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Abstract

A vast and deep pool of literature exists on the subject of spectral analysis; wading through it can
obscure even the most fundamental concepts from the inexperienced practitioner. Appropriate interpre-
tation of spectral analyses depends crucially on the normalization used, which is often the greatest source
of confusion. Here we outline the normalization used by psd, namely the single-sided power spectral
density (PSD). We briefly outline the background mathematics, present an example from scratch, and
compare the results with the normalization used by the spectrum estimator included in the base distribu-
tion of R: stats::spectrum.
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1 Introduction

There can often be confusion about the different quantities used in spectral analysis, partly due to myriad
nomenclature within the incredibly vast literature on the subject1. Commonly one finds similarly sounding
phrases, including “amplitude spectrum", “energy spectral density", “power", “power spectra", and even
“spectra". These all mean something, but are rarely equivalent, and are sometimes used improperly. To
clarify these terms, we will tread somewhat lightly through the background and definitions used in spectral
analysis, without overly complicating the discussion with proofs.

2 Power spectral density

We begin by considering a stationary stochastic process X(t), a random function extending throughout all
time with time-invariant properties. Our goal is to characterize X(t) with an ordinary function describing its
properties in frequency (as the autocorrelation function does in time).

Functions of a real variable (continuous time signals) will have a Fourier transform

X̃( f ) = F {X(t)} =
∫ ∞
−∞

X(t)e−2πi f t dt (1)

and for discrete-time signals Xn the spectrum is restricted to the finite interval

X̃( f ) =
∞∑

n=−∞

Xne−2πi f n,−1/2 ≤ f ≤ 1/2 (2)

which means we can reconstruct the original series from the inverse transform of (2), over frequencies
(−1/2 , 1/2):

Xn = F
−1{X̃( f )} =

∫ 1/2

−1/2
X(t)e2πi f n d f (3)

There is a problem with the definitions we have just presented. The integral in (1) or the sum in (2) must
converge to apply these equations to their corresponding stochastic processes; this would require some kind
of decrease in amplitude, or energy, as t or n gets large which does not happen for a stationary process. And,
if we put a stochastic process in f (t) in (1) we would obtain another random function, which is contrary to
our stated goal of obtaining a descriptive function in frequency space.

2.1 An informal definition from a digital filtering analogy

Suppose we wanted to know how much variability the stationary process exhibits at a frequency f0. We could
design a narrow bandpass filter ϕ f that only allowed signals through in the frequency band ( f0 − 1/2 ∆ f , f0 +
1/2 ∆ f ) with unit gain. If we convolve a signal X with that filter to obtain the process Xϕ, we will have
a stochastic process having very limited frequency content. We would expect the variance (a measure of

1The type of confusion common in spectral analyses is illustrated in this thread on R-help: https://r.789695.n4.nabble.
com/Re-How-do-I-normalize-a-PSD-td792902.html
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amplitude) to be proportional to the width ∆ f of the bandpass filter, which prevents the condition of infinite
energy at infinite time (or length). The variance of the filtered process Xϕ will be some positive value times
∆ f , and will vary as the center frequency f0 is varied. At the frequency f0 the following is also true:

V{Xϕ} ∝ V{X}

The variance of X in a frequency band is called the power in that band, and so S X is the power spectrum of
X, or more grandly its power spectral density:

S X( f0)∆ f = V{ϕ f ⋆ X} (4)

Equation (4) is our informal definition of S X( f0). Notice this definition works equally well for continuous
or discrete processes. In the days before computers, analog spectral analyzers were built based on this
principle: a large number of narrow bandpass filters followed by rectifiers to measure the variance in each
band.

