Package 'psbcGroup'

Title: Penalized Parametric and Semiparametric Bayesian Survival Models with Shrinkage and Grouping Priors
Description: Algorithms to implement various Bayesian penalized survival regression models including: semiparametric proportional hazards models with lasso priors (Lee et al., Int J Biostat, 2011 <doi:10.2202/1557-4679.1301>) and three other shrinkage and group priors (Lee et al., Stat Anal Data Min, 2015 <doi:10.1002/sam.11266>); parametric accelerated failure time models with group/ordinary lasso prior (Lee et al. Comput Stat Data Anal, 2017 <doi:10.1016/j.csda.2017.02.014>).
Authors: Kyu Ha Lee, Sounak Chakraborty, Harrison Reeder, (Tony) Jianguo Sun
Maintainer: Kyu Ha Lee <[email protected]>
License: GPL (>= 2)
Version: 1.7
Built: 2024-11-05 06:15:23 UTC
Source: CRAN

Help Index


Function to Fit the Penalized Parametric Bayesian Accelerated Failure Time Model with Group Lasso Prior

Description

Penalized parametric Bayesian accelerated failure time model with group lasso prior is implemented to analyze survival data with high-dimensional covariates.

Usage

aftGL(Y, data, grpInx, hyperParams, startValues, mcmc)

Arguments

Y

a data.frame containing univariate time-to-event outcomes from n subjects. It is of dimension n×2n\times 2: the columns correspond to yy, δ\delta.

data

a data.frame containing pp covariate vectors from n subjects. It is of dimension n×pn\times p.

grpInx

a vector of pp group indicator for each variable

hyperParams

a list containing hyperparameter values in hierarchical models: (nu0, sigSq0): hyperparameters for the prior of σ2\sigma^2; (alpha0, h0): hyperparameters for the prior of α\alpha; (rLam, deltaLam): hyperparameters for the prior of λ2\lambda^2.

startValues

a list containing starting values for model parameters. See Examples below.

mcmc

a list containing variables required for MCMC sampling. Components include, numReps, total number of scans; thin, extent of thinning; burninPerc, the proportion of burn-in. See Examples below.

Value

aftGL returns an object of class aftGL.

Author(s)

Kyu Ha Lee, Sounak Chakraborty, (Tony) Jianguo Sun

References

Lee, K. H., Chakraborty, S., and Sun, J. (2017). Variable Selection for High-Dimensional Genomic Data with Censored Outcomes Using Group Lasso Prior. Computational Statistics and Data Analysis, Volume 112, pages 1-13.

See Also

VS

Examples

# generate some survival data	
	set.seed(204542)
	
	p = 20
	n = 200
	logHR.true <- c(rep(4, 10), rep(0, (p-10)))	

	CovX<-matrix(0,p,p)

	for(i in 1:10){
		for(j in 1:10){
			CovX[i,j] <- 0.3^abs(i-j)
			}
		}
		
	diag(CovX) <- 1
	
	data	<- apply(rmvnorm(n, sigma=CovX, method="chol"), 2, scale)	
	pred <- as.vector(exp(rowSums(scale(data, center = FALSE, scale = 1/logHR.true))))
	
	t 		<- rexp(n, rate = pred)
	cen		<- runif(n, 0, 8)      
	tcen 		<- pmin(t, cen)
	di 		<- as.numeric(t <= cen)
	
	n <- dim(data)[1]
	p <- dim(data)[2]

	Y <- data.frame(cbind(tcen, di))
	colnames(Y) <- c("time", "event")

	grpInx <- 1:p
	K <- length(unique(grpInx))
	
	############################
	hyperParams <- list(nu0=3, sigSq0=1, alpha0=0, h0=10^6, rLam=0.5, deltaLam=2)

	############################
	startValues <- list(alpha=0.1, beta=rep(1,p), sigSq=1, tauSq=rep(0.4,p), lambdaSq=5,
	 				w=log(tcen))

	############################	
	mcmc <- list(numReps=100, thin=1, burninPerc=0.5)
	
	############################
	fit <- aftGL(Y, data, grpInx, hyperParams, startValues, mcmc)
## Not run:   
vs <- VS(fit, X=data)

## End(Not run)

Function to Fit the Penalized Parametric Bayesian Accelerated Failure Time Model with Group Lasso Prior for Left-Truncated and Interval-Censored Data

Description

Penalized parametric Bayesian accelerated failure time model with group lasso prior is implemented to analyze left-truncated and interval-censored survival data with high-dimensional covariates.

