mary-Huard <[email protected]> |
License: | GPL-3 |
Version: | 2.0.0 |
Built: | 2024-12-25 06:38:19 UTC |
Source: | CRAN |
Gaussian copula density for each Hconfiguration.
Copula.Hconfig_gaussian_density(Hconfig, F0Mat, F1Mat, R)
Copula.Hconfig_gaussian_density(Hconfig, F0Mat, F1Mat, R)
Hconfig |
A list of all possible combination of H0 and H1 hypotheses generated by the |
F0Mat |
a matrix containing the evaluation of the marginal cdf under H0 at each items, each column corresponding to a p-value serie. |
F1Mat |
a matrix containing the evaluation of the marginal cdf under H1 at each items, each column corresponding to a p-value serie. |
R |
the correlation matrix. |
A matrix containing the evaluation of the Gaussian density function for each Hconfiguration in columns.
EM calibration in the case of the gaussian copula (unsigned)
EM_calibration_gaussian( Hconfig, F0Mat, F1Mat, fHconfig, R.init, Prior.init, Precision = 1e-06 )
EM_calibration_gaussian( Hconfig, F0Mat, F1Mat, fHconfig, R.init, Prior.init, Precision = 1e-06 )
Hconfig |
A list of all possible combination of H0 and H1 hypotheses generated by the |
F0Mat |
a matrix containing the evaluation of the marginal cdf under H0 at each items, each column corresponding to a p-value serie. |
F1Mat |
a matrix containing the evaluation of the marginal cdf under H1 at each items, each column corresponding to a p-value serie. |
fHconfig |
a matrix containing config densities evaluated at each items, each column corresponding to a configurations. |
R.init |
the initialization of the correlation matrix of the gaussian copula parameter. |
Prior.init |
the initialization of prior probabilities for each of the H-configurations. |
Precision |
Precision for the stop criterion. (Default is 1e-6) |
A list of 2 objects 'priorHconfig' and 'Rcopula'. Object 'priorHconfig' is a vector of estimated prior probabilities for each of the H-configurations. Object 'Rcopula' is the estimated correlation matrix of the gaussian copula.
EM calibration in the case of the gaussian copula (unsigned) with memory management
EM_calibration_gaussian_memory( Logf0Mat, Logf1Mat, F0Mat, F1Mat, Prior.init, R.init, Hconfig, Precision = 1e-06, threads_nb )
EM_calibration_gaussian_memory( Logf0Mat, Logf1Mat, F0Mat, F1Mat, Prior.init, R.init, Hconfig, Precision = 1e-06, threads_nb )
Logf0Mat |
a matrix containing the log(f0(xi_q)) |
Logf1Mat |
a matrix containing the log(f1(xi_q)) |
F0Mat |
a matrix containing the evaluation of the marginal cdf under H0 at each items, each column corresponding to a p-value serie. |
F1Mat |
a matrix containing the evaluation of the marginal cdf under H1 at each items, each column corresponding to a p-value serie. |
Prior.init |
the initialization of prior probabilities for each of the H-configurations. |
R.init |
the initialization of the correlation matrix of the gaussian copula parameter. |
Hconfig |
A list of all possible combination of H0 and H1 hypotheses generated by the |
Precision |
Precision for the stop criterion. (Default is 1e-6) |
threads_nb |
The number of threads to use. |
A list of 2 objects 'priorHconfig' and 'Rcopula'. Object 'priorHconfig' is a vector of estimated prior probabilities for each of the H-configurations. Object 'Rcopula' is the estimated correlation matrix of the gaussian copula.
EM calibration in the case of conditional independence
EM_calibration_indep(fHconfig, Prior.init, Precision = 1e-06)
EM_calibration_indep(fHconfig, Prior.init, Precision = 1e-06)
fHconfig |
a matrix containing config densities evaluated at each items, each column corresponding to a configurations. |
Prior.init |
the initialization of prior probabilities for each of the H-configurations. |
Precision |
Precision for the stop criterion. (Default is 1e-6) |
a vector of estimated prior probabilities for each of the H-configurations.
