Package 'predhy.GUI'

Title: Genomic Prediction of Hybrid Performance with Graphical User Interface
Description: Performs genomic prediction of hybrid performance using eight GS methods including GBLUP, BayesB, RKHS, PLS, LASSO, Elastic net, XGBoost and LightGBM. GBLUP: genomic best liner unbiased prediction, RKHS: reproducing kernel Hilbert space, PLS: partial least squares regression, LASSO: least absolute shrinkage and selection operator, XGBoost: extreme gradient boosting, LightGBM: light gradient boosting machine. It also provides fast cross-validation and mating design scheme for training population (Xu S et al (2016) <doi:10.1111/tpj.13242>; Xu S (2017) <doi:10.1534/g3.116.038059>).
Authors: Yang Xu [aut], Guangning Yu [aut], Yuxiang Zhang [aut, cre], Yanru Cui [ctb], Shizhong Xu [ctb], Chenwu Xu [ctb]
Maintainer: Yuxiang Zhang <[email protected]>
License: GPL-3
Version: 2.0.1
Built: 2025-02-13 06:37:32 UTC
Source: CRAN

Help Index


Phenotypic data of hybrids

Description

This dataset contains phenotypic data of 410 hybrids for grain yield in maize.

Usage

hybrid_phe

Format

A data frame with 410 rows and 3 variables:

M

The names of male parents.

F

The names of female parents.

GY

The grain yield of hybrids.


Genotype in Hapmap Format

Description

Genotypic data of 348 maize inbred lines in Hapmap format with double bit.

Usage

input_geno

Format

A data frame with 4979 rows and 359 columns.


Genotype in Numeric Format

Description

Genotypic data of 50 rice inbred lines with 1000 SNPs.

Usage

input_geno1

Format

A data frame with 1000 rows and 50 variables.


Graphical User Interface for R package predhy

Description

Graphical User Interface for cross validation, genotype conversion and hybrid performance prediction.

Usage

predhy.GUI()

Value

No return value, called for Graphical User Interface

Examples

{
predhy.GUI()}