Title: | Power and Reversal Power Distributions |
---|---|
Description: | Density, distribution function, quantile function and random generation for the family of power and reversal power distributions. |
Authors: | Susan Anyosa [aut, cre], Jorge Luis Bazán Guzmán [aut], Artur Lemonte [aut] |
Maintainer: | Susan Anyosa <[email protected]> |
License: | GPL-3 |
Version: | 0.1.4 |
Built: | 2024-12-04 07:33:28 UTC |
Source: | CRAN |
The powdist package enables to compute the probability density function, cumulative distribution function, quantile function and generate random numbers for the following distributions: power Logistic (plogis), reversal power Logistic (rplogis), power Normal (pnorm), reversal power Normal (rpnorm), power Cauchy (pcauchy), reversal power Cauchy (rpcauchy), power reversal-Gumbel (prgumbel), power Student T (pt), reversal power Student T (rpt), power Laplace (plaplace), reversal power Laplace (rplaplace), power exponential power (pexpow) and reversal power exponential power (rpexpow).
Density, distribution function, quantile function and random generation for the exponential power distribution with parameters mu, sigma and k.
dexpow(x, mu = 0, sigma = 1, k = 0, log = FALSE) pexpow(q, mu = 0, sigma = 1, k = 0, lower.tail = TRUE, log.p = FALSE) qexpow(p, mu = 0, sigma = 1, k = 0, lower.tail = TRUE, log.p = FALSE) rexpow(n, mu = 0, sigma = 1, k = 0)
dexpow(x, mu = 0, sigma = 1, k = 0, log = FALSE) pexpow(q, mu = 0, sigma = 1, k = 0, lower.tail = TRUE, log.p = FALSE) qexpow(p, mu = 0, sigma = 1, k = 0, lower.tail = TRUE, log.p = FALSE) rexpow(n, mu = 0, sigma = 1, k = 0)
x , q
|
vector of quantiles. |
mu , sigma
|
location and scale parameters. |
k |
shape parameter. |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
n |
number of observations. |
The Exponential distribution has density
,
where is the location paramether,
the scale parameter and k the shape parameter.
Lemonte A. and Bazán J.L.
dexpow(1, 3, 4, 1) pexpow(1, 3, 4, 1) qexpow(0.2, 3, 4, 1) rexpow(5, 3, 4, 1)
dexpow(1, 3, 4, 1) pexpow(1, 3, 4, 1) qexpow(0.2, 3, 4, 1) rexpow(5, 3, 4, 1)
Density, distribution function, quantile function and random generation for the Gumbel distribution with parameters mu and sigma.
dgumbel(x, mu = 0, sigma = 1, log = FALSE) pgumbel(q, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) qgumbel(p, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) rgumbel(n, mu = 0, sigma = 1)
dgumbel(x, mu = 0, sigma = 1, log = FALSE) pgumbel(q, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) qgumbel(p, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) rgumbel(n, mu = 0, sigma = 1)
x , q
|
vector of quantiles. |
mu , sigma
|
location and scale parameters. |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
n |
number of observations. |
The Gumbel distribution has density
,
where is the location paramether and
is the scale parameter.
dgumbel(1, 3, 4) pgumbel(1, 3, 4) qgumbel(0.2, 3, 4) rgumbel(5, 3, 4)
dgumbel(1, 3, 4) pgumbel(1, 3, 4) qgumbel(0.2, 3, 4) rgumbel(5, 3, 4)
Density, distribution function, quantile function and random generation for the power Cauchy distribution with parameters mu, sigma and lambda.
dpcauchy(x, lambda = 1, mu = 0, sigma = 1, log = FALSE) ppcauchy(q, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) qpcauchy(p, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) rpcauchy(n, lambda = 1, mu = 0, sigma = 1)
dpcauchy(x, lambda = 1, mu = 0, sigma = 1, log = FALSE) ppcauchy(q, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) qpcauchy(p, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) rpcauchy(n, lambda = 1, mu = 0, sigma = 1)
x , q
|
vector of quantiles. |
lambda |
shape parameter. |
mu , sigma
|
location and scale parameters. |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
n |
number of observations. |
The power Cauchy distribution has density
,
where is the location paramether,
the scale parameter and
the shape parameter.