EM calibration in the case of conditional independence with memory management (unsigned)
EM_calibration_indep_memory( Logf0Mat, Logf1Mat, Prior.init, Hconfig, Precision = 1e-06, threads_nb )
EM_calibration_indep_memory( Logf0Mat, Logf1Mat, Prior.init, Hconfig, Precision = 1e-06, threads_nb )
Logf0Mat |
a matrix containing the log(f0(xi_q)) |
Logf1Mat |
a matrix containing the log(f1(xi_q)) |
Prior.init |
the initialization of prior probabilities for each of the H-configurations. |
Hconfig |
A list of all possible combination of H0 and H1 hypotheses generated by the |
Precision |
Precision for the stop criterion. (Default is 1e-6) |
threads_nb |
The number of threads to use. |
a vector of estimated prior probabilities for each of the H-configurations.
Signed case function: Separate f1 into f+ and f-
f1_separation_signed(XMat, f0Mat, f1Mat, p0, plotting = FALSE)
f1_separation_signed(XMat, f0Mat, f1Mat, p0, plotting = FALSE)
XMat |
a matrix of probit-transformed p-values, each column corresponding to a p-value serie. |
f0Mat |
a matrix containing the evaluation of the marginal density functions under H0 at each items, each column corresponding to a p-value serie. |
f1Mat |
a matrix containing the evaluation of the marginal density functions under H1 at each items, each column corresponding to a p-value serie. |
p0 |
the proportions of H0 items for each series. |
plotting |
boolean, should some diagnostic graphs be plotted. Default is FALSE. |
A list of 4 objects 'f1plusMat', 'f1minusMat', 'p1plus', 'p1minus'. Object 'f1plusMat' is a matrix containing the evaluation of the marginal density functions under H1plus at each items, each column corresponding to a p-value serie. Object 'f1minusMat' is a matrix containing the evaluation of the marginal density functions under H1minus at each items, each column corresponding to a p-value serie. Object 'p1plus' is an estimate of the proportions of H1plus items for each series. Object 'p1minus' is an estimate of the proportions of H1minus items for each series.
FastKerFdr signed
FastKerFdr_signed(X, p0 = NULL, plotting = FALSE, NbKnot = 1e+05, tol = 1e-05)
FastKerFdr_signed(X, p0 = NULL, plotting = FALSE, NbKnot = 1e+05, tol = 1e-05)
X |
a vector of probit-transformed p-values (corresponding to a p-value serie) |
p0 |
a priori proportion of H0 hypotheses |
plotting |
boolean, should some diagnostic graphs be plotted. Default is FALSE. |
NbKnot |
The (maximum) number of knot for the kde procedure. Default is 1e5 |
tol |
a tolerance value for convergence. Default is 1e-5 |
A list of 3 objects. Object 'p0' is an estimate of the proportion of H0 hypotheses, Object 'tau' is the vector of H1 posteriors, Object 'f1' is a numeric vector, each coordinate i corresponding to the evaluation of the H1 density at point xi, where xi is the ith item in X. Object 'F1' is a numeric vector, each coordinate i corresponding to the evaluation of the H1 ;cdf at point xi, where xi is the ith item in X.
FastKerFdr unsigned
FastKerFdr_unsigned( X, p0 = NULL, plotting = FALSE, NbKnot = 1e+05, tol = 1e-05 )
FastKerFdr_unsigned( X, p0 = NULL, plotting = FALSE, NbKnot = 1e+05, tol = 1e-05 )
X |
a vector of probit-transformed p-values (corresponding to a p-value serie) |
p0 |
a priori proportion of H0 hypotheses |
plotting |
boolean, should some diagnostic graphs be plotted. Default is FALSE. |
NbKnot |
The (maximum) number of knot for the kde procedure. Default is 1e5 |
tol |
a tolerance value for convergence. Default is 1e-5 |
A list of 3 objects. Object 'p0' is an estimate of the proportion of H0 hypotheses, Object 'tau' is the vector of H1 posteriors, Object 'f1' is a numeric vector, each coordinate i corresponding to the evaluation of the H1 density at point xi, where xi is the ith item in X. Object 'F1' is a numeric vector, each coordinate i corresponding to the evaluation of the H1 ;cdf at point xi, where xi is the ith item in X.
