
Package: protr (via r-universe)
August 31, 2024

Version 1.7-3

Title Generating Various Numerical Representation Schemes for Protein
Sequences

Description Comprehensive toolkit for generating various numerical
features of protein sequences described in Xiao et al. (2015)
<DOI:10.1093/bioinformatics/btv042>. For full functionality,
the software 'ncbi-blast+' is needed, see
<https://blast.ncbi.nlm.nih.gov/doc/blast-help/downloadblastdata.html>
for more information.

License BSD_3_clause + file LICENSE

URL https://nanx.me/protr/, https://github.com/nanxstats/protr,

http://protr.org

BugReports https://github.com/nanxstats/protr/issues

Encoding UTF-8

LazyData true

SystemRequirements ncbi-blast+ (see
<https://blast.ncbi.nlm.nih.gov/doc/blast-help/downloadblastdata.html>)

VignetteBuilder knitr

Depends R (>= 3.0.2)

Suggests knitr, rmarkdown, Biostrings, GOSemSim, foreach, doParallel,
org.Hs.eg.db

RoxygenNote 7.3.2

NeedsCompilation no

Author Nan Xiao [aut, cre] (<https://orcid.org/0000-0002-0250-5673>),
Qing-Song Xu [aut], Dong-Sheng Cao [aut], Sebastian Mueller
[ctb] (Alva Genomics)

Maintainer Nan Xiao <me@nanx.me>

Repository CRAN

Date/Publication 2024-08-30 20:20:02 UTC

1

https://doi.org/10.1093/bioinformatics/btv042
https://blast.ncbi.nlm.nih.gov/doc/blast-help/downloadblastdata.html
https://nanx.me/protr/
https://github.com/nanxstats/protr
http://protr.org
https://github.com/nanxstats/protr/issues
https://orcid.org/0000-0002-0250-5673

2 Contents

Contents
AA2DACOR . 3
AA3DMoRSE . 4
AAACF . 4
AABLOSUM100 . 4
AABLOSUM45 . 5
AABLOSUM50 . 5
AABLOSUM62 . 5
AABLOSUM80 . 6
AABurden . 6
AAConn . 6
AAConst . 7
AACPSA . 7
AADescAll . 7
AAEdgeAdj . 8
AAEigIdx . 8
AAFGC . 8
AAGeom . 9
AAGETAWAY . 9
AAindex . 9
AAInfo . 10
AAMetaInfo . 10
AAMOE2D . 10
AAMOE3D . 11
AAMolProp . 11
AAPAM120 . 11
AAPAM250 . 12
AAPAM30 . 12
AAPAM40 . 12
AAPAM70 . 13
AARandic . 13
AARDF . 13
AATopo . 14
AATopoChg . 14
AAWalk . 14
AAWHIM . 15
acc . 15
crossSetSim . 16
crossSetSimDisk . 18
extractAAC . 20
extractAPAAC . 21
extractBLOSUM . 23
extractCTDC . 24
extractCTDCClass . 25
extractCTDD . 26
extractCTDDClass . 27
extractCTDT . 29

AA2DACOR 3

extractCTDTClass . 30
extractCTriad . 32
extractCTriadClass . 33
extractDC . 34
extractDescScales . 35
extractFAScales . 36
extractGeary . 37
extractMDSScales . 39
extractMoran . 41
extractMoreauBroto . 43
extractPAAC . 45
extractProtFP . 47
extractProtFPGap . 48
extractPSSM . 49
extractPSSMAcc . 52
extractPSSMFeature . 53
extractQSO . 55
extractScales . 56
extractScalesGap . 57
extractSOCN . 58
extractTC . 59
getUniProt . 60
OptAA3d . 61
parGOSim . 61
parSeqSim . 63
parSeqSimDisk . 64
protcheck . 66
protseg . 67
readFASTA . 68
readPDB . 69
removeGaps . 70
twoGOSim . 71
twoSeqSim . 72

Index 74

AA2DACOR 2D Autocorrelations Descriptors for 20 Amino Acids calculated by
Dragon

Description

This dataset includes the 2D autocorrelations descriptors of the 20 amino acids calculated by Dragon
(version 5.4) used for scales extraction in this package.

Examples

data(AA2DACOR)

4 AABLOSUM100

AA3DMoRSE 3D-MoRSE Descriptors for 20 Amino Acids calculated by Dragon

Description

This dataset includes the 3D-MoRSE descriptors of the 20 amino acids calculated by Dragon (ver-
sion 5.4) used for scales extraction in this package.

Examples

data(AA3DMoRSE)

AAACF Atom-Centred Fragments Descriptors for 20 Amino Acids calculated
by Dragon

Description

This dataset includes the atom-centred fragments descriptors of the 20 amino acids calculated by
Dragon (version 5.4) used for scales extraction in this package.

Examples

data(AAACF)

AABLOSUM100 BLOSUM100 Matrix for 20 Amino Acids

Description

BLOSUM100 Matrix for the 20 amino acids. The matrix was extracted from the Biostrings
package of Bioconductor.

Examples

data(AABLOSUM100)

AABLOSUM45 5

AABLOSUM45 BLOSUM45 Matrix for 20 Amino Acids

Description

BLOSUM45 Matrix for the 20 amino acids. The matrix was extracted from the Biostrings pack-
age of Bioconductor.

Examples

data(AABLOSUM45)

AABLOSUM50 BLOSUM50 Matrix for 20 Amino Acids

Description

BLOSUM50 Matrix for the 20 amino acids. The matrix was extracted from the Biostrings pack-
age of Bioconductor.

Examples

data(AABLOSUM50)

AABLOSUM62 BLOSUM62 Matrix for 20 Amino Acids

Description

BLOSUM62 Matrix for the 20 amino acids. The matrix was extracted from the Biostrings pack-
age of Bioconductor.

Examples

data(AABLOSUM62)

6 AAConn

AABLOSUM80 BLOSUM80 Matrix for 20 Amino Acids

Description

BLOSUM80 Matrix for the 20 amino acids. The matrix was extracted from the Biostrings pack-
age of Bioconductor.

Examples

data(AABLOSUM80)

AABurden Burden Eigenvalues Descriptors for 20 Amino Acids calculated by
Dragon

Description

This dataset includes the Burden eigenvalues descriptors of the 20 amino acids calculated by Dragon
(version 5.4) used for scales extraction in this package.

Examples

data(AABurden)

AAConn Connectivity Indices Descriptors for 20 Amino Acids calculated by
Dragon

Description

This dataset includes the connectivity indices descriptors of the 20 amino acids calculated by
Dragon (version 5.4) used for scales extraction in this package.

Examples

data(AAConn)

AAConst 7

AAConst Constitutional Descriptors for 20 Amino Acids calculated by Dragon

Description

This dataset includes the constitutional descriptors of the 20 amino acids calculated by Dragon
(version 5.4) used for scales extraction in this package.

Examples

data(AAConst)

AACPSA CPSA Descriptors for 20 Amino Acids calculated by Discovery Studio

Description

This dataset includes the CPSA descriptors of the 20 amino acids calculated by Discovery Studio
(version 2.5) used for scales extraction in this package.

Details

All amino acid molecules had also been optimized with MOE 2011.10 (semiempirical AM1) before
calculating these CPSA descriptors. The SDF file containing the information of the optimized
amino acid molecules is included in this package. See OptAA3d for more information.

Examples

data(AACPSA)

AADescAll All 2D Descriptors for 20 Amino Acids calculated by Dragon

Description

This dataset includes all the 2D descriptors of the 20 amino acids calculated by Dragon (version
5.4) used for scales extraction in this package.

Examples

data(AADescAll)

8 AAFGC

AAEdgeAdj Edge Adjacency Indices Descriptors for 20 Amino Acids calculated by
Dragon

Description

This dataset includes the edge adjacency indices descriptors of the 20 amino acids calculated by
Dragon (version 5.4) used for scales extraction in this package.

Examples

data(AAEdgeAdj)

AAEigIdx Eigenvalue-Based Indices Descriptors for 20 Amino Acids calculated
by Dragon

Description

This dataset includes the eigenvalue-based indices descriptors of the 20 amino acids calculated by
Dragon (version 5.4) used for scales extraction in this package.

Examples

data(AAEigIdx)

AAFGC Functional Group Counts Descriptors for 20 Amino Acids calculated
by Dragon

Description

This dataset includes the functional group counts descriptors of the 20 amino acids calculated by
Dragon (version 5.4) used for scales extraction in this package.

Examples

data(AAFGC)

AAGeom 9

AAGeom Geometrical Descriptors for 20 Amino Acids calculated by Dragon

Description

This dataset includes the geometrical descriptors of the 20 amino acids calculated by Dragon (ver-
sion 5.4) used for scales extraction in this package.

Examples

data(AAGeom)

AAGETAWAY GETAWAY Descriptors for 20 Amino Acids calculated by Dragon

Description

This dataset includes the GETAWAY descriptors of the 20 amino acids calculated by Dragon (ver-
sion 5.4) used for scales extraction in this package.

Examples

data(AAGETAWAY)

AAindex AAindex Data of 544 Physicochemical and Biological Properties for
20 Amino Acids

Description

The data was extracted from the AAindex1 database ver 9.1 (https://www.genome.jp/ftp/db/
community/aaindex/old/ver9.1/aaindex1) as of November, 2012 (data last modified on 2006-
08-14).

Details

With this dataset, users can investigate each property’s accession number and other details. See
https://www.genome.jp/aaindex/ for more information.

Examples

data(AAindex)

https://www.genome.jp/ftp/db/community/aaindex/old/ver9.1/aaindex1
https://www.genome.jp/ftp/db/community/aaindex/old/ver9.1/aaindex1
https://www.genome.jp/aaindex/

10 AAMOE2D

AAInfo Information Indices Descriptors for 20 Amino Acids calculated by
Dragon

Description

This dataset includes the information indices descriptors of the 20 amino acids calculated by Dragon
(version 5.4) used for scales extraction in this package.

Examples

data(AAInfo)

AAMetaInfo Meta Information for the 20 Amino Acids

Description

This dataset includes the meta information of the 20 amino acids used for the 2D and 3D descriptor
calculation in this package. Each column represents:

AAName Amino acid name

Short One-letter representation

Abbreviation Three-letter representation

mol SMILES representation

PUBCHEM_COMPOUND_CID PubChem CID for the amino acid

PUBCHEM_LINK PubChem link for the amino acid

Examples

data(AAMetaInfo)

AAMOE2D 2D Descriptors for 20 Amino Acids calculated by MOE 2011.10

Description

This dataset includes the 2D descriptors of the 20 amino acids calculated by MOE 2011.10 used for
scales extraction in this package.

Examples

data(AAMOE2D)

AAMOE3D 11

AAMOE3D 3D Descriptors for 20 Amino Acids calculated by MOE 2011.10

Description

This dataset includes the 3D descriptors of the 20 amino acids calculated by MOE 2011.10 used
for scales extraction in this package. All amino acid molecules had also been optimized with MOE
(semiempirical AM1) before calculating these 3D descriptors. The SDF file containing the infor-
mation of the optimized amino acid molecules is included in this package. See OptAA3d for more
information.

Examples

data(AAMOE3D)

AAMolProp Molecular Properties Descriptors for 20 Amino Acids calculated by
Dragon

Description

This dataset includes the molecular properties descriptors of the 20 amino acids calculated by
Dragon (version 5.4) used for scales extraction in this package.

Examples

data(AAMolProp)

AAPAM120 PAM120 Matrix for 20 Amino Acids

Description

PAM120 Matrix for the 20 amino acids. The matrix was extracted from the Biostrings package
of Bioconductor.

Examples

data(AAPAM120)

12 AAPAM40

AAPAM250 PAM250 Matrix for 20 Amino Acids

Description

PAM250 Matrix for the 20 amino acids. The matrix was extracted from the Biostrings package
of Bioconductor.

Examples

data(AAPAM250)

AAPAM30 PAM30 Matrix for 20 Amino Acids

Description

PAM30 Matrix for the 20 amino acids. The matrix was extracted from the Biostrings package of
Bioconductor.

Examples

data(AAPAM30)

AAPAM40 PAM40 Matrix for 20 Amino Acids

Description

PAM40 Matrix for the 20 amino acids. The matrix was extracted from the Biostrings package of
Bioconductor.

Examples

data(AAPAM40)

AAPAM70 13

AAPAM70 PAM70 Matrix for 20 Amino Acids

Description

PAM70 Matrix for the 20 amino acids. The matrix was extracted from the Biostrings package of
Bioconductor.

Examples

data(AAPAM70)

AARandic Randic Molecular Profiles Descriptors for 20 Amino Acids calculated
by Dragon

Description

This dataset includes the Randic molecular profiles descriptors of the 20 amino acids calculated by
Dragon (version 5.4) used for scales extraction in this package.

Examples

data(AARandic)

AARDF RDF Descriptors for 20 Amino Acids calculated by Dragon

Description

This dataset includes the RDF descriptors of the 20 amino acids calculated by Dragon (version 5.4)
used for scales extraction in this package.

Examples

data(AARDF)

14 AAWalk

AATopo Topological Descriptors for 20 Amino Acids calculated by Dragon

Description

This dataset includes the topological descriptors of the 20 amino acids calculated by Dragon (ver-
sion 5.4) used for scales extraction in this package.

Examples

data(AATopo)

AATopoChg Topological Charge Indices Descriptors for 20 Amino Acids calcu-
lated by Dragon

Description

This dataset includes the topological charge indices descriptors of the 20 amino acids calculated by
Dragon (version 5.4) used for scales extraction in this package.

Examples

data(AATopoChg)

AAWalk Walk and Path Counts Descriptors for 20 Amino Acids calculated by
Dragon

Description

This dataset includes the walk and path counts descriptors of the 20 amino acids calculated by
Dragon (version 5.4) used for scales extraction in this package.

