Title: | Patient Rule Induction Method (PRIM) |
---|---|
Description: | Patient Rule Induction Method (PRIM) for bump hunting in high-dimensional data. |
Authors: | Tarn Duong [aut, cre] |
Maintainer: | Tarn Duong <[email protected]> |
License: | GPL-2 | GPL-3 |
Version: | 1.0.22 |
Built: | 2024-11-28 16:49:24 UTC |
Source: | CRAN |
PRIM for bump-hunting for high-dimensional regression-type data.
The data are
where
is d-dimensional and
is a
scalar response. We wish to find the modal (and/or anti-modal) regions
in the conditional
expectation
PRIM is a bump-hunting technique introduced by Friedman & Fisher (1999), taken from data mining. PRIM estimates are a sequence of nested hyper-rectangles (boxes).
For an overview of this package, see vignette("prim")
for PRIM
estimation for 2- and 5-dimensional data.
Tarn Duong <[email protected]>
Friedman, J.H. & Fisher, N.I. (1999) Bump-hunting for high dimensional data, Statistics and Computing, 9, 123–143.
Hyndman, R.J. Computing and graphing highest density regions. American Statistician, 50, 120–126.
PRIM plot for multivariate data.
## S3 method for class 'prim' plot(x, splom=TRUE, ...)
## S3 method for class 'prim' plot(x, splom=TRUE, ...)
x |
object of class |
splom |
flag for plotting 3-d data as scatter plot matrix. Default is TRUE. |
... |
other graphics parameters |
The function headers are
## bivariate x, col, xlim, ylim, xlab, ylab, add=FALSE, add.legend=FALSE, cex.legend=1, pos.legend, lwd=1, border, col.vec=c("blue", "orange"), alpha=1, ...) ## trivariate plot(x, xlim, ylim, zlim, xlab, ylab, zlab, col.vec=c("blue","orange"), alpha=1, theta=30, phi=40, d=4, ...) ## d-variate plot(x, xmin, xmax, xlab, ylab, x.pt, m, col.vec=c("blue","orange"), alpha=1, ...)
The arguments are
add.legend
flag for adding legend (2-d plot)
pos.legend
(x,y) co-ordinates for legend (2-d plot)
cex.legend
cex graphics parameter for legend (2-d plot)
col.vec
vector of plotting colours, one for each box
xlab,ylab,zlab,xlim,ylim,zlim,add,lwd,alpha,phi,theta,d
usual graphics parameters
xmin,xmax
vector of minimum and maximum axis plotting values for scatter plot matrix
x.pt
data set to plot (other than x
)
Plot of 2-dim PRIM is a set of nested rectangles. Plot of 3-dim PRIM is a scatter point cloud. Plot of d-dim PRIM is a scatter plot matrix. The scatter plots indicate which points belong to which box.
## see ?predict.prim for bivariate example ## trivariate example data(quasiflow) qf <- quasiflow[1:1000,1:3] qf.label <- quasiflow[1:1000,4] thr <- c(0.25, -0.3) qf.prim <- prim.box(x=qf, y=qf.label, threshold=thr, threshold.type=0) plot(qf.prim, alpha=0.5) plot(qf.prim, alpha=0.5, splom=FALSE, ticktype="detailed", colkey=FALSE)
## see ?predict.prim for bivariate example ## trivariate example data(quasiflow) qf <- quasiflow[1:1000,1:3] qf.label <- quasiflow[1:1000,4] thr <- c(0.25, -0.3) qf.prim <- prim.box(x=qf, y=qf.label, threshold=thr, threshold.type=0) plot(qf.prim, alpha=0.5) plot(qf.prim, alpha=0.5, splom=FALSE, ticktype="detailed", colkey=FALSE)
S3 methods PRIM for multivariate data.
## S3 method for class 'prim' predict(object, newdata, y.fun.flag=FALSE, ...) ## S3 method for class 'prim' summary(object, ..., print.box=FALSE)
## S3 method for class 'prim' predict(object, newdata, y.fun.flag=FALSE, ...) ## S3 method for class 'prim' summary(object, ..., print.box=FALSE)
object |
object of class |
newdata |
data matrix |
y.fun.flag |
flag to return y value of PRIM box rather than box label. Default is FALSE. |
print.box |
flag to print out limits of all PRIM boxes. Default is FALSE. |
... |
other parameters |
–The predict
method returns the value of PRIM box number in
which newdata
are located.