We can demonstrate this analogy by plotting the PSDs obtained for a normally distributed process, and a
bandpass filtered version of it, along with the filter’s amplitude response. In Figure 1 we see that within the
pass-band the variance of the filtered process is equal to that of the infinitely long process. We could imagine
the grey curve being comprised of a collection of passband responses. If we could construct a true bandpass
filter, there would be zero energy outside the passband; but, in practice the filter weights create side-lobe
energy which is unavoidable. Also note the artificial bias from spectral leakage, seen just outside the edges
of the pass-band.

set.seed(1234)
N <- 1028
x <- rnorm(N, mean = 0, sd = 1)
# Load signal processing
library(signal, warn.conflicts=FALSE)
# Construct an FIR filter
f <- c(0, 0.2, 0.2, 0.3, 0.3, 0.5)*2
m <- c(0, 0, 1, 1, 0, 0)
fw <- signal::fir2(N, f, m)
# complex filter response
fh <- signal::freqz(fw, Fs=1)
f <- c(0, 0.12, 0.12, 0.22, 0.22, 0.5)*2
fwl <- signal::fir2(N, f, m)
fhl <- signal::freqz(fwl, Fs=1)
f <- c(0, 0.28, 0.28, 0.38, 0.38, 0.5)*2
fwu <- signal::fir2(N, f, m)
fhu <- signal::freqz(fwu, Fs=1)
# convolution
xf <- signal::filter(fw, x)
# PSD using stats::spectrum
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Sx <- spectrum(x, pad=1, plot=FALSE, taper=0.2)
Sxf <- spectrum(xf, pad=1, plot=FALSE, taper=0.2)

PSDs of raw and filtered process

Figure 1: Demonstration of the “filter analogy". A normally-distributed process
(with PSD in grey) is convolved with a bandpass filter (with a response shown
in red); the resulting PSD is in black. In this analogy the PSD is the variance of
a stationary process in an infinitesimally narrow band, as if we had passed our
signal through a bank of narrow filters (dotted lines) and looked at the output
from each one.

2.2 A more formal definition

Let us return to having a single realization of a stochastic process in the time domain, X(t), which we assume
is sampled over a finite interval of time (−T/2, T/2), and denoted by XT (t). A realization of X(t) will have
a Fourier transform:

X̃T ( f ) = F {XT (t)} =
∫ ∞
−∞

XT (t)e−2πi f t dt =
∫ T/2

−T/2
X(t)e−2πi f t dt (5)

The amplitude spectrum is the modulus of X̃T and the phase spectrum is the argument of X̃T , although
these are generally not informative for physical applications, if ever. The energy spectral density is found
from X̃T by finding the expectation of the squared amplitude spectrum:

E( f ) = E{|X̃T ( f )|2} (6)
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We note the necessity for convergence mentioned previously: as T grows to infinity, so too does E( f ).
We divide it by the interval length T to curb this growth, which gives us an expression for power spectral
density:

S ( f ) = lim
T→∞

T−1E( f )

= lim
T→∞
E

 1
T

∣∣∣∣∣∣
∫ T/2

−T/2
X(t)e−2πi f t dt

∣∣∣∣∣∣2
 (7)

which is real, non-negative, and exists for all stationary processes with zero mean and finite variance.
Equation (7) defines the double-sided PSD, because in the limit of T , the limits of integration are ±∞.

If X(t) is real the power spectrum S ( f ) is even; hence, we only need estimates for f ≥ 0. The single-sided
PSD is thus given by 2S ( f ) for f ≥ 0. In many cases this sidedness distinction, as we will see, explains
errant factors of two in PSD normalizations.

2.3 Connection to the autocovariance function

What is the connection between the PSD, defined in Equation (7), and the autocovariance function R(τ)?
From Equation (7) we see that S ( f ) is obtained from products of X(t) with itself at any particular f , so

it is related to the second-order moment of X(t) only. The autocovariance (ACV) R(τ) is also related to the
second-order moment:

R(τ) = Cov (X(τ),X(τ))

= E
{
(X(τ) − E{X(τ)})2

} (8)

It may be surprising to note, as well, that S ( f ) is simply the Fourier transform of R(τ):

S ( f ) = F {R(τ)} =
∫ ∞
−∞

R(τ)e−2πi f τ dτ (9)

So, the functions R(τ) and S ( f ) exist as a transform pair. For real data, R(τ) is always even, and always
real. This implies that S ( f ) is also a real and even function in f , which, because S ( f ) >= 0, restricts the
functions R(t) could possibly represent. Put another way, there are many examples of even-functions having
non-positive Fourier transforms (Bracewell (2000) shows many).