Examples

data(AAWalk)

AAWHIM 15

AAWHIM WHIM Descriptors for 20 Amino Acids calculated by Dragon

Description

This dataset includes the WHIM descriptors of the 20 amino acids calculated by Dragon (version
5.4) used for scales extraction in this package.

Examples

data(AAWHIM)

acc Auto Cross Covariance (ACC) for Generating Scales-Based Descrip-
tors of the Same Length

Description

This function calculates the auto covariance and auto cross covariance for generating scale-based
descriptors of the same length.

Usage

acc(mat, lag)

Arguments

mat A p * n matrix. Each row represents one scale (total p scales), each column
represents one amino acid position (total n amino acids).

lag The lag parameter. Must be less than the amino acids.

Value

A length lag * p^2 named vector, the element names are constructed by: the scales index (crossed
scales index) and lag index.

Note

Please see the references for details about auto cross covariance.

Author(s)

Nan Xiao <https://nanx.me>

https://nanx.me

16 crossSetSim

References

Wold, S., Jonsson, J., Sjorstrom, M., Sandberg, M., & Rannar, S. (1993). DNA and peptide se-
quences and chemical processes multivariately modelled by principal component analysis and par-
tial least-squares projections to latent structures. Analytica chimica acta, 277(2), 239–253.

Sjostrom, M., Rannar, S., & Wieslander, A. (1995). Polypeptide sequence property relationships in
Escherichia coli based on auto cross covariances. Chemometrics and intelligent laboratory systems,
29(2), 295–305.

See Also

See extractScales for scales-based descriptors. For more details, see extractDescScales and
extractProtFP.

Examples

p <- 8 # p is the scales number
n <- 200 # n is the amino acid number
lag <- 7 # the lag paramter
mat <- matrix(rnorm(p * n), nrow = p, ncol = n)
acc(mat, lag)

crossSetSim Parallel Protein Sequence Similarity Calculation Between Two Sets
Based on Sequence Alignment (In-Memory Version)

Description

Parallel calculation of protein sequence similarity based on sequence alignment between two sets
of protein sequences.

Usage

crossSetSim(
protlist1,
protlist2,
type = "local",
cores = 2,
batches = 1,
verbose = FALSE,
submat = "BLOSUM62",
gap.opening = 10,
gap.extension = 4

)

crossSetSim 17

Arguments

protlist1 A length n list containing n protein sequences, each component of the list is a
character string, storing one protein sequence. Unknown sequences should be
represented as "".

protlist2 A length n list containing m protein sequences, each component of the list is a
character string, storing one protein sequence. Unknown sequences should be
represented as "".

type Type of alignment, default is "local", can be "global" or "local", where
"global" represents Needleman-Wunsch global alignment; "local" represents
Smith-Waterman local alignment.

cores Integer. The number of CPU cores to use for parallel execution, default is 2.
Users can use the availableCores() function in the parallelly package to see
how many cores they could use.

batches Integer. How many batches should we split the similarity computations into.
This is useful when you have a large number of protein sequences, enough num-
ber of CPU cores, but not enough RAM to compute and fit all the similarities
into a single batch. Defaults to 1.

verbose Print the computation progress? Useful when batches > 1.

submat Substitution matrix, default is "BLOSUM62", can be one of "BLOSUM45", "BLOSUM50",
"BLOSUM62", "BLOSUM80", "BLOSUM100", "PAM30", "PAM40", "PAM70", "PAM120",
or "PAM250".

gap.opening The cost required to open a gap of any length in the alignment. Defaults to 10.

gap.extension The cost to extend the length of an existing gap by 1. Defaults to 4.

Value

A n x m similarity matrix.

Author(s)

Sebastian Mueller <https://alva-genomics.com>

Examples

Not run:

Be careful when testing this since it involves parallelization
and might produce unpredictable results in some environments

library("Biostrings")
library("foreach")
library("doParallel")

s1 <- readFASTA(system.file("protseq/P00750.fasta", package = "protr"))[[1]]
s2 <- readFASTA(system.file("protseq/P08218.fasta", package = "protr"))[[1]]
s3 <- readFASTA(system.file("protseq/P10323.fasta", package = "protr"))[[1]]
s4 <- readFASTA(system.file("protseq/P20160.fasta", package = "protr"))[[1]]

https://alva-genomics.com

18 crossSetSimDisk

s5 <- readFASTA(system.file("protseq/Q9NZP8.fasta", package = "protr"))[[1]]

plist1 <- list(s1 = s1, s2 = s2, s4 = s4)
plist2 <- list(s3 = s3, s4_again = s4, s5 = s5, s1_again = s1)
psimmat <- crossSetSim(plist1, plist2)
colnames(psimmat) <- names(plist1)
rownames(psimmat) <- names(plist2)
print(psimmat)
s1 s2 s4
s3 0.10236985 0.18858241 0.05819984
s4_again 0.04921696 0.12124217 1.00000000
s5 0.03943488 0.06391103 0.05714638
s1_again 1.00000000 0.11825938 0.04921696

End(Not run)

crossSetSimDisk Parallel Protein Sequence Similarity Calculation Between Two Sets
Based on Sequence Alignment (Disk-Based Version)

Description

Parallel calculation of protein sequence similarity based on sequence alignment between two sets
of protein sequences. This version offloads the partial results in each batch to the hard drive and
merges the results together in the end, which reduces the memory usage.

Usage

crossSetSimDisk(
protlist1,
protlist2,
cores = 2,
batches = 1,
path = tempdir(),
verbose = FALSE,
type = "local",
submat = "BLOSUM62",
gap.opening = 10,
gap.extension = 4

)

Arguments

protlist1 A length n list containing n protein sequences, each component of the list is a
character string, storing one protein sequence. Unknown sequences should be
represented as "".

protlist2 A length n list containing m protein sequences, each component of the list is a
character string, storing one protein sequence. Unknown sequences should be
represented as "".

crossSetSimDisk 19

cores Integer. The number of CPU cores to use for parallel execution, default is 2.
Users can use the availableCores() function in the parallelly package to see
how many cores they could use.

batches Integer. How many batches should we split the pairwise similarity computations
into. This is useful when you have a large number of protein sequences, enough
number of CPU cores, but not enough RAM to compute and fit all the pairwise
similarities into a single batch. Defaults to 1.

path Directory for caching the results in each batch. Defaults to the temporary direc-
tory.

verbose Print the computation progress? Useful when batches > 1.

type Type of alignment, default is "local", can be "global" or "local", where
"global" represents Needleman-Wunsch global alignment; "local" represents
Smith-Waterman local alignment.

submat Substitution matrix, default is "BLOSUM62", can be one of "BLOSUM45", "BLOSUM50",
"BLOSUM62", "BLOSUM80", "BLOSUM100", "PAM30", "PAM40", "PAM70", "PAM120",
or "PAM250".

gap.opening The cost required to open a gap of any length in the alignment. Defaults to 10.

gap.extension The cost to extend the length of an existing gap by 1. Defaults to 4.

Value

A n x m similarity matrix.

Author(s)

Nan Xiao <https://nanx.me>

See Also

See crossSetSim for the in-memory version.

Examples

Not run:

Be careful when testing this since it involves parallelization
and might produce unpredictable results in some environments

library("Biostrings")
library("foreach")
library("doParallel")

s1 <- readFASTA(system.file("protseq/P00750.fasta", package = "protr"))[[1]]
s2 <- readFASTA(system.file("protseq/P08218.fasta", package = "protr"))[[1]]
s3 <- readFASTA(system.file("protseq/P10323.fasta", package = "protr"))[[1]]
s4 <- readFASTA(system.file("protseq/P20160.fasta", package = "protr"))[[1]]
s5 <- readFASTA(system.file("protseq/Q9NZP8.fasta", package = "protr"))[[1]]

set.seed(1010)

https://nanx.me

20 extractAAC

plist1 <- as.list(c(s1, s2, s3, s4, s5)[sample(1:5, 100, replace = TRUE)])
plist2 <- as.list(c(s1, s2, s3, s4, s5)[sample(1:5, 100, replace = TRUE)])
psimmat <- crossSetSimDisk(

plist1, plist2,
cores = 2, batches = 10, verbose = TRUE,
type = "local", submat = "BLOSUM62"

)

End(Not run)

extractAAC Amino Acid Composition Descriptor

Description

This function calculates the Amino Acid Composition descriptor (dim: 20).

Usage

extractAAC(x)

Arguments

x A character vector, as the input protein sequence.

Value

A length 20 named vector

Author(s)

Nan Xiao <https://nanx.me>

References

M. Bhasin, G. P. S. Raghava. Classification of Nuclear Receptors Based on Amino Acid Composi-
tion and Dipeptide Composition. Journal of Biological Chemistry, 2004, 279, 23262.

See Also

See extractDC and extractTC for Dipeptide Composition and Tripeptide Composition descriptors.

Examples

x <- readFASTA(system.file("protseq/P00750.fasta", package = "protr"))[[1]]
extractAAC(x)

https://nanx.me

extractAPAAC 21

extractAPAAC Amphiphilic Pseudo Amino Acid Composition (APseAAC) Descriptor

Description

This function calculates the Amphiphilic Pseudo Amino Acid Composition (APseAAC, or APAAC)
descriptor (dim: 20 + (n * lambda), n is the number of properties selected, default is 80).

Usage

extractAPAAC(
x,
props = c("Hydrophobicity", "Hydrophilicity"),
lambda = 30,
w = 0.05,
customprops = NULL

)

Arguments

x A character vector, as the input protein sequence.

props A character vector, specifying the properties used. 2 properties are used by
default, as listed below:

’Hydrophobicity’ Hydrophobicity value of the 20 amino acids
’Hydrophilicity’ Hydrophilicity value of the 20 amino acids

lambda The lambda parameter for the APAAC descriptors, default is 30.

w The weighting factor, default is 0.05.

customprops A n x 21 named data frame contains n customized property. Each row contains
one property. The column order for different amino acid types is 'AccNo', 'A',
'R', 'N', 'D', 'C', 'E', 'Q', 'G', 'H', 'I', 'L', 'K', 'M', 'F', 'P', 'S',
'T', 'W', 'Y', 'V', and the columns should also be exactly named like this.
The AccNo column contains the properties’ names. Then users should explicitly
specify these properties with these names in the argument props. See the exam-
ples below for a demonstration. The default value for customprops is NULL.

Value

A length 20 + n * lambda named vector, n is the number of properties selected.

Note

Note the default 20 * 2 prop values have already been independently given in the function. Users
can also specify other (up to 544) properties with the Accession Number in the AAindex data, with
or without the default three properties, which means users should explicitly specify the properties
to use. For this descriptor type, users need to intelligently evaluate the underlying details of the
descriptors provided, instead of using this function with their data blindly. It would be wise to use

22 extractAPAAC

some negative and positive control comparisons where relevant to help guide interpretation of the
results.

Author(s)

Nan Xiao <https://nanx.me>

References

Kuo-Chen Chou. Prediction of Protein Cellular Attributes Using Pseudo-Amino Acid Composition.
PROTEINS: Structure, Function, and Genetics, 2001, 43: 246-255.

Kuo-Chen Chou. Using Amphiphilic Pseudo Amino Acid Composition to Predict Enzyme Sub-
family Classes. Bioinformatics, 2005, 21, 10-19.

JACS, 1962, 84: 4240-4246. (C. Tanford). (The hydrophobicity data)

PNAS, 1981, 78:3824-3828 (T.P.Hopp & K.R.Woods). (The hydrophilicity data)

See Also

See extractPAAC for the pseudo amino acid composition (PseAAC) descriptor.

Examples

x <- readFASTA(system.file("protseq/P00750.fasta", package = "protr"))[[1]]
extractAPAAC(x)

myprops <- data.frame(
AccNo = c("MyProp1", "MyProp2", "MyProp3"),
A = c(0.62, -0.5, 15), R = c(-2.53, 3, 101),
N = c(-0.78, 0.2, 58), D = c(-0.9, 3, 59),
C = c(0.29, -1, 47), E = c(-0.74, 3, 73),
Q = c(-0.85, 0.2, 72), G = c(0.48, 0, 1),
H = c(-0.4, -0.5, 82), I = c(1.38, -1.8, 57),
L = c(1.06, -1.8, 57), K = c(-1.5, 3, 73),
M = c(0.64, -1.3, 75), F = c(1.19, -2.5, 91),
P = c(0.12, 0, 42), S = c(-0.18, 0.3, 31),
T = c(-0.05, -0.4, 45), W = c(0.81, -3.4, 130),
Y = c(0.26, -2.3, 107), V = c(1.08, -1.5, 43)

)

use 2 default properties, 4 properties from the
AAindex database, and 3 cutomized properties
extractAPAAC(

x,
customprops = myprops,
props = c(
"Hydrophobicity", "Hydrophilicity",
"CIDH920105", "BHAR880101",
"CHAM820101", "CHAM820102",
"MyProp1", "MyProp2", "MyProp3"

)
)

https://nanx.me

extractBLOSUM 23

extractBLOSUM BLOSUM and PAM Matrix-Derived Descriptors

Description

This function calculates BLOSUM matrix-derived descriptors. For users’ convenience, protr pro-
vides the BLOSUM45, BLOSUM50, BLOSUM62, BLOSUM80, BLOSUM100, PAM30, PAM40,
PAM70, PAM120, and PAM250 matrices for the 20 amino acids to select from.

Usage

extractBLOSUM(x, submat = "AABLOSUM62", k, lag, scale = TRUE, silent = TRUE)

Arguments

x A character vector, as the input protein sequence.

submat Substitution matrix for the 20 amino acids. Should be one of AABLOSUM45,
AABLOSUM50, AABLOSUM62, AABLOSUM80, AABLOSUM100, AAPAM30, AAPAM40, AAPAM70,
AAPAM120, or AAPAM250. Default is "AABLOSUM62".

k Integer. The number of selected scales (i.e. the first k scales) derived by the
substitution matrix. This can be selected according to the printed relative im-
portance values.

lag The lag parameter. Must be less than the amino acids.

scale Logical. Should we auto-scale the substitution matrix (submat) before doing
eigen decomposition? Default is TRUE.

silent Logical. Whether we print the relative importance of each scales (diagnal value
of the eigen decomposition result matrix B) or not. Default is TRUE.