Computation of the sum sum_c(w_c*psi_c) using Gaussian copula parallelized version
fHconfig_sum_update_gaussian_copula_ptr_parallel( Hconfig, NewPrior, Logf0Mat, Logf1Mat, zeta0, zeta1, R, Rinv, threads_nb = 0L )
fHconfig_sum_update_gaussian_copula_ptr_parallel( Hconfig, NewPrior, Logf0Mat, Logf1Mat, zeta0, zeta1, R, Rinv, threads_nb = 0L )
Hconfig |
list of vector of 0 and 1, corresponding to the configurations |
NewPrior |
a double vector containing the prior w_c |
Logf0Mat |
a double matrix containing the log(f0(xi_q)) |
Logf1Mat |
a double matrix containing the log(f1(xi_q)) |
zeta0 |
a double matrix containing the qnorm(F0(x_iq)) |
zeta1 |
a double matrix containing the qnorm(F1(x_iq)) |
R |
a double matrix corresponding to the copula parameter |
Rinv |
a double matrix corresponding to the inverse copula parameter |
threads_nb |
an int the number of threads |
a double vector containing sum_c(w_c*psi_c)
Computation of the sum sum_c(w_c*psi_c) parallelized version
fHconfig_sum_update_ptr_parallel( Hconfig, NewPrior, Logf0Mat, Logf1Mat, threads_nb = 0L )
fHconfig_sum_update_ptr_parallel( Hconfig, NewPrior, Logf0Mat, Logf1Mat, threads_nb = 0L )
Hconfig |
list of vector of 0 and 1, corresponding to the configurations |
NewPrior |
a double vector containing the prior w_c |
Logf0Mat |
a double matrix containing the log(f0(xi_q)) |
Logf1Mat |
a double matrix containing the log(f1(xi_q)) |
threads_nb |
an int the number of threads |
a double vector containing sum_c(w_c*psi_c)
Gaussian copula density
gaussian_copula_density(zeta, R, Rinv)
gaussian_copula_density(zeta, R, Rinv)
zeta |
the matrix of probit-transformed observations. |
R |
the correlation matrix. |
Rinv |
the inverse correlation matrix. |
A numeric vector, each coordinate i corresponding to the evaluation of the Gaussian copula density function at observation zeta_i.
test "AtLeast".Specify which configurations among Hconfig
correspond
to the composite alternative hypothesis : {at least "AtLeast
" hypotheses are of interest }
GetH1AtLeast(Hconfig, AtLeast, Consecutive = FALSE, SameSign = FALSE)
GetH1AtLeast(Hconfig, AtLeast, Consecutive = FALSE, SameSign = FALSE)
Hconfig |
A list of all possible combination of |
AtLeast |
How many |
Consecutive |
Should the significant test series be consecutive ? (optional, default is |
SameSign |
Should the significant test series have the same sign ? (optional, default is |
A vector 'Hconfig.H1
' of components of Hconfig
that correspond to the 'AtLeast
' specification.
GetH1AtLeast(GetHconfig(4),2)
GetH1AtLeast(GetHconfig(4),2)
test "Equal".Specify which configurations among Hconfig
correspond
to the composite alternative hypothesis :{Exaltly "Equal
" hypotheses are of interest }
GetH1Equal(Hconfig, Equal, Consecutive = FALSE, SameSign = FALSE)
GetH1Equal(Hconfig, Equal, Consecutive = FALSE, SameSign = FALSE)
Hconfig |
A list of all possible combination of H0 and H1 hypotheses generated by the |
Equal |
What is the exact number of |
Consecutive |
Should the significant test series be consecutive ? (optional, default is FALSE). |
SameSign |
Should the significant test series have the same sign ? (optional, default is FALSE). |
A vector 'Hconfig.H1
' of components of Hconfig
that correspond to the 'Equal
' specification.
GetH1Equal(GetHconfig(4),2)
GetH1Equal(GetHconfig(4),2)
/
configurations.Generate all possible combination of simple hypotheses /
.
GetHconfig(Q, Signed = FALSE)
GetHconfig(Q, Signed = FALSE)
Q |
The number of test series to be combined. |
Signed |
Should the sign of the effect be taken into account? (optional, default is |
A list 'Hconfig
' of all possible combination of and
hypotheses among
hypotheses tested.