2.4 Testing normalization

We can use the relationship with the ACV in (9), or the informal definition in (4), to test whether or not a
PSD is properly normalized. To see this, we take the inverse Fourier transform of (9):

R(t) =
∫ ∞
−∞

S ( f )e2πi f t d f (10)

and find the ACV of a zero-mean process for zero lag. From (8) we have:

R(0) = E{X(t)2} = V{X(t)} = σ2
X

(11)
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and by setting t = 0 in (10) we have the basis of our normalization test:

σ2
X
=

∫ ∞
−∞

S ( f ) d f (12)

That is, the area under the power spectrum is the variance of the process. So, a straightforward way to test
normalization is to compute the PSD for a realization of X(t) with known variance, and zero mean [e.g.
N(0, σ2)]; and then calculate the integrated spectrum. For example, the single-sided PSD for a realization of
a N(0, 1) process, sampled at 1 Hz, will be flat at 2 units2 Hz−1 across the frequency band [0, 1/2], and will
have an area equal to one.

2.5 Summary of nomenclature

In Table 1 we give a summary of some of the quantities we have reviewed.

Table 1: Top: Representers of various spectral quantities and their associated
equations in the main text. Bottom: Normalizations for double and single sided
PSD estimates to maintain process variance of σ2

X
and frequency ranges ( fN

is the Nyquist frequency).

Expression Representing Equivalent Equation

X(t) stochastic process with variance σ2
X

XT (t) single realization of X(t) over T

F {XT (t)} Fourier transform of XT (t) X̃T ( f ) 5
√
ℜ2 + ℑ2 amplitude spectrum of XT (t) |X̃T | or mod{X̃T }

tan−1 (ℑ/ℜ) phase spectrum of XT (t) arg{X̃T }

|X̃T |
2 energy spectral density of XT (t) E( f ) or mod{X̃ ⋆ X̃∗} 6

|X̃T |
2/N power spectral density of XT (t) S ( f ) or E{|X|2} 7

F −1{S ( f )} autocovariance of XT (t) Cov (XT (t), XT (t)) 8 and 9

Normalizations to maintain σ2
X

Frequency range

S ( f ) double-sided [− fN , fN]

2 S ( f ) single-sided [0, fN]

3 A from-scratch example: White noise.

Without using the tools in psd we will build up an example using R commands, in order to highlight the
topic of normalization.
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First, generate a normally distributed series2, and then find its Discrete Fourier Transform (DFT)3.

# using x from the filter analogy section
xv <- var(x)
X <- fft(x)
class(X)

## [1] "complex"

length(X)

## [1] 1028

We can easily find the amplitude and phase response followed by equivalent energy spectral density
estimates4:

Sa <- Mod(X) # Amplitude spectrum
Sp <- Arg(X) # Phase spectrum
XC <- Conj(X)
Se <- Sa**2
Se_2 <- Mod(XC * X)
all.equal(Se, Se_2)

## [1] TRUE

Se_2R <- Mod(X * XC)
all.equal(Se, Se_2R)

## [1] TRUE

The single-sided power spectral density estimates follow once we have the Nyquist frequency, defined
as half the sampling rate:

fsamp <- 1 # sampling freq, e.g. Hz
fNyq <- fsamp/2 # Nyquist freq
Nf <- N/2 # number of freqs
nyfreqs <- seq.int(from=0, to=fNyq, length.out=Nf)
S <- Se[2:(Nf+1)] * 2 / N # Finally, the PSD!