Value

A length lag * p^2 named vector, p is the number of scales selected.

Author(s)

Nan Xiao <https://nanx.me>

References

Georgiev, A. G. (2009). Interpretable numerical descriptors of amino acid space. Journal of Com-
putational Biology, 16(5), 703–723.

Examples

x <- readFASTA(system.file("protseq/P00750.fasta", package = "protr"))[[1]]
blosum <- extractBLOSUM(x, submat = "AABLOSUM62", k = 5, lag = 7, scale = TRUE, silent = FALSE)

https://nanx.me

24 extractCTDC

extractCTDC CTD Descriptors - Composition

Description

This function calculates the Composition descriptor of the CTD descriptors (dim: 21).

Usage

extractCTDC(x)

Arguments

x A character vector, as the input protein sequence.

Value

A length 21 named vector

Note

For this descriptor type, users need to intelligently evaluate the underlying details of the descriptors
provided, instead of using this function with their data blindly. It would be wise to use some negative
and positive control comparisons where relevant to help guide interpretation of the results.

Author(s)

Nan Xiao <https://nanx.me>

References

Inna Dubchak, Ilya Muchink, Stephen R. Holbrook and Sung-Hou Kim. Prediction of protein fold-
ing class using global description of amino acid sequence. Proceedings of the National Academy of
Sciences. USA, 1995, 92, 8700-8704.

Inna Dubchak, Ilya Muchink, Christopher Mayor, Igor Dralyuk and Sung-Hou Kim. Recognition
of a Protein Fold in the Context of the SCOP classification. Proteins: Structure, Function and
Genetics, 1999, 35, 401-407.

See Also

See extractCTDT and extractCTDD for Transition and Distribution of the CTD descriptors.

Examples

x <- readFASTA(system.file("protseq/P00750.fasta", package = "protr"))[[1]]
extractCTDC(x)

https://nanx.me

extractCTDCClass 25

extractCTDCClass CTD Descriptors - Composition (with customized amino acid classifi-
cation support)

Description

This function calculates the Composition descriptor of the CTD descriptors, with customized amino
acid classification support.

Usage

extractCTDCClass(x, aagroup1, aagroup2, aagroup3)

Arguments

x A character vector, as the input protein sequence.

aagroup1 A named list which contains the first group of customized amino acid classifica-
tion. See example below.

aagroup2 A named list which contains the second group of customized amino acid classi-
fication. See example below.

aagroup3 A named list which contains the third group of customized amino acid classifi-
cation. See example below.

Value

A length k * 3 named vector, k is the number of amino acid properties used.

Note

For this descriptor type, users need to intelligently evaluate the underlying details of the descriptors
provided, instead of using this function with their data blindly. It would be wise to use some negative
and positive control comparisons where relevant to help guide interpretation of the results.

Author(s)

Nan Xiao <https://nanx.me>

References

Inna Dubchak, Ilya Muchink, Stephen R. Holbrook and Sung-Hou Kim. Prediction of protein fold-
ing class using global description of amino acid sequence. Proceedings of the National Academy of
Sciences. USA, 1995, 92, 8700-8704.

Inna Dubchak, Ilya Muchink, Christopher Mayor, Igor Dralyuk and Sung-Hou Kim. Recognition
of a Protein Fold in the Context of the SCOP classification. Proteins: Structure, Function and
Genetics, 1999, 35, 401-407.

https://nanx.me

26 extractCTDD

See Also

See extractCTDTClass and extractCTDDClass for Transition and Distribution of the CTD de-
scriptors with customized amino acid classification support.

Examples

x <- readFASTA(system.file("protseq/P00750.fasta", package = "protr"))[[1]]

using five customized amino acid property classification
group1 <- list(

"hydrophobicity" = c("R", "K", "E", "D", "Q", "N"),
"normwaalsvolume" = c("G", "A", "S", "T", "P", "D", "C"),
"polarizability" = c("G", "A", "S", "D", "T"),
"secondarystruct" = c("E", "A", "L", "M", "Q", "K", "R", "H"),
"solventaccess" = c("A", "L", "F", "C", "G", "I", "V", "W")

)

group2 <- list(
"hydrophobicity" = c("G", "A", "S", "T", "P", "H", "Y"),
"normwaalsvolume" = c("N", "V", "E", "Q", "I", "L"),
"polarizability" = c("C", "P", "N", "V", "E", "Q", "I", "L"),
"secondarystruct" = c("V", "I", "Y", "C", "W", "F", "T"),
"solventaccess" = c("R", "K", "Q", "E", "N", "D")

)

group3 <- list(
"hydrophobicity" = c("C", "L", "V", "I", "M", "F", "W"),
"normwaalsvolume" = c("M", "H", "K", "F", "R", "Y", "W"),
"polarizability" = c("K", "M", "H", "F", "R", "Y", "W"),
"secondarystruct" = c("G", "N", "P", "S", "D"),
"solventaccess" = c("M", "S", "P", "T", "H", "Y")

)

extractCTDCClass(x, aagroup1 = group1, aagroup2 = group2, aagroup3 = group3)

extractCTDD CTD Descriptors - Distribution

Description

This function calculates the Distribution descriptor of the CTD descriptors (dim: 105).

Usage

extractCTDD(x)

Arguments

x A character vector, as the input protein sequence.

extractCTDDClass 27

Value

A length 105 named vector

Note

For this descriptor type, users need to intelligently evaluate the underlying details of the descriptors
provided, instead of using this function with their data blindly. It would be wise to use some negative
and positive control comparisons where relevant to help guide interpretation of the results.

Author(s)

Nan Xiao <https://nanx.me>

References

Inna Dubchak, Ilya Muchink, Stephen R. Holbrook and Sung-Hou Kim. Prediction of protein fold-
ing class using global description of amino acid sequence. Proceedings of the National Academy of
Sciences. USA, 1995, 92, 8700-8704.

Inna Dubchak, Ilya Muchink, Christopher Mayor, Igor Dralyuk and Sung-Hou Kim. Recognition
of a Protein Fold in the Context of the SCOP classification. Proteins: Structure, Function and
Genetics, 1999, 35, 401-407.

See Also

See extractCTDC and extractCTDT for Composition and Transition of the CTD descriptors.

Examples

x <- readFASTA(system.file("protseq/P00750.fasta", package = "protr"))[[1]]
extractCTDD(x)

extractCTDDClass CTD Descriptors - Distribution (with customized amino acid classifi-
cation support)

Description

This function calculates the Distribution descriptor of the CTD descriptors, with customized amino
acid classification support.

Usage

extractCTDDClass(x, aagroup1, aagroup2, aagroup3)

https://nanx.me

28 extractCTDDClass

Arguments

x A character vector, as the input protein sequence.

aagroup1 A named list which contains the first group of customized amino acid classifica-
tion. See example below.

aagroup2 A named list which contains the second group of customized amino acid classi-
fication. See example below.

aagroup3 A named list which contains the third group of customized amino acid classifi-
cation. See example below.

Value

A length k * 15 named vector, k is the number of amino acid properties used.

Note

For this descriptor type, users need to intelligently evaluate the underlying details of the descriptors
provided, instead of using this function with their data blindly. It would be wise to use some negative
and positive control comparisons where relevant to help guide interpretation of the results.

Author(s)

Nan Xiao <https://nanx.me>

References

Inna Dubchak, Ilya Muchink, Stephen R. Holbrook and Sung-Hou Kim. Prediction of protein fold-
ing class using global description of amino acid sequence. Proceedings of the National Academy of
Sciences. USA, 1995, 92, 8700-8704.

Inna Dubchak, Ilya Muchink, Christopher Mayor, Igor Dralyuk and Sung-Hou Kim. Recognition
of a Protein Fold in the Context of the SCOP classification. Proteins: Structure, Function and
Genetics, 1999, 35, 401-407.

See Also

See extractCTDCClass and extractCTDTClass for Composition and Transition of the CTD de-
scriptors with customized amino acid classification support.

Examples

x <- readFASTA(system.file("protseq/P00750.fasta", package = "protr"))[[1]]

using five customized amino acid property classification
group1 <- list(

"hydrophobicity" = c("R", "K", "E", "D", "Q", "N"),
"normwaalsvolume" = c("G", "A", "S", "T", "P", "D", "C"),
"polarizability" = c("G", "A", "S", "D", "T"),
"secondarystruct" = c("E", "A", "L", "M", "Q", "K", "R", "H"),
"solventaccess" = c("A", "L", "F", "C", "G", "I", "V", "W")

)

https://nanx.me

extractCTDT 29

group2 <- list(
"hydrophobicity" = c("G", "A", "S", "T", "P", "H", "Y"),
"normwaalsvolume" = c("N", "V", "E", "Q", "I", "L"),
"polarizability" = c("C", "P", "N", "V", "E", "Q", "I", "L"),
"secondarystruct" = c("V", "I", "Y", "C", "W", "F", "T"),
"solventaccess" = c("R", "K", "Q", "E", "N", "D")

)

group3 <- list(
"hydrophobicity" = c("C", "L", "V", "I", "M", "F", "W"),
"normwaalsvolume" = c("M", "H", "K", "F", "R", "Y", "W"),
"polarizability" = c("K", "M", "H", "F", "R", "Y", "W"),
"secondarystruct" = c("G", "N", "P", "S", "D"),
"solventaccess" = c("M", "S", "P", "T", "H", "Y")

)

extractCTDDClass(x, aagroup1 = group1, aagroup2 = group2, aagroup3 = group3)

extractCTDT CTD Descriptors - Transition

Description

This function calculates the Transition descriptor of the CTD descriptors (dim: 21).

Usage

extractCTDT(x)

Arguments

x A character vector, as the input protein sequence.

Value

A length 21 named vector

Note

For this descriptor type, users need to intelligently evaluate the underlying details of the descriptors
provided, instead of using this function with their data blindly. It would be wise to use some negative
and positive control comparisons where relevant to help guide interpretation of the results.

Author(s)

Nan Xiao <https://nanx.me>

https://nanx.me

30 extractCTDTClass

References

Inna Dubchak, Ilya Muchink, Stephen R. Holbrook and Sung-Hou Kim. Prediction of protein fold-
ing class using global description of amino acid sequence. Proceedings of the National Academy of
Sciences. USA, 1995, 92, 8700-8704.

Inna Dubchak, Ilya Muchink, Christopher Mayor, Igor Dralyuk and Sung-Hou Kim. Recognition
of a Protein Fold in the Context of the SCOP classification. Proteins: Structure, Function and
Genetics, 1999, 35, 401-407.

See Also

See extractCTDC and extractCTDD for Composition and Distribution of the CTD descriptors.

Examples

x <- readFASTA(system.file("protseq/P00750.fasta", package = "protr"))[[1]]
extractCTDT(x)

extractCTDTClass CTD Descriptors - Transition (with customized amino acid classifica-
tion support)

Description

This function calculates the Transition descriptor of the CTD descriptors, with customized amino
acid classification support.

Usage

extractCTDTClass(x, aagroup1, aagroup2, aagroup3)

Arguments

x A character vector, as the input protein sequence.

aagroup1 A named list which contains the first group of customized amino acid classifica-
tion. See example below.

aagroup2 A named list which contains the second group of customized amino acid classi-
fication. See example below.

aagroup3 A named list which contains the third group of customized amino acid classifi-
cation. See example below.

Value

A length k * 3 named vector, k is the number of amino acid properties used.

extractCTDTClass 31

Note

For this descriptor type, users need to intelligently evaluate the underlying details of the descriptors
provided, instead of using this function with their data blindly. It would be wise to use some negative
and positive control comparisons where relevant to help guide interpretation of the results.

Author(s)

Nan Xiao <https://nanx.me>

References

Inna Dubchak, Ilya Muchink, Stephen R. Holbrook and Sung-Hou Kim. Prediction of protein fold-
ing class using global description of amino acid sequence. Proceedings of the National Academy of
Sciences. USA, 1995, 92, 8700-8704.

Inna Dubchak, Ilya Muchink, Christopher Mayor, Igor Dralyuk and Sung-Hou Kim. Recognition
of a Protein Fold in the Context of the SCOP classification. Proteins: Structure, Function and
Genetics, 1999, 35, 401-407.

See Also

See extractCTDCClass and extractCTDDClass for Composition and Distribution of the CTD
descriptors with customized amino acid classification support.

Examples

x <- readFASTA(system.file("protseq/P00750.fasta", package = "protr"))[[1]]

using five customized amino acid property classification
group1 <- list(

"hydrophobicity" = c("R", "K", "E", "D", "Q", "N"),
"normwaalsvolume" = c("G", "A", "S", "T", "P", "D", "C"),
"polarizability" = c("G", "A", "S", "D", "T"),
"secondarystruct" = c("E", "A", "L", "M", "Q", "K", "R", "H"),
"solventaccess" = c("A", "L", "F", "C", "G", "I", "V", "W")

)

group2 <- list(
"hydrophobicity" = c("G", "A", "S", "T", "P", "H", "Y"),
"normwaalsvolume" = c("N", "V", "E", "Q", "I", "L"),
"polarizability" = c("C", "P", "N", "V", "E", "Q", "I", "L"),
"secondarystruct" = c("V", "I", "Y", "C", "W", "F", "T"),
"solventaccess" = c("R", "K", "Q", "E", "N", "D")

)

group3 <- list(
"hydrophobicity" = c("C", "L", "V", "I", "M", "F", "W"),
"normwaalsvolume" = c("M", "H", "K", "F", "R", "Y", "W"),
"polarizability" = c("K", "M", "H", "F", "R", "Y", "W"),
"secondarystruct" = c("G", "N", "P", "S", "D"),
"solventaccess" = c("M", "S", "P", "T", "H", "Y")

)

https://nanx.me

32 extractCTriad

extractCTDTClass(x, aagroup1 = group1, aagroup2 = group2, aagroup3 = group3)

extractCTriad Conjoint Triad Descriptor

Description

This function calculates the Conjoint Triad descriptor (dim: 343).