Usage

aftGL_LT(Y, X, XC, grpInx, hyperParams, startValues, mcmcParams)

Arguments

Y

Outcome matrix with three column vectors corresponding to lower and upper bounds of interval-censored data and left-truncation time

X

Covariate matrix pp covariate vectors from n subjects. It is of dimension n×pn\times p.

XC

Matrix for confound variables: qq variable vectors from n subjects. It is of dimension n×qn\times q.

grpInx

a vector of pp group indicator for each variable

hyperParams

a list containing hyperparameter values in hierarchical models: (a.sigSq, a.sigSq): hyperparameters for the prior of σ2\sigma^2; (mu0, h0): hyperparameters for the prior of μ\mu; (v): hyperparameter for the prior of βC\beta_C.

startValues

a list containing starting values for model parameters. See Examples below.

mcmcParams

a list containing variables required for MCMC sampling. Components include, numReps, total number of scans; thin, extent of thinning; burninPerc, the proportion of burn-in. See Examples below.

Value

aftGL_LT returns an object of class aftGL_LT.

Author(s)

Kyu Ha Lee, Harrison Reeder

References

Reeder, H., Haneuse, S., Lee, K. H. (2024+). Group Lasso Priors for Bayesian Accelerated Failure Time Models with Left-Truncated and Interval-Censored Data. under review

See Also

VS

Examples

## Not run: 

data(survData)
X <- survData[,c(4:5)]
XC <- NULL

n <- dim(survData)[1]
p <- dim(X)[2]
q <- 0

c0 <- rep(0, n)
yL <- yU <- survData[,1]
yU[which(survData[,2] == 0)] <- Inf
Y <- cbind(yL, yU, c0)

grpInx <- 1:p
K <- length(unique(grpInx))

#####################
## Hyperparameters

a.sigSq= 0.7
b.sigSq= 0.7

mu0 <- 0
h0 <- 10^6

v = 10^6

hyperParams <- list(a.sigSq=a.sigSq, b.sigSq=b.sigSq, mu0=mu0, h0=h0, v=v)

###################
## MCMC SETTINGS

## Setting for the overall run
##
numReps    <- 100
thin    <- 1
burninPerc <- 0.5

## Tuning parameters for specific updates
##

L.beC <- 50
M.beC <- 1
eps.beC <- 0.001

L.be <- 100
M.be <- 1
eps.be <- 0.001

mu.prop.var    <- 0.5
sigSq.prop.var    <- 0.01

##

mcmcParams <- list(run=list(numReps=numReps, thin=thin, burninPerc=burninPerc),
tuning=list(mu.prop.var=mu.prop.var, sigSq.prop.var=sigSq.prop.var,
L.beC=L.beC, M.beC=M.beC, eps.beC=eps.beC,
L.be=L.be, M.be=M.be, eps.be=eps.be))

#####################
## Starting Values

w        <- log(Y[,1])
mu     <- 0.1
beta     <- rep(2, p)
sigSq    <- 0.5
tauSq <- rep(0.4, p)
lambdaSq <- 100
betaC     <- rep(0.11, q)

startValues <- list(w=w, beta=beta, tauSq=tauSq, mu=mu, sigSq=sigSq,
lambdaSq=lambdaSq, betaC=betaC)

fit <- aftGL_LT(Y, X, XC, grpInx, hyperParams, startValues, mcmcParams)


## End(Not run)

Function to Fit the Penalized Semiparametric Bayesian Cox Model with Elastic Net Prior

Description

Penalized semiparametric Bayesian Cox (PSBC) model with elastic net prior is implemented to analyze survival data with high-dimensional covariates.

