Title: | Genomic Prediction of Hybrid Performance with Graphical User Interface |
---|---|
Description: | Performs genomic prediction of hybrid performance using eight GS methods including GBLUP, BayesB, RKHS, PLS, LASSO, Elastic net, XGBoost and LightGBM. GBLUP: genomic best liner unbiased prediction, RKHS: reproducing kernel Hilbert space, PLS: partial least squares regression, LASSO: least absolute shrinkage and selection operator, XGBoost: extreme gradient boosting, LightGBM: light gradient boosting machine. It also provides fast cross-validation and mating design scheme for training population (Xu S et al (2016) <doi:10.1111/tpj.13242>; Xu S (2017) <doi:10.1534/g3.116.038059>). |
Authors: | Yang Xu [aut], Guangning Yu [aut], Yuxiang Zhang [aut, cre], Yanru Cui [ctb], Shizhong Xu [ctb], Chenwu Xu [ctb] |
Maintainer: | Yuxiang Zhang <[email protected]> |
License: | GPL-3 |
Version: | 2.0.1 |
Built: | 2025-02-13 06:37:32 UTC |
Source: | CRAN |
This dataset contains phenotypic data of 410 hybrids for grain yield in maize.
hybrid_phe
hybrid_phe
A data frame with 410 rows and 3 variables:
M
The names of male parents.
F
The names of female parents.
GY
The grain yield of hybrids.
Genotypic data of 348 maize inbred lines in Hapmap format with double bit.
input_geno
input_geno
A data frame with 4979 rows and 359 columns.
Genotypic data of 50 rice inbred lines with 1000 SNPs.
input_geno1
input_geno1
A data frame with 1000 rows and 50 variables.
Graphical User Interface for cross validation, genotype conversion and hybrid performance prediction.
predhy.GUI()
predhy.GUI()
No return value, called for Graphical User Interface
{ predhy.GUI()}
{ predhy.GUI()}