Usage

extractCTriad(x)

Arguments

x A character vector, as the input protein sequence.

Value

A length 343 named vector

Note

For this descriptor type, users need to intelligently evaluate the underlying details of the descriptors
provided, instead of using this function with their data blindly. It would be wise to use some negative
and positive control comparisons where relevant to help guide interpretation of the results.

Author(s)

Nan Xiao <https://nanx.me>

References

J.W. Shen, J. Zhang, X.M. Luo, W.L. Zhu, K.Q. Yu, K.X. Chen, Y.X. Li, H.L. Jiang. Predicting
Protein-protein Interactions Based Only on Sequences Information. Proceedings of the National
Academy of Sciences. 007, 104, 4337–4341.

Examples

x <- readFASTA(system.file("protseq/P00750.fasta", package = "protr"))[[1]]
extractCTriad(x)

https://nanx.me

extractCTriadClass 33

extractCTriadClass Conjoint Triad Descriptor (with customized amino acid classification
support)

Description

This function calculates the Conjoint Triad descriptor, with customized amino acid classification
support.

Usage

extractCTriadClass(x, aaclass)

Arguments

x A character vector, as the input protein sequence.

aaclass A list containing the customized amino acid classification. See example below.

Value

A length k^3 named vector, where k is the number of customized classes of the amino acids.

Note

For this descriptor type, users need to intelligently evaluate the underlying details of the descriptors
provided, instead of using this function with their data blindly. It would be wise to use some negative
and positive control comparisons where relevant to help guide interpretation of the results.

Author(s)

Nan Xiao <https://nanx.me>

References

J.W. Shen, J. Zhang, X.M. Luo, W.L. Zhu, K.Q. Yu, K.X. Chen, Y.X. Li, H.L. Jiang. Predicting
Protein-protein Interactions Based Only on Sequences Information. Proceedings of the National
Academy of Sciences. 007, 104, 4337–4341.

Examples

x <- readFASTA(system.file("protseq/P00750.fasta", package = "protr"))[[1]]

use customized amino acid classification (normalized van der Waals volume)
newclass <- list(

c("G", "A", "S", "T", "P", "D", "C"),
c("N", "V", "E", "Q", "I", "L"),
c("M", "H", "K", "F", "R", "Y", "W")

)

https://nanx.me

34 extractDC

extractCTriadClass(x, aaclass = newclass)

extractDC Dipeptide Composition Descriptor

Description

This function calculates the Dipeptide Composition descriptor (dim: 400).

Usage

extractDC(x)

Arguments

x A character vector, as the input protein sequence.

Value

A length 400 named vector

Author(s)

Nan Xiao <https://nanx.me>

References

M. Bhasin, G. P. S. Raghava. Classification of Nuclear Receptors Based on Amino Acid Composi-
tion and Dipeptide Composition. Journal of Biological Chemistry, 2004, 279, 23262.

See Also

See extractAAC and extractTC for Amino Acid Composition and Tripeptide Composition de-
scriptors.

Examples

x <- readFASTA(system.file("protseq/P00750.fasta", package = "protr"))[[1]]
extractDC(x)

https://nanx.me

extractDescScales 35

extractDescScales Scales-Based Descriptors with 20+ classes of Molecular Descriptors

Description

This function calculates the scales-based descriptors with molecular descriptors sets calculated by
Dragon, Discovery Studio and MOE. Users can specify which molecular descriptors to select from
one of these deseriptor sets by specify the numerical or character index of the molecular descriptors
in the descriptor set.

Usage

extractDescScales(
x,
propmat,
index = NULL,
pc,
lag,
scale = TRUE,
silent = TRUE

)

Arguments

x A character vector, as the input protein sequence.

propmat The matrix containing the descriptor set for the amino acids, which can be
chosen from AAMOE2D, AAMOE3D, AACPSA, AADescAll, AA2DACOR, AA3DMoRSE,
AAACF, AABurden, AAConn, AAConst, AAEdgeAdj, AAEigIdx, AAFGC, AAGeom,
AAGETAWAY, AAInfo, AAMolProp, AARandic, AARDF, AATopo, AATopoChg, AAWalk,
and AAWHIM.

index Integer vector or character vector. Specify which molecular descriptors to select
from one of these deseriptor sets by specify the numerical or character index of
the molecular descriptors in the descriptor set. Default is NULL, which means
selecting all the molecular descriptors in this descriptor set.

pc Integer. The maximum dimension of the space which the data are to be repre-
sented in. Must be no greater than the number of amino acid properties provided.

lag The lag parameter. Must be less than the amino acids.

scale Logical. Should we auto-scale the property matrix (propmat) before doing
MDS? Default is TRUE.

silent Logical. Whether we print the standard deviation, proportion of variance and
the cumulative proportion of the selected principal components or not. Default
is TRUE.

Value

A length lag * p^2 named vector, p is the number of scales selected.

36 extractFAScales

Author(s)

Nan Xiao <https://nanx.me>

Examples

x <- readFASTA(system.file("protseq/P00750.fasta", package = "protr"))[[1]]
descscales <- extractDescScales(

x,
propmat = "AATopo", index = c(37:41, 43:47),
pc = 5, lag = 7, silent = FALSE

)

extractFAScales Scales-Based Descriptors derived by Factor Analysis

Description

This function calculates scales-based descriptors derived by Factor Analysis (FA). Users can pro-
vide customized amino acid property matrices.

Usage

extractFAScales(
x,
propmat,
factors,
scores = "regression",
lag,
scale = TRUE,
silent = TRUE

)

Arguments

x A character vector, as the input protein sequence.

propmat A matrix containing the properties for the amino acids. Each row represent one
amino acid type, each column represents one property. Note that the one-letter
row names must be provided for we need them to seek the properties for each
AA type.

factors Integer. The number of factors to be fitted. Must be no greater than the number
of AA properties provided.

scores Type of scores to produce. The default is "regression", which gives Thomp-
son’s scores, "Bartlett" given Bartlett’s weighted least-squares scores.

lag The lag parameter. Must be less than the amino acids number in the protein
sequence.

https://nanx.me

extractGeary 37

scale Logical. Should we auto-scale the property matrix (propmat) before doing Fac-
tor Analysis? Default is TRUE.

silent Logical. Whether we print the SS loadings, proportion of variance and the cu-
mulative proportion of the selected factors or not. Default is TRUE.

Value

A length lag * p^2 named vector, p is the number of scales (factors) selected.

Author(s)

Nan Xiao <https://nanx.me>

References

Atchley, W. R., Zhao, J., Fernandes, A. D., & Druke, T. (2005). Solving the protein sequence
metric problem. Proceedings of the National Academy of Sciences of the United States of America,
102(18), 6395-6400.

Examples

x <- readFASTA(system.file("protseq/P00750.fasta", package = "protr"))[[1]]
data(AATopo)
tprops <- AATopo[, c(37:41, 43:47)] # select a set of topological descriptors
fa <- extractFAScales(x, propmat = tprops, factors = 5, lag = 7, silent = FALSE)

extractGeary Geary Autocorrelation Descriptor

Description

This function calculates the Geary autocorrelation descriptor (dim: length(props) * nlag).

Usage

extractGeary(
x,
props = c("CIDH920105", "BHAR880101", "CHAM820101", "CHAM820102", "CHOC760101",

"BIGC670101", "CHAM810101", "DAYM780201"),
nlag = 30L,
customprops = NULL

)

https://nanx.me

38 extractGeary

Arguments

x A character vector, as the input protein sequence.

props A character vector, specifying the Accession Number of the target properties. 8
properties are used by default, as listed below:

AccNo. CIDH920105 Normalized average hydrophobicity scales (Cid et al.,
1992)

AccNo. BHAR880101 Average flexibility indices (Bhaskaran-Ponnuswamy, 1988)
AccNo. CHAM820101 Polarizability parameter (Charton-Charton, 1982)
AccNo. CHAM820102 Free energy of solution in water, kcal/mole (Charton-

Charton, 1982)
AccNo. CHOC760101 Residue accessible surface area in tripeptide (Chothia,

1976)
AccNo. BIGC670101 Residue volume (Bigelow, 1967)
AccNo. CHAM810101 Steric parameter (Charton, 1981)
AccNo. DAYM780201 Relative mutability (Dayhoff et al., 1978b)

nlag Maximum value of the lag parameter. Default is 30.

customprops A n x 21 named data frame contains n customized property. Each row contains
one property. The column order for different amino acid types is 'AccNo', 'A',
'R', 'N', 'D', 'C', 'E', 'Q', 'G', 'H', 'I', 'L', 'K', 'M', 'F', 'P', 'S',
'T', 'W', 'Y', 'V', and the columns should also be exactly named like this.
The AccNo column contains the properties’ names. Then users should explicitly
specify these properties with these names in the argument props. See the exam-
ples below for a demonstration. The default value for customprops is NULL.

Value

A length length(props) * nlag named vector.

Note

For this descriptor type, users need to intelligently evaluate the underlying details of the descriptors
provided, instead of using this function with their data blindly. It would be wise to use some negative
and positive control comparisons where relevant to help guide interpretation of the results.

Author(s)

Nan Xiao <https://nanx.me>

References

AAindex: Amino acid index database. https://www.genome.jp/dbget/aaindex.html

Feng, Z.P. and Zhang, C.T. (2000) Prediction of membrane protein types based on the hydrophobic
index of amino acids. Journal of Protein Chemistry, 19, 269-275.

Horne, D.S. (1988) Prediction of protein helix content from an autocorrelation analysis of sequence
hydrophobicities. Biopolymers, 27, 451-477.

https://nanx.me
https://www.genome.jp/dbget/aaindex.html

extractMDSScales 39

Sokal, R.R. and Thomson, B.A. (2006) Population structure inferred by local spatial autocorrela-
tion: an usage from an Amerindian tribal population. American Journal of Physical Anthropology,
129, 121-131.

See Also

See extractMoreauBroto and extractMoran for Moreau-Broto autocorrelation descriptors and
Moran autocorrelation descriptors.

Examples

x <- readFASTA(system.file("protseq/P00750.fasta", package = "protr"))[[1]]
extractGeary(x)

myprops <- data.frame(
AccNo = c("MyProp1", "MyProp2", "MyProp3"),
A = c(0.62, -0.5, 15), R = c(-2.53, 3, 101),
N = c(-0.78, 0.2, 58), D = c(-0.9, 3, 59),
C = c(0.29, -1, 47), E = c(-0.74, 3, 73),
Q = c(-0.85, 0.2, 72), G = c(0.48, 0, 1),
H = c(-0.4, -0.5, 82), I = c(1.38, -1.8, 57),
L = c(1.06, -1.8, 57), K = c(-1.5, 3, 73),
M = c(0.64, -1.3, 75), F = c(1.19, -2.5, 91),
P = c(0.12, 0, 42), S = c(-0.18, 0.3, 31),
T = c(-0.05, -0.4, 45), W = c(0.81, -3.4, 130),
Y = c(0.26, -2.3, 107), V = c(1.08, -1.5, 43)

)

Use 4 properties in the AAindex database, and 3 cutomized properties
extractGeary(

x,
customprops = myprops,
props = c(
"CIDH920105", "BHAR880101",
"CHAM820101", "CHAM820102",
"MyProp1", "MyProp2", "MyProp3"

)
)

extractMDSScales Scales-Based Descriptors derived by Multidimensional Scaling

Description

This function calculates scales-based descriptors derived by Multidimensional Scaling (MDS).
Users can provide customized amino acid property matrices.

Usage

extractMDSScales(x, propmat, k, lag, scale = TRUE, silent = TRUE)

40 extractMDSScales

Arguments

x A character vector, as the input protein sequence.

propmat A matrix containing the properties for the amino acids. Each row represent one
amino acid type, each column represents one property. Note that the one-letter
row names must be provided for we need them to seek the properties for each
AA type.

k Integer. The maximum dimension of the space which the data are to be repre-
sented in. Must be no greater than the number of AA properties provided.

lag The lag parameter. Must be less than the amino acids.

scale Logical. Should we auto-scale the property matrix (propmat) before doing
MDS? Default is TRUE.

silent Logical. Whether to print the k eigenvalues computed during the scaling process
or not. Default is TRUE.

Value

A length lag * p^2 named vector, p is the number of scales (dimensionality) selected.

Author(s)

Nan Xiao <https://nanx.me>

References

Venkatarajan, M. S., & Braun, W. (2001). New quantitative descriptors of amino acids based on
multidimensional scaling of a large number of physical-chemical properties. Molecular modeling
annual, 7(12), 445–453.

See Also

See extractScales for scales-based descriptors derived by Principal Components Analysis.

Examples

x <- readFASTA(system.file("protseq/P00750.fasta", package = "protr"))[[1]]
data(AATopo)
tprops <- AATopo[, c(37:41, 43:47)] # select a set of topological descriptors
mds <- extractMDSScales(x, propmat = tprops, k = 5, lag = 7, silent = FALSE)

https://nanx.me

extractMoran 41

extractMoran Moran Autocorrelation Descriptor

Description

This function calculates the Moran autocorrelation descriptor (dim: length(props) * nlag).

