
Package: poolfstat (via r-universe)
November 25, 2024

Version 3.0.0

License GPL (>= 2)

Title Computing f-Statistics and Building Admixture Graphs Based on
Allele Count or Pool-Seq Read Count Data

Description Functions for the computation of F-, f- and D-statistics
(e.g., Fst, hierarchical F-statistics, Patterson's F2, F3, F3*,
F4 and D parameters) in population genomics studies from allele
count or Pool-Seq read count data and for the fitting, building
and visualization of admixture graphs. The package also
includes several utilities to manipulate Pool-Seq data stored
in standard format (e.g., such as 'vcf' files or 'rsync' files
generated by the the 'PoPoolation' software) and perform
conversion to alternative format (as used in the 'BayPass' and
'SelEstim' software). As of version 2.0, the package also
includes utilities to manipulate standard allele count data
(e.g., stored in TreeMix, BayPass and SelEstim format).

LinkingTo Rcpp, RcppProgress

Imports Rcpp (>= 1.0.5), methods, data.table, utils, foreach,
doParallel, parallel, DiagrammeR, ape, stats, Ryacas, Matrix,
RcppProgress, progress, nnls

Depends R (>= 3.0)

Encoding UTF-8

RoxygenNote 7.3.2

NeedsCompilation yes

Author Mathieu Gautier [aut, cre]

Maintainer Mathieu Gautier <mathieu.gautier@inrae.fr>

Repository CRAN

Date/Publication 2024-11-23 15:20:06 UTC

Config/pak/sysreqs libglpk-dev make libicu-dev libxml2-dev libx11-dev

1

2 Contents

Contents
add.leaf . 4
bjack_cov . 5
block_sum . 6
block_sum2 . 6
compare.fitted.fstats . 7
compute.f4ratio . 8
compute.fstats . 9
compute.pairwiseFST . 11
computeFST . 12
compute_blockDdenom . 14
compute_F3fromF2 . 15
compute_F3fromF2samples . 15
compute_F4DfromF2samples . 16
compute_F4fromF2 . 17
compute_F4fromF2samples . 18
compute_H1 . 18
compute_Q2 . 19
compute_QmatfromF2samples . 20
compute_snpFstAov . 21
compute_snpHierFstAov . 21
compute_snpQ1 . 22
compute_snpQ1onepop . 23
compute_snpQ1rw . 24
compute_snpQ2 . 25
compute_snpQ2onepair . 25
compute_snpQ2rw . 26
countdata-class . 27
countdata.subset . 27
countdata2genobaypass . 29
extract_allele_names . 30
extract_nonvscan_counts . 31
extract_vscan_counts . 32
find.tree.popset . 33
find_indelneighbor_idx . 34
fit.graph . 35
fitted.graph-class . 37
fstats-class . 38
generate.graph.params . 39
generate.jackknife.blocks . 41
generateF3names . 42
generateF4names . 42
genobaypass2countdata . 43
genobaypass2pooldata . 44
genoselestim2pooldata . 46
genotreemix2countdata . 47
graph.builder . 49

Contents 3

graph.params-class . 50
graph.params2qpGraphFiles . 52
graph.params2symbolic.fstats . 53
heatmap,pairwisefst-method . 54
is.countdata . 56
is.fitted.graph . 56
is.fstats . 56
is.graph.params . 57
is.pairwisefst . 57
is.pooldata . 57
make.example.files . 58
pairwisefst-class . 58
plot,fitted.graph-method . 59
plot,fstats-method . 59
plot,graph.params-method . 60
plot,pairwisefst-method . 60
plot_fstats . 61
pooldata-class . 62
pooldata.subset . 63
pooldata2diyabc . 65
pooldata2genobaypass . 66
pooldata2genoselestim . 67
poppair_idx . 68
popsync2pooldata . 69
randomallele.pca . 70
rooted.njtree.builder . 71
scan_allele_info . 73
show,countdata-method . 73
show,fitted.graph-method . 74
show,fstats-method . 74
show,graph.params-method . 75
show,pairwisefst-method . 75
show,pooldata-method . 76
sim.readcounts . 76
simureads_mono . 78
simureads_poly . 79
sliding.windows.fstat . 80
vcf2pooldata . 82

Index 85

4 add.leaf

add.leaf Test all possible connection of a leaf to a graph with non-admixed and
or admixed edges

Description

Test all possible connection of a leaf to a graph with non-admixed and or admixed edges

Usage

add.leaf(
x,
leaf.to.add,
fstats,
only.test.non.admixed.edges = FALSE,
only.test.admixed.edges = FALSE,
verbose = TRUE,
...

)

Arguments

x An object of class graph.params or fitted.graph (see details)

leaf.to.add Name of the leaf to add

fstats Object of class fstats that contains estimates of the fstats (see compute.fstats)
only.test.non.admixed.edges

If TRUE the function only test non.admixed edges (may be far faster)
only.test.admixed.edges

If TRUE the function only test admixed edges

verbose If TRUE extra information is printed on the terminal

... Some parameters to be passed the function fit.graph called internally

Details

The input object x needs to be of class graph.params (as generated by the function generate.graph.params)
or fitted.graph (as generated by the function fit.graph or by the function add.leaf itself in the
graphs.fit.res elements of the output list). This is to ensure that the matrix describing the struc-
ture of the graph (graph slot of these objects) is valid (note that it can be plotted for checks). Hence
graph.params objects may have been generated without fstats information (that should be supplied
independently to the add.leaf function to obtain information on the fstats involving the candidate
leaf defined with the leaf.to.add argument). By default the function tests all the possible positions
of a newly added edge connecting the candidate leaf to the graph with both non-admixed (including
a new rooting with the candidate leaf as an outgroup) and admixed edges. If n_e is the the number
of non-admixed edges of the original graph, the number of tested graphs for non-admixed edges
equals n_e+1. The newly added node is named "N-"[name of the leaf to add] (or with more N if

bjack_cov 5

the name already exists). For admixed edges, the number of tested graphs equals n_e*(n_e-1)/2 and
for a given tested graph, three nodes named "S-"[name of the leaf to add], "S1-"[name of the leaf
to add] and "S2-"[name of the leaf to add] (or with more S if the name already exists) are added
and the admixture proportions are named with a letter (A to Z depending on the number of admixed
nodes already present in the graph).

Value

A list with the following elements:

1. "n.graphs": The number of tested graphs

2. "fitted.graphs.list": a list of fitted.graph objects (indexed from 1 to n.graphs and in the same
order as the list "graphs") containing the results of fitting of each graph.

3. "best.fitted.graph": The graph (object of class fitted.graph) with the minimal BIC (see function
fit.graph) among all the graphs within fitted.graphs.list

4. "bic": a vector of the n.graphs BIC (indexed from 1 to n.graphs and in the same order as the
"fitted.graphs.list" list) (see fit.graph details for the computation of the scores).

See Also

see fit.graph and generate.graph.params.

bjack_cov bjack_cov

Description

Compute the block-jackknife covariance between two stats

Arguments

stat1 Vector of block-jackknife values for the first stat

stat2 Vector of block-jackknife values for the second stat

Details

Compute the block-jackknife covariance between two stats with correction

Value

Covariance values

Examples

#

6 block_sum2

block_sum block_sum

Description

Sugar to compute the sum of a stat per block

Usage

.block_sum(stat, snp_bj_id)

Arguments

stat vector of n stat values

snp_bj_id integer n-length vector with block index (from 0 to nblock-1) of the stat value

Details

Sugar to compute the sum of a stat per block

Value

Return a vector of length nblocks containing the per-block sums of the input stat

Examples

#

block_sum2 block_sum2

Description

Sugar to compute the sum of a stat per block defined by a range of SNPs (allow treating overlapping
blocks)

Usage

.block_sum2(stat, snp_bj_id)

Arguments

stat vector of n stat values

snp_bj_id integer matrix of dim nblocks x 2 giving for each block the start and end stat
value index

compare.fitted.fstats 7

Details

Sugar to compute the sum of a stat per block defined by a range of SNPs (allow treating overlapping
blocks)

Value

Return a vector of length nblocks containing the per-block sums of the input stat

Examples

#

compare.fitted.fstats Compare fitted f2, f3 and f4 f-statistics of an admixture graph with
estimated ones

Description

Compare fitted f2, f3 and f4 f-statistics of an admixture graph with estimated ones

Usage

compare.fitted.fstats(fstats, fitted.graph, n.worst.stats = 5)

Arguments

fstats Object of class fstats containing estimates of fstats (as obtained with compute.fstats)

fitted.graph Object of class fitted graph (as obtained with fit.graph function).

n.worst.stats The number of worst statistics to be displayed in the terminal

Details

Compare fitted and estimated f-statistics may allow identifying problematic edges on the graph.

Value

A matrix with 3 columns for each test (row names of the matrix corresponding to the test):

1. The estimated f-statistics (mean across block-Jackknife samples)

2. The fitted f-statistics (obtained from the fitted grah parameters

3. A Z-score measuring the deviation of the fitted values from the estimated values in units of
standard errors (i.e., Z=(fitted.value-target.value)/se(target.value))

See Also

See compute.fstats and fit.graph

8 compute.f4ratio

compute.f4ratio Compute F4ratio (estimation of admixture rate) from an fstats object

Description

Compute F4ratio (estimation of admixture rate) from an fstats object

Usage

compute.f4ratio(x, num.quadruplet, den.quadruplet)

Arguments

x A fstats object containing estimates of fstats

num.quadruplet A character string for the F4 quadruplet used in the F4ratio numerator (should
be of the form "A,O;C,X" where A, O, C and X are the names of the population
as defined in the countdata or pooldata object used to obtain fstats, see details)

den.quadruplet A character string for the F4 quadruplet used in the F4ratio denominator (should
be of the form "A,O;C,B" where A, O, C and B are the names of the populations
as defined in the countdata or pooldata object used to obtain fstats, see details))

Details

Assuming a 4 population phylogeny rooted with an outgroup O of the form (((A,B);C);O) and an
admixed population X with two source populations related to B and C, the admixture rate alpha of
the B-related ancestry is obtained using the ratio F4(A,O;C,X)/F4(A,O;C,B) (see Patterson et al.,
2012 for more details).

Value

A vector with 5 elements corresponding. The first element is always the estimated value. If F2
block-jackknife samples are available in the input fstats object (i.e., compute.fstats was run with
return.F2.blockjackknife.samples = TRUE), the four other elements are the block-jackknife mean;
the block-jackknife s.e.; and the lower and upper bound of the 95

See Also

To generate pooldata object, see vcf2pooldata, popsync2pooldata,genobaypass2pooldata or
genoselestim2pooldata. To generate coundata object, see genobaypass2countdata or genotreemix2countdata.