–The summary
method displays a table with three columns:
box-fun
is the y value, box-mass
is the mass of the
box, threshold.type
is the threshold direction indicator: 1
= ">= threshold", -1 = "<=threshold". Each box corresponds to a
row. The second last row marked with an asterisk is the box
which collates the remaining data points not belonging to a specific
PRIM box. The final row is an overall summary, i.e. box-fun
is the
overall mean of y and box-mass
is 1.
data(quasiflow) qf <- quasiflow[1:1000,1:2] qf.label <- quasiflow[1:1000,3]*quasiflow[1:1000,4] qf.prim <- prim.box(x=qf, y=qf.label, threshold=c(0.3, -0.1), threshold.type=0, verbose=TRUE) ## verbose=TRUE prints out extra informaton about peeling and pasting summary(qf.prim) predict(qf.prim, newdata=c(0.6,0.2)) ## using median insted of mean for the response y qf.prim2 <- prim.box(x=qf, y=qf.label, threshold=c(0.5, -0.2), threshold.type=0, y.fun=median) summary(qf.prim2) predict(qf.prim2, newdata=c(0.6,0.2))
data(quasiflow) qf <- quasiflow[1:1000,1:2] qf.label <- quasiflow[1:1000,3]*quasiflow[1:1000,4] qf.prim <- prim.box(x=qf, y=qf.label, threshold=c(0.3, -0.1), threshold.type=0, verbose=TRUE) ## verbose=TRUE prints out extra informaton about peeling and pasting summary(qf.prim) predict(qf.prim, newdata=c(0.6,0.2)) ## using median insted of mean for the response y qf.prim2 <- prim.box(x=qf, y=qf.label, threshold=c(0.5, -0.2), threshold.type=0, y.fun=median) summary(qf.prim2) predict(qf.prim2, newdata=c(0.6,0.2))
PRIM for multivariate data.
prim.box(x, y, box.init=NULL, peel.alpha=0.05, paste.alpha=0.01, mass.min=0.05, threshold, pasting=TRUE, verbose=FALSE, threshold.type=0, y.fun=mean) prim.hdr(prim, threshold, threshold.type, y.fun=mean) prim.combine(prim1, prim2, y.fun=mean)
prim.box(x, y, box.init=NULL, peel.alpha=0.05, paste.alpha=0.01, mass.min=0.05, threshold, pasting=TRUE, verbose=FALSE, threshold.type=0, y.fun=mean) prim.hdr(prim, threshold, threshold.type, y.fun=mean) prim.combine(prim1, prim2, y.fun=mean)
x |
matrix of data values |
y |
vector of response values |
y.fun |
function applied to response y. Default is mean. |
box.init |
initial covering box |
peel.alpha |
peeling quantile tuning parameter |
paste.alpha |
pasting quantile tuning parameter |
mass.min |
minimum mass tuning parameter |
threshold |
threshold tuning parameter(s) |
threshold.type |
threshold direction indicator: 1 = ">= threshold", -1 = "<= threshold", 0 = ">= threshold[1] & <= threshold[2]" |
pasting |
flag for pasting |
verbose |
flag for printing output during execution |
prim , prim1 , prim2
|
objects of type |
The data are where
is d-dimensional and
is a
scalar response. PRIM finds modal (and/or anti-modal) regions in the
conditional expectation
In general, can be real-valued. See
vignette("prim")
.
Here, we focus on the special case for binary . Let
= 1 when
; and
= -1 when
where
and
are different
distribution functions. In this set-up, PRIM finds the
regions where
and
are most different.
The tuning parameters peel.alpha
and paste.alpha
control
the ‘patience’ of PRIM. Smaller values involve more patience. Larger
values less patience. The peeling steps remove data from a box till
either the box mean is smaller than threshold
or the box mass
is less than mass.min
. Pasting is optional, and is used to correct any
possible over-peeling. The default values for peel.alpha
,
paste.alpha
and mass.min
are taken from Friedman &
Fisher (1999).