Usage

extractMoran(
x,
props = c("CIDH920105", "BHAR880101", "CHAM820101", "CHAM820102", "CHOC760101",

"BIGC670101", "CHAM810101", "DAYM780201"),
nlag = 30L,
customprops = NULL

)

Arguments

x A character vector, as the input protein sequence.

props A character vector, specifying the Accession Number of the target properties. 8
properties are used by default, as listed below:

AccNo. CIDH920105 Normalized average hydrophobicity scales (Cid et al.,
1992)

AccNo. BHAR880101 Average flexibility indices (Bhaskaran-Ponnuswamy, 1988)
AccNo. CHAM820101 Polarizability parameter (Charton-Charton, 1982)
AccNo. CHAM820102 Free energy of solution in water, kcal/mole (Charton-

Charton, 1982)
AccNo. CHOC760101 Residue accessible surface area in tripeptide (Chothia,

1976)
AccNo. BIGC670101 Residue volume (Bigelow, 1967)
AccNo. CHAM810101 Steric parameter (Charton, 1981)
AccNo. DAYM780201 Relative mutability (Dayhoff et al., 1978b)

nlag Maximum value of the lag parameter. Default is 30.

customprops A n x 21 named data frame contains n customized property. Each row contains
one property. The column order for different amino acid types is 'AccNo', 'A',
'R', 'N', 'D', 'C', 'E', 'Q', 'G', 'H', 'I', 'L', 'K', 'M', 'F', 'P', 'S',
'T', 'W', 'Y', 'V', and the columns should also be exactly named like this.
The AccNo column contains the properties’ names. Then users should explicitly
specify these properties with these names in the argument props. See the exam-
ples below for a demonstration. The default value for customprops is NULL.

Value

A length length(props) * nlag named vector.

42 extractMoran

Note

For this descriptor type, users need to intelligently evaluate the underlying details of the descriptors
provided, instead of using this function with their data blindly. It would be wise to use some negative
and positive control comparisons where relevant to help guide interpretation of the results.

Author(s)

Nan Xiao <https://nanx.me>

References

AAindex: Amino acid index database. https://www.genome.jp/dbget/aaindex.html

Feng, Z.P. and Zhang, C.T. (2000) Prediction of membrane protein types based on the hydrophobic
index of amino acids. Journal of Protein Chemistry, 19, 269-275.

Horne, D.S. (1988) Prediction of protein helix content from an autocorrelation analysis of sequence
hydrophobicities. Biopolymers, 27, 451-477.

Sokal, R.R. and Thomson, B.A. (2006) Population structure inferred by local spatial autocorrela-
tion: an usage from an Amerindian tribal population. American Journal of Physical Anthropology,
129, 121-131.

See Also

See extractMoreauBroto and extractGeary for Moreau-Broto autocorrelation descriptors and
Geary autocorrelation descriptors.

Examples

x <- readFASTA(system.file("protseq/P00750.fasta", package = "protr"))[[1]]
extractMoran(x)

myprops <- data.frame(
AccNo = c("MyProp1", "MyProp2", "MyProp3"),
A = c(0.62, -0.5, 15), R = c(-2.53, 3, 101),
N = c(-0.78, 0.2, 58), D = c(-0.9, 3, 59),
C = c(0.29, -1, 47), E = c(-0.74, 3, 73),
Q = c(-0.85, 0.2, 72), G = c(0.48, 0, 1),
H = c(-0.4, -0.5, 82), I = c(1.38, -1.8, 57),
L = c(1.06, -1.8, 57), K = c(-1.5, 3, 73),
M = c(0.64, -1.3, 75), F = c(1.19, -2.5, 91),
P = c(0.12, 0, 42), S = c(-0.18, 0.3, 31),
T = c(-0.05, -0.4, 45), W = c(0.81, -3.4, 130),
Y = c(0.26, -2.3, 107), V = c(1.08, -1.5, 43)

)

Use 4 properties in the AAindex database, and 3 cutomized properties
extractMoran(

x,
customprops = myprops,
props = c(
"CIDH920105", "BHAR880101",

https://nanx.me
https://www.genome.jp/dbget/aaindex.html

extractMoreauBroto 43

"CHAM820101", "CHAM820102",
"MyProp1", "MyProp2", "MyProp3"

)
)

extractMoreauBroto Normalized Moreau-Broto Autocorrelation Descriptor

Description

This function calculates the normalized Moreau-Broto autocorrelation descriptor (dim: length(props)
* nlag).

Usage

extractMoreauBroto(
x,
props = c("CIDH920105", "BHAR880101", "CHAM820101", "CHAM820102", "CHOC760101",

"BIGC670101", "CHAM810101", "DAYM780201"),
nlag = 30L,
customprops = NULL

)

Arguments

x A character vector, as the input protein sequence.
props A character vector, specifying the Accession Number of the target properties. 8

properties are used by default, as listed below:
AccNo. CIDH920105 Normalized average hydrophobicity scales (Cid et al.,

1992)
AccNo. BHAR880101 Average flexibility indices (Bhaskaran-Ponnuswamy, 1988)
AccNo. CHAM820101 Polarizability parameter (Charton-Charton, 1982)
AccNo. CHAM820102 Free energy of solution in water, kcal/mole (Charton-

Charton, 1982)
AccNo. CHOC760101 Residue accessible surface area in tripeptide (Chothia,

1976)
AccNo. BIGC670101 Residue volume (Bigelow, 1967)
AccNo. CHAM810101 Steric parameter (Charton, 1981)
AccNo. DAYM780201 Relative mutability (Dayhoff et al., 1978b)

nlag Maximum value of the lag parameter. Default is 30.
customprops A n x 21 named data frame contains n customized property. Each row contains

one property. The column order for different amino acid types is 'AccNo', 'A',
'R', 'N', 'D', 'C', 'E', 'Q', 'G', 'H', 'I', 'L', 'K', 'M', 'F', 'P', 'S',
'T', 'W', 'Y', 'V', and the columns should also be exactly named like this.
The AccNo column contains the properties’ names. Then users should explicitly
specify these properties with these names in the argument props. See the exam-
ples below for a demonstration. The default value for customprops is NULL.

44 extractMoreauBroto

Value

A length length(props) * nlag named vector.

Note

For this descriptor type, users need to intelligently evaluate the underlying details of the descriptors
provided, instead of using this function with their data blindly. It would be wise to use some negative
and positive control comparisons where relevant to help guide interpretation of the results.

Author(s)

Nan Xiao <https://nanx.me>

References

AAindex: Amino acid index database. https://www.genome.jp/dbget/aaindex.html

Feng, Z.P. and Zhang, C.T. (2000) Prediction of membrane protein types based on the hydrophobic
index of amino acids. Journal of Protein Chemistry, 19, 269-275.

Horne, D.S. (1988) Prediction of protein helix content from an autocorrelation analysis of sequence
hydrophobicities. Biopolymers, 27, 451-477.

Sokal, R.R. and Thomson, B.A. (2006) Population structure inferred by local spatial autocorrela-
tion: an usage from an Amerindian tribal population. American Journal of Physical Anthropology,
129, 121-131.

See Also

See extractMoran and extractGeary for Moran autocorrelation descriptors and Geary autocorre-
lation descriptors.

Examples

x <- readFASTA(system.file("protseq/P00750.fasta", package = "protr"))[[1]]
extractMoreauBroto(x)

myprops <- data.frame(
AccNo = c("MyProp1", "MyProp2", "MyProp3"),
A = c(0.62, -0.5, 15), R = c(-2.53, 3, 101),
N = c(-0.78, 0.2, 58), D = c(-0.9, 3, 59),
C = c(0.29, -1, 47), E = c(-0.74, 3, 73),
Q = c(-0.85, 0.2, 72), G = c(0.48, 0, 1),
H = c(-0.4, -0.5, 82), I = c(1.38, -1.8, 57),
L = c(1.06, -1.8, 57), K = c(-1.5, 3, 73),
M = c(0.64, -1.3, 75), F = c(1.19, -2.5, 91),
P = c(0.12, 0, 42), S = c(-0.18, 0.3, 31),
T = c(-0.05, -0.4, 45), W = c(0.81, -3.4, 130),
Y = c(0.26, -2.3, 107), V = c(1.08, -1.5, 43)

)

Use 4 properties in the AAindex database, and 3 cutomized properties
extractMoreauBroto(

https://nanx.me
https://www.genome.jp/dbget/aaindex.html

extractPAAC 45

x,
customprops = myprops,
props = c(

"CIDH920105", "BHAR880101",
"CHAM820101", "CHAM820102",
"MyProp1", "MyProp2", "MyProp3"

)
)

extractPAAC Pseudo Amino Acid Composition (PseAAC) Descriptor

Description

This function calculates the Pseudo Amino Acid Composition (PseAAC) descriptor (dim: 20 +
lambda, default is 50).

Usage

extractPAAC(
x,
props = c("Hydrophobicity", "Hydrophilicity", "SideChainMass"),
lambda = 30,
w = 0.05,
customprops = NULL

)

Arguments

x A character vector, as the input protein sequence.

props A character vector, specifying the properties used. 3 properties are used by
default, as listed below:

’Hydrophobicity’ Hydrophobicity value of the 20 amino acids
’Hydrophilicity’ Hydrophilicity value of the 20 amino acids
’SideChainMass’ Side-chain mass of the 20 amino acids

lambda The lambda parameter for the PseAAC descriptors, default is 30.

w The weighting factor, default is 0.05.

customprops A n x 21 named data frame contains n customized property. Each row contains
one property. The column order for different amino acid types is 'AccNo', 'A',
'R', 'N', 'D', 'C', 'E', 'Q', 'G', 'H', 'I', 'L', 'K', 'M', 'F', 'P', 'S',
'T', 'W', 'Y', 'V', and the columns should also be exactly named like this.
The AccNo column contains the properties’ names. Then users should explicitly
specify these properties with these names in the argument props. See the exam-
ples below for a demonstration. The default value for customprops is NULL.

46 extractPAAC

Value

A length 20 + lambda named vector

Note

Note the default 20 * 3 prop values have already been independently given in the function. Users
can also specify other (up to 544) properties with the Accession Number in the AAindex data, with
or without the default three properties, which means users should explicitly specify the properties
to use. For this descriptor type, users need to intelligently evaluate the underlying details of the
descriptors provided, instead of using this function with their data blindly. It would be wise to use
some negative and positive control comparisons where relevant to help guide interpretation of the
results.

Author(s)

Nan Xiao <https://nanx.me>

References

Kuo-Chen Chou. Prediction of Protein Cellular Attributes Using Pseudo-Amino Acid Composition.
PROTEINS: Structure, Function, and Genetics, 2001, 43: 246-255.

Kuo-Chen Chou. Using Amphiphilic Pseudo Amino Acid Composition to Predict Enzyme Sub-
family Classes. Bioinformatics, 2005, 21, 10-19.

JACS, 1962, 84: 4240-4246. (C. Tanford). (The hydrophobicity data)

PNAS, 1981, 78:3824-3828 (T.P.Hopp & K.R.Woods). (The hydrophilicity data)

CRC Handbook of Chemistry and Physics, 66th ed., CRC Press, Boca Raton, Florida (1985). (The
side-chain mass data)

R.M.C. Dawson, D.C. Elliott, W.H. Elliott, K.M. Jones, Data for Biochemical Research 3rd ed.,
Clarendon Press Oxford (1986). (The side-chain mass data)

See Also

See extractAPAAC for amphiphilic pseudo amino acid composition descriptor.

Examples

x <- readFASTA(system.file("protseq/P00750.fasta", package = "protr"))[[1]]
extractPAAC(x)

myprops <- data.frame(
AccNo = c("MyProp1", "MyProp2", "MyProp3"),
A = c(0.62, -0.5, 15), R = c(-2.53, 3, 101),
N = c(-0.78, 0.2, 58), D = c(-0.9, 3, 59),
C = c(0.29, -1, 47), E = c(-0.74, 3, 73),
Q = c(-0.85, 0.2, 72), G = c(0.48, 0, 1),
H = c(-0.4, -0.5, 82), I = c(1.38, -1.8, 57),
L = c(1.06, -1.8, 57), K = c(-1.5, 3, 73),
M = c(0.64, -1.3, 75), F = c(1.19, -2.5, 91),

https://nanx.me

extractProtFP 47

P = c(0.12, 0, 42), S = c(-0.18, 0.3, 31),
T = c(-0.05, -0.4, 45), W = c(0.81, -3.4, 130),
Y = c(0.26, -2.3, 107), V = c(1.08, -1.5, 43)

)

use 3 default properties, 4 properties from the
AAindex database, and 3 cutomized properties
extractPAAC(

x,
customprops = myprops,
props = c(

"Hydrophobicity", "Hydrophilicity", "SideChainMass",
"CIDH920105", "BHAR880101",
"CHAM820101", "CHAM820102",
"MyProp1", "MyProp2", "MyProp3"

)
)

extractProtFP Amino Acid Properties Based Scales Descriptors (Protein Fingerprint)

Description

This function calculates amino acid properties based scales descriptors (protein fingerprint). Users
can specify which AAindex properties to select from the AAindex database by specify the numerical
or character index of the properties in the AAindex database.

Usage

extractProtFP(x, index = NULL, pc, lag, scale = TRUE, silent = TRUE)

Arguments

x A character vector, as the input protein sequence.

index Integer vector or character vector. Specify which AAindex properties to select
from the AAindex database by specify the numerical or character index of the
properties in the AAindex database. Default is NULL, means selecting all the AA
properties in the AAindex database.

pc Integer. Use the first pc principal components as the scales. Must be no greater
than the number of AA properties provided.

lag The lag parameter. Must be less than the amino acids.

scale Logical. Should we auto-scale the property matrix before PCA? Default is TRUE.

silent Logical. Whether we print the standard deviation, proportion of variance and
the cumulative proportion of the selected principal components or not. Default
is TRUE.

48 extractProtFPGap

Value

A length lag * p^2 named vector, p is the number of scales (principal components) selected.