GetHconfig(4)
GetHconfig(4)
Update of the prior estimate in EM algo parallelized version
prior_update_arma_ptr_parallel( Hconfig, fHconfig_sum, OldPrior, Logf0Mat, Logf1Mat, threads_nb = 0L )
prior_update_arma_ptr_parallel( Hconfig, fHconfig_sum, OldPrior, Logf0Mat, Logf1Mat, threads_nb = 0L )
Hconfig |
list of vector of 0 and 1, corresponding to the configurations |
fHconfig_sum |
a double vector containing sum_c(w_c*psi_c), obtained by fHconfig_sum_update_ptr_parallel() |
OldPrior |
a double vector containing the prior w_c |
Logf0Mat |
a double matrix containing the log(f0(xi_q)) |
Logf1Mat |
a double matrix containing the log(f1(xi_q)) |
threads_nb |
an int the number of threads |
a double vector containing the new estimate of prior w_c
Update of the prior estimate in EM algo using Gaussian copula, parallelized version
prior_update_gaussian_copula_ptr_parallel( Hconfig, fHconfig_sum, OldPrior, Logf0Mat, Logf1Mat, zeta0, zeta1, R, Rinv, threads_nb = 0L )
prior_update_gaussian_copula_ptr_parallel( Hconfig, fHconfig_sum, OldPrior, Logf0Mat, Logf1Mat, zeta0, zeta1, R, Rinv, threads_nb = 0L )
Hconfig |
list of vector of 0 and 1, corresponding to the configurations |
fHconfig_sum |
a double vector containing sum_c(w_c*psi_c), obtained by fHconfig_sum_update_ptr_parallel() |
OldPrior |
a double vector containing the prior w_c |
Logf0Mat |
a double matrix containing the log(f0(xi_q)) |
Logf1Mat |
a double matrix containing the log(f1(xi_q)) |
zeta0 |
a double matrix containing the qnorm(F0(x_iq)) |
zeta1 |
a double matrix containing the qnorm(F1(x_iq)) |
R |
a double matrix corresponding to the copula parameter |
Rinv |
a double matrix corresponding to the inverse copula parameter |
threads_nb |
an int the number of threads |
a double vector containing the new estimate of prior w_c
PvalSets is a data.frame with 10,000 rows and 3 columns. Each row corresponds to an item,
columns 'Pval1' and 'Pval2' each correspond to a test serie over the items, and column 'Class'
provides the truth, i.e. if item belongs to class 1 then the H0 hypothesis is true for the 2 tests,
if item
belongs to class 2 (resp. 3) then the H0 hypothesis is true for the first (resp. second)
test only, and if item
belongs to class 4 then both H0 hypotheses are false (for the first
and the second test).
PvalSets
PvalSets
A data.frame
PvalSets_cor is a data.frame with 10,000 rows and 3 columns. Each row corresponds to an item,
columns 'Pval1' and 'Pval2' each correspond to a test serie over the items, and column 'Class'
provides the truth, i.e. if item belongs to class 1 then the H0 hypothesis is true for the 2 tests,
if item
belongs to class 2 (resp. 3) then the H0 hypothesis is true for the first (resp. second)
test only, and if item
belongs to class 4 then both H0 hypotheses are false (for the first
and the second test). The correlation between the two pvalues series within each class is 0.3.
PvalSets_cor
PvalSets_cor
A data.frame
/
configurations.For each item, estimate the posterior probability for each configuration.
This function use either the model accounting for the dependence structure
through a Gaussian copula function (copula=="gaussian"
) or
assuming the conditional independence (copula=="indep"
).
Utilizes parallel computing, when available. For package documentation, see qch-package
.