Usage

psbcEN(survObj, priorPara, initial, rw=FALSE, mcmcPara, num.reps, 
		thin, chain = 1, save = 1000)

Arguments

survObj

The list containing observed data from n subjects; t, di, x

priorPara

The list containing prior parameter values; eta0, kappa0, c0, r1, r2, delta1, delta2, s

initial

The list containing the starting values of the parameters; beta.ini, lambda1Sq, lambda2, sigmaSq, tauSq, h

rw

When setting to "TRUE", the conventional random walk Metropolis Hastings algorithm is used. Otherwise, the mean and the variance of the proposal density is updated using the jumping rule described in Lee et al. (2011).

mcmcPara

The list containing the values of options for Metropolis-Hastings step for β\beta; numBeta, beta.prop.var

num.reps

the number of iterations of the chain

thin

thinning

chain

the numeric name of chain in the case when running multiple chains.

save

frequency of storing the results in .Rdata file. For example, by setting "save = 1000", the algorithm saves the results every 1000 iterations.

Details

t a vector of n times to the event
di a vector of n censoring indicators for the event time (1=event occurred, 0=censored)
x covariate matrix, n observations by p variables
eta0 scale parameter of gamma process prior for the cumulative baseline hazard, eta0>0eta0 > 0
kappa0 shape parameter of gamma process prior for the cumulative baseline hazard, kappa0>0kappa0 > 0
c0 the confidence parameter of gamma process prior for the cumulative baseline hazard, c0>0c0 > 0
r1 the shape parameter of the gamma prior for λ12\lambda_1^2
r2 the shape parameter of the gamma prior for λ2\lambda_2
delta1 the rate parameter of the gamma prior for λ12\lambda_1^2
delta2 the rate parameter of the gamma prior for λ2\lambda_2
s the set of time partitions for specification of the cumulative baseline hazard function
beta.ini the starting values for β\beta
lambda1Sq the starting value for λ12\lambda_1^2
lambda2 the starting value for λ2\lambda_2
sigmaSq the starting value for σ2\sigma^2
tauSq the starting values for τ2\tau^2
h the starting values for hh
numBeta the number of components in β\beta to be updated at one iteration
beta.prop.var the variance of the proposal density for β\beta when rw is set to "TRUE"

Value

psbcEN returns an object of class psbcEN

beta.p

posterior samples for β\beta

h.p

posterior samples for hh

tauSq.p

posterior samples for τ2\tau^2

mcmcOutcome

The list containing posterior samples for the remaining model parameters

Note

If the prespecified value of save is less than that of num.reps, the results are saved as .Rdata file under the directory working directory/mcmcOutcome.

Author(s)

Kyu Ha Lee, Sounak Chakraborty, (Tony) Jianguo Sun

References

Lee, K. H., Chakraborty, S., and Sun, J. (2011). Bayesian Variable Selection in Semiparametric Proportional Hazards Model for High Dimensional Survival Data. The International Journal of Biostatistics, Volume 7, Issue 1, Pages 1-32.

Lee, K. H., Chakraborty, S., and Sun, J. (2015). Survival Prediction and Variable Selection with Simultaneous Shrinkage and Grouping Priors. Statistical Analysis and Data Mining, Volume 8, Issue 2, pages 114-127.

Examples

## Not run: 

# generate some survival data
	
	set.seed(204542)
	
	p = 20
	n = 100
	beta.true <- c(rep(4, 10), rep(0, (p-10)))	
	