Author(s)

Nan Xiao <https://nanx.me>

Examples

x <- readFASTA(system.file("protseq/P00750.fasta", package = "protr"))[[1]]
fp <- extractProtFP(x, index = c(160:165, 258:296), pc = 5, lag = 7, silent = FALSE)

extractProtFPGap Amino Acid Properties Based Scales Descriptors (Protein Fingerprint)
with Gap Support

Description

This function calculates amino acid properties based scales descriptors (protein fingerprint) with
gap support. Users can specify which AAindex properties to select from the AAindex database by
specify the numerical or character index of the properties in the AAindex database.

Usage

extractProtFPGap(x, index = NULL, pc, lag, scale = TRUE, silent = TRUE)

Arguments

x A character vector, as the input protein sequence. Use ’-’ to represent gaps in
the sequence.

index Integer vector or character vector. Specify which AAindex properties to select
from the AAindex database by specify the numerical or character index of the
properties in the AAindex database. Default is NULL, means selecting all the AA
properties in the AAindex database.

pc Integer. Use the first pc principal components as the scales. Must be no greater
than the number of AA properties provided.

lag The lag parameter. Must be less than the amino acids.

scale Logical. Should we auto-scale the property matrix before PCA? Default is TRUE.

silent Logical. Whether we print the standard deviation, proportion of variance and
the cumulative proportion of the selected principal components or not. Default
is TRUE.

Value

A length lag * p^2 named vector, p is the number of scales (principal components) selected.

https://nanx.me

extractPSSM 49

Author(s)

Nan Xiao <https://nanx.me>

Examples

amino acid sequence with gaps
x <- readFASTA(system.file("protseq/align.fasta", package = "protr"))$`IXI_235`
fp <- extractProtFPGap(x, index = c(160:165, 258:296), pc = 5, lag = 7, silent = FALSE)

extractPSSM Compute PSSM (Position-Specific Scoring Matrix) for given protein
sequence

Description

This function calculates the PSSM (Position-Specific Scoring Matrix) derived by PSI-Blast for
given protein sequence or peptides.

Usage

extractPSSM(
seq,
start.pos = 1L,
end.pos = nchar(seq),
psiblast.path = NULL,
makeblastdb.path = NULL,
database.path = NULL,
iter = 5,
silent = TRUE,
evalue = 10L,
word.size = NULL,
gapopen = NULL,
gapextend = NULL,
matrix = "BLOSUM62",
threshold = NULL,
seg = "no",
soft.masking = FALSE,
culling.limit = NULL,
best.hit.overhang = NULL,
best.hit.score.edge = NULL,
xdrop.ungap = NULL,
xdrop.gap = NULL,
xdrop.gap.final = NULL,
window.size = NULL,
gap.trigger = 22L,
num.threads = 1L,
pseudocount = 0L,

https://nanx.me

50 extractPSSM

inclusion.ethresh = 0.002
)

Arguments

seq Character vector, as the input protein sequence.

start.pos Optional integer denoting the start position of the fragment window. Default is
1, i.e. the first amino acid of the given sequence.

end.pos Optional integer denoting the end position of the fragment window. Default is
nchar(seq), i.e. the last amino acid of the given sequence.

psiblast.path Character string indicating the path of the psiblast program. If NCBI Blast+
was previously installed in the operation system, the path will be automatically
detected.

makeblastdb.path

Character string indicating the path of the makeblastdb program. If NCBI
Blast+ was previously installed in the system, the path will be automatically
detected.

database.path Character string indicating the path of a reference database (a FASTA file).

iter Number of iterations to perform for PSI-Blast.

silent Logical. Whether the PSI-Blast running output should be shown or not (May
not work on some Windows versions and PSI-Blast versions), default is TRUE.

evalue Expectation value (E) threshold for saving hits. Default is 10.

word.size Word size for wordfinder algorithm. An integer >= 2.

gapopen Integer. Cost to open a gap.

gapextend Integer. Cost to extend a gap.

matrix Character string. The scoring matrix name (default is "BLOSUM62").

threshold Minimum word score such that the word is added to the BLAST lookup table.
A real value >= 0.

seg Character string. Filter query sequence with SEG ("yes", "window locut hicut",
or "no" to disable). Default is "no".

soft.masking Logical. Apply filtering locations as soft masks? Default is FALSE.

culling.limit An integer >= 0. If the query range of a hit is enveloped by that of at least this
many higher-scoring hits, delete the hit. Incompatible with best.hit.overhang
and best_hit_score_edge.

best.hit.overhang

Best Hit algorithm overhang value (A real value >= 0 and =< 0.5, recommended
value: 0.1). Incompatible with culling_limit.

best.hit.score.edge

Best Hit algorithm score edge value (A real value >=0 and =< 0.5, recommended
value: 0.1). Incompatible with culling_limit.

xdrop.ungap X-dropoff value (in bits) for ungapped extensions.

xdrop.gap X-dropoff value (in bits) for preliminary gapped extensions.

extractPSSM 51

xdrop.gap.final

X-dropoff value (in bits) for final gapped alignment.

window.size An integer >= 0. Multiple hits window size, To specify 1-hit algorithm, use 0.

gap.trigger Number of bits to trigger gapping. Default is 22.

num.threads Integer. Number of threads (CPUs) to use in the BLAST search. Default is 1.

pseudocount Integer. Pseudo-count value used when constructing PSSM. Default is 0.
inclusion.ethresh

E-value inclusion threshold for pairwise alignments. Default is 0.002.

Details

For given protein sequences or peptides, PSSM represents the log-likelihood of the substitution
of the 20 types of amino acids at that position in the sequence. Note that the output value is not
normalized.

Value

The original PSSM, a numeric matrix which has end.pos - start.pos + 1 columns and 20 named
rows.

Note

The function requires the makeblastdb and psiblast programs to be properly installed in the
operation system or their paths provided.

The two command-line programs are included in the NCBI-BLAST+ software package. To install
NCBI Blast+ for your operating system, see https://blast.ncbi.nlm.nih.gov/doc/blast-help/
downloadblastdata.html for detailed instructions.

Ubuntu/Debian users can directly use the command sudo apt-get install ncbi-blast+ to install
NCBI Blast+. For OS X users, download ncbi-blast-dmg then install. For Windows users,
download ncbi-blast-exe then install.

Author(s)

Nan Xiao <https://nanx.me>

References

Altschul, Stephen F., et al. "Gapped BLAST and PSI-BLAST: a new generation of protein database
search programs." Nucleic acids research 25.17 (1997): 3389–3402.

Ye, Xugang, Guoli Wang, and Stephen F. Altschul. "An assessment of substitution scores for protein
profile-profile comparison." Bioinformatics 27.24 (2011): 3356–3363.

Rangwala, Huzefa, and George Karypis. "Profile-based direct kernels for remote homology detec-
tion and fold recognition." Bioinformatics 21.23 (2005): 4239–4247.

See Also

extractPSSMFeature extractPSSMAcc

https://blast.ncbi.nlm.nih.gov/doc/blast-help/downloadblastdata.html
https://blast.ncbi.nlm.nih.gov/doc/blast-help/downloadblastdata.html
https://nanx.me

52 extractPSSMAcc

Examples

if (Sys.which("makeblastdb") == "" | Sys.which("psiblast") == "") {
cat("Cannot find makeblastdb or psiblast. Please install NCBI Blast+ first")

} else {
x <- readFASTA(system.file(
"protseq/P00750.fasta",
package = "protr"

))[[1]]
dbpath <- tempfile("tempdb", fileext = ".fasta")
invisible(file.copy(from = system.file(

"protseq/Plasminogen.fasta",
package = "protr"

), to = dbpath))

pssmmat <- extractPSSM(seq = x, database.path = dbpath)

dim(pssmmat) # 20 x 562 (P00750: length 562, 20 Amino Acids)
}

extractPSSMAcc Profile-based protein representation derived by PSSM (Position-
Specific Scoring Matrix) and auto cross covariance

Description

This function calculates the feature vector based on the PSSM by running PSI-Blast and auto cross
covariance tranformation.

Usage

extractPSSMAcc(pssmmat, lag)

Arguments

pssmmat The PSSM computed by extractPSSM.

lag The lag parameter. Must be less than the number of amino acids in the sequence
(i.e. the number of columns in the PSSM matrix).

Value

A length lag * 20^2 named numeric vector, the element names are derived by the amino acid name
abbreviation (crossed amino acid name abbreviation) and lag index.

Author(s)

Nan Xiao <https://nanx.me>

https://nanx.me

extractPSSMFeature 53

References

Wold, S., Jonsson, J., Sjorstrom, M., Sandberg, M., & Rannar, S. (1993). DNA and peptide se-
quences and chemical processes multivariately modelled by principal component analysis and par-
tial least-squares projections to latent structures. Analytica chimica acta, 277(2), 239–253.

See Also

extractPSSM extractPSSMFeature

Examples

if (Sys.which("makeblastdb") == "" | Sys.which("psiblast") == "") {
cat("Cannot find makeblastdb or psiblast. Please install NCBI Blast+")

} else {
x <- readFASTA(system.file(
"protseq/P00750.fasta",
package = "protr"

))[[1]]
dbpath <- tempfile("tempdb", fileext = ".fasta")
invisible(file.copy(from = system.file(

"protseq/Plasminogen.fasta",
package = "protr"

), to = dbpath))

pssmmat <- extractPSSM(seq = x, database.path = dbpath)
pssmacc <- extractPSSMAcc(pssmmat, lag = 3)
tail(pssmacc)

}

extractPSSMFeature Profile-based protein representation derived by PSSM (Position-
Specific Scoring Matrix)

Description

This function calculates the profile-based protein representation derived by PSSM. The feature vec-
tor is based on the PSSM computed by extractPSSM.

Usage

extractPSSMFeature(pssmmat)

Arguments

pssmmat The PSSM computed by extractPSSM.

54 extractPSSMFeature

Details

For a given sequence, the PSSM feature represents the log-likelihood of the substitution of the 20
types of amino acids at that position in the sequence.

Each PSSM feature value in the vector represents the degree of conservation of a given amino acid
type. The value is normalized to interval (0, 1) by the transformation 1/(1+e^(-x)).

Value

A numeric vector which has 20 x N named elements, where N is the size of the window (number of
rows of the PSSM).

Author(s)

Nan Xiao <https://nanx.me>

References

Ye, Xugang, Guoli Wang, and Stephen F. Altschul. "An assessment of substitution scores for protein
profile-profile comparison." Bioinformatics 27.24 (2011): 3356–3363.

Rangwala, Huzefa, and George Karypis. "Profile-based direct kernels for remote homology detec-
tion and fold recognition." Bioinformatics 21.23 (2005): 4239–4247.

See Also

extractPSSM extractPSSMAcc

Examples

if (Sys.which("makeblastdb") == "" | Sys.which("psiblast") == "") {
cat("Cannot find makeblastdb or psiblast. Please install NCBI Blast+")

} else {
x <- readFASTA(system.file(
"protseq/P00750.fasta",
package = "protr"

))[[1]]
dbpath <- tempfile("tempdb", fileext = ".fasta")
invisible(file.copy(from = system.file(

"protseq/Plasminogen.fasta",
package = "protr"

), to = dbpath))

pssmmat <- extractPSSM(seq = x, database.path = dbpath)
pssmfeature <- extractPSSMFeature(pssmmat)
head(pssmfeature)

}

https://nanx.me

extractQSO 55

extractQSO Quasi-Sequence-Order (QSO) Descriptor

Description

This function calculates the Quasi-Sequence-Order (QSO) descriptor (dim: 20 + 20 + (2 * nlag),
default is 100).

Usage

extractQSO(x, nlag = 30, w = 0.1)

Arguments

x A character vector, as the input protein sequence.

nlag The maximum lag, defualt is 30.

w The weighting factor, default is 0.1.

Value

A length 20 + 20 + (2 * nlag) named vector

Author(s)

Nan Xiao <https://nanx.me>

References

Kuo-Chen Chou. Prediction of Protein Subcellar Locations by Incorporating Quasi-Sequence-
Order Effect. Biochemical and Biophysical Research Communications, 2000, 278, 477-483.

Kuo-Chen Chou and Yu-Dong Cai. Prediction of Protein Sucellular Locations by GO-FunD-PseAA
Predictor. Biochemical and Biophysical Research Communications, 2004, 320, 1236-1239.

Gisbert Schneider and Paul Wrede. The Rational Design of Amino Acid Sequences by Artifical
Neural Networks and Simulated Molecular Evolution: Do Novo Design of an Idealized Leader
Cleavge Site. Biophys Journal, 1994, 66, 335-344.

See Also

See extractSOCN for sequence-order-coupling numbers.

Examples

x <- readFASTA(system.file("protseq/P00750.fasta", package = "protr"))[[1]]
extractQSO(x)

https://nanx.me

56 extractScales

extractScales Scales-Based Descriptors derived by Principal Components Analysis

Description

This function calculates scales-based descriptors derived by Principal Components Analysis (PCA).
Users can provide customized amino acid property matrices. This function implements the core
computation procedure needed for the scales-based descriptors derived by AA-Properties (AAin-
dex) and scales-based descriptors derived by 20+ classes of 2D and 3D molecular descriptors (Topo-
logical, WHIM, VHSE, etc.) in the protr package.

Usage

extractScales(x, propmat, pc, lag, scale = TRUE, silent = TRUE)

Arguments

x A character vector, as the input protein sequence.

propmat A matrix containing the properties for the amino acids. Each row represent one
amino acid type, each column represents one property. Note that the one-letter
row names must be provided for we need them to seek the properties for each
AA type.

pc Integer. Use the first pc principal components as the scales. Must be no greater
than the number of AA properties provided.

lag The lag parameter. Must be less than the amino acids.

scale Logical. Should we auto-scale the property matrix (propmat) before PCA? De-
fault is TRUE.

silent Logical. Whether we print the standard deviation, proportion of variance and
the cumulative proportion of the selected principal components or not. Default
is TRUE.