Examples

make.example.files(writing.dir=tempdir())
pooldata=popsync2pooldata(sync.file=paste0(tempdir(),"/ex.sync.gz"),poolsizes=rep(50,15))
res.fstats=compute.fstats(pooldata)

compute.fstats 9

compute.fstats Estimate the F-statistics (F2, F3, F3star, F4, Dstat) and within and
across population diversity

Description

Estimate the F-statistics (F2, F3, F3star, F4, Dstat) and within and across population diversity

Usage

compute.fstats(
x,
nsnp.per.bjack.block = 0,
computeDstat = FALSE,
computeF3 = TRUE,
computeF4 = TRUE,
output.pairwise.fst = TRUE,
output.pairwise.div = TRUE,
computeQmat = TRUE,
return.F2.blockjackknife.samples = FALSE,
return.F4.blockjackknife.samples = FALSE,
verbose = TRUE

)

Arguments

x A pooldata object containing Pool-Seq information or a countdata object con-
taining allele count information

nsnp.per.bjack.block

Number of consecutive SNPs within a block for block-jackknife (default=0, i.e.,
no block-jackknife sampling)

computeDstat If TRUE compute Dstatistics (i.e. scaled F4). This may add some non negligible
computation time if the number of population is large (n>15)

computeF3 If TRUE (default) compute all F3 and all F3star (i.e. scaled F3).

computeF4 If TRUE (default) compute all F4.
output.pairwise.fst

If TRUE (default), output the npopxnpop matrix of pairwise-population Fst esti-
mates (corresponding to the "Identity" method implemented in compute.pairwiseFST)
in the pairwise.fst slot of the fstats output object (see help(fstats) for details) that
may be visualized with e.g. heatmap function or used with a clustering function
(e.g., hclust).

output.pairwise.div

If TRUE (default), output the npopxnpop matrix of pairwise-population diver-
gence (1-Q2) estimates in the pairwise.div slot of the fstats output object (see
help(fstats) for details) that may be visualized with e.g. heatmap function or
used with a clustering function (e.g., hclust).

10 compute.fstats

computeQmat If TRUE, compute the error covariance matrix between all F3 and F2 statistics
(needed for admixture graph construction). This matrix may be very large if the
number of pops is large. It is recommended to estimate it on a reduced sample
of pops.

return.F2.blockjackknife.samples

If TRUE (and nsnp.per.bjack.block>0) return an array of dimension (npopxn-
popxnblocks) in an admixtools2 compatible format

return.F4.blockjackknife.samples

Deprecated options (since v. 2.2.0)

verbose If TRUE extra information is printed on the terminal

Details

The function estimates for the n populations (or pools) represented in the input object x:

1. The F2 statistics for all the n(n− 1)/2 pairs of populations (or pools) and their scaled version
(equivalent, but faster, than Fst estimated with compute.pairwiseFST when method="Identity")

2. If n>2, The F3 statistics for all the npools(npools − 1)(npools − 2)/2 possible triplets of
populations (or pools) and their scaled version (named F3star after Patterson et al., 2012)

3. If n>3, The F4 statistics and the D-statistics (a scaled version of the F4) for all the npools(npools−
1)(npools− 2) ∗ (npools− 3)/8 possible quadruplets of populations

4. The estimated within population heterozygosities (=1-Q1)

5. The estimated divergence for each pair of populations (=1-Q2)

Value

An object of class fstats (see help(fstats) for details)

See Also

To generate pooldata object, see vcf2pooldata, popsync2pooldata,genobaypass2pooldata or
genoselestim2pooldata. To generate coundata object, see genobaypass2countdata or genotreemix2countdata.

Examples

make.example.files(writing.dir=tempdir())
pooldata=popsync2pooldata(sync.file=paste0(tempdir(),"/ex.sync.gz"),poolsizes=rep(50,15))
res.fstats=compute.fstats(pooldata)

compute.pairwiseFST 11

compute.pairwiseFST Compute pairwise population population FST matrix (and possibly all
pairwise SNP-specific FST)

Description

Compute pairwise population population FST matrix (and possibly all pairwise SNP-specific FST)

Usage

compute.pairwiseFST(
x,
method = "Anova",
min.cov.per.pool = -1,
max.cov.per.pool = 1e+06,
min.indgeno.per.pop = -1,
min.maf = -1,
output.snp.values = FALSE,
nsnp.per.bjack.block = 0,
verbose = TRUE

)

Arguments

x A pooldata object containing Pool-Seq information or a countdata object con-
taining allele count information

method Either "Anova" (default method as described in the manuscript) or "Identity"
(relies on an alternative modeling consisting in estimating unbiased Probability
of Identity within and across pairs of pools)

min.cov.per.pool

For Pool-Seq data (i.e., pooldata objects) only: minimal allowed read count (per
pool). If at least one pool is not covered by at least min.cov.perpool reads, the
position is discarded in the corresponding pairwise comparisons

max.cov.per.pool

For Pool-Seq data (i.e., pooldata objects) only: maximal allowed read count (per
pool). If at least one pool is covered by more than min.cov.perpool reads, the
position is discarded in the corresponding pairwise comparisons.

min.indgeno.per.pop

For allele count data (i.e., countdata objects) only: minimal number of overall
counts required in each population. If at least one pop is not genotyped for at
least min.indgeno.per.pop (haploid) individual, the position is discarded

min.maf Minimal allowed Minor Allele Frequency (computed from the ratio over all read
counts for the reference allele over the read coverage) in the pairwise compar-
isons.

12 computeFST

output.snp.values

If TRUE, provide SNP-specific pairwise FST for each comparisons (may lead
to a huge result object if the number of pools and/or SNPs is large)

nsnp.per.bjack.block

Number of consecutive SNPs within a block for block-jackknife (default=0, i.e.,
no block-jackknife sampling)

verbose If TRUE extra information is printed on the terminal

Value

An object of class pairwisefst (see help(pairwisefst) for details)

See Also

To generate pooldata object, see vcf2pooldata, popsync2pooldata,genobaypass2pooldata or
genoselestim2pooldata. To generate coundata object, see genobaypass2countdata or genotreemix2countdata.

Examples

make.example.files(writing.dir=tempdir())
pooldata=popsync2pooldata(sync.file=paste0(tempdir(),"/ex.sync.gz"),poolsizes=rep(50,15))
PairwiseFST=compute.pairwiseFST(pooldata)

computeFST Compute Fst from Pool-Seq data or Count data

Description

Compute Fst from Pool-Seq data or Count data

Usage

computeFST(
x,
method = "Anova",
struct = NULL,
weightpid = FALSE,
nsnp.per.bjack.block = 0,
sliding.window.size = 0,
verbose = TRUE

)

computeFST 13

Arguments

x A pooldata object containing Pool-Seq information or countdata object contain-
ing allele counts information

method Either "Anova" (default method) or "Identity" (relying on unbiased estimators
of Probability of Identity within and across pairs of pools/populations)

struct Vector of length equal to the number of pop. sample that give the pop. sample
group name of index (i.e., structure)

weightpid When method="Identity", if TRUE weighting averages of pop. Q1 and pairwise
Q2 are performed (see eq. A46 and A47 in Hivert et al., 2018 for PoolSeq and
Rousset 2007 for count data) to compute overall Q1 and Q2. If not, unweighted
averages are performed.

nsnp.per.bjack.block

Number of consecutive SNPs within a block for block-jackknife (default=0, i.e.,
no block-jackknife sampling)

sliding.window.size

Number of consecutive SNPs within a window for multi-locus computation of
Fst over sliding window with half-window size step (default=0, i.e., no sliding-
window scan)

verbose If TRUE extra information is printed on the terminal

Value

A list with the four following elements:

1. "FST": estimate of genome-wide Fst over all the populations. The element is a vector with 5
elements corresponding to i) the estimated value over all SNPs; ii) the block-jackknife mean;
iii) the block-jackknife s.e.; iv) the lower; and v) the upper bound of the 95

2. "FSG": under the hierarchical Fst model (i.e., when struct vector is non-null); estimates es-
timate of genome-wide within-group differentiation (Fsg). The element is a vector with 5
elements corresponding to i) the estimated value over all SNPs; ii) the block-jackknife mean;
iii) the block-jackknife s.e.; iv) the lower; and v) the upper bound of the 95

3. "FGT": under the hierarchical Fst model (i.e., when struct vector is non-null); estimates es-
timate of genome-wide between-group differentiation (Fgt). The element is a vector with 5
elements corresponding to i) the estimated value over all SNPs; ii) the block-jackknife mean;
iii) the block-jackknife s.e.; iv) the lower; and v) the upper bound of the 95

4. "snp.Fstats": a data frame containing SNP-specific estimates of Fst and also under the hierar-
chical (i.e., when struct vector is non-null) SNP-specific estimates Fsg and Fgt

5. "snp.Q": a data frame containing SNP-specific estimates of Q1 (within-population) and Q2
(between-population) probability of identity and also under the hierarchical (i.e., when struct
vector is non-null) SNP-specific estimates of Q3, the probability of identity between popula-
tions from different groups (under this model Q2 is then the Pid between populations from the
same group).

6. "sliding.windows.fvalues" (if sliding.window.size>0): a 4 or 6 (under hierarchical Fst model)
column data frame containing information on multi-locus Fst (and Fsg and Fgt under the
hierarchical Fst model) computed for sliding windows of SNPs over the whole genome with

14 compute_blockDdenom

i) column with the chromosome/contig of origin of each window; ii) the mid-position of each
window; iii) the cumulated mid-position of each window (to facilitate further plotting); iv) the
estimated multi-locus Fst; and under the hierarchical Fst model v) the estimated multi-locus
Fsg and ; vi) the estimated multi-locus Fgt

See Also

To generate pooldata object, see vcf2pooldata, popsync2pooldata,genobaypass2pooldata or
genoselestim2pooldata. To generate coundata object, see genobaypass2countdata or genotreemix2countdata.