Anyosa, S. A. C. (2017) Binary regression using power and reversal power links. Master's thesis in Portuguese. Interinstitutional Graduate Program in Statistics. Universidade de São Paulo - Universidade Federal de São Carlos. Available in https://repositorio.ufscar.br/handle/ufscar/9016.
Bazán, J. L., Torres -Avilés, F., Suzuki, A. K. and Louzada, F. (2017) Power and reversal power links for binary regressions: An application for motor insurance policyholders. Applied Stochastic Models in Business and Industry, 33(1), 22-34.
dpcauchy(1, 1, 3, 4) ppcauchy(1, 1, 3, 4) qpcauchy(0.2, 1, 3, 4) rpcauchy(5, 2, 3, 4)
dpcauchy(1, 1, 3, 4) ppcauchy(1, 1, 3, 4) qpcauchy(0.2, 1, 3, 4) rpcauchy(5, 2, 3, 4)
Density, distribution function, quantile function and random generation for the power exponential power distribution with parameters mu, sigma, lambda and k.
dpexpow(x, lambda = 1, mu = 0, sigma = 1, k = 0, log = FALSE) ppexpow(q, lambda = 1, mu = 0, sigma = 1, k = 0, lower.tail = TRUE, log.p = FALSE) qpexpow(p, lambda = 1, mu = 0, sigma = 1, k = 0, lower.tail = TRUE, log.p = FALSE) rpexpow(n, lambda = 1, mu = 0, sigma = 1, k = 0)
dpexpow(x, lambda = 1, mu = 0, sigma = 1, k = 0, log = FALSE) ppexpow(q, lambda = 1, mu = 0, sigma = 1, k = 0, lower.tail = TRUE, log.p = FALSE) qpexpow(p, lambda = 1, mu = 0, sigma = 1, k = 0, lower.tail = TRUE, log.p = FALSE) rpexpow(n, lambda = 1, mu = 0, sigma = 1, k = 0)
x , q
|
vector of quantiles. |
mu , sigma
|
location and scale parameters. |
k , lambda
|
shape parameters. |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
n |
number of observations. |
The power exponential power distribution has density
,
where is the location paramether,
the scale parameter and
and k the shape parameters.
Lemonte A. and Bazán J.L.
dpexpow(1, 1, 3, 4, 1) ppexpow(1, 1, 3, 4, 1) qpexpow(0.2, 1, 3, 4, 1) rpexpow(5, 2, 3, 4, 1)
dpexpow(1, 1, 3, 4, 1) ppexpow(1, 1, 3, 4, 1) qpexpow(0.2, 1, 3, 4, 1) rpexpow(5, 2, 3, 4, 1)
Density, distribution function, quantile function and random generation for the power Laplace distribution with parameters mu, sigma and lambda.
dplaplace(x, lambda = 1, mu = 0, sigma = 1, log = FALSE) pplaplace(q, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) qplaplace(p, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) rplaplace(n, lambda = 1, mu = 0, sigma = 1)
dplaplace(x, lambda = 1, mu = 0, sigma = 1, log = FALSE) pplaplace(q, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) qplaplace(p, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) rplaplace(n, lambda = 1, mu = 0, sigma = 1)
x , q
|
vector of quantiles. |
lambda |
shape parameter. |
mu , sigma
|
location and scale parameters. |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
n |
number of observations. |
The power Laplace distribution has density
,
where
is the location paramether,
the scale parameter and
the shape parameter.
dplaplace(1, 1, 3, 4) pplaplace(1, 1, 3, 4) qplaplace(0.2, 1, 3, 4) rplaplace(5, 2, 3, 4)
dplaplace(1, 1, 3, 4) pplaplace(1, 1, 3, 4) qplaplace(0.2, 1, 3, 4) rplaplace(5, 2, 3, 4)
Density, distribution function, quantile function and random generation for the power logistic distribution with parameters mu, sigma and lambda.
dplogis(x, lambda = 1, mu = 0, sigma = 1, log = FALSE) pplogis(q, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) qplogis(p, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) rplogis(n, lambda = 1, mu = 0, sigma = 1)
dplogis(x, lambda = 1, mu = 0, sigma = 1, log = FALSE) pplogis(q, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) qplogis(p, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) rplogis(n, lambda = 1, mu = 0, sigma = 1)
x , q
|
vector of quantiles. |
lambda |
shape parameter. |
mu , sigma
|
location and scale parameters. |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
n |
number of observations. |
The power Logistic distribution has density
,
where
is the location paramether,
the scale parameter and
the shape parameter.