Value

A length lag * p^2 named vector, p is the number of scales (principal components) selected.

Author(s)

Nan Xiao <https://nanx.me>

See Also

See extractDescScales scales descriptors based on 20+ classes of molecular descriptors, and
extractProtFP for amino acid property based scales descriptors (protein fingerprint).

https://nanx.me

extractScalesGap 57

Examples

x <- readFASTA(system.file("protseq/P00750.fasta", package = "protr"))[[1]]
data(AAindex)
AAidxmat <- t(na.omit(as.matrix(AAindex[, 7:26])))
scales <- extractScales(x, propmat = AAidxmat, pc = 5, lag = 7, silent = FALSE)

extractScalesGap Scales-Based Descriptors derived by Principal Components Analysis
(with Gap Support)

Description

This function calculates scales-based descriptors derived by Principal Components Analysis (PCA),
with gap support. Users can provide customized amino acid property matrices. This function
implements the core computation procedure needed for the scales-based descriptors derived by AA-
Properties (AAindex) and scales-based descriptors derived by 20+ classes of 2D and 3D molecular
descriptors (Topological, WHIM, VHSE, etc.) in the protr package.

Usage

extractScalesGap(x, propmat, pc, lag, scale = TRUE, silent = TRUE)

Arguments

x A character vector, as the input protein sequence. Use ’-’ to represent gaps in
the sequence.

propmat A matrix containing the properties for the amino acids. Each row represent one
amino acid type, each column represents one property. Note that the one-letter
row names must be provided for we need them to seek the properties for each
AA type.

pc Integer. Use the first pc principal components as the scales. Must be no greater
than the number of AA properties provided.

lag The lag parameter. Must be less than the amino acids.

scale Logical. Should we auto-scale the property matrix (propmat) before PCA? De-
fault is TRUE.

silent Logical. Whether to print the standard deviation, proportion of variance and the
cumulative proportion of the selected principal components or not. Default is
TRUE.

Value

A length lag * p^2 named vector, p is the number of scales (principal components) selected.

Author(s)

Nan Xiao <https://nanx.me>

https://nanx.me

58 extractSOCN

See Also

See extractProtFPGap for amino acid property based scales descriptors (protein fingerprint) with
gap support.

Examples

amino acid sequence with gaps
x <- readFASTA(system.file("protseq/align.fasta", package = "protr"))$`IXI_235`
data(AAindex)
AAidxmat <- t(na.omit(as.matrix(AAindex[, 7:26])))
scales <- extractScalesGap(x, propmat = AAidxmat, pc = 5, lag = 7, silent = FALSE)

extractSOCN Sequence-Order-Coupling Numbers

Description

This function calculates the Sequence-Order-Coupling Numbers (dim: nlag * 2, default is 60).

Usage

extractSOCN(x, nlag = 30)

Arguments

x A character vector, as the input protein sequence.

nlag The maximum lag, defualt is 30.

Value

A length nlag * 2 named vector

Author(s)

Nan Xiao <https://nanx.me>

References

Kuo-Chen Chou. Prediction of Protein Subcellar Locations by Incorporating Quasi-Sequence-
Order Effect. Biochemical and Biophysical Research Communications, 2000, 278, 477-483.

Kuo-Chen Chou and Yu-Dong Cai. Prediction of Protein Sucellular Locations by GO-FunD-PseAA
Predictor. Biochemical and Biophysical Research Communications, 2004, 320, 1236-1239.

Gisbert Schneider and Paul Wrede. The Rational Design of Amino Acid Sequences by Artifical
Neural Networks and Simulated Molecular Evolution: Do Novo Design of an Idealized Leader
Cleavge Site. Biophys Journal, 1994, 66, 335-344.

https://nanx.me

extractTC 59

See Also

See extractQSO for quasi-sequence-order descriptors.

Examples

x <- readFASTA(system.file("protseq/P00750.fasta", package = "protr"))[[1]]
extractSOCN(x)

extractTC Tripeptide Composition Descriptor

Description

This function calculates the Tripeptide Composition descriptor (dim: 8,000).

Usage

extractTC(x)

Arguments

x A character vector, as the input protein sequence.

Value

A length 8,000 named vector

Author(s)

Nan Xiao <https://nanx.me>

References

M. Bhasin, G. P. S. Raghava. Classification of Nuclear Receptors Based on Amino Acid Composi-
tion and Dipeptide Composition. Journal of Biological Chemistry, 2004, 279, 23262.

See Also

See extractAAC and extractDC for Amino Acid Composition and Dipeptide Composition descrip-
tors.

Examples

x <- readFASTA(system.file("protseq/P00750.fasta", package = "protr"))[[1]]
extractTC(x)

https://nanx.me

60 getUniProt

getUniProt Retrieve Protein Sequences from UniProt by Protein ID

Description

This function retrieves protein sequences from uniprot.org by protein ID(s).

Usage

getUniProt(id)

Arguments

id A character vector, as the protein ID(s).

Value

A list, each component contains one protein sequence.

Author(s)

Nan Xiao <https://nanx.me>

See Also

See readFASTA for reading FASTA format files.

Examples

Not run:
Network latency may slow down this example
Only test this when your connection is fast enough
ids <- c("P00750", "P00751", "P00752")
getUniProt(ids)

End(Not run)

https://nanx.me

OptAA3d 61

OptAA3d OptAA3d.sdf - 20 Amino Acids Optimized with MOE 2011.10
(Semiempirical AM1)

Description

OptAA3d.sdf - 20 Amino Acids Optimized with MOE 2011.10 (Semiempirical AM1)

Examples

this operation requires the rcdk package
require(rcdk)
optaa3d = load.molecules(system.file("sysdata/OptAA3d.sdf", package = "protr"))
view.molecule.2d(optaa3d[[1]]) # view the first AA

parGOSim Protein Similarity Calculation based on Gene Ontology (GO) Similar-
ity

Description

This function calculates protein similarity based on Gene Ontology (GO) similarity.

Usage

parGOSim(
golist,
type = c("go", "gene"),
ont = c("MF", "BP", "CC"),
organism = "human",
measure = "Resnik",
combine = "BMA"

)

Arguments

golist A list, each component contains a character vector of GO terms or one Entrez
Gene ID.

type Input type for golist, "go" for GO Terms, "gene" for gene ID.

ont Default is "MF", can be one of "MF", "BP", or "CC" subontologies.

organism Organism name. Default is "human", can be one of "anopheles", "arabidopsis",
"bovine", "canine", "chicken", "chimp", "coelicolor", "ecolik12", "ecsakai",
"fly", "human", "malaria", "mouse", "pig", "rat", "rhesus", "worm", "xenopus",
"yeast" or "zebrafish". Before specifying the organism, please install the
corresponding genome wide annotation data package for the selected organism.

https://bioconductor.org/packages/release/BiocViews.html#___OrgDb

62 parGOSim

measure Default is "Resnik", can be one of "Resnik", "Lin", "Rel", "Jiang" or "Wang".

combine Default is "BMA", can be one of "max", "average", "rcmax" or "BMA" for com-
bining semantic similarity scores of multiple GO terms associated with proteins.

Value

A n x n similarity matrix.

Author(s)

Nan Xiao <https://nanx.me>

See Also

See twoGOSim for calculating the GO semantic similarity between two groups of GO terms or
two Entrez gene IDs. See parSeqSim for paralleled protein similarity calculation based on Smith-
Waterman local alignment.

Examples

Not run:

Be careful when testing this since it involves GO similarity computation
and might produce unpredictable results in some environments

library("GOSemSim")
library("org.Hs.eg.db")

By GO Terms
AP4B1
go1 <- c(

"GO:0005215", "GO:0005488", "GO:0005515",
"GO:0005625", "GO:0005802", "GO:0005905"

)
BCAS2
go2 <- c(

"GO:0005515", "GO:0005634", "GO:0005681",
"GO:0008380", "GO:0031202"

)
PDE4DIP
go3 <- c(

"GO:0003735", "GO:0005622", "GO:0005840",
"GO:0006412"

)
golist <- list(go1, go2, go3)
parGOSim(golist, type = "go", ont = "CC", measure = "Wang")

By Entrez gene id
genelist <- list(c("150", "151", "152", "1814", "1815", "1816"))
parGOSim(genelist, type = "gene", ont = "BP", measure = "Wang")

End(Not run)

https://nanx.me

parSeqSim 63

parSeqSim Parallel Protein Sequence Similarity Calculation Based on Sequence
Alignment (In-Memory Version)

Description

Parallel calculation of protein sequence similarity based on sequence alignment.

Usage

parSeqSim(
protlist,
cores = 2,
batches = 1,
verbose = FALSE,
type = "local",
submat = "BLOSUM62",
gap.opening = 10,
gap.extension = 4

)

Arguments

protlist A length n list containing n protein sequences, each component of the list is a
character string, storing one protein sequence. Unknown sequences should be
represented as "".

cores Integer. The number of CPU cores to use for parallel execution, default is 2.
Users can use the availableCores() function in the parallelly package to see
how many cores they could use.

batches Integer. How many batches should we split the pairwise similarity computations
into. This is useful when you have a large number of protein sequences, enough
number of CPU cores, but not enough RAM to compute and fit all the pairwise
similarities into a single batch. Defaults to 1.

verbose Print the computation progress? Useful when batches > 1.

type Type of alignment, default is "local", can be "global" or "local", where
"global" represents Needleman-Wunsch global alignment; "local" represents
Smith-Waterman local alignment.

submat Substitution matrix, default is "BLOSUM62", can be one of "BLOSUM45", "BLOSUM50",
"BLOSUM62", "BLOSUM80", "BLOSUM100", "PAM30", "PAM40", "PAM70", "PAM120",
or "PAM250".

gap.opening The cost required to open a gap of any length in the alignment. Defaults to 10.

gap.extension The cost to extend the length of an existing gap by 1. Defaults to 4.

Value

A n x n similarity matrix.

64 parSeqSimDisk

Author(s)

Nan Xiao <https://nanx.me>

See Also

See parSeqSimDisk for the disk-based version.

Examples

Not run:

Be careful when testing this since it involves parallelization
and might produce unpredictable results in some environments

library("Biostrings")
library("foreach")
library("doParallel")

s1 <- readFASTA(system.file("protseq/P00750.fasta", package = "protr"))[[1]]
s2 <- readFASTA(system.file("protseq/P08218.fasta", package = "protr"))[[1]]
s3 <- readFASTA(system.file("protseq/P10323.fasta", package = "protr"))[[1]]
s4 <- readFASTA(system.file("protseq/P20160.fasta", package = "protr"))[[1]]
s5 <- readFASTA(system.file("protseq/Q9NZP8.fasta", package = "protr"))[[1]]
plist <- list(s1, s2, s3, s4, s5)
(psimmat <- parSeqSim(plist, cores = 2, type = "local", submat = "BLOSUM62"))

End(Not run)

parSeqSimDisk Parallel Protein Sequence Similarity Calculation Based on Sequence
Alignment (Disk-Based Version)

Description

Parallel calculation of protein sequence similarity based on sequence alignment. This version of-
floads the partial results in each batch to the hard drive and merges the results together in the end,
which reduces the memory usage.

Usage

parSeqSimDisk(
protlist,
cores = 2,
batches = 1,
path = tempdir(),
verbose = FALSE,
type = "local",
submat = "BLOSUM62",

https://nanx.me

parSeqSimDisk 65

gap.opening = 10,
gap.extension = 4

)

Arguments

protlist A length n list containing n protein sequences, each component of the list is a
character string, storing one protein sequence. Unknown sequences should be
represented as "".

cores Integer. The number of CPU cores to use for parallel execution, default is 2.
Users can use the availableCores() function in the parallelly package to see
how many cores they could use.

batches Integer. How many batches should we split the pairwise similarity computations
into. This is useful when you have a large number of protein sequences, enough
number of CPU cores, but not enough RAM to compute and fit all the pairwise
similarities into a single batch. Defaults to 1.

path Directory for caching the results in each batch. Defaults to the temporary direc-
tory.

verbose Print the computation progress? Useful when batches > 1.

type Type of alignment, default is "local", can be "global" or "local", where
"global" represents Needleman-Wunsch global alignment; "local" represents
Smith-Waterman local alignment.

submat Substitution matrix, default is "BLOSUM62", can be one of "BLOSUM45", "BLOSUM50",
"BLOSUM62", "BLOSUM80", "BLOSUM100", "PAM30", "PAM40", "PAM70", "PAM120",
or "PAM250".

gap.opening The cost required to open a gap of any length in the alignment. Defaults to 10.

gap.extension The cost to extend the length of an existing gap by 1. Defaults to 4.

Value

A n x n similarity matrix.

Author(s)

Nan Xiao <https://nanx.me>

See Also

See parSeqSim for the in-memory version.

Examples

Not run:

Be careful when testing this since it involves parallelization
and might produce unpredictable results in some environments

library("Biostrings")

https://nanx.me

66 protcheck

library("foreach")
library("doParallel")

s1 <- readFASTA(system.file("protseq/P00750.fasta", package = "protr"))[[1]]
s2 <- readFASTA(system.file("protseq/P08218.fasta", package = "protr"))[[1]]
s3 <- readFASTA(system.file("protseq/P10323.fasta", package = "protr"))[[1]]
s4 <- readFASTA(system.file("protseq/P20160.fasta", package = "protr"))[[1]]
s5 <- readFASTA(system.file("protseq/Q9NZP8.fasta", package = "protr"))[[1]]
set.seed(1010)
plist <- as.list(c(s1, s2, s3, s4, s5)[sample(1:5, 100, replace = TRUE)])
psimmat <- parSeqSimDisk(

plist,
cores = 2, batches = 10, verbose = TRUE,
type = "local", submat = "BLOSUM62"

)

End(Not run)

protcheck Protein sequence amino acid type sanity check

Description

This function checks if the protein sequence’s amino acid types are in the 20 default types.