Examples

make.example.files(writing.dir=tempdir())
pooldata=popsync2pooldata(sync.file=paste0(tempdir(),"/ex.sync.gz"),poolsizes=rep(50,15))
res.fst=computeFST(pooldata)
res.hierfst=computeFST(pooldata,struct=c(rep("A",5),rep("B",7),rep("C",3)))

compute_blockDdenom compute_blockDdenom

Description

Compute the denominator of the Dstat for all quadruplet configuration and each block-jackknife
block (if any) and overall SNPs (within or outside blocks)

Usage

.compute_blockDdenom(refcount, totcount, nblocks, block_id, verbose)

Arguments

refcount Matrix of nsnpxnpop with counts (genotype or reads) for the reference allele

totcount Matrix of nsnpxnpop with total counts or read coverages

nblocks Integer giving the number of block-jackknife blocs (may be 0 if no block-jackknife)

block_id Integer vector of length nsnps with the (0-indexed) id of the block to which each
SNP belongs (-1 for SNPs outside blocks)

verbose Logical (if TRUE progression bar is printed on the terminal)

Details

Compute the denominator of the Dstat for all quadruplet configuration and each block-jackknife
block (if any) and overall SNPs (within or outside blocks)

Value

Return a matrix with nf4=(npops*(npops-1)/2)*((npops-2)*(npops-3)/2)/2 rows and nblocks+1 columns
giving the mean Dstat-denominator (1-Q2ab)(1-Q2cd) for all quadruplet configuration and within
each block-jackknife sample and over all SNPs (last column)

compute_F3fromF2 15

Examples

#

compute_F3fromF2 compute_F3fromF2

Description

Compute all F3 from overall F2 values

Usage

.compute_F3fromF2(F2val, Hval, npops)

Arguments

F2val Numeric vector of length nF2=(npop*(npop-1))/2 with all pairwise F2 estimates

Hval Numeric vector of length npop with all within pop heterozygosity estimates

npops Integer giving the number of populations

Details

Compute F3 and F3star estimates from F2 (and heterozygosities)

Value

Return a matrix of length nF3=npops*(npops-1)*(npops-2)/2 rows and 2 columns corresponding to
the F3 and F3star estimates

Examples

#

compute_F3fromF2samples

compute_F3fromF2samples

Description

Compute all F3 from F2 values obtained from each block-jackknife bloc

Usage

.compute_F3fromF2samples(blockF2, blockHet, npops, verbose)

16 compute_F4DfromF2samples

Arguments

blockF2 Numeric Matrix with nF2=(npop*(npop-1))/2 rows and nblocks columns matrix
containing pairwise-pop F2 estimates for each block-jackknife sample (l.o.o.)

blockHet Numeric Matrix with npop rows and nblocks columns containing all within pop
heterozygosity estimates for each block-jackknife sample (l.o.o.)

npops Integer giving the number of populations

verbose Logical (if TRUE progression bar is printed on the terminal)

Details

Compute F3 and F3star estimates and their s.e. based on block-jackknife estimates of all F2 (and
heterozygosities)

Value

Return a matrix with nF3=npops*(npops-1)*(npops-2)/2 rows and four columns corresponding to
the mean and the s.e. of F3 and the mean and s.e. of F3star

Examples

#

compute_F4DfromF2samples

compute_F4DfromF2samples

Description

Compute all F4 and Dstat from F2 values obtained from each block-jackknife bloc

Usage

.compute_F4DfromF2samples(blockF2, blockDenom, npops, verbose)

Arguments

blockF2 Numeric Matrix with nF2=(npop*(npop-1))/2 rows and nblocks columns matrix
containing pairwise-pop F2 estimates for each block-jackknife sample (l.o.o.)

blockDenom Numeric Matrix with nF4=(npops*(npops-1)/2)*((npops-2)*(npops-3)/2)/2 rows
and nblocks containing the estimates of the denominator of Dstat (see com-
pute_blockDdenom) for each block-jackknife sample (l.o.o.)

npops Integer giving the number of populations

verbose Logical (if TRUE progression bar is printed on the terminal)

compute_F4fromF2 17

Details

Compute F4 and D estimates and their s.e. based on block-jackknife estimates of all F2 (and
heterozygosities)

Value

Return a matrix with nF4=(npops*(npops-1)/2)*((npops-2)*(npops-3)/2)/2 rows and four columns
corresponding to the mean and the s.e. of F4 and the mean and s.e. of Dstat

Examples

#

compute_F4fromF2 compute_F4fromF2

Description

Compute all F4 from overall F2 and Q2 values

Usage

.compute_F4fromF2(F2val, npops)

Arguments

F2val Numeric vector of length nF2=(npop*(npop-1))/2 with all pairwise F2 estimates

npops Integer giving the number of populations

Details

Compute F4 from F2 (and heterozygosities)

Value

Return a vector of length nF4=(npops*(npops-1)/2) * ((npops-2)*(npops-3)/2) / 2 rows correspond-
ing to all the F4 estimates for all possible configurations

Examples

#

18 compute_H1

compute_F4fromF2samples

compute_F4fromF2samples

Description

Compute all F4 from F2 values obtained from each block-jackknife bloc

Usage

.compute_F4fromF2samples(blockF2, npops, verbose)

Arguments

blockF2 Numeric Matrix with nF2=(npop*(npop-1))/2 rows and nblocks columns matrix
containing pairwise-pop F2 estimates for each block-jackknife sample (l.o.o.)

npops Integer giving the number of populations

verbose Logical (if TRUE progression bar is printed on the terminal)

Details

Compute F4 estimates and their s.e. based on block-jackknife estimates of all F2 (and heterozy-
gosities)

Value

Return a matrix with nF4=(npops*(npops-1)/2) * ((npops-2)*(npops-3)/2) / 2 rows and two columns
corresponding to the mean and the s.e. of F4 estimates for all possible configurations

Examples

#

compute_H1 compute_H1

Description

Compute (uncorrected) 1-Q1 for each block-jackknife block (if any) and over all the SNPs (i.e.,
either within or outside blocks)

Usage

.compute_H1(refcount, totcount, nblocks, block_id, verbose)

compute_Q2 19

Arguments

refcount Matrix of nsnpxnpop with counts (genotype or reads) for the reference allele

totcount Matrix of nsnpxnpop with total counts or read coverages

nblocks Integer giving the number of block-jackknife blocs (may be 0 if no block-jackknife)

block_id Integer vector of length nsnps with the (0-indexed) id of the block to which each
SNP belongs (-1 for SNPs outside blocks)

verbose Logical (if TRUE progression bar is printed on the terminal)

Details

Compute all the (uncorrected) H1=1-Q1 for each block-jackknife block (if any) and overall SNPs
(within or outside blocks). It is indeed more convenient to compute H1 (rather than Q1) to apply
corrections afterwards within R function

Value

Return a matrix with npops rows and nblocks+1 column giving the mean H1 of each pop within
each block and for all SNPs (last column)

Examples

#

compute_Q2 compute_Q2

Description

Compute all Q2 for each block-jackknife block (if any) and overall SNPs (within or outside blocks)

Usage

.compute_Q2(refcount, totcount, nblocks, block_id, verbose)

Arguments

refcount Matrix of nsnpxnpop with counts (genotype or reads) for the reference allele

totcount Matrix of nsnpxnpop with total counts or read coverages

nblocks Integer giving the number of block-jackknife blocs (may be 0 if no block-jackknife)

block_id Integer vector of length nsnps with the (0-indexed) id of the block to which each
SNP belongs (-1 for SNPs outside blocks)

verbose Logical (if TRUE progression bar is printed on the terminal)

Details

Compute all Q2 for each block-jackknife block (if any) and overall SNPs (within or outside blocks).

20 compute_QmatfromF2samples

Value

Return a matrix with npops*(npops-1)/2 and nblocks+1 column giving the mean Q2 of each pair-
wise pop comp. within each block and for all SNPs (last column)

Examples

#

compute_QmatfromF2samples

compute_QmatfromF2samples

Description

Compute the Qmat matrix (error covariance between all F2 and F3 measures) from F2 block-
jackknife estimates

Usage

.compute_QmatfromF2samples(blockF2, npops, verbose)

Arguments

blockF2 Numeric Matrix with nF2=(npop*(npop-1))/2 rows and nblocks columns matrix
containing pairwise-pop F2 estimates for each block-jackknife sample (l.o.o.)

npops Integer giving the number of populations

verbose Logical (if TRUE progression bar is printed on the terminal)

Details

Compute the error covariance matrix Qmat (between all F2 and F3 measures) from F2 block-
jackknife estimates (by recomuting all F3 for all blocks)

Value

Return the (nF2+nF3)*(nF2+nF3) error covariance (symmetric) matrix

Examples

#

compute_snpFstAov 21

compute_snpFstAov compute_snpFstAov

Description

Compute SNP-specific MSG, MSP and nc used to derived the Anova estimator of Fst for allele
count or read count data (Pool-Seq)

Usage

.compute_snpFstAov(refcount, totcount, hapsize, verbose)

Arguments

refcount Matrix of nsnpxnpop with counts (genotype or reads) for the reference allele

totcount Matrix of nsnpxnpop with total counts or read coverages

hapsize Vector of length npop giving the haploid size of each pool (if one element <=0,
counts are interpreted as count data)

verbose Logical (if TRUE progression bar is printed on the terminal)

Details

Compute SNP-specific Q1 and Q2 based on Anova estimator of Fst for allele count or read count
data (Pool-Seq). For allele count data, the implemented estimator corresponds to that described
in Weir, 1996 (eq. 5.2) For read (Pool-Seq) data, the implemented estimator corresponds to that
described in Hivert et al., 2016

Value

Return a nsnpsx3 matrix with SNP-specific MSG, MSP and nc

Examples

#

compute_snpHierFstAov compute_snpHierFstAov

Description

Compute SNP-specific MSI, MSP, MSG, nc, nc_p and nc_pp used to derived the Anova estimator
of hier. Fst for allele count or read count data (Pool-Seq)

Usage

.compute_snpHierFstAov(refcount, totcount, hapsize, popgrpidx, verbose)

22 compute_snpQ1

Arguments

refcount Matrix of nsnpxnpop with counts (genotype or reads) for the reference allele

totcount Matrix of nsnpxnpop with total counts or read coverages

hapsize Vector of length npop giving the haploid size of each pool (if one element <=0,
counts are interpreted as count data)

popgrpidx Vector of length npop giving the index (coded from 0 to ngrp-1) of the group of
origin

verbose Logical (if TRUE progression bar is printed on the terminal)

Details

Compute SNP-specific MSI, MSP, MSG, nc, nc_p and nc_pp used to derived the Anova estimator
of hier. Fst for allele count or read count data (Pool-Seq)

Value

Return a nsnpsx6 matrix with SNP-specific MSI, MSP, MSG, nc, nc_p and nc_pp

Examples

#

compute_snpQ1 compute_snpQ1

Description

Compute SNP-specific Q1 by averaging over all samples

Usage

.compute_snpQ1(refcount, totcount, weight, verbose)

Arguments

refcount Matrix of nsnpxnpop with counts (genotype or reads) for the reference allele

totcount Matrix of nsnpxnpop with total counts or read coverages

weight Vector of length npop giving the weighting scheme (w=1 for allele count data
and w=poolsize/(poolsize-1) for PoolSeq data)

verbose Logical (if TRUE progression bar is printed on the terminal)

Details

Compute all the SNP-specific Q1 over all pop. samples (useful for Fst computation with method
Identity).

compute_snpQ1onepop 23

Value

Return a vector of length nsnps with SNP-specific Q1

Examples

#

compute_snpQ1onepop compute_snpQ1onepop

Description

Compute SNP-specific Q1 for one pop

Usage

.compute_snpQ1onepop(refcount, totcount, weight)

Arguments

refcount Vector of nsnp counts (genotype or reads) for the reference allele

totcount Vector of nsnp total counts or read coverages

weight Numeric (w=1 for allele count data and w=poolsize/(poolsize-1) for PoolSeq
data)

Details

Compute SNP-specific Q1 for one pop. samples.