2Although a white noise process is not strictly bandlimited, we will use it to demonstrate differences in normalization.
3A proper DFT is normalized by the length of the series; however, most DFT calculators (including stats::fft) eschew this

normalization for efficiency’s sake.
4Note the equivalence between the complex conjugate based estimates.
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To approximate the integrated spectrum in the case of a “flat" spectrum, we need an accurate measure
of the first moment of the spectral values. The median estimator produces a biased estimate because the
distribution of spectral values roughly follows a χ2

ν distribution, where ν is the number of degrees of freedom
and, for this distribution, the expectation of the first moment. To find this value we perform a conjugate
gradient based minimization of the best-fitting χ2 distribution, and compare this with the value returned by
mean. Our starting point will be the estimated mean value. We visualize the fit with a “Q-Q" plot, which
shows PSD quantiles values as a function of χ2 quantiles, using the optimized value of the number of degrees
of freedom; this is shown in Figure 2.

# 0) Setup optimization function for dof, using conjugate gradients\\
# min L1 |PSD - Chi^2(dof)|
Chifit <- function(PSD){optim(list(df=mean(PSD)), function(dof){
sum(log(PSD)) - sum(log(dchisq(PSD, dof))) }, method="CG")}

# 1) run optimization
Schi <- Chifit(S)
# Get 'df', the degrees of freedom
print(dof <- Schi$par[[1]])

## [1] 1.993073

While the optimal degrees of freedom is very nearly the correct value of two (2), the value produced by
mean is different by merely one percent (this is certainly an acceptable bias for our purposes).

# compare with the mean and median
c(mSn <- mean(S), median(S))

## [1] 1.98477 1.40018

An estimate of the integrated spectrum should roughly equal the known variance. Figure 3 plots the
PSD of our white noise series with the value of ν from the optimization, with which we can perform a
variance–normalization test:

mSn <- dof
test_norm <- function(sval, nyq, xvar){svar <- sval * nyq; return(svar/xvar)}
print(xv_1 <- test_norm(mSn, fNyq, xv))

## [1] 1.003214

xv_2 <- sum(S)/Nf * fNyq / xv # an alternate test
all.equal(xv_1, xv_2)

## [1] "Mean relative difference: 0.004166062"
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Figure 2: “Q-Q" plot of quantiles of our example PSD against theoretical χ2
ν

quantiles. The distribution is calculated with a value for degrees of freedom
(ν) obtained from the L1-norm minimization procedure. Such a minimization is
not generally required, since we have shown the estimator found with mean is
reasonably accurate.

But what if the sampling frequency fsamp changes? An obvious change will be the actual Nyquist
frequency, which means the variance-normalization test will fail if the PSD estimates are not re-scaled. We
simply re-scale the frequencies and PSD with the sampling rate to obtain the properly-normalized spectra.

fsamp <- 20
fNyq <- fsamp / 2
freqs <- fsamp * nyfreqs
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Figure 3: Power spectral density estimates for a single realization of a N(0, 1)
process, in linear units. The horizontal line shows the expectation of the spec-
tral estimates, obtained from the χ2 fit in Figure 2; this value is used to test
normalization.

Snew <- S / fsamp
# Test variance crudely
mSn <- mean(Snew)
test_norm(mSn, fNyq, xv)

## [1] 0.9990345

In Figure 4 we plot the PSD with new normalization, and compare it to the previous normalization.
Spectral values are shown as decibels (relative to 1 units2 Hz−1), using:

# decibel function
dB <- function(y) 10*log10(y)
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Figure 4: Rescaled PSD estimates for a single realization of aN(0, 1) process
with a sampling rate of 20 s−1 rather than 1 s−1 as from before. The original
spectrum (grey) is scaled to the appropriate level (black). The thick red line
shows the mean (rescaled) spectral level, and the blue line shows the predicted
mean value based on twice the sampling frequency.

4 Normalization used in stats::spectrum

The PSD estimator included in the core distribution of R is stats::spectrum, which calls either stats::spec.ar
or stats::spec.pgram for cases of parametric and non-parametric estimation, respectively. For this dis-
cussion we compare to spec.pgram; the user can optionally apply a single cosine taper, and/or a smoothing
kernel.