Usage

protcheck(x)

Arguments

x A character vector, as the input protein sequence.

Value

Logical. TRUE if all of the amino acid types of the sequence are within the 20 default types.

Author(s)

Nan Xiao <https://nanx.me>

Examples

x <- readFASTA(system.file("protseq/P00750.fasta", package = "protr"))[[1]]
protcheck(x) # TRUE
protcheck(paste(x, "Z", sep = "")) # FALSE

https://nanx.me

protseg 67

protseg Protein Sequence Segmentation/Partition

Description

This function extracts the segmentations from the protein sequence.

Usage

protseg(
x,
aa = c("A", "R", "N", "D", "C", "E", "Q", "G", "H", "I", "L", "K", "M", "F", "P", "S",

"T", "W", "Y", "V"),
k = 7

)

Arguments

x A character vector, as the input protein sequence.

aa A character, the amino acid type. One of 'A', 'R', 'N', 'D', 'C', 'E', 'Q', 'G',
'H', 'I', 'L', 'K', 'M', 'F', 'P', 'S', 'T', 'W', 'Y', 'V'.

k A positive integer, specifys the window size (half of the window), default is 7.

Value

A named list, each component contains one of the segmentations (a character string), names of the
list components are the positions of the specified amino acid in the sequence.

Author(s)

Nan Xiao <https://nanx.me>

Examples

x <- readFASTA(system.file("protseq/P00750.fasta", package = "protr"))[[1]]
protseg(x, aa = "R", k = 5)

https://nanx.me

68 readFASTA

readFASTA Read Protein Sequences in FASTA Format

Description

This function reads protein sequences in FASTA format.

Usage

readFASTA(
file = system.file("protseq/P00750.fasta", package = "protr"),
legacy.mode = TRUE,
seqonly = FALSE

)

Arguments

file Path to the file containing the protein sequences in FASTA format. If it does
not contain an absolute or relative path, the file name is relative to the current
working directory, getwd. The default here is to read the P00750.fasta file
which is present in the protseq directory of the protr package.

legacy.mode If set to TRUE, lines starting with a semicolon (;) are ignored. Default value is
TRUE.

seqonly If set to TRUE, only sequences as returned without attempt to modify them or to
get their names and annotations (execution time is divided approximately by a
factor 3). Default value is FALSE.

Value

Character vector of the protein sequences.

The three returned argument are just different forms of the same output. If one is interested in
a Mahalanobis metric over the original data space, the first argument is all she/he needs. If a
transformation into another space (where one can use the Euclidean metric) is preferred, the second
returned argument is sufficient. Using A and B is equivalent in the following sense.

Author(s)

Nan Xiao <https://nanx.me>

References

Pearson, W.R. and Lipman, D.J. (1988) Improved tools for biological sequence comparison. Pro-
ceedings of the National Academy of Sciences of the United States of America, 85: 2444–2448.

See Also

See getUniProt for retrieving protein sequences from uniprot.org.

https://nanx.me

readPDB 69

Examples

P00750 <- readFASTA(system.file("protseq/P00750.fasta", package = "protr"))

readPDB Read Protein Sequences in PDB Format

Description

This function reads protein sequences in PDB (Protein Data Bank) format, and return the amino
acid sequences represented by single-letter code.

Usage

readPDB(file = system.file("protseq/4HHB.pdb", package = "protr"))

Arguments

file Path to the file containing the protein sequences in PDB format. If it does not
contain an absolute or relative path, the file name is relative to the current work-
ing directory, getwd. The default here is to read the 4HHB.PDB file which is
present in the protseq directory of the protr package.

Value

Character vector of the protein sequence.

Author(s)

Nan Xiao <https://nanx.me>

References

Protein Data Bank Contents Guide: Atomic Coordinate Entry Format Description, Version 3.30.
Accessed 2013-06-26. https://files.wwpdb.org/pub/pdb/doc/format_descriptions/Format_
v33_Letter.pdf

See Also

See readFASTA for reading protein sequences in FASTA format.

Examples

Seq4HHB <- readPDB(system.file("protseq/4HHB.pdb", package = "protr"))

https://nanx.me
https://files.wwpdb.org/pub/pdb/doc/format_descriptions/Format_v33_Letter.pdf
https://files.wwpdb.org/pub/pdb/doc/format_descriptions/Format_v33_Letter.pdf

70 removeGaps

removeGaps Remove or replace gaps from protein sequences.

Description

Remove/replace gaps or any irregular characters from protein sequences, to make them suitable for
feature extraction or sequence alignment based similarity computation.

Usage

removeGaps(x, pattern = "-", replacement = "", ...)

Arguments

x character vector, containing the input protein sequence(s).

pattern character string contains the gap (or other irregular) character to be removed or
replaced. Default is "-". For advanced usage, see gsub.

replacement a replacement for matched characters. Default is "" (remove the matched char-
acter).

... addtional parameters for gsub.

Value

a vector of protein sequence(s) with gaps or irregular characters removed/replaced.

Author(s)

Nan Xiao <https://nanx.me>

Examples

amino acid sequences that contain gaps ("-")
aaseq <- list(

"MHGDTPTLHEYMLDLQPETTDLYCYEQLSDSSE-EEDEIDGPAGQAEPDRAHYNIVTFCCKCDSTLRLCVQS",
"MHGDTPTLHEYMLDLQPETTDLYCYEQLNDSSE-EEDEIDGPAGQAEPDRAHYNIVTFCCKCDSTLRLCVQS"

)
Not run:
#' # gaps create issues for alignment
parSeqSim(aaseq)

remove the gaps
nogapseq <- removeGaps(aaseq)
parSeqSim(nogapseq)

End(Not run)

https://nanx.me

twoGOSim 71

twoGOSim Protein Similarity Calculation based on Gene Ontology (GO) Similar-
ity

Description

This function calculates the Gene Ontology (GO) similarity between two groups of GO terms or
two Entrez gene IDs.

Usage

twoGOSim(
id1,
id2,
type = c("go", "gene"),
ont = c("MF", "BP", "CC"),
organism = "human",
measure = "Resnik",
combine = "BMA"

)

Arguments

id1 Character vector. When length > 1: each element is a GO term; when length =
1: the Entrez Gene ID.

id2 Character vector. When length > 1: each element is a GO term; when length =
1: the Entrez Gene ID.

type Input type of id1 and id2, 'go' for GO Terms, "gene" for gene ID.

ont Default is "MF", can be one of "MF", "BP", or "CC" subontologies.

organism Organism name. Default is "human", can be one of "anopheles", "arabidopsis",
"bovine", "canine", "chicken", "chimp", "coelicolor", "ecolik12", "ecsakai",
"fly", "human", "malaria", "mouse", "pig", "rat", "rhesus", "worm", "xenopus",
"yeast" or "zebrafish". Before specifying the organism, please install the
corresponding genome wide annotation data package for the selected organism.

measure Default is "Resnik", can be one of "Resnik", "Lin", "Rel", "Jiang" or "Wang".

combine Default is "BMA", can be one of "max", "average", "rcmax" or "BMA" for com-
bining semantic similarity scores of multiple GO terms associated with proteins.

Value

Similarity value.

Author(s)

Nan Xiao <https://nanx.me>

https://bioconductor.org/packages/release/BiocViews.html#___OrgDb
https://nanx.me

72 twoSeqSim

See Also

See parGOSim for protein similarity calculation based on Gene Ontology (GO) semantic similar-
ity. See parSeqSim for paralleled protein similarity calculation based on Smith-Waterman local
alignment.

Examples

Not run:

Be careful when testing this since it involves GO similarity computation
and might produce unpredictable results in some environments

library("GOSemSim")
library("org.Hs.eg.db")

By GO terms
go1 <- c("GO:0004022", "GO:0004024", "GO:0004023")
go2 <- c("GO:0009055", "GO:0020037")
twoGOSim(go1, go2, type = "go", ont = "MF", measure = "Wang")

By Entrez gene id
gene1 <- "1956" # EGFR
gene2 <- "2261" # FGFR3
twoGOSim(gene1, gene2, type = "gene", ont = "BP", measure = "Lin")

End(Not run)

twoSeqSim Protein Sequence Alignment for Two Protein Sequences

Description

Sequence alignment between two protein sequences.

Usage

twoSeqSim(
seq1,
seq2,
type = "local",
submat = "BLOSUM62",
gap.opening = 10,
gap.extension = 4

)

twoSeqSim 73

Arguments

seq1 Character string, containing one protein sequence.

seq2 Character string, containing another protein sequence.

type Type of alignment, default is "local", could be "global" or "local", where
"global" represents Needleman-Wunsch global alignment; "local" represents
Smith-Waterman local alignment.

submat Substitution matrix, default is "BLOSUM62", can be one of "BLOSUM45", "BLOSUM50",
"BLOSUM62", "BLOSUM80", "BLOSUM100", "PAM30", "PAM40", "PAM70", "PAM120",
or "PAM250".

gap.opening The cost required to open a gap of any length in the alignment. Defaults to 10.

gap.extension The cost to extend the length of an existing gap by 1. Defaults to 4.

Value

A Biostrings object containing the alignment scores and other alignment information.

Author(s)

Nan Xiao <https://nanx.me>

See Also

See parSeqSim for paralleled pairwise protein similarity calculation based on sequence alignment.
See twoGOSim for calculating the GO semantic similarity between two groups of GO terms or two
Entrez gene IDs.

Examples

Not run:

Be careful when testing this since it involves sequence alignment
and might produce unpredictable results in some environments

library("Biostrings")

s1 <- readFASTA(system.file("protseq/P00750.fasta", package = "protr"))[[1]]
s2 <- readFASTA(system.file("protseq/P10323.fasta", package = "protr"))[[1]]
seqalign <- twoSeqSim(s1, s2)
summary(seqalign)
score(seqalign)

End(Not run)

https://nanx.me

Index

AA2DACOR, 3
AA3DMoRSE, 4
AAACF, 4
AABLOSUM100, 4
AABLOSUM45, 5
AABLOSUM50, 5
AABLOSUM62, 5
AABLOSUM80, 6
AABurden, 6
AAConn, 6
AAConst, 7
AACPSA, 7
AADescAll, 7
AAEdgeAdj, 8
AAEigIdx, 8
AAFGC, 8
AAGeom, 9
AAGETAWAY, 9
AAindex, 9, 21, 46
AAInfo, 10
AAMetaInfo, 10
AAMOE2D, 10
AAMOE3D, 11
AAMolProp, 11
AAPAM120, 11
AAPAM250, 12
AAPAM30, 12
AAPAM40, 12
AAPAM70, 13
AARandic, 13
AARDF, 13
AATopo, 14
AATopoChg, 14
AAWalk, 14
AAWHIM, 15
acc, 15

crossSetSim, 16, 19
crossSetSimDisk, 18

extractAAC, 20, 34, 59
extractAPAAC, 21, 46
extractBLOSUM, 23
extractCTDC, 24, 27, 30
extractCTDCClass, 25, 28, 31
extractCTDD, 24, 26, 30
extractCTDDClass, 26, 27, 31
extractCTDT, 24, 27, 29
extractCTDTClass, 26, 28, 30
extractCTriad, 32
extractCTriadClass, 33
extractDC, 20, 34, 59
extractDescScales, 16, 35, 56
extractFAScales, 36
extractGeary, 37, 42, 44
extractMDSScales, 39
extractMoran, 39, 41, 44
extractMoreauBroto, 39, 42, 43
extractPAAC, 22, 45
extractProtFP, 16, 47, 56
extractProtFPGap, 48, 58
extractPSSM, 49, 52–54
extractPSSMAcc, 51, 52, 54
extractPSSMFeature, 51, 53, 53
extractQSO, 55, 59
extractScales, 16, 40, 56
extractScalesGap, 57
extractSOCN, 55, 58
extractTC, 20, 34, 59

getUniProt, 60, 68
getwd, 68, 69
gsub, 70

OptAA3d, 7, 11, 61

parGOSim, 61, 72
parSeqSim, 62, 63, 65, 72, 73
parSeqSimDisk, 64, 64
protcheck, 66

74

INDEX 75

protseg, 67

readFASTA, 60, 68, 69
readPDB, 69
removeGaps, 70

twoGOSim, 62, 71, 73
twoSeqSim, 72

	AA2DACOR
	AA3DMoRSE
	AAACF
	AABLOSUM100
	AABLOSUM45
	AABLOSUM50
	AABLOSUM62
	AABLOSUM80
	AABurden
	AAConn
	AAConst
	AACPSA
	AADescAll
	AAEdgeAdj
	AAEigIdx
	AAFGC
	AAGeom
	AAGETAWAY
	AAindex
	AAInfo
	AAMetaInfo
	AAMOE2D
	AAMOE3D
	AAMolProp
	AAPAM120
	AAPAM250
	AAPAM30
	AAPAM40
	AAPAM70
	AARandic
	AARDF
	AATopo
	AATopoChg
	AAWalk
	AAWHIM
	acc
	crossSetSim
	crossSetSimDisk
	extractAAC
	extractAPAAC
	extractBLOSUM
	extractCTDC
	extractCTDCClass
	extractCTDD
	extractCTDDClass
	extractCTDT
	extractCTDTClass
	extractCTriad
	extractCTriadClass
	extractDC
	extractDescScales
	extractFAScales
	extractGeary
	extractMDSScales
	extractMoran
	extractMoreauBroto
	extractPAAC
	extractProtFP
	extractProtFPGap
	extractPSSM
	extractPSSMAcc
	extractPSSMFeature
	extractQSO
	extractScales
	extractScalesGap
	extractSOCN
	extractTC
	getUniProt
	OptAA3d
	parGOSim
	parSeqSim
	parSeqSimDisk
	protcheck
	protseg
	readFASTA
	readPDB
	removeGaps
	twoGOSim
	twoSeqSim
	Index