Value

Return a vector of length nsnps with SNP-specific Q1

Examples

#

24 compute_snpQ1rw

compute_snpQ1rw compute_snpQ1rw

Description

Compute SNP-specific Q1 over all samples using weighting averages of pop. Q1 (eq. A46 in Hivert
et al., 2018)

Usage

.compute_snpQ1rw(refcount, totcount, weight, sampsize, readcount, verbose)

Arguments

refcount Matrix of nsnpxnpop with counts (genotype or reads) for the reference allele

totcount Matrix of nsnpxnpop with total counts or read coverages

weight Vector of length npop giving the weighting scheme (w=1 for allele count data
and w=poolsize/(poolsize-1) for PoolSeq data)

sampsize Vector of length npop giving the haploid sample size (not used for count data)

readcount Logical (if TRUE PoolSeq data assumed i.e. weights depending on haploid size,
otherwise weights depend on total counts)

verbose Logical (if TRUE progression bar is printed on the terminal)

Details

Compute all the SNP-specific Q1 over all pop. samples using weighting averages of pop. Q1 as in
eq. A46 of Hivert et al., 2018 (useful for Fst computation with method Identity).

Value

Return a vector of length nsnps with SNP-specific Q1

Examples

#

compute_snpQ2 25

compute_snpQ2 compute_snpQ2

Description

Compute SNP-specific Q2 by averaging over all pairs of samples

Usage

.compute_snpQ2(refcount, totcount, pairs, verbose)

Arguments

refcount Matrix of nsnpxnpop with counts (genotype or reads) for the reference allele

totcount Matrix of nsnpxnpop with total counts or read coverages

pairs Matrix of npoppairsx2 giving the index for all the pairs of pops included in the
computation

verbose Logical (if TRUE progression bar is printed on the terminal)

Details

Compute all the SNP-specific Q2 over all pop. pairs (useful for Fst computation with method
Identity).

Value

Return a vector of length nsnps with SNP-specific Q2

Examples

#

compute_snpQ2onepair compute_snpQ2onepair

Description

Compute SNP-specific Q2 for a single pair of samples

Usage

.compute_snpQ2onepair(refcount1, refcount2, totcount1, totcount2)

26 compute_snpQ2rw

Arguments

refcount1 Vector of count (genotype or reads) for the reference allele in the first sample

refcount2 Vector of count (genotype or reads) for the reference allele in the second sample

totcount1 Vector of total count or read coverages in the first sample

totcount2 Vector of total count or read coverages in the second sample

Details

Compute SNP-specific Q2 for a single pair of samples

Value

Return a vector of length nsnps with SNP-specific Q1

Examples

#

compute_snpQ2rw compute_snpQ2rw

Description

Compute SNP-specific Q2 by averaging over all pairs of samples using weighting averages of pair-
wise Q2 (eq. A47 in Hivert et al., 2018)

Usage

.compute_snpQ2rw(refcount, totcount, pairs, sampsize, readcount, verbose)

Arguments

refcount Matrix of nsnpxnpop with counts (genotype or reads) for the reference allele

totcount Matrix of nsnpxnpop with total counts or read coverages

pairs Matrix of npoppairsx2 giving the index for all the pairs of pops included in the
computation

sampsize Vector of length npop giving the haploid sample size (not used for count data)

readcount Logical (if TRUE PoolSeq data assumed i.e. weights depending on haploid size,
otherwise weights depend on total counts)

verbose Logical (if TRUE progression bar is printed on the terminal)

Details

Compute SNP-specific Q2 by averaging over all pairs of samples using weighting averages of pair-
wise Q2 (eq. A47 in Hivert et al., 2018) (useful for Fst computation with method Identity).

countdata-class 27

Value

Return a vector of length nsnps with SNP-specific Q2

Examples

#

countdata-class S4 class to represent a Count data set.

Description

S4 class to represent a Count data set.

Slots

npops The number of populations

nsnp The number of SNPs

refallele.count A matrix (nsnp rows and npops columns) with the allele counts for the reference
allele

total.count A matrix (nsnp rows and npops columns) with the total number of counts (i.e., twice
the number of genotyped individual for diploid species and autosomal markers)

snp.info A data frame (nsnp rows and 4 columns) detailing for each SNP, the chromosome (or
scaffold), the position, Reference allele name and Alternate allele name (if available)

popnames A vector of length npops with the corresponding population names

See Also

To generate countdata object, see genobaypass2countdata and genotreemix2countdata

countdata.subset Create a subset of a countdata object that contains count data as a
function of pop or SNP indexes

Description

Create a subset of a countdata object that contains count data as a function of pop or SNP indexes

28 countdata.subset

Usage

countdata.subset(
countdata,
pop.index = 1:countdata@npops,
snp.index = 1:countdata@nsnp,
min.indgeno.per.pop = -1,
min.maf = -1,
return.snp.idx = FALSE,
verbose = TRUE

)

Arguments

countdata A countdata object containing Allele count information

pop.index Indexes of the pools (at least two), that should be selected to create the new
pooldata object (default=all the pools)

snp.index Indexes of the SNPs (at least two), that should be selected to create the new
pooldata object (default=all the SNPs)

min.indgeno.per.pop

Minimal number of overall counts required in each population. If at least one
pop is not genotyped for at least min.indgeno.per.pop (haploid) individual, the
position is discarded

min.maf Minimal allowed Minor Allele Frequency (computed from the ratio overall counts
for the reference allele over the overall number of (haploid) individual geno-
typed)

return.snp.idx If TRUE, the row.names of the snp.info slot of the returned pooldata object
are named as "rsx" where x is the index of SNP in the initial pooldata object
(default=FALSE)

verbose If TRUE return some information

Details

This function allows subsetting a pooldata object by selecting only some pools and/or some SNPs
(e.g., based on their position on the genome). Additional filtering steps on SNPs can be carried out
on the resulting subset to discard SNP with low polymorphism or poorly or too highly covered. In
addition, coverage criteria can be applied on a per-pool basis with the cov.qthres.per.pool argument.
’more specific SNP selection based on their positions on the genome or their characteristics. For
instance if qmax=0.95, a position is discarded if in a given pool it has a number of reads higher than
the 95-th percentile of the empirical coverage distribution in this same pool (defined over the SNPs
selected by snp.index). Similarly, if qmax=0.05, a position is discarded if in a given pool it has a
number of reads lower than the 5-th percentile of the empirical coverage distribution in this same
pool. This mode of selection may be more relevant when considering pools with heterogeneous
read coverages.

Value

A countdata object with 6 elements:

countdata2genobaypass 29

1. "refallele.count": a matrix (nsnp rows and npops columns) with the allele counts for the refer-
ence allele

2. "total.count": a matrix (nsnp rows and npops columns) with the total number of counts (i.e.,
twice the number of genotyped individual for diploid species and autosomal markers)

3. "snp.info": a matrix with nsnp rows and four columns containing respectively the contig (or
chromosome) name (1st column) and position (2nd column) of the SNP; the allele taken as
reference in the refallele.count matrix (3rd column); and the alternative allele (4th column)

4. "popnames": a vector of length npops containing the names of the pops

5. "nsnp": a scalar corresponding to the number of SNPs

6. "npops": a scalar corresponding to the number of populations

See Also

To generate countdata object, see genobaypass2countdata, genotreemix2countdata

Examples

make.example.files(writing.dir=tempdir())
pooldata=popsync2pooldata(sync.file=paste0(tempdir(),"/ex.sync.gz"),poolsizes=rep(50,15))
pooldata2genobaypass(pooldata=pooldata,writing.dir=tempdir())
##NOTE: This example is just for the sake of illustration as it amounts to
##interpret read count as allele count which must not be done in practice!
countdata=genobaypass2countdata(genobaypass.file=paste0(tempdir(),"/genobaypass"))
subset.by.snps=countdata.subset(countdata,snp.index=10:100)
subset.by.pops.and.snps=countdata.subset(countdata,pop.index=c(1,2),snp.index=10:100)

countdata2genobaypass Convert a countdata object into BayPass input files.

Description

Convert a countdata object into BayPass allele count file. A file containing SNP details is also
printed out. Options to generate sub-samples (e.g., for large number of SNPs) are also available.

Usage

countdata2genobaypass(
countdata,
writing.dir = getwd(),
prefix = "",
subsamplesize = -1,
subsamplingmethod = "thinning"

)

30 extract_allele_names

Arguments

countdata A countdata object
writing.dir Directory where to create the files (e.g., set writing.dir=getwd() to copy in the

current working directory)
prefix Prefix used for output file names
subsamplesize Size of the sub-samples. If <=1 (default), all the SNPs are considered in the

output
subsamplingmethod

If sub-sampling is activated (argument subsamplesize), define the method used
for subsampling that might be either i) "random" (A single data set consisting of
randmly chosen SNPs is generated) or ii) "thinning", sub-samples are generated
by taking SNPs one every nsub=floor(nsnp/subsamplesize) in the order of the
map (a suffix ".subn" is added to each sub-sample files where n varies from 1 to
nsub).