The type of PRIM estimate is controlled threshold
and
threshold.type
:
threshold.type=1
search for {
threshold
}.
threshold.type=-1
search for {
threshold
}.
threshold.type=0
search for both {
threshold[1]
} and {
threshold[2]
}.
There are two ways of using PRIM. One is prim.box
with
pre-specified threshold(s). This is appropriate when the threshold(s)
are known to produce good estimates.
On the other hand, if the user doesn't provide threshold values then
prim.box
computes box sequences which cover the data
range. These can then be pruned at a later stage. prim.hdr
allows the user to specify many different threshold values in an
efficient manner, without having to recomputing the entire PRIM box
sequence. prim.combine
can be used to join the regions computed
from prim.hdr
. See the examples below.
– prim.box
produces a PRIM estimate, an object of
type prim
, which is a list with 8 fields:
x |
list of data matrices |
y |
list of response variable vectors |
y.mean |
list of vectors of box mean for y |
box |
list of matrices of box limits (first row = minima, second row = maxima) |
mass |
vector of box masses (proportion of points inside a box) |
num.class |
total number of PRIM boxes |
num.hdr.class |
total number of PRIM boxes which form the HDR |
ind |
threshold direction indicator: 1 = ">= threshold", -1 = "<=threshold" |
The above lists have num.class
fields, one for each box.
– prim.hdr
takes a prim
object and prunes it using
different threshold values. Returns another prim
object. This
is much faster for experimenting with different threshold values than
calling prim.box
each time.
– prim.combine
combines two prim
objects into a single
prim object. Usually used in conjunction with prim.hdr
. See examples below.
data(quasiflow) qf <- quasiflow[1:1000,1:2] qf.label <- quasiflow[1:1000,4] ## using only one command thr <- c(0.25, -0.3) qf.prim1 <- prim.box(x=qf, y=qf.label, threshold=thr, threshold.type=0) ## alternative - requires more commands but allows more control ## in intermediate stages qf.primp <- prim.box(x=qf, y=qf.label, threshold.type=1) ## default threshold too low, try higher one qf.primp.hdr <- prim.hdr(prim=qf.primp, threshold=0.25, threshold.type=1) qf.primn <- prim.box(x=qf, y=qf.label, threshold=-0.3, threshold.type=-1) qf.prim2 <- prim.combine(qf.primp.hdr, qf.primn) plot(qf.prim1, alpha=0.2) ## orange=x1>x2, blue x2<x1 points(qf[qf.label==1,], cex=0.5) points(qf[qf.label==-1,], cex=0.5, col=2)
data(quasiflow) qf <- quasiflow[1:1000,1:2] qf.label <- quasiflow[1:1000,4] ## using only one command thr <- c(0.25, -0.3) qf.prim1 <- prim.box(x=qf, y=qf.label, threshold=thr, threshold.type=0) ## alternative - requires more commands but allows more control ## in intermediate stages qf.primp <- prim.box(x=qf, y=qf.label, threshold.type=1) ## default threshold too low, try higher one qf.primp.hdr <- prim.hdr(prim=qf.primp, threshold=0.25, threshold.type=1) qf.primn <- prim.box(x=qf, y=qf.label, threshold=-0.3, threshold.type=-1) qf.prim2 <- prim.combine(qf.primp.hdr, qf.primn) plot(qf.prim1, alpha=0.2) ## orange=x1>x2, blue x2<x1 points(qf[qf.label==1,], cex=0.5) points(qf[qf.label==-1,], cex=0.5, col=2)
This data set is simulated data from two normal mixture distrbutions, mimicking a flow cytometry data set. It contains 10000 observations from an HIV+ patient and 10000 observations an HIV- patient.
data(quasiflow)
data(quasiflow)
quasiflow
is a matrix with 6 columns and 20000 rows.
Each row corresponds to measurements for one cell.
The first 5 columns are flow cytometric measurements and the sixth
column is a binary indicator, with 1 = HIV+ and -1 = HIV-.
Generated by package author.