	CovX<- diag(0.1, p)
	
	survObj 	<- list()
	survObj$x	<- apply(rmvnorm(n, sigma=CovX, method="chol"), 2, scale)
	
	pred <- as.vector(exp(rowSums(scale(survObj$x, center = FALSE, scale = 1/beta.true))))
	
	t 		<- rexp(n, rate = pred)
	cen		<- runif(n, 0, 8)      
	survObj$t 		<- pmin(t, cen)
	survObj$di 		<- as.numeric(t <= cen)

	priorPara 			<- list()
	priorPara$eta0 		<- 1
	priorPara$kappa0 	<- 1
	priorPara$c0 		<- 2
	priorPara$r1		<- 0.1
	priorPara$r2		<- 1
	priorPara$delta1	<- 0.1
	priorPara$delta2	<- 1
	priorPara$s			<- sort(survObj$t[survObj$di == 1])
	priorPara$s			<- c(priorPara$s, 2*max(survObj$t)
	- max(survObj$t[-which(survObj$t==max(survObj$t))]))
	priorPara$J			<- length(priorPara$s)

	mcmcPara				<- list()
	mcmcPara$numBeta		<- p
	mcmcPara$beta.prop.var	<- 1

	initial				<- list()
	initial$beta.ini	<- rep(0.5, p)
	initial$lambda1Sq	<- 1  
	initial$lambda2		<- 1  
	initial$sigmaSq		<- runif(1, 0.1, 10)
	initial$tauSq		<- rexp(p, rate = initial$lambda1Sq/2)
	initial$h			<- rgamma(priorPara$J, 1, 1)

	rw = FALSE
	num.reps = 20000
	chain = 1
	thin = 5
	save = 5

	fitEN <- psbcEN(survObj, priorPara, initial, rw=FALSE, mcmcPara, 
				num.reps, thin, chain, save)

	vs <- VS(fitEN, X=survObj$x)
    
	
## End(Not run)

Function to Fit the Penalized Semiparametric Bayesian Cox Model with Fused Lasso Prior

Description

Penalized semiparametric Bayesian Cox (PSBC) model with fused lasso prior is implemented to analyze survival data with high-dimensional covariates.

Usage

psbcFL(survObj, priorPara, initial, rw=FALSE, mcmcPara, num.reps, 
		thin, chain = 1, save = 1000)

Arguments

survObj

The list containing observed data from n subjects; t, di, x

priorPara

The list containing prior parameter values; eta0, kappa0, c0, r1, r2, delta1, delta2, s

initial

The list containing the starting values of the parameters; beta.ini, lambda1Sq, lambda2Sq, sigmaSq, tauSq, h, wSq

rw

When setting to "TRUE", the conventional random walk Metropolis Hastings algorithm is used. Otherwise, the mean and the variance of the proposal density is updated using the jumping rule described in Lee et al. (2011).

mcmcPara

The list containing the values of options for Metropolis-Hastings step for β\beta; numBeta, beta.prop.var

num.reps

the number of iterations of the chain

thin

thinning

chain

the numeric name of chain in the case when running multiple chains.

save

frequency of storing the results in .Rdata file. For example, by setting "save = 1000", the algorithm saves the results every 1000 iterations.

Details

t a vector of n times to the event
di a vector of n censoring indicators for the event time (1=event occurred, 0=censored)
x covariate matrix, n observations by p variables
eta0 scale parameter of gamma process prior for the cumulative baseline hazard, eta0>0eta0 > 0
kappa0 shape parameter of gamma process prior for the cumulative baseline hazard, kappa0>0kappa0 > 0
c0 the confidence parameter of gamma process prior for the cumulative baseline hazard, c0>0c0 > 0
r1 the shape parameter of the gamma prior for λ12\lambda_1^2
r2 the shape parameter of the gamma prior for λ22\lambda_2^2
delta1 the rate parameter of the gamma prior for λ12\lambda_1^2
delta2 the rate parameter of the gamma prior for λ22\lambda_2^2
s the set of time partitions for specification of the cumulative baseline hazard function
beta.ini the starting values for β\beta
lambda1Sq the starting value for λ12\lambda_1^2
lambda2Sq the starting value for λ22\lambda_2^2
sigmaSq the starting value for σ2\sigma^2
tauSq the starting values for τ2\tau^2
h the starting values for hh
wSq the starting values for w2w^2
numBeta the number of components in β\beta to be updated at one iteration
beta.prop.var the variance of the proposal density for β\beta when rw is set to "TRUE"

Value

psbcFL returns an object of class psbcFL

beta.p

posterior samples for β\beta

h.p

posterior samples for hh

tauSq.p

posterior samples for τ2\tau^2

mcmcOutcome

The list containing posterior samples for the remaining model parameters

Note

If the prespecified value of save is less than that of num.reps, the results are saved as .Rdata file under the directory working directory/mcmcOutcome.