By default spec.pgram assumes the sampling frequency for the input series is 1, and normalizes ac-
cordingly; however, the sampling information may be specified by creating a ts object from the series prior
to spectrum estimation:

fsamp <- 20
xt <- ts(x, frequency=fsamp)
pgram20 <- spec.pgram(xt, pad=1, taper=0, plot=FALSE)
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pgram01 <- spec.pgram(ts(xt, frequency=1), pad=1, taper=0, plot=FALSE)

We plot the two PSD estimates on the same scales, in Figure 5, utilizing the plot method for spec objects:
plot.spec. We also show horizontal lines corresponding to the inverse of twice the sampling rate, which
puts the spectra about a factor of 2 too low:

mSn/mean(pgram20$spec)

## [1] 2.000322
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bandwidth = 0.000134, 95% C.I. is (−7.77,28.65)dB

Figure 5: Power spectral densities from spec.pgram for the same data series.
The grey series is the PSD for a sampling rate of 1; whereas, the black series
is the PSD for a sampling rate of 20. The horizontal lines show levels corre-
sponding to the inverse of twice the sampling rate (black and grey), and the
expected spectral level for the 20 Hz sampling (blue). Vertical lines show the
respective Nyquist frequencies.

Because the frequencies are clearly correct, this factor of two likely means the spectra will fail our simple
variance-normalization test. They do fail, by a factor of two, again too low:
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test_norm(mean(pgram01$spec), 0.5, xv)

## [1] 0.4994368

test_norm(mean(pgram20$spec), 10, xv)

## [1] 0.4994368

But why? This errant factor of two comes from the assumption of a double-sided spectrum, which is at
odds with our definition of the single-sided spectrum by (you guessed it) a factor of two. We can illustrate
this with the following example, where we compare the PSDs from spec.pgram for a real and complex
series:

psd1 <- spec.pgram(x, plot=FALSE)
psd2 <- spec.pgram(xc<-complex(real=x, imag=x), plot=FALSE, demean=TRUE)
mx <- mean(Mod(x))
mxc <- mean(Mod(xc))
(mxc/mx)**2

## [1] 2

mean(psd2$spec / psd1$spec)

## [1] 2

Again, a factor of two. This means that unless we are interested in analyzing complex timeseries, we
need only multiply by two to obtain properly normalized spectra from spectrum, assuming the sampling
information is included in the series.

5 PSD estimators in R

The suite of extensions having similar functionality to psd is relatively limited; however, there are at least
four which can produce sophisticated PSD estimates. We have summarized the available functions in Table
2 so far as we know.
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Table 2: A comparison of power spectral density estimators in R, excluding
extensions which only estimate raw-periodograms. Normalizations are shown
as either “single" or “double" for either single- or double-sided spectra, and
“various" if there are multiple, optional normalizations. A (∗) denotes the default
for a function having an option for either single or double.

Function Namespace Sine m.t.? Adaptive? Norm. Reference
bspec bspec No No single∗ Röver et al. (2011)

mtapspec RSEIS Yes No various Lees and Park (1995)
pspectrum psd Yes Yes single Barbour and Parker (2014); Barbour et al. (2020)
spectrum stats No No double R Core Team (2014)
spec.mtm multitaper Yes Yes double Rahim et al. (2014)

SDF sapa Yes No single∗ Percival and Walden (1993)

utils::sessionInfo()

## R version 4.4.1 (2024-06-14)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.1 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so; LAPACK version 3.12.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: Etc/UTC
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] signal_1.8-1
##
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## loaded via a namespace (and not attached):
## [1] MASS_7.3-61 compiler_4.4.1 tools_4.4.1 maketools_1.3.1
## [5] buildtools_1.0.0 highr_0.11 knitr_1.48 xfun_0.48
## [9] sys_3.4.3 evaluate_1.0.1
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