Anyosa, S. A. C. (2017) Binary regression using power and reversal power links. Master's thesis in Portuguese. Interinstitutional Graduate Program in Statistics. Universidade de São Paulo - Universidade Federal de São Carlos. Available in https://repositorio.ufscar.br/handle/ufscar/9016.
Bazán, J. L., Torres -Avilés, F., Suzuki, A. K. and Louzada, F. (2017) Power and reversal power links for binary regressions: An application for motor insurance policyholders. Applied Stochastic Models in Business and Industry, 33(1), 22-34.
Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume 1, chapter 16. Wiley, New York.
Lemonte, A. J. and Bazán, J. L. (2017) New links for binary regression: an application to coca cultivation in Peru. TEST.
Nadarajah, S. (2009) The skew logistic distribution. AStA Advances in Statistical Analysis, 93, 187-203.
Prentice, R. L. (1976) A Generalization of the probit and logit methods for dose-response curves. Biometrika, 32, 761-768.
dplogis(1, 1, 3, 4) pplogis(1, 1, 3, 4) qplogis(0.2, 1, 3, 4) rplogis(5, 2, 3, 4)
dplogis(1, 1, 3, 4) pplogis(1, 1, 3, 4) qplogis(0.2, 1, 3, 4) rplogis(5, 2, 3, 4)
Density, distribution function, quantile function and random generation for the power normal distribution with parameters mu, sigma and lambda.
dpnorm(x, lambda = 1, mu = 0, sigma = 1, log = FALSE) ppnorm(q, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) qpnorm(p, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) rpnorm(n, lambda = 1, mu = 0, sigma = 1)
dpnorm(x, lambda = 1, mu = 0, sigma = 1, log = FALSE) ppnorm(q, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) qpnorm(p, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) rpnorm(n, lambda = 1, mu = 0, sigma = 1)
x , q
|
vector of quantiles. |
lambda |
shape parameter. |
mu , sigma
|
location and scale parameters. |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
n |
number of observations. |
The power Normal distribution has density
,
where is the location paramether,
the scale parameter and
the shape parameter.
Anyosa, S. A. C. (2017) Binary regression using power and reversal power links. Master's thesis in Portuguese. Interinstitutional Graduate Program in Statistics. Universidade de São Paulo - Universidade Federal de São Carlos. Available in https://repositorio.ufscar.br/handle/ufscar/9016.
Bazán, J. L., Torres -Avilés, F., Suzuki, A. K. and Louzada, F. (2017) Power and reversal power links for binary regressions: An application for motor insurance policyholders. Applied Stochastic Models in Business and Industry, 33(1), 22-34.
Bazán, J. L., Romeo, J. S. and Rodrigues, J. (2014) Bayesian skew-probit regression for binary response data. Brazilian Journal of Probability and Statistics. 28(4), 467–482.
Gupta, R. D. and Gupta, R. C. (2008) Analyzing skewed data by power normal model. Test 17, 197–210.
Kundu, D. and Gupta, R. D. (2013) Power-normal distribution. Statistics 47, 110–125.
dpnorm(1, 1, 3, 4) ppnorm(1, 1, 3, 4) qpnorm(0.2, 1, 3, 4) rpnorm(5, 2, 3, 4)
dpnorm(1, 1, 3, 4) ppnorm(1, 1, 3, 4) qpnorm(0.2, 1, 3, 4) rpnorm(5, 2, 3, 4)
Density, distribution function, quantile function and random generation for the power Reversal-Gumbel distribution with parameters mu, sigma and lambda.
dprgumbel(x, lambda = 1, mu = 0, sigma = 1, log = FALSE) pprgumbel(q, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) qprgumbel(p, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) rprgumbel(n, lambda = 1, mu = 0, sigma = 1)
dprgumbel(x, lambda = 1, mu = 0, sigma = 1, log = FALSE) pprgumbel(q, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) qprgumbel(p, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) rprgumbel(n, lambda = 1, mu = 0, sigma = 1)
x , q
|
vector of quantiles. |
lambda |
shape parameter. |
mu , sigma
|
location and scale parameters. |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
n |
number of observations. |
The power reverlsa-Gumbel distribution has density
,
where is the location paramether,
the scale parameter and
the shape parameter.
Abanto -Valle, C. A., Bazán, J. L. and Smith, A. C. (2014) State space mixed models for binary responses with skewed inverse links using JAGS. Rio de Janeiro, Brazil.
Anyosa, S. A. C. (2017) Binary regression using power and reversal power links. Master's thesis in Portuguese. Interinstitutional Graduate Program in Statistics. Universidade de São Paulo - Universidade Federal de São Carlos. Available in https://repositorio.ufscar.br/handle/ufscar/9016.
Bazán, J. L., Torres -Avilés, F., Suzuki, A. K. and Louzada, F. (2017) Power and reversal power links for binary regressions: An application for motor insurance policyholders. Applied Stochastic Models in Business and Industry, 33(1), 22-34.
dprgumbel(1, 1, 3, 4) pprgumbel(1, 1, 3, 4) qprgumbel(0.2, 1, 3, 4) rprgumbel(5, 2, 3, 4)
dprgumbel(1, 1, 3, 4) pprgumbel(1, 1, 3, 4) qprgumbel(0.2, 1, 3, 4) rprgumbel(5, 2, 3, 4)
Density, distribution function, quantile function and random generation for the power Student t distribution with parameters mu, sigma, lambda and df.
dpt(x, lambda = 1, mu = 0, sigma = 1, df, log = FALSE) ppt(q, lambda = 1, mu = 0, sigma = 1, df, lower.tail = TRUE, log.p = FALSE) qpt(p, lambda = 1, mu = 0, sigma = 1, df, lower.tail = TRUE, log.p = FALSE) rpt(n, lambda = 1, mu = 0, sigma = 1, df)
dpt(x, lambda = 1, mu = 0, sigma = 1, df, log = FALSE) ppt(q, lambda = 1, mu = 0, sigma = 1, df, lower.tail = TRUE, log.p = FALSE) qpt(p, lambda = 1, mu = 0, sigma = 1, df, lower.tail = TRUE, log.p = FALSE) rpt(n, lambda = 1, mu = 0, sigma = 1, df)
x , q
|
vector of quantiles. |
lambda |
shape parameter. |
mu , sigma
|
location and scale parameters. |
df |
degrees of freedom (> 0, maybe non-integer). df = Inf is allowed. |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
n |
number of observations. |
The power Student t distribution has density
,
where is the location paramether,
the scale parameter and
the shape parameter.
Lemonte A. and Bazán J.L.
dpt(1, 1, 3, 4, 1) ppt(1, 1, 3, 4, 1) qpt(0.2, 1, 3, 4, 1) rpt(5, 2, 3, 4, 1)
dpt(1, 1, 3, 4, 1) ppt(1, 1, 3, 4, 1) qpt(0.2, 1, 3, 4, 1) rpt(5, 2, 3, 4, 1)
Density, distribution function, quantile function and random generation for the Reversal-Gumbel distribution with parameters mu and sigma.
drgumbel(x, mu = 0, sigma = 1, log = FALSE) prgumbel(q, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) qrgumbel(p, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) rrgumbel(n, mu = 0, sigma = 1)
drgumbel(x, mu = 0, sigma = 1, log = FALSE) prgumbel(q, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) qrgumbel(p, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) rrgumbel(n, mu = 0, sigma = 1)
x , q
|
vector of quantiles. |
mu , sigma
|
location and scale parameters. |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
n |
number of observations. |
The reversal-Gumbel distribution has density
,
where is the location paramether and
is the scale parameter.
Anyosa, S. A. C. (2017) Binary regression using power and reversal power links. Master's thesis in Portuguese. Interinstitutional Graduate Program in Statistics. Universidade de São Paulo - Universidade Federal de São Carlos. Available in https://repositorio.ufscar.br/handle/ufscar/9016.
Bazán, J. L., Torres -Avilés, F., Suzuki, A. K. and Louzada, F. (2017) Power and reversal power links for binary regressions: An application for motor insurance policyholders. Applied Stochastic Models in Business and Industry, 33(1), 22-34.
drgumbel(1, 3, 4) prgumbel(1, 3, 4) qrgumbel(0.2, 3, 4) rprgumbel(5, 3, 4)
drgumbel(1, 3, 4) prgumbel(1, 3, 4) qrgumbel(0.2, 3, 4) rprgumbel(5, 3, 4)
Density, distribution function, quantile function and random generation for the reversal power Cauchy distribution with parameters mu, sigma and lambda.
drpcauchy(x, lambda = 1, mu = 0, sigma = 1, log = FALSE) prpcauchy(q, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) qrpcauchy(p, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) rrpcauchy(n, lambda = 1, mu = 0, sigma = 1)
drpcauchy(x, lambda = 1, mu = 0, sigma = 1, log = FALSE) prpcauchy(q, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) qrpcauchy(p, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) rrpcauchy(n, lambda = 1, mu = 0, sigma = 1)
x , q
|
vector of quantiles. |
lambda |
shape parameter. |
mu , sigma
|
location and scale parameters. |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
n |
number of observations. |
The reversal power Cauchy distribution has density
where is the location paramether,
the scale parameter and
the shape parameter.
Anyosa, S. A. C. (2017) Binary regression using power and reversal power links. Master's thesis in Portuguese. Interinstitutional Graduate Program in Statistics. Universidade de São Paulo - Universidade Federal de São Carlos. Available in https://repositorio.ufscar.br/handle/ufscar/9016.
Bazán, J. L., Torres -Avilés, F., Suzuki, A. K. and Louzada, F. (2017) Power and reversal power links for binary regressions: An application for motor insurance policyholders. Applied Stochastic Models in Business and Industry, 33(1), 22-34.
drpcauchy(1, 1, 3, 4) prpcauchy(1, 1, 3, 4) qrpcauchy(0.2, 1, 3, 4) rrpcauchy(5, 2, 3, 4)
drpcauchy(1, 1, 3, 4) prpcauchy(1, 1, 3, 4) qrpcauchy(0.2, 1, 3, 4) rrpcauchy(5, 2, 3, 4)
Density, distribution function, quantile function and random generation for the reversal power exponential power distribution with parameters mu, sigma, lambda and k.
drpexpow(x, lambda = 1, mu = 0, sigma = 1, k = 0, log = FALSE) prpexpow(q, lambda = 1, mu = 0, sigma = 1, k = 0, lower.tail = TRUE, log.p = FALSE) qrpexpow(p, lambda = 1, mu = 0, sigma = 1, k = 0, lower.tail = TRUE, log.p = FALSE) rrpexpow(n, lambda = 1, mu = 0, sigma = 1, k = 0)
drpexpow(x, lambda = 1, mu = 0, sigma = 1, k = 0, log = FALSE) prpexpow(q, lambda = 1, mu = 0, sigma = 1, k = 0, lower.tail = TRUE, log.p = FALSE) qrpexpow(p, lambda = 1, mu = 0, sigma = 1, k = 0, lower.tail = TRUE, log.p = FALSE) rrpexpow(n, lambda = 1, mu = 0, sigma = 1, k = 0)
x , q
|
vector of quantiles. |
mu , sigma
|
location and scale parameters. |
k , lambda
|
shape parameters. |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
n |
number of observations. |
The reversal power exponential power distribution has density
,
where is the location paramether,
the scale parameter and
and k the shape parameters.
drpexpow(1, 1, 3, 4, 1) prpexpow(1, 1, 3, 4, 1) qrpexpow(0.2, 1, 3, 4, 1) rrpexpow(5, 2, 3, 4, 1)
drpexpow(1, 1, 3, 4, 1) prpexpow(1, 1, 3, 4, 1) qrpexpow(0.2, 1, 3, 4, 1) rrpexpow(5, 2, 3, 4, 1)
Density, distribution function, quantile function and random generation for the power reversal Laplace distribution with parameters mu, sigma and lambda.