Author(s)

Kyu Ha Lee, Sounak Chakraborty, (Tony) Jianguo Sun

References

Lee, K. H., Chakraborty, S., and Sun, J. (2011). Bayesian Variable Selection in Semiparametric Proportional Hazards Model for High Dimensional Survival Data. The International Journal of Biostatistics, Volume 7, Issue 1, Pages 1-32.

Lee, K. H., Chakraborty, S., and Sun, J. (2015). Survival Prediction and Variable Selection with Simultaneous Shrinkage and Grouping Priors. Statistical Analysis and Data Mining, Volume 8, Issue 2, pages 114-127.

Examples

## Not run: 

# generate some survival data
	
	set.seed(204542)
	
	p = 20
	n = 100
	beta.true <- c(rep(4, 10), rep(0, (p-10)))	
	
	CovX<- diag(0.1, p)
	
	survObj 	<- list()
	survObj$x	<- apply(rmvnorm(n, sigma=CovX, method="chol"), 2, scale)
	
	pred <- as.vector(exp(rowSums(scale(survObj$x, center = FALSE, scale = 1/beta.true))))
	
	t 		<- rexp(n, rate = pred)
	cen		<- runif(n, 0, 8)      
	survObj$t 		<- pmin(t, cen)
	survObj$di 		<- as.numeric(t <= cen)

	priorPara 			<- list()
	priorPara$eta0 		<- 2
	priorPara$kappa0 	<- 2
	priorPara$c0 		<- 2
	priorPara$r1		<- 0.5
	priorPara$r2		<- 0.5
	priorPara$delta1	<- 0.0001
	priorPara$delta2	<- 0.0001
	priorPara$s			<- sort(survObj$t[survObj$di == 1])
	priorPara$s			<- c(priorPara$s, 2*max(survObj$t)
	-max(survObj$t[-which(survObj$t==max(survObj$t))]))
	priorPara$J			<- length(priorPara$s)

	mcmcPara				<- list()
	mcmcPara$numBeta		<- p
	mcmcPara$beta.prop.var	<- 1

	initial				<- list()
	initial$beta.ini	<- rep(0.5, p)
	initial$lambda1Sq	<- 1  
	initial$lambda2Sq	<- 1  
	initial$sigmaSq		<- runif(1, 0.1, 10)
	initial$tauSq		<- rexp(p, rate = initial$lambda1Sq/2)
	initial$h			<- rgamma(priorPara$J, 1, 1)
	initial$wSq	 		<- rexp((p-1), rate = initial$lambda2Sq/2)

	rw = FALSE
	num.reps = 20000
	chain = 1
	thin = 5
	save = 5

	fitFL <- psbcFL(survObj, priorPara, initial, rw=FALSE, mcmcPara, 
				num.reps, thin, chain, save)
	vs <- VS(fitFL, X=survObj$x)
    
	
## End(Not run)

Function to Fit the Penalized Semiparametric Bayesian Cox Model with Group Lasso Prior

Description

Penalized semiparametric Bayesian Cox (PSBC) model with group lasso prior is implemented to analyze survival data with high-dimensional covariates.

Usage

psbcGL(survObj, priorPara, initial, rw=FALSE, mcmcPara, num.reps, 
		thin, chain = 1, save = 1000)

Arguments

survObj

The list containing observed data from n subjects; t, di, x

priorPara

The list containing prior parameter values; eta0, kappa0, c0, r, delta, s, groupInd

initial

The list containing the starting values of the parameters; beta.ini, lambdaSq, sigmaSq, tauSq, h

rw

When setting to "TRUE", the conventional random walk Metropolis Hastings algorithm is used. Otherwise, the mean and the variance of the proposal density is updated using the jumping rule described in Lee et al. (2011).

mcmcPara

The list containing the values of options for Metropolis-Hastings step for β\beta; numBeta, beta.prop.var

num.reps

the number of iterations of the chain

thin

thinning

chain

the numeric name of chain in the case when running multiple chains.

save

frequency of storing the results in .Rdata file. For example, by setting "save = 1000", the algorithm saves the results every 1000 iterations.