qch.fit( pValMat, EffectMat = NULL, Hconfig, copula = "indep", threads_nb = 0, plotting = FALSE, Precision = 1e-06 )
qch.fit( pValMat, EffectMat = NULL, Hconfig, copula = "indep", threads_nb = 0, plotting = FALSE, Precision = 1e-06 )
pValMat |
A matrix of p-values, each column corresponding to a p-value serie. |
EffectMat |
A matrix of estimated effects corresponding to the p-values contained in pValMat. If specified, the procedure will account for the direction of the effect. (optional, default is |
Hconfig |
A list of all possible combination of |
copula |
A string specifying the form of copula to use. Possible values are " |
threads_nb |
The number of threads to use. The number of thread will set to the number of core available by default. |
plotting |
A boolean. Should some diagnostic graphs be plotted ? Default is |
Precision |
The precision for EM algorithm to infer the parameters. Default is |
A list with the following elements:
prior |
vector of estimated prior probabilities for each of the H-configurations. |
Rcopula |
the estimated correlation matrix of the Gaussian copula. (if applicable) |
Hconfig |
the list of all configurations. |
If the storage permits, the list will additionally contain:
posterior |
matrix providing for each item (in row) its posterior probability to belong to each of the H-configurations (in columns). |
fHconfig |
matrix containing densities evaluated at each items,
each column corresponding to a configuration.
|
Else, the list will additionally contain:
f0Mat |
matrix containing the evaluation of the marginal densities under at each items,
each column corresponding to a p-value serie. |
f1Mat |
matrix containing the evaluation of the marginal densities under at each items,
each column corresponding to a p-value serie. |
F0Mat |
matrix containing the evaluation of the marginal cdf under at each items,
each column corresponding to a p-value serie. |
F1Mat |
matrix containing the evaluation of the marginal cdf under at each items,
each column corresponding to a p-value serie. |
fHconfig_sum |
vector containing for each items . |
The elements of interest are the posterior probabilities matrix, posterior
,
the estimated proportion of observations belonging to each configuration, prior
, and
the estimated correlation matrix of the Gaussian copula, Rcopula
.
The remaining elements are returned primarily for use by other functions.
data(PvalSets_cor) PvalMat <- as.matrix(PvalSets_cor[,-3]) ## Build the Hconfig objects Q <- 2 Hconfig <- GetHconfig(Q) ## Run the function res.fit <- qch.fit(pValMat = PvalMat,Hconfig = Hconfig,copula="gaussian") ## Display the prior of each class of items res.fit$prior ## Display the correlation estimate of the gaussian copula res.fit$Rcopula ## Display the first posteriors head(res.fit$posterior)
data(PvalSets_cor) PvalMat <- as.matrix(PvalSets_cor[,-3]) ## Build the Hconfig objects Q <- 2 Hconfig <- GetHconfig(Q) ## Run the function res.fit <- qch.fit(pValMat = PvalMat,Hconfig = Hconfig,copula="gaussian") ## Display the prior of each class of items res.fit$prior ## Display the correlation estimate of the gaussian copula res.fit$Rcopula ## Display the first posteriors head(res.fit$posterior)
Perform any composite hypothesis test by specifying
the configurations 'Hconfig.H1
' corresponding to the composite alternative hypothesis
among all configurations 'Hconfig
'.
By default, the function performs the composite hypothesis test of being associated with "at least " simple tests, for
.
qch.test(res.qch.fit, Hconfig, Hconfig.H1 = NULL, Alpha = 0.05, threads_nb = 0)
qch.test(res.qch.fit, Hconfig, Hconfig.H1 = NULL, Alpha = 0.05, threads_nb = 0)
res.qch.fit |
The result provided by the |
Hconfig |
A list of all possible combination of |
Hconfig.H1 |
An integer vector (or a list of such vector) of the |
Alpha |
the nominal Type I error rate for FDR control. Default is |
threads_nb |
The number of threads to use. The number of thread will set to the number of core available by default. |
A list with the following elements:
Rejection |
a matrix providing for each item the result of the composite hypothesis test, after adaptive Benjamin-Höchberg multiple testing correction. |