Value

Files containing allele count (in BayPass format) and SNP details (as in the snp.info matrix from
the countdata object)

See Also

To generate countdata object, see genotreemix2countdata, genobaypass2countdata

Examples

make.example.files(writing.dir=tempdir())
pooldata=popsync2pooldata(sync.file=paste0(tempdir(),"/ex.sync.gz"),poolsizes=rep(50,15))
##NOTE: This example is just for the sake of illustration as it amounts to
##interpret read count as allele count which must not be done in practice!
countdata=genobaypass2countdata(genobaypass.file=paste0(tempdir(),"/genobaypass"))
countdata2genobaypass(countdata=countdata,writing.dir=tempdir())

extract_allele_names extract_allele_names

Description

Extract the alleles from the REF and ALT fields

Usage

.extract_allele_names(allele_info, allele_idx)

Arguments

allele_info a character string vector (concatenated REF and ALT field of the vcf)
allele_idx Matrix with indexes of the two alleles of interest for the different markers

extract_nonvscan_counts 31

Details

Extract the alleles from the REF and ALT fields

Value

Return a matrix with the two alleles after parsing the alleles info

Examples

.extract_allele_names(c("A,C","A,C,T"),rbind(c(1,2),c(1,3)))

extract_nonvscan_counts

extract_nonvscan_counts

Description

Extract counts from vcf produced by other caller than VarScan (e.g., bcftools, FreeBayes, GATK)

Usage

.extract_nonvscan_counts(vcf_data, nb_all, ad_idx, min_rc)

Arguments

vcf_data a matrix of String containing count information
nb_all a vector containing the number of alleles for the different markers
ad_idx the index of the FORMAT AD field
min_rc Minimal allowed read count per base (same as min.rc option in vcf2pooldata)

Details

Extract VarScan counts and return read counts for the reference and alternate allele

Value

A numeric matrix of read count with nsnp rows and 2*npools+6 columns. The first npools columns
consist of read count for the reference allele, columns npools+1 to 2*npools consist of read cov-
erage. The last 6 columns correspond to the index of the two most frequent alleles (idx_all1 and
idx_all2) and their count (cnt_all1 and cnt_all2); the min_rc filtering criterion and count of variant
(cnt_bases) other than two first most frequent. The min_rc crit is set to -1 for polymorphisms with
more than 2 alleles and with the third most frequent alleles having more than min_rc count

Examples

.extract_nonvscan_counts(rbind(c("0/0:20,0","1/1:1,18"),c("0/2:12,1,15","1/1:27,1,0")),c(2,3),2,0)

.extract_nonvscan_counts(rbind(c("0/0:20,0","1/1:1,18"),c("0/2:12,1,15","1/1:27,1,0")),c(2,3),2,2)

32 extract_vscan_counts

extract_vscan_counts extract_vscan_counts

Description

Extract VarScan counts

Usage

.extract_vscan_counts(vcf_data, ad_idx, rd_idx)

Arguments

vcf_data a matrix of String containing count information in VarScan format

ad_idx the index of the FORMAT AD field

rd_idx the index of the FORMAT RD field

Details

Extract VarScan counts and return read counts for the reference and alternate allele. For VarScan
generated vcf, SNPs with more than one alternate allele are discarded (because only a single count
is then reported in the AD fields) making the min.rc unavailable (of vcf2pooldata). The VarScan
–min-reads2 option might replace to some extent the min.rc functionality although SNP where the
two major alleles in the Pool-Seq data are different from the reference allele (e.g., expected to be
more frequent when using a distantly related reference genome for mapping) will be disregarded.

Value

A numeric matrix of read count with nsnp rows and 2*npools columns. The first npools columns
consist of read count for the reference allele (RD), columns npools+1 to 2*npools consist of read
coverage (RD+AD)

Examples

.extract_vscan_counts(rbind(c("0/0:0:20","1/1:18:1"),c("0/1:12:15","1/1:27:2")),3,2)

find.tree.popset 33

find.tree.popset Find sets of populations that may used as scaffold tree

Description

Find sets of populations that may used as scaffold tree

Usage

find.tree.popset(
fstats,
f3.zcore.threshold = -1.65,
f4.zscore.absolute.threshold = 1.96,
excluded.pops = NULL,
nthreads = 1,
verbose = TRUE

)

Arguments

fstats Object of class fstats containing estimates of fstats (see the function compute.fstats)
f3.zcore.threshold

The significance threshold for Z-score of formal test of admixture based on the
F3-statistics (default=-2)

f4.zscore.absolute.threshold

The significance threshold for |Z-score| of formal test of treeness based on the
F4-statistics (default=2)

excluded.pops Vector of pop names to be exclude from the exploration

nthreads Number of available threads for parallelization of some part of the parsing (de-
fault=1, i.e., no parallelization)

verbose If TRUE extra information is printed on the terminal

Details

The procedure first discards all the populations P that shows a significant signal of admixture with
a Z-score for F3 statistics of the form F3(P;Q,R) < f3.zscore.thresholds. It then identifies all the
sets of populations that pass the F4-based treeness with themselves. More precisely, for a given
set E containing n populations, the procedure ensure that all the n(n-1)(n-2)(n-3)/8 possible F4
quadruplets have a |Z-score|<f4.zscore.absolute.threshold. The function aims at maximizing the
size of the sets.

Value

A list with the following elements:

1. "n.sets": The number of sets of (scaffold) unadmixed populations identified

34 find_indelneighbor_idx

2. "set.size": The number of populations included in each set
3. "pop.sets": A character matrix of n.sets rows and set.size columns giving for each set identified

the names of the included populations.
4. "Z_f4.range": A matrix of n.sets rows and 2 columns reported for each set the range of

variation (min and max value) of the absolute F4 Z-scores for the quadruplets passing the
treeness test. More precisely, for a given set consisting of n=set.size populations, a total of
n(n-1)(n-2)(n-3)/8 quadruplets can be formed. Yet, any set of four populations A, B, C and
D is represented by three quadruplets A,B;C,D (or one of its seven other equivalent com-
binations formed by permuting each pairs); A,C;B,D (or one of its seven other equivalent
combinations) and A,D;B,C (or one of its seven other combinations). Among these three,
only a single quadruplet is expected to pass the treeness test (i.e., if the correct unrooted tree
topology is (A,C;B,D), then the absoulte value of the Z-scores associated to F4(A,B;C,D) and
F4(A,D;B,C) or their equivalent will be high.

5. "passing.quadruplets": A matrix of n.sets rows and set.size columns reporting for each sets
the n(n-1)(n-2)(n-3)/24 quadruplets that pass the treeness test (see Z_f4.range detail).

See Also

see compute.fstats.

Examples

make.example.files(writing.dir=tempdir())
pooldata=popsync2pooldata(sync.file=paste0(tempdir(),"/ex.sync.gz"),poolsizes=rep(50,15))
res.fstats=compute.fstats(pooldata,nsnp.per.bjack.block = 50)
#NOTE: toy example (in practice nsnp.per.bjack.block should be higher)
popsets=find.tree.popset(res.fstats,f3.zcore.threshold=-3)

find_indelneighbor_idx

find_indelneighbor_idx

Description

Search for the closest indels of the markers

Usage

.find_indelneighbor_idx(contig, position, indels_idx, min_dist, indels_size)

Arguments

contig a character string vector corresponding to the CHR field value of the vcf for the
markers

position an integer vector corresponding to the POSITION value for the markers
indels_idx vector of (0-indexed) indices of indels
min_dist same as min.dist.from.indels option in vcf2pooldata

indels_size size of the indels (associated to indels_idx)

fit.graph 35

Details

Identify if the SNPs are close to an indel

Value

Return a vector consisting of 1 (if the marker is close to an indel) or 0 (if not)

Examples

.find_indelneighbor_idx(c("chr1","chr1","chr1"),c(1000,1004,1020),1,5,2)

fit.graph Estimate parameters of an admixture graph

Description

Estimate parameters of an admixture graph

Usage

fit.graph(
graph.params,
Q.lambda = 0,
eps.admix.prop = 1e-06,
edge.fact = 1000,
admix.fact = 100,
compute.ci = F,
drift.scaling = F,
outfileprefix = NULL,
verbose = TRUE

)

Arguments

graph.params An object of class graph.params containing graph information and relevant Fs-
tats estimates (see the function generate.graph.params)

Q.lambda A scalar (usually small) to add to the diagonal elements of the error covariance
matrix of fstats estimates (may improve numerical stability of its decomposition
for large number of populations)

eps.admix.prop A scalar defining admixture proportion domain (eps.admix.prop vary between
eps.admix.prop and 1-eps.admix.prop)

edge.fact The multiplying factor of edges length in graph representation

admix.fact The multiplying factor of admixture proportion in graph representation

compute.ci Derive 95% Confidence Intervals for the parameters of the admixture graph
(edge lengths and admixture rates)

36 fit.graph

drift.scaling If TRUE scale edge lengths in drift units (require estimates of leave heterozy-
gosities)

outfileprefix The prefix of the dot file that will represent the graph (with extension ".dot"). If
NULL, no graph file generated

verbose If TRUE extra information is printed on the terminal

Details

Let f represent the n-length vector of basis target (i.e., observed) F2 and F3 statistics and g(e; a) =
X(a) ∗ e the vector of their expected values given the vector of graph edges lengths e and the
incidence matrix X(a) that depends on the structure of the graph and the admixture rates a (if
there is no admixture in the graph, X(a) only contains 0 or 1). The function attempts to find the
e and a graph parameter values that minimize a cost (score of the model) defined as S(e; a) =
(f − g(e; a))′Q−1(f − g(e; a)). Assuming f N(g(e; a), Q) (i.e., the observed f-statistics vector
is multivariate normal distributed around an expected g vector specified by the admixture graph
and a covariance structure empirically estimated), S = −2log(L) − K where L is the likelihood
of the fitted graph and K = n ∗ log(2 ∗ pi) + log(|Q|). Also, for model comparison purpose, a
standard BIC is then derived from S as BIC = S + p ∗ log(n) − K (p being the number of
graph parameters, i.e., edge lengths and admixture rates). As mentioned by Patterson et al. (2012),
the score S(e; a) is quadratic in edge lengths e given a. The function uses the Lawson-Hanson
non-negative linear least squares algorithm implemented in the nnls function (package nnls) to es-
timate e (subject to the constraint of positive edge lengths) by finding the vector e that minimize
S(e; a) = (f − X(a) ∗ e)′Q−1(f − X(a) ∗ e) = ||G ∗ f − G ∗ X(a) ∗ e|| (where G results
from the Cholesky decomposition of Q−1, i.e., Q−1 = G′G). Note that the *Q.lambda* argu-
ment may be used to add a small constant (e.g., 1e − 4) to the diagonal elements of Q to avoid
numerical problems (see Patterson et al., 2012). Yet *Q.lambda* is always disregarded when com-
puting the final score S and BIC. Minimization of S(e; a) is thus reduced to the identification
of the admixture rates (a vector) which is performed using the L-BFGS-B method (i.e., Limited-
memory Broyden-Fletcher-Goldfarb-Shanno algorithm with box constraints) implemented in the
optim function (stats package). The *eps.admix.prop* argument allows specifying the lower and
upper bound of the admixture rates to *eps.admix.prop* and *1-eps.admix.prop* respectively. Scal-
ing of the edges lengths in drift units (i.e., in units of t/2N where t is time in generations and N is
the effective population size) is performed as described in Lipson et al. (MBE, 2013) by dividing the
estimated edges lengths by half the estimated heterozygosity of their parental nodes (using the prop-
erty hp = hc+2e(C,P) where hp and hc are the heterozygosities of a child C and its parent P node
and e(C,P) is the estimated length of the branch relating C and P. Finally, if compute.ci=TRUE, a
(rough) 95% confidence intervals is computed using a bisection method (with a 1e − 4 precision)
for each parameters in turn (all others being set to their estimated value). Note that 95% CI are here
defined as the set of values associated to a score S such that Sopt < S < Sopt+3.84 (where Sopt
is the optimized score), i.e., with a likelihood-ratio test statistic with respect to the fitted values
< 3.84 (the 95% threshold of a one ddl Chi-square distribution).

Value

An object of class fitted.graph (see help(fitted.graph) for details)

fitted.graph-class 37

See Also

To generate a graph.params object, see generate.graph.params. The fitted graph may be plotted
directly using plot that calls grViz() function and the resulting fitted fstats may be compared to the
estimated ones with compare.fitted.fstats.

fitted.graph-class S4 class to represent a population tree or admixture graph and its
underlying fitted parameter.

Description

S4 class to represent a population tree or admixture graph and its underlying fitted parameter.

Details

The dot.graph element allows to plot the graph using grViz() from the DiagrammeR package or
with the dot program after writing the files (e.g., dot -Tpng inputgraph.dot in terminal). Note that
the dot file may be customized (e.g., to change leave color, parameter names...).

Slots

graph The graph in 3 column format originated from the fitted graph.params object

dot.graph The fitted graph in dot format

score the score of the model (squared Mahalanobis distance between the observed and fitted basis
F-statistics vectors)

bic The Bayesian Information Criterion associated to the model

fitted.outstats a matrix containing the target values of the fstats, the fitted values and the Z-
score measuring the deviation of the fitted values from the target values in units of standard
errors (i.e., Z=(fitted.value-target.value)/se(target.value))

edges.length a vector containing the estimated edges.length. Note finally, that the (two) edges
coming from the roots are assumed of equal length (i.e., unrooted branch) as these are non-
identifiable by the method.

edges.length.scaled If drift.scaling=TRUE, the estimated edges.length in units of t/2N

edges.length.ci A matrix with two columns (or four columns if drift scaled lengths are com-
puted) containing for each edge length (in a row) the 95% CI lower and higher bounds
(columns 3 and 4 containing 95% CI lower and higher bounds of drift scaled lengths, if any)

admix.prop a vector containing the estimated admixture proportions (if any)

admix.prop.ci a matrix with two columns containing for each admixture proportion (in a row)
the 95% CI lower and higher bounds

nodes.het The estimated heterozygosities for all nodes (if available; see drift.scaling argument in
fit.graph)

fitted.f2.mat the matrix of all the fitted F2 statistics (obtained from fitted admixture graph pa-
rameter values) from which all the fitted fstats can be derived.

optim.results list containing results of the optim call

38 fstats-class

See Also

To generate fitted.graph object, see fit.graph.

fstats-class S4 class to represent fstats results obtained with computeFstats.

Description

S4 class to represent fstats results obtained with computeFstats.

Slots

f2.values A data frame with npop(npop-1)/2 rows and 1 (or 3 if blockjackknife is TRUE) columns
containing estimates of the f2-statistics over all the SNPs and if blockjackknife=TRUE, the
estimated block-jackknife and standard error (s.e.)

fst.values A data frame with npop(npop-1)/2 rows and 1 (or 3 if blockjackknife is TRUE)
columns containing estimates of the scaled f2.values (same as obtained with compute.pairwiseFST
with method="Identity") over all the SNPs and if blockjackknife=TRUE, the estimated block-
jackknife and standard error (s.e.). The F2 scaling factor is equal to 1-Q2 (where Q2 is the
AIS probability between the two populations)

f3.values A data frame with npops(npops-1)(npops-2)/2 rows and 1 (or 4 if blockjackknife is
TRUE) columns containing estimates of the f3-statistics over all the SNPs and if blockjack-
knife=TRUE, the estimated block-jackknife and standard error (s.e.) and Z-score measuring
the deviation of the f3-statistics from 0 in units of s.e.

f3star.values A data frame with npops(npops-1)(npops-2)/2 rows and 1 (or 4 if blockjackknife
is TRUE) columns containing estimates of the scaled f3-statistics over all the SNPs and if
blockjackknife=TRUE, the estimated block-jackknife and standard error (s.e.) and Z-score
measuring the deviation of the f3-statistics from 0 in units of s.e. The F3 scaling factor is
equal to 1-Q1 (where Q1 is the AIS probability within the target population, i.e., population
C for F3(C;A,B))

f4.values A data frame with npops(npops-1)(npops-2)(npops-3)/8 rows and 1 (or 4 if blockjack-
knife is TRUE) columns containing estimates of the f4-statistics over all the SNPs and if
blockjackknife=TRUE, the estimated block-jackknife and standard error (s.e.) and Z-score
measuring the deviation of the f4-statistics from 0 in units of s.e.

Dstat.values A data frame with npops(npops-1)(npops-2)(npops-3)/8 rows and 1 (or 4 if block-
jackknife is TRUE) columns containing estimates of the D-statistics (scaled f4-statistics) over
all the SNPs and if blockjackknife=TRUE, the estimated block-jackknife and standard error
(s.e.) and Z-score measuring the deviation of the f3-statistics from 0 in units of s.e. For
a given quadruplet (A,B;C,D), the parameter D corresponds to F4(A,B;C,D) scaled by (1-
Q2(A,B))*(1-Q2(C,D)) where Q2(X,Y) is the is the AIS probability between the X and Y
populations.

F2.bjack.samples If blockjackknife=TRUE and options return.F2.blockjackknife.samples is ac-
tived in compute.fstats, an array of dimension (npop x npop x nblocks) in an admixtools2
compatible format

generate.graph.params 39

comparisons A list containing matrices with population names associated to the different test com-
parisons (e.g., the "F2" elements of the list is a npop(npop-1)/2 rows x 2 columns with each
row containing the name of the two populations compared)

Q.matrix The estimated error covariance matrix for all the F2 and F3 estimates (required by graph
fitting functions to compute graph scores)

heterozygosities A data frame with npop rows and 1 (or 3 if blockjackknife is TRUE) columns
containing estimates of the within population heterozygosities (1-Q1) over all the SNPs and if
blockjackknife=TRUE, the estimated block-jackknife and standard error (s.e.)

divergence A data frame with npop(npop-1)/2 rows and 1 (or 3 if blockjackknife is TRUE) col-
umn(s) containing estimates of each population pairwise (absolute) divergence (1-Q2) over
all the SNPs and if blockjackknife=TRUE, the estimated block-jackknife and standard error
(s.e.). This statistic is related to dXY (a.k.a. PiXY) but it is computed on the ascertained SNPs
that were included in the original pooldata or countdata objects.

pairwise.fst A npop x npop (symmetric) matrix containing the pairwise-population Fst estimates
(same as in the fst.values object) that may directly be visualized with e.g. heatmap function
or used with a clustering function (e.g., hclust).

pairwise.div A npop x npop (symmetric) matrix containing the pairwise-population divergence
(1-Q2) estimates (same as in the fst.values object) that may directly be visualized with e.g.
heatmap function or used with a clustering function (e.g., hclust).

blockjacknife A logical indicating whether block-jackknife estimates of standard errors are avail-
able (TRUE) or not (FALSE)

See Also

To generate pairwise object, see compute.pairwiseFST

generate.graph.params Generate a graph parameter object to fit admixture graph to observed
fstats

Description

Generate a graph parameter object to fit admixture graph to observed fstats

Usage

generate.graph.params(
graph,
fstats = NULL,
popref = NULL,
outfileprefix = NULL,
verbose = TRUE

)

40 generate.graph.params

Arguments

graph A three columns matrix containing graph information in a simple format (see
details)

fstats A fstats object containing estimates of fstats

popref Reference population of the fstats basis used to fit the graph.

outfileprefix The prefix of the dot file that will represent the graph (with extension ".dot"). If
NULL, no graph file generated

verbose If TRUE some information is printed on the terminal

Details

The graph needs to be specified by a three column (character) matrix corresponding for each edge
(wether admixed or not) to i) the child node; ii) the parent node; iii) the admixture proportion. For
non-admixed edge, the third column must be blank. An admixed node should be referred two times
as a child node with two different parent node and two different admixture proportions coded as
alpha and (1-alpha) (Note that the parentheses are mandatory) if alpha is the name of the admixture
proportion. The root is automatically identified as a node only present in the parent node column.
Several checks are made within the function but it is recommended to check the graph by plotting
the resulting dot file named [outfileprefix].dot using for instance the grViz() from the DiagrammeR
package that may be called directly with plot or with the dot program (e.g., dot -Tpng inputgraph.dot
in terminal). Note that the dot file may be easily customized (e.g., to change leave color, parameter
names...). The fstats object should be of class fstats (see help(fstats) for details) containing estimates
of F2 and F3 statistics and block jackknife as generated with the compute.fstats function with
computeF3 set to TRUE. If no fstats object is provided, only graph parameters will be generated.

Value

An object of class graph.params (see help(graph.params) for details)

See Also

The object may be used to estimate graph parameters with the function fit.graph or to generate
files for the qpGraph software with graph.params2qpGraphFiles. See also graph.params2symbolic.fstats
to obtain symbolic representation of Fstats.

Examples

graph=rbind(c("P1","P7",""),c("P2","s1",""),c("P3","s2",""),c("P6","S",""),
c("S","s1","a"),c("S","s2","(1-a)"),c("s2","P8",""),c("s1","P7",""),
c("P4","P9",""),c("P5","P9",""),c("P7","P8",""),
c("P8","R",""),c("P9","R",""))

graph.params=generate.graph.params(graph)
plot(graph.params)
##NOTE: this calls grViz from DiagrammeR which cannot easily be plotted
#within pdf or other device. To that end the easiest is to output
#the graph in a dot file (using the outfileprefix argument) and
#then to use the dot program out of R in a terminal: dot -Tpng inputgraph.dot

generate.jackknife.blocks 41

generate.jackknife.blocks

Generate block coordinates for block-jackknife

Description

Generate block coordinates for block-jackknife

Usage

generate.jackknife.blocks(x, nsnp.per.bjack.block, verbose = TRUE)

Arguments

x A pooldata or countdata object containing SNP positions (snp.info slot)

nsnp.per.bjack.block

Number of consecutive SNPs of each block-jackknife block

verbose If TRUE extra information is printed on the terminal

Value

A list with the two following elements:

1. "blocks.det": A matrix with three columns containing for each identified block (in row) the
index of the start SNP, the index of the end SNP and the block Size in bp

2. "snp.block.id": A vector containing the blocks assigned to each SNP eligible for block-
Jacknife (non eligible SNPs ares assigned NA)

3. "nblocks": A scalar corresponding to the number of blocks

4. "nsnps": Number of SNPs eligible for block-jackknife ’i.e., included in one block

Examples

make.example.files(writing.dir=tempdir())
pooldata=popsync2pooldata(sync.file=paste0(tempdir(),"/ex.sync.gz"),poolsizes=rep(50,15))
bjack.blocks=generate.jackknife.blocks(pooldata,nsnp.per.bjack.block=50)

42 generateF4names

generateF3names generateF3names

Description

Generate all names for F3 stats (same order as computation)

Usage

.generateF3names(popnames)

Arguments

popnames String vector with the names of all the pops

Details

Generate all the npops*(npops-1)*(npops-2)/2 names for F3 stats (same order as computation)

Value

Return a string matrix with 4 columns including the complete F3 configuration names (of the form
Px;P1,P2), and the names of each pop involved in the configuration

Examples

#

generateF4names generateF4names

Description

Generate all names for F4 stats (same order as computation)

Usage

.generateF4names(popnames)

Arguments

popnames String vector with the names of all the pops

Details

Generate all the nf4=(npops*(npops-1)/2)*((npops-2)*(npops-3)/2)/2 names for F4 stats (same or-
der as computation)

genobaypass2countdata 43

Value

Return a string matrix with 5 columns including the complete F4 configuration names (of the form
P1,P2;P3,P4), and the names of each pop involved in the configuration

#

genobaypass2countdata Convert BayPass allele count input files into a coundata object

Description

Convert BayPass allele count input files into a coundata object

Usage

genobaypass2countdata(
genobaypass.file = "",
snp.pos = NA,
popnames = NA,
min.indgeno.per.pop = -1,
min.maf = -1,
verbose = TRUE

)

Arguments

genobaypass.file

The name (or a path) of the BayPass allele count file (see the BayPass manual
https://forgemia.inra.fr/mathieu.gautier/baypass_public/)

snp.pos An optional two column matrix with nsnps rows containing the chromosome (or
contig/scaffold) of origin and the position of each markers

popnames A character vector with the names of pool
min.indgeno.per.pop

Minimal number of overall counts required in each population. If at least one
pop is not genotyped for at least min.indgeno.per.pop (haploid) individual, the
position is discarded

min.maf Minimal allowed Minor Allele Frequency (computed from the ratio overall counts
for the reference allele over the overall number of (haploid) individual geno-
typed)

verbose If TRUE extra information is printed on the terminal

Details

Information on SNP position is only required for some graphical display or to carried out block-
jacknife sampling estimation of confidence intervals. If no mapping information is given (default),
SNPs will be assumed to be ordered on the same chromosome and separated by 1 bp. As blocks are
defined with a number of consecutive SNPs (rather than a length), the latter assumption has actually
no effect (except in the reported estimated block sizes in Mb).

https://forgemia.inra.fr/mathieu.gautier/baypass_public/

44 genobaypass2pooldata

Value

A countdata object containing 6 elements:

1. "refallele.count": a matrix (nsnp rows and npops columns) with the allele counts for the refer-
ence allele

2. "total.count": a matrix (nsnp rows and npops columns) with the total number of counts (i.e.,
twice the number of genotyped individual for diploid species and autosomal markers)

3. "snp.info": a matrix with nsnp rows and four columns containing respectively the contig (or
chromosome) name (1st column) and position (2nd column) of the SNP; the allele taken as
reference in the refallele.count matrix (3rd column); and the alternative allele (4th column)

4. "popnames": a vector of length npops containing the names of the pops

5. "nsnp": a scalar corresponding to the number of SNPs

6. "npops": a scalar corresponding to the number of populations

Examples

make.example.files(writing.dir=tempdir())
pooldata=popsync2pooldata(sync.file=paste0(tempdir(),"/ex.sync.gz"),poolsizes=rep(50,15))
pooldata2genobaypass(pooldata=pooldata,writing.dir=tempdir())
##NOTE: This example is just for the sake of illustration as it amounts
##to interpret read count as allele count which must not be done in practice!
countdata=genobaypass2countdata(genobaypass.file=paste0(tempdir(),"/genobaypass"))

genobaypass2pooldata Convert BayPass read count and haploid pool size input files into a
pooldata object

Description

Convert BayPass read count and haploid pool size input files into a pooldata object

Usage

genobaypass2pooldata(
genobaypass.file = "",
poolsize.file = "",
snp.pos = NA,
poolnames = NA,
min.cov.per.pool = -1,
max.cov.per.pool = 1e+06,
min.maf = -1,
verbose = TRUE

)

genobaypass2pooldata 45

Arguments

genobaypass.file

The name (or a path) of the BayPass read count file (see the BayPass manual
https://forgemia.inra.fr/mathieu.gautier/baypass_public/)

poolsize.file The name (or a path) of the BayPass (haploid) pool size file (see the BayPass
manual https://forgemia.inra.fr/mathieu.gautier/baypass_public/)

snp.pos An optional two column matrix with nsnps rows containing the chromosome (or
contig/scaffold) of origin and the position of each markers

poolnames A character vector with the names of pool
min.cov.per.pool

Minimal allowed read count (per pool). If at least one pool is not covered by at
least min.cov.perpool reads, the position is discarded

max.cov.per.pool

Maximal allowed read count (per pool). If at least one pool is covered by more
than min.cov.perpool reads, the position is discarded

min.maf Minimal allowed Minor Allele Frequency (computed from the ratio overall read
counts for the reference allele over the read coverage)

verbose If TRUE extra information is printed on the terminal

Details

Information on SNP position is only required for some graphical display or to carried out block-
jacknife sampling estimation of confidence intervals. If no mapping information is given (default),
SNPs will be assumed to be ordered on the same chromosome and separated by 1 bp. As blocks are
defined with a number of consecutive SNPs (rather than a length), the latter assumption has actually
no effect (except in the reported estimated block sizes in Mb).

Value

A pooldata object containing 7 elements:

1. "refallele.readcount": a matrix with nsnp rows and npools columns containing read counts for
the reference allele (chosen arbitrarily) in each pool

2. "readcoverage": a matrix with nsnp rows and npools columns containing read coverage in
each pool

3. "snp.info": a matrix with nsnp rows and four columns containing respectively the contig (or
chromosome) name (1st column) and position (2nd column) of the SNP; the allele taken as
reference in the refallele.readcount matrix (3rd column); and the alternative allele (4th col-
umn)

4. "poolsizes": a vector of length npools containing the haploid pool sizes

5. "poolnames": a vector of length npools containing the names of the pools

6. "nsnp": a scalar corresponding to the number of SNPs

7. "npools": a scalar corresponding to the number of pools

https://forgemia.inra.fr/mathieu.gautier/baypass_public/
https://forgemia.inra.fr/mathieu.gautier/baypass_public/

46 genoselestim2pooldata

Examples

make.example.files(writing.dir=tempdir())
pooldata=popsync2pooldata(sync.file=paste0(tempdir(),"/ex.sync.gz"),poolsizes=rep(50,15))
pooldata2genobaypass(pooldata=pooldata,writing.dir=tempdir())
pooldata=genobaypass2pooldata(genobaypass.file=paste0(tempdir(),"/genobaypass"),

poolsize.file=paste0(tempdir(),"/poolsize"))

genoselestim2pooldata Convert SelEstim read count input files into a pooldata object

Description

Convert SelEstim read count input files into a pooldata object

Usage

genoselestim2pooldata(
genoselestim.file = "",
poolnames = NA,
min.cov.per.pool = -1,
max.cov.per.pool = 1e+06,
min.maf = -1,
nlines.per.readblock = 1e+06,
verbose = TRUE

)

Arguments

genoselestim.file

The name (or a path) of the SelEstim read count file (see the SelEstim manual
https://www1.montpellier.inrae.fr/CBGP/software/selestim/)

poolnames A character vector with the names of pool
min.cov.per.pool

Minimal allowed read count (per pool). If at least one pool is not covered by at
least min.cov.perpool reads, the position is discarded

max.cov.per.pool

Maximal allowed read count (per pool). If at least one pool is covered by more
than min.cov.perpool reads, the position is discarded

min.maf Minimal allowed Minor Allele Frequency (computed from the ratio overal read
counts for the reference allele over the read coverage)

nlines.per.readblock

Number of Lines read simultaneously. Should be adapted to the available RAM.

verbose If TRUE extra information is printed on the terminal

https://www1.montpellier.inrae.fr/CBGP/software/selestim/

genotreemix2countdata 47

Value

A pooldata object containing 7 elements:

1. "refallele.readcount": a matrix with nsnp rows and npools columns containing read counts for
the reference allele (chosen arbitrarily) in each pool

2. "readcoverage": a matrix with nsnp rows and npools columns containing read coverage in
each pool

3. "snp.info": a matrix with nsnp rows and four columns containing respectively the contig (or
chromosome) name (1st column) and position (2nd column) of the SNP; the allele taken as
reference in the refallele.readcount matrix (3rd column); and the alternative allele (4th col-
umn)

4. "poolsizes": a vector of length npools containing the haploid pool sizes

5. "poolnames": a vector of length npools containing the names of the pools

6. "nsnp": a scalar corresponding to the number of SNPs

7. "npools": a scalar corresponding to the number of pools

Examples

make.example.files(writing.dir=tempdir())
pooldata=popsync2pooldata(sync.file=paste0(tempdir(),"/ex.sync.gz"),poolsizes=rep(50,15))
pooldata2genoselestim(pooldata=pooldata,writing.dir=tempdir())
pooldata=genoselestim2pooldata(genoselestim.file=paste0(tempdir(),"/genoselestim"))

genotreemix2countdata Convert allele count input files from the Treemix program into a coun-
data object

Description

Convert allele count input files from the Treemix program into a coundata object

Usage

genotreemix2countdata(
genotreemix.file = "",
snp.pos = NA,
min.indgeno.per.pop = -1,
min.maf = -1,
verbose = TRUE

)

48 genotreemix2countdata

Arguments

genotreemix.file

The name (or a path) of the Treemix allele count file (see the Treemix manual
https://bitbucket.org/nygcresearch/treemix/wiki/Home)

snp.pos An optional two column matrix with nsnps rows containing the chromosome (or
contig/scaffold) of origin and the position of each markers

min.indgeno.per.pop

Minimal number of overall counts required in each population. If at least one
pop is not genotyped for at least min.indgeno.per.pop (haploid) individual, the
position is discarded

min.maf Minimal allowed Minor Allele Frequency (computed from the ratio overall counts
for the reference allele over the overall number of (haploid) individual geno-
typed)

verbose If TRUE extra information is printed on the terminal

Details

Information on SNP position is only required for some graphical display or to carried out block-
jacknife sampling estimation of confidence intervals. If no mapping information is given (default),
SNPs will be assumed to be ordered on the same chromosome and separated by 1 bp. As blocks are
defined with a number of consecutive SNPs (rather than a length), the latter assumption has actually
no effect (except in the reported estimated block sizes in Mb).

Value

A countdata object containing 6 elements:

1. "refallele.count": a matrix (nsnp rows and npops columns) with the allele counts for the refer-
ence allele

2. "total.count": a matrix (nsnp rows and npops columns) with the total number of counts (i.e.,
twice the number of genotyped individual for diploid species and autosomal markers)

3. "snp.info": a matrix with nsnp rows and four columns containing respectively the contig (or
chromosome) name (1st column) and position (2nd column) of the SNP; the allele taken as
reference in the refallele.count matrix (3rd column); and the alternative allele (4th column)

4. "popnames": a vector of length npops containing the names of the pops

5. "nsnp": a scalar corresponding to the number of SNPs

6. "npops": a scalar corresponding to the number of populations

Examples

make.example.files(writing.dir=tempdir())
pooldata=popsync2pooldata(sync.file=paste0(tempdir(),"/ex.sync.gz"),poolsizes=rep(50,15))
##NOTE: This example is just for the sake of illustration as it amounts
##to interpret read count as allele count which must not be done in practice!
dum=matrix(paste(pooldata@refallele.readcount,
pooldata@readcoverage-pooldata@refallele.readcount,sep=","),
ncol=pooldata@npools)

https://bitbucket.org/nygcresearch/treemix/wiki/Home

graph.builder 49

colnames(dum)=pooldata@poolnames
write.table(dum,file=paste0(tempdir(),"/genotreemix"),quote=FALSE,row.names=FALSE)
countdata=genotreemix2countdata(genotreemix.file=paste0(tempdir(),"/genotreemix"))

graph.builder Implement a graph builder heuristic by successively adding leaves to
an initial graph

Description

Implement a graph builder heuristic by successively adding leaves to an initial graph

Usage

graph.builder(
x,
leaves.to.add,
fstats,
heap.dbic = 6,
max.heap.size = 25,
verbose = TRUE,
...

)

Arguments

x An object (or list of objects) of class graph.params or fitted.graph (see details)

leaves.to.add Names of the leaves to successively add (in the given order)

fstats Object of class fstats that contains estimates of the fstats (see compute.fstats)

heap.dbic Maximal BIC distance from the best graph to be kept in the heap (heap.dbic=6
by default)

max.heap.size Maximal number of graphs stored in the heap (max.heap.size=25 by default)

verbose If TRUE extra information is printed on the terminal

... Some parameters to be passed the function add.leaf called internally

Details

The input object x needs to be of class graph.params as generated by the function generate.graph.params;
or fitted.graph as generated by the functions fit.graph, add.leaf (in the output list element named
"fitted.graphs.list") or rooted.nj.builder (in the output element named "best.rooted.tree"). This is to
ensure that the matrix describing the structure of the graph (graph slot of these objects) is valid (note
that it can be plotted for checks). Hence graph.params objects may have been generated without
fstats information (that should be supplied independently to the add.leaf function to obtain informa-
tion on the fstats involving the candidate leaf defined with the leaf.to.add argument). The functions
successively add each leaf given in the leaves.to.add vector to the list of fitted graph stored in a heap
using the function add.leaf. For the first iteration (i.e., first tested leaf) the heap consists of the input

50 graph.params-class

graph or list of graph x. At each iteration, the function add.leaf is used to test the candidate leaf to
each graph from the current heap in turn. A new heap of graphs is then built by each time including
the fitted graphs with a BIC less than heap.dbic larger than the best resulting graphs (treating each
graph independently). If the final number of graphs in the heap is larger than max.heap.size, the
max.heap.size graphs with the lowest BIC are kept in the heap. After testing the latest leaf, graphs
with a BIC larger than heap.dbic units of the best graph are discarded from the final list of graphs.
In practice, it is recommended to test different orders of inclusion of the leaves (as specified in the
vector leaves.to.add)

Value

A list with the following elements:

1. "n.graphs": The final number of fitted graphs

2. "fitted.graphs.list": a list of fitted.graph objects (indexed from 1 to n.graphs and in the same
order as the list "graphs") containing the results of fitting of each graph.

3. "best.fitted.graph": The graph (object of class fitted.graph) with the minimal BIC (see function
fit.graph) among all the graphs within fitted.graphs.list

4. "bic": a vector of the n.graphs BIC (indexed from 1 to n.graphs and in the same order as the
"fitted.graphs.list" list) (see fit.graph details for the computation of the scores).

See Also

see fit.graph, generate.graph.params and add.leaf.

graph.params-class S4 class to represent a population tree or admixture graph and its
underlying parameter.

Description

S4 class to represent a population tree or admixture graph and its underlying parameter.

Details

The graph is specified by a three column (character) matrix giving for each edge (whether admixed
or not) to i) the child node; ii) the parent node; iii) the admixture proportion. For non-admixed
edge, the third column must be blank. An admixed node should be referred two times as a child
node with two different parent node and two different admixture proportions coded as alpha and (1-
alpha) (parentheses are mandatory) if alpha is the name of the parameter for admixture proportion.
The dot.graph element allows to plot the graph using grViz() from the DiagrammeR package or
with the dot program after writing the files (e.g., dot -Tpng inputgraph.dot in terminal). Note that
the dot file may be customized (e.g., to change leave color, parameter names...).

graph.params-class 51

Slots

graph The graph in 3 column format (see details)

dot.graph The graph in dot format

is.admgraph If FALSE the graph is binary tree (i.e., no admixture events), if TRUE the graph is
an admixture graph

n.leaves Number of leaves of the graph

leaves Name of the leaves

root.name Name of the root

n.nodes Number of nodes (including root)

nodes.names Name of the nodes

n.edges Number of edges (including admixture edges)

edges.names Names of the edges (coded as "Parent node Name"<->"Child node Name")

n.adm.nodes Number of admixed nodes (=0 if is.admgraph=FALSE). This is also the number of
admixed parameters since only two-ways admixture are assumed for a given node

adm.params.names Names of the admixed parameters

graph.matrix The graph incidence matrix consisting of n.leaves rows and n.edges columns. The
elements of the matrix are the weights of each edge (in symbolic representation) for the dif-
ferent possible paths from the leaves to the graph root.

root.edges.idx Indexes of the graph.matrix columns associated to the (two) edges connected to
the root

f2.target The (n.leaves-1) stats F2 involving popref (i.e., of the form F2(popref;pop))

f2.target.pops A matrix of (n.leaves-1) rows and 2 columns containing the names of populations
of the F2 stats. The first column is by construction always popref. The order is the same as in
f2.target

f3.target The (n.leaves-1)(n.leaves-2)/2 stats F3 involving popref as a target (i.e., of the form
F3(popref;popA,popB))

f3.target.pops A matrix of (n.leaves-1)(n.leaves-2)/2 rows and 3 columns containing the name
of popref in the first column and the names of the two populations involved in the F3 stats.
The order is the same as in f3.target

popref The name of the reference population defining the fstats basis

f.Qmat A square matrix of rank n.leaves(n.leaves-1)/2 corresponding to the error covariance matrix
of the F2 and F3 estimates

Het Estimated leave heterozygosities (if present in the fstats object)

See Also

To generate graph.params object, see generate.graph.params. The object may be used to esti-
mate graph parameters with the function fit.graph or to generate files for the qpGraph software
with graph.params2qpGraphFiles. See also graph.params2symbolic.fstats to obtain sym-
bolic representation of Fstats from the matrix "Omega".

52 graph.params2qpGraphFiles

graph.params2qpGraphFiles

Generate files for the qpGraph software from a graph.params object

Description

Generate files for the qpGraph software from a graph.params object

Usage

graph.params2qpGraphFiles(
graph.params,
outfileprefix = "out",
n.printed.dec = 4,
verbose = TRUE

)

Arguments

graph.params An object of class graph.params containing graph information with Fstats infor-
mation (see the function generate.graph.params)

outfileprefix The prefix of the qpGraph files

n.printed.dec Number of decimal to be printed (if not enough may lead to fatalx error in qp-
Graph)

verbose If TRUE extra information is printed on the terminal

Details

This function generates the three files required by qpGraph: i) a file named [outfileprefix].graph
containing the graph in appropriate format; ii) a file named [outfileprefix].fstats file containing the
fstats estimates of fstats (and their covariance); iii) a file named [outfileprefix].parqpGraph contain-
ing essential parameter information to run qpGraph (this may be edited by hand if other options
are needed). The qpGraph software may then be run using the following options -p [outfilepre-
fix].parqpGraph -g [outfileprefix].graph -o out.ggg -d out.dot.

Value

The three files described in the details section

See Also

To generate graph.params object, see generate.graph.params

graph.params2symbolic.fstats 53

graph.params2symbolic.fstats

Provide a symbolic representation of all the F-statistics and the model
system of equations

Description

Provide a symbolic representation of all the F-statistics and the model system of equations

Usage

graph.params2symbolic.fstats(x, outfile = NULL)

Arguments

x An object of class graph.params containing graph information and relevant Fs-
tats estimates (see the function generate.graph.params)

outfile The file where to print the equations (default=NULL, equations are not printed
in a file)

Value

A list with the following elements:

1. "model.matrix": A symbolic representation of the matrix M relating the basis F-statistics
and graph edge length as F=M*b where F is the vector of the basis Fstats (row names of
model.matrix M) and b is the vector of graph edges (column names of model.matrix M).

2. "omega": A symbolic representation of the scaled covariance matrix of allele frequency with
edge names and admixture parameter names as specified in the edges.names and adm.params.names
slot of the input graph.params object x

3. "F2.equations": A symbolic representation of the nleaves(nleaves-1)/2 different F2 as a func-
tion of graph parameters

4. "F3.equations": A symbolic representation of the nleaves(nleaves-1)(nleaves-2)/2 different F3
as a function of graph parameters

5. "F4.equations": A symbolic representation of the npops(npops-1)(npops-2)(npops-3)/8 differ-
ent F4 as a function of graph parameters

See Also

To generate a graph.params object, see generate.graph.params.

54 heatmap,pairwisefst-method

Examples

graph=rbind(c("P1","P7",""),c("P2","s1",""),c("P3","s2",""),c("P6","S",""),
c("S","s1","a"),c("S","s2","(1-a)"),c("s2","P8",""),c("s1","P7",""),
c("P4","P9",""),c("P5","P9",""),c("P7","P8",""),
c("P8","R",""),c("P9","R",""))

graph.params=generate.graph.params(graph)
graph.equations=graph.params2symbolic.fstats(graph.params)

heatmap,pairwisefst-method

Show pairwisefst object

Description

Show pairwisefst object

Usage

S4 method for signature 'pairwisefst'
heatmap(
x,
Rowv = NULL,
Colv = if (symm) "Rowv" else NULL,
distfun = as.dist,
hclustfun = hclust,
reorderfun = function(d, w) reorder(d, w),
add.expr,
symm = FALSE,
revC = identical(Colv, "Rowv"),
scale = c("row", "column", "none"),
na.rm = TRUE,
margins = c(5, 5),
ColSideColors,
RowSideColors,
cexRow = 0.2