Details

t a vector of n times to the event
di a vector of n censoring indicators for the event time (1=event occurred, 0=censored)
x covariate matrix, n observations by p variables
eta0 scale parameter of gamma process prior for the cumulative baseline hazard, eta0>0eta0 > 0
kappa0 shape parameter of gamma process prior for the cumulative baseline hazard, kappa0>0kappa0 > 0
c0 the confidence parameter of gamma process prior for the cumulative baseline hazard, c0>0c0 > 0
r the shape parameter of the gamma prior for λ2\lambda^2
delta the rate parameter of the gamma prior for λ2\lambda^2
s the set of time partitions for specification of the cumulative baseline hazard function
groupInd a vector of p group indicator for each variable
beta.ini the starting values for β\beta
lambdaSq the starting value for λ2\lambda^2
sigmaSq the starting value for σ2\sigma^2
tauSq the starting values for τ2\tau^2
h the starting values for hh
numBeta the number of components in β\beta to be updated at one iteration
beta.prop.var the variance of the proposal density for β\beta when rw is set to "TRUE"

Value

psbcGL returns an object of class psbcGL

beta.p

posterior samples for β\beta

h.p

posterior samples for hh

tauSq.p

posterior samples for τ2\tau^2

mcmcOutcome

The list containing posterior samples for the remaining model parameters

Note

To fit the PSBC model with the ordinary Bayesian lasso prior (Lee et al., 2011), groupInd needs to be set to 1:p. If the prespecified value of save is less than that of num.reps, the results are saved as .Rdata file under the directory working directory/mcmcOutcome.

Author(s)

Kyu Ha Lee, Sounak Chakraborty, (Tony) Jianguo Sun

References

Lee, K. H., Chakraborty, S., and Sun, J. (2011). Bayesian Variable Selection in Semiparametric Proportional Hazards Model for High Dimensional Survival Data. The International Journal of Biostatistics, Volume 7, Issue 1, Pages 1-32.

Lee, K. H., Chakraborty, S., and Sun, J. (2015). Survival Prediction and Variable Selection with Simultaneous Shrinkage and Grouping Priors. Statistical Analysis and Data Mining, Volume 8, Issue 2, pages 114-127.

Examples

## Not run: 

# generate some survival data
	
	set.seed(204542)
	
	p = 20
	n = 100
	beta.true <- c(rep(4, 10), rep(0, (p-10)))	

	CovX<-matrix(0,p,p)

	for(i in 1:10){
		for(j in 1:10){
			CovX[i,j] <- 0.5^abs(i-j)
			}
		}
		
	diag(CovX) <- 1
	
	survObj 	<- list()
	survObj$x	<- apply(rmvnorm(n, sigma=CovX, method="chol"), 2, scale)
	
	pred <- as.vector(exp(rowSums(scale(survObj$x, center = FALSE, scale = 1/beta.true))))
	
	t 		<- rexp(n, rate = pred)
	cen		<- runif(n, 0, 8)      
	survObj$t 		<- pmin(t, cen)
	survObj$di 		<- as.numeric(t <= cen)

	priorPara 			<- list()
	priorPara$eta0 		<- 1
	priorPara$kappa0 	<- 1
	priorPara$c0 		<- 2
	priorPara$r			<- 0.5
	priorPara$delta		<- 0.0001
	priorPara$s			<- sort(survObj$t[survObj$di == 1])
	priorPara$s			<- c(priorPara$s, 2*max(survObj$t)
	-max(survObj$t[-which(survObj$t==max(survObj$t))]))
	priorPara$J			<- length(priorPara$s)
	priorPara$groupInd	<- c(rep(1,10),2:11)