lFDR |
a matrix providing for each item its local FDR estimate. |
Pvalues |
a matrix providing for each item its p-value of the composite hypothesis test. |
qch.fit()
, GetH1AtLeast()
,GetH1Equal()
data(PvalSets_cor) PvalMat <- as.matrix(PvalSets_cor[,-3]) Truth <- PvalSets[,3] ## Build the Hconfig objects Q <- 2 Hconfig <- GetHconfig(Q) ## Infer the posteriors res.fit <- qch.fit(pValMat = PvalMat, Hconfig = Hconfig, copula="gaussian") ## Run the test procedure with FDR control H1config <- GetH1AtLeast(Hconfig,2) res.test <- qch.test(res.qch.fit = res.fit,Hconfig = Hconfig, Hconfig.H1 = H1config) table(res.test$Rejection$AtLeast_2,Truth==4)
data(PvalSets_cor) PvalMat <- as.matrix(PvalSets_cor[,-3]) Truth <- PvalSets[,3] ## Build the Hconfig objects Q <- 2 Hconfig <- GetHconfig(Q) ## Infer the posteriors res.fit <- qch.fit(pValMat = PvalMat, Hconfig = Hconfig, copula="gaussian") ## Run the test procedure with FDR control H1config <- GetH1AtLeast(Hconfig,2) res.test <- qch.test(res.qch.fit = res.fit,Hconfig = Hconfig, Hconfig.H1 = H1config) table(res.test$Rejection$AtLeast_2,Truth==4)
Update the estimate of R correlation matrix of the gaussian copula, parallelized version
R_MLE_update_gaussian_copula_ptr_parallel( Hconfig, fHconfig_sum, OldPrior, Logf0Mat, Logf1Mat, zeta0, zeta1, OldR, OldRinv, RhoIndex, threads_nb = 0L )
R_MLE_update_gaussian_copula_ptr_parallel( Hconfig, fHconfig_sum, OldPrior, Logf0Mat, Logf1Mat, zeta0, zeta1, OldR, OldRinv, RhoIndex, threads_nb = 0L )
Hconfig |
list of vector of 0 and 1, corresponding to the configurations |
fHconfig_sum |
a double vector containing sum_c(w_c*psi_c), obtained by fHconfig_sum_update_ptr_parallel() |
OldPrior |
a double vector containing the prior w_c |
Logf0Mat |
a double matrix containing the log(f0(xi_q)) |
Logf1Mat |
a double matrix containing the log(f1(xi_q)) |
zeta0 |
a double matrix containing the qnorm(F0(x_iq)) |
zeta1 |
a double matrix containing the qnorm(F1(x_iq)) |
OldR |
a double matrix corresponding to the copula parameter |
OldRinv |
a double matrix corresponding to the inverse copula parameter |
RhoIndex |
a int matrix containing the index of lower triangular part of a matrix |
threads_nb |
an int the number of threads |
a double vector containing the lower triangular part of the MLE of R
Gaussian copula correlation matrix Maximum Likelihood estimator.
R.MLE(Hconfig, zeta0, zeta1, Tau)
R.MLE(Hconfig, zeta0, zeta1, Tau)
Hconfig |
A list of all possible combination of H0 and H1 hypotheses generated by the |
zeta0 |
a matrix containing the Phi(F_0(Z_iq)), each column corresponding to a p-value serie. |
zeta1 |
a matrix containing the Phi(F_1(Z_iq)), each column corresponding to a p-value serie. |
Tau |
a matrix providing for each item (in row) its posterior probability to belong to each of the H-configurations (in columns). |
Estimate of the correlation matrix.
Check the Gaussian copula correlation matrix Maximum Likelihood estimator
R.MLE.check(R)
R.MLE.check(R)
R |
Estimate of the correlation matrix. |
Estimate of the correlation matrix.
Gaussian copula correlation matrix Maximum Likelihood estimator (memory handling)
R.MLE.memory( Hconfig, fHconfig_sum, OldPrior, Logf0Mat, Logf1Mat, zeta0, zeta1, OldR, OldRinv )
R.MLE.memory( Hconfig, fHconfig_sum, OldPrior, Logf0Mat, Logf1Mat, zeta0, zeta1, OldR, OldRinv )
Hconfig |
A list of all possible combination of H0 and H1 hypotheses generated by the |
fHconfig_sum |
a vector containing sum_c(w_c*psi_c) for each items. |
OldPrior |
a vector containing the prior probabilities for each of the H-configurations. |
Logf0Mat |
a matrix containing log(f0Mat), each column corresponding to a p-value serie. |
Logf1Mat |
a matrix containing log(f1Mat), each column corresponding to a p-value serie. |
zeta0 |
a matrix containing qnorm(F0Mat), each column corresponding to a p-value serie. |
zeta1 |
a matrix containing qnorm(F1Mat), each column corresponding to a p-value serie. |
OldR |
the copula correlation matrix. |
OldRinv |
the inverse of copula correlation matrix. |
Estimate of the correlation matrix.