
Benchmarks for Discrete Fourier Transform (DFT) calculations in R

Andrew J. Barbour

October 14, 2024

Abstract

The DFT calculator in R, stats::fft, uses the Mixed-Radix algorithm of Singleton
(1969). In this vignette we show how this calculator compares to FFT in the fftw package
(Krey et al., 2011), which uses the FFTW algorithm of Frigo and Johnson (2005). For uni-
variate DFT computations, the methods are nearly equivalent with two exceptions which are
not mutually exclusive: (1) the series to be transformed is very long (106 terms), and espe-
cially (2) when the series length is not highly composite. In both exceptions the algorithm
FFT outperforms fft.

Update: I have decided that (for now) psd will not use fftw::FFT, despite its advantage
over stats::fft for large-n ‘NHC’ series, simply because the binaries on CRAN have not
been reliably built for some time now. If they do become reliable, I may consider using
fftw::FFT instead.

Contents

1 Benchmarking function 2

2 Highly composite (HC) series 2

3 Non highly composite (NHC) series 3

4 Visualization 3

5 Conclusion 5

1

https://github.com/abarbour/psd/

1 Benchmarking function

We use both functions in their default state, and ask them to transform the same univariate random series.
Benchmark information comes from the rbenchmark program, and the versatile plyr and reshape2 pack-
ages are used to manipulate the information for this presentation; ggplot2 is used for plotting. First we load
the libraries needed:

rm(list=ls())
library(fftw)
library(rbenchmark)
library(plyr)
library(reshape2)
library(ggplot2)

and create a benchmark function:

reps <- 10
dftbm <- function(nd, repls=reps){

set.seed(1234)
x <- rnorm(nd, mean=0, sd=1)
bmd <- benchmark(replications=repls, fftw::FFT(x), stats::fft(x))
bmd$num_dat <- nd
bmd$relative[is.na(bmd$relative)] <- 1 # NA happens.
return(bmd)

}

2 Highly composite (HC) series

It’s well known that DFT algorithms are most efficient for “Highly Composite Numbers"1, specifically mul-
tiples of (2,3,5).

So, we create a vector of series lengths we wish to benchmark

(nterms.even <- round(2**seq.int(from=4,to=20,by=1)))

[1] 16 32 64 128 256 512 1024 2048 4096
[10] 8192 16384 32768 65536 131072 262144 524288 1048576

and use it with lapply and the benchmark function previously defined. These data are further distilled
into a usable format with ldply:

1This is the reason for the stats::nextn function.

2

bench.even <- function(){
benchdat.e <- plyr::ldply(lapply(X=nterms.even, FUN=dftbm))
}

bench.even()

3 Non highly composite (NHC) series

DFT algorithms can have drastically reduced performance if the series length is not highly composite (NHC).
We now test NHC series by adding one to the HC series-length vector (also restricting the total length for
sanity’s sake):

nterms.odd <- nterms.even + 1
nterms.odd <- nterms.odd[nterms.odd < 50e3] # painfully long otherwise!

and performing the full set of benchmarks again:

bench.odd <- function(){
benchdat.o <- plyr::ldply(lapply(X=nterms.odd, FUN=dftbm))
}

bench.odd() # FAIR WARNING: this can take a while!!

4 Visualization

In order to plot the results, we need to perform some map/reduce operations on the data (Wickham, 2011).
We intend to show faceted ggplot2-based figures with row-wise summary information2 so we can easily
intercompare the benchmark data. The benchmark data we will show are user.self, sys.self, elapsed,
and relative. The results are shown in Figure 1.

pltbench <- function(lentyp=c("even","odd")){
benchdat <- switch(match.arg(lentyp), even=benchdat.e, odd=benchdat.o)
stopifnot(exists("benchdat"))
tests <- unique(benchdat$test)
subset only information we care about
allbench.df.drp <- subset(benchdat,

select=c(test, num_dat, user.self, sys.self, elapsed, relative))

2Based on this post:
https://geokook.wordpress.com/2012/12/29/row-wise-summary-curves-in-faceted-ggplot2-figures/

3

https://geokook.wordpress.com/2012/12/29/row-wise-summary-curves-in-faceted-ggplot2-figures/

reduce data.frame with melt
allbench.df.mlt <- reshape2::melt(allbench.df.drp,

id.vars=c("test","num_dat"))
calculate the summary information to be plotted:
tmpd <- plyr::ddply(allbench.df.mlt,

.(variable, num_dat),
summarise,
summary="medians",
value=ggplot2::mean_cl_normal(value)[1,1])

create copies for each test and map to data.frame
allmeds <<- plyr::ldply(lapply(X=tests,

FUN=function(x,df=tmpd){
df$test <- x; return(df)

}))
plot the benchmark data
1/sqrt(n) standard errors [assumes N(0,1)]
g <- ggplot(data=allbench.df.mlt,

aes(x=log10(num_dat),
y=log2(value),
ymin=log2(value*(1-1/sqrt(reps))),
ymax=log2(value*(1+1/sqrt(reps))),
colour=test,
group=test)) +

scale_colour_discrete(guide="none") +
theme_bw()+
ggtitle(sprintf("DFT benchmarks of %s length series",toupper(lentyp))) +
ylim(c(-11,11))+
xlim(c(0.5,6.5))

add previous summary curves if exist
if (exists("allmeds.prev")){
g <- g + geom_path(size=1.5, colour="dark grey", data=allmeds.prev,

aes(group=test))
}

create a facetted version
g2 <- g + facet_grid(variable~test) #, scales="free_y")
add the summary data as a line
g3 <- g2 + geom_path(colour="black", data=allmeds, aes(group=test))
and finally the data
print(g4 <<- g3 + geom_pointrange())

}

4

pltbench("even")
allmeds.prev <- allmeds
pltbench("odd")

fftw::FFT(x) stats::fft(x)

● ●
● ● ● ● ● ●

●
●

●
●

●
●

●
●

●

● ● ● ● ● ● ●

●

●

●
●

●
● ●

●
●

●

●
●

● ● ● ● ● ●
●

●
●

●
●

●

●
●

●

●
●

● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ●
● ●

●
●

●
●

●
●

●
●

●

● ● ● ● ●

●

● ● ●

●
●

●
● ●

●
●

●

● ● ● ● ● ● ●
● ●

●
●

●
●

●

●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ●

−10

−5

0

5

10

−10

−5

0

5

10

−10

−5

0

5

10

−10

−5

0

5

10

user.self
sys.self

elapsed
relative

2 4 6 2 4 6
log10(num_dat)

lo
g2

(v
al

ue
)

DFT benchmarks of EVEN length series
fftw::FFT(x) stats::fft(x)

●
●

●

● ●
●

●
● ●

● ●
●

●

● ● ● ● ● ● ● ● ●

●
●

● ●

●
● ● ● ●

●
●

● ●
● ●

●

●

●
●

●
● ● ● ●

● ● ● ● ● ●

● ● ● ●
●

●
●

● ●

●

●

●

●

● ● ● ● ● ● ●

●

●

● ●
●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

● ● ● ● ● ● ●
● ●

●

●
●

●

−10

−5

0

5

10

−10

−5

0

5

10

−10

−5

0

5

10

−10

−5

0

5

10

user.self
sys.self

elapsed
relative

2 4 6 2 4 6
log10(num_dat)

lo
g2

(v
al

ue
)

DFT benchmarks of ODD length series

Figure 1: DFT benchmark results for HC series lengths (left), and NHC se-
ries lengths (right) as a function of logarithmic series length. In each figure,
the left facet-column is for results from fftw::FFT and the right column is for
stats::fft. We also show the summary curves from the HC results in the
NHC frames (thick grey curve) to highlight the drastic degradation in perfor-
mance.

5 Conclusion

Figure 1 compares the DFT calculations for HC and NHC length series. For univariate DFT computations,
the methods are nearly equivalent with two exceptions which are not mutually exclusive: (A) the series to
be transformed is very long, and especially (B) when the series length is not highly composite. In both
exceptions the algorithm FFT outperforms fft. In the case of exception (B), both methods have drastically
increased computation times; hence, zero padding should be done to ensure the length does not adversely
affect the efficiency of the DFT calculator.

5

Session Info

utils::sessionInfo()

R version 4.4.1 (2024-06-14)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 24.04.1 LTS
##
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so; LAPACK version 3.12.0
##
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
time zone: Etc/UTC
tzcode source: system (glibc)
##
attached base packages:
[1] stats graphics grDevices utils datasets methods base
##
loaded via a namespace (and not attached):
[1] compiler_4.4.1 tools_4.4.1 maketools_1.3.1 buildtools_1.0.0
[5] highr_0.11 knitr_1.48 xfun_0.48 sys_3.4.3
[9] evaluate_1.0.1

References

Frigo, M. and Johnson, S. G. (2005). The design and implementation of FFTW3. Proceedings of the IEEE,
93(2):216–231. Special issue on “Program Generation, Optimization, and Platform Adaptation”.

Krey, S., Ligges, U., and Mersmann, O. (2011). fftw: Fast FFT and DCT based on FFTW. R package version
1.0-3.

Singleton, R. C. (1969). An Algorithm for Computing the Mixed Radix Fast Fourier Transform. IEEE
Transactions on Audio and Electroacoustics, AU-17(2):93–103.

6

Wickham, H. (2011). The split-apply-combine strategy for data analysis. Journal of Statistical Software,
40(1):1–29.

7

	Benchmarking function
	Highly composite (HC) series
	Non highly composite (NHC) series
	Visualization
	Conclusion