	mcmcPara				<- list()
	mcmcPara$numBeta		<- p
	mcmcPara$beta.prop.var	<- 1

	initial				<- list()
	initial$beta.ini	<- rep(0.5, p)
	initial$lambdaSq	<- 1
	initial$sigmaSq		<- runif(1, 0.1, 10)
	initial$tauSq		<- rexp(length(unique(priorPara$groupInd)),
	rate = initial$lambdaSq/2)
	initial$h			<- rgamma(priorPara$J, 1, 1)

	rw = FALSE
	num.reps = 20000
	chain = 1
	thin = 5
	save = 5

	fitGL <- psbcGL(survObj, priorPara, initial, rw=FALSE, mcmcPara, 
				num.reps, thin, chain, save)
	vs <- VS(fitGL, X=survObj$x)
				
	
## End(Not run)

Penalized Parametric and Semiparametric Bayesian Survival Models with Shrinkage and Grouping Priors

Description

The package provides algorithms for fitting penalized parametric and semiparametric Bayesian survival models with elastic net, fused lasso, and group lasso priors.

Details

The package includes following functions:

psbcEN The function to fit the PSBC model with elastic net prior
psbcFL The function to fit the PSBC model with fused lasso prior
psbcGL The function to fit the PSBC model with group lasso or Bayesian lasso prior
aftGL The function to fit the parametric accelerated failure time model with group lasso
aftGL_LT The function to fit the parametric accelerated failure time model with group lasso for left-truncated and interval-censored data
Package: psbcGroup
Type: Package
Version: 1.7
Date: 2024-1-9
License: GPL (>= 2)
LazyLoad: yes

Author(s)

Kyu Ha Lee, Sounak Chakraborty, Harrison Reeder, (Tony) Jianguo Sun
Maintainer: Kyu Ha Lee <[email protected]>

References

Lee, K. H., Chakraborty, S., and Sun, J. (2011). Bayesian Variable Selection in Semiparametric Proportional Hazards Model for High Dimensional Survival Data. The International Journal of Biostatistics, Volume 7, Issue 1, Pages 1-32.

Lee, K. H., Chakraborty, S., and Sun, J. (2015). Survival Prediction and Variable Selection with Simultaneous Shrinkage and Grouping Priors. Statistical Analysis and Data Mining, Volume 8, Issue 2, pages 114-127.

Lee, K. H., Chakraborty, S., and Sun, J. (2017). Variable Selection for High-Dimensional Genomic Data with Censored Outcomes Using Group Lasso Prior. Computational Statistics and Data Analysis, Volume 112, pages 1-13.

Reeder, H., Haneuse, S., Lee, K. H. (2023+). Group Lasso Priors for Bayesian Accelerated Failure Time Models with Left-Truncated and Interval-Censored Time-to-Event Data. under review


A simulated survival dataset.

Description

Univariate survival data.

Usage

data(survData)

Format

a data frame with 2000 observations on the following 4 variables.

time

the time to event

event

the censoring indicators for the event time; 1=event observed, 0=censored

cluster

cluster numbers

cov1

the first column of covariate matrix x

cov2

the second column of covariate matrix x

Examples

data(survData)

Function to perform variable selection using SNC-BIC thresholding method

Description

The VS is a function to perform variable selection using SNC-BIC thresholding method

Usage

VS(fit, X, psiVec=seq(0.001, 1, 0.001))

Arguments

fit

an object of class aftGL, psbcEN, psbcFL, or psbcGL.

X

a covariate matrix, n observations by p variables

psiVec

a vector of candidate threshold values for the SNC step

Author(s)

Kyu Ha Lee

References

Lee, K. H., Chakraborty, S., and Sun, J. (2017). Variable Selection for High-Dimensional Genomic Data with Censored Outcomes Using Group Lasso Prior. Computational Statistics and Data Analysis, Volume 112, pages 1-13.

See Also

psbcEN, psbcFL, psbcGL, aftGL