drplaplace(x, lambda = 1, mu = 0, sigma = 1, log = FALSE) prplaplace(q, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) qrplaplace(p, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) rrplaplace(n, lambda = 1, mu = 0, sigma = 1)
drplaplace(x, lambda = 1, mu = 0, sigma = 1, log = FALSE) prplaplace(q, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) qrplaplace(p, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) rrplaplace(n, lambda = 1, mu = 0, sigma = 1)
x , q
|
vector of quantiles. |
lambda |
shape parameter. |
mu , sigma
|
location and scale parameters. |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
n |
number of observations. |
The reversal power Laplace distribution has density
,
where is the location paramether,
the scale parameter and
the shape parameter.
drplaplace(1, 1, 3, 4) prplaplace(1, 1, 3, 4) qrplaplace(0.2, 1, 3, 4) rrplaplace(5, 2, 3, 4)
drplaplace(1, 1, 3, 4) prplaplace(1, 1, 3, 4) qrplaplace(0.2, 1, 3, 4) rrplaplace(5, 2, 3, 4)
Density, distribution function, quantile function and random generation for the reversal power logistic distribution with parameters mu, sigma and lambda.
drplogis(x, lambda = 1, mu = 0, sigma = 1, log = FALSE) prplogis(q, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) qrplogis(p, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) rrplogis(n, lambda = 1, mu = 0, sigma = 1)
drplogis(x, lambda = 1, mu = 0, sigma = 1, log = FALSE) prplogis(q, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) qrplogis(p, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) rrplogis(n, lambda = 1, mu = 0, sigma = 1)
x , q
|
vector of quantiles. |
lambda |
shape parameter. |
mu , sigma
|
location and scale parameters. |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
n |
number of observations. |
The reversal power Logistic distribution has density
,
where
is the location paramether,
the scale parameter and
the shape parameter.
Anyosa, S. A. C. (2017) Binary regression using power and reversal power links. Master's thesis in Portuguese. Interinstitutional Graduate Program in Statistics. Universidade de São Paulo - Universidade Federal de São Carlos. Available in https://repositorio.ufscar.br/handle/ufscar/9016.
Bazán, J. L., Torres -Avilés, F., Suzuki, A. K. and Louzada, F. (2017) Power and reversal power links for binary regressions: An application for motor insurance policyholders. Applied Stochastic Models in Business and Industry, 33(1), 22-34.
Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume 1, chapter 16. Wiley, New York.
Nagler J. (1994) Scobit: an alternative estimator to logit and probit. American Journal Political Science, 38(1), 230-255.
Prentice, R. L. (1976) A Generalization of the probit and logit methods for dose-response curves. Biometrika, 32, 761-768.
drplogis(1, 1, 3, 4) prplogis(1, 1, 3, 4) qrplogis(0.2, 1, 3, 4) rrplogis(5, 2, 3, 4)
drplogis(1, 1, 3, 4) prplogis(1, 1, 3, 4) qrplogis(0.2, 1, 3, 4) rrplogis(5, 2, 3, 4)
Density, distribution function, quantile function and random generation for the reversal power normal distribution with parameters mu, sigma and lambda.
drpnorm(x, lambda = 1, mu = 0, sigma = 1, log = FALSE) prpnorm(q, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) qrpnorm(p, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) rrpnorm(n, lambda = 1, mu = 0, sigma = 1)
drpnorm(x, lambda = 1, mu = 0, sigma = 1, log = FALSE) prpnorm(q, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) qrpnorm(p, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) rrpnorm(n, lambda = 1, mu = 0, sigma = 1)
x , q
|
vector of quantiles. |
lambda |
shape parameter. |
mu , sigma
|
location and scale parameters. |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
n |
number of observations. |
The reversal power Normal distribution has density
,
where is the location paramether,
the scale parameter and
the shape parameter.
Anyosa, S. A. C. (2017) Binary regression using power and reversal power links. Master's thesis in Portuguese. Interinstitutional Graduate Program in Statistics. Universidade de São Paulo - Universidade Federal de São Carlos. Available in https://repositorio.ufscar.br/handle/ufscar/9016.
Bazán, J. L., Torres -Avilés, F., Suzuki, A. K. and Louzada, F. (2017) Power and reversal power links for binary regressions: An application for motor insurance policyholders. Applied Stochastic Models in Business and Industry, 33(1), 22-34.
Bazán, J. L., Romeo, J. S. and Rodrigues, J. (2014) Bayesian skew-probit regression for binary response data. Brazilian Journal of Probability and Statistics. 28(4), 467–482.
drpnorm(1, 1, 3, 4) prpnorm(1, 1, 3, 4) qrpnorm(0.2, 1, 3, 4) rrpnorm(5, 2, 3, 4)
drpnorm(1, 1, 3, 4) prpnorm(1, 1, 3, 4) qrpnorm(0.2, 1, 3, 4) rrpnorm(5, 2, 3, 4)
Density, distribution function, quantile function and random generation for the reversal power reversal-Gumbel distribution with parameters mu, sigma and lambda.
drprgumbel(x, lambda = 1, mu = 0, sigma = 1, log = FALSE) prprgumbel(q, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) qrprgumbel(p, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) rrprgumbel(n, lambda = 1, mu = 0, sigma = 1)
drprgumbel(x, lambda = 1, mu = 0, sigma = 1, log = FALSE) prprgumbel(q, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) qrprgumbel(p, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) rrprgumbel(n, lambda = 1, mu = 0, sigma = 1)
x , q
|
vector of quantiles. |
lambda |
shape parameter. |
mu , sigma
|
location and scale parameters. |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
n |
number of observations. |
The reversal power reversal-Gumbel distribution has density
,
where is the location paramether,
the scale parameter and
the shape parameter.
Anyosa, S. A. C. (2017) Binary regression using power and reversal power links. Master's thesis in Portuguese. Interinstitutional Graduate Program in Statistics. Universidade de São Paulo - Universidade Federal de São Carlos. Available in https://repositorio.ufscar.br/handle/ufscar/9016.
Bazán, J. L., Torres -Avilés, F., Suzuki, A. K. and Louzada, F. (2017) Power and reversal power links for binary regressions: An application for motor insurance policyholders. Applied Stochastic Models in Business and Industry, 33(1), 22-34.
drprgumbel(1, 1, 3, 4) prprgumbel(1, 1, 3, 4) qrprgumbel(0.2, 1, 3, 4) rrprgumbel(5, 2, 3, 4)
drprgumbel(1, 1, 3, 4) prprgumbel(1, 1, 3, 4) qrprgumbel(0.2, 1, 3, 4) rrprgumbel(5, 2, 3, 4)
Density, distribution function, quantile function and random generation for the power reversal Student t distribution with parameters mu, sigma, lambda and df.
drpt(x, lambda = 1, mu = 0, sigma = 1, df, log = FALSE) prpt(q, lambda = 1, mu = 0, sigma = 1, df, lower.tail = TRUE, log.p = FALSE) qrpt(p, lambda = 1, mu = 0, sigma = 1, df, lower.tail = TRUE, log.p = FALSE) rrpt(n, lambda = 1, mu = 0, sigma = 1, df)
drpt(x, lambda = 1, mu = 0, sigma = 1, df, log = FALSE) prpt(q, lambda = 1, mu = 0, sigma = 1, df, lower.tail = TRUE, log.p = FALSE) qrpt(p, lambda = 1, mu = 0, sigma = 1, df, lower.tail = TRUE, log.p = FALSE) rrpt(n, lambda = 1, mu = 0, sigma = 1, df)
x , q
|
vector of quantiles. |
lambda |
shape parameter. |
mu , sigma
|
location and scale parameters. |
df |
degrees of freedom (> 0, maybe non-integer). df = Inf is allowed. |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
n |
number of observations. |
The reversal power Student t distribution has density
,
where is the location paramether,
the scale parameter and
the shape parameter.
drpt(1, 1, 3, 4, 1) prpt(1, 1, 3, 4, 1) qrpt(0.2, 1, 3, 4, 1) rrpt(5, 2, 3, 4, 1)
drpt(1, 1, 3, 4, 1) prpt(1, 1, 3, 4, 1) qrpt(0.2, 1, 3, 4, 1) rrpt(5, 2, 3, 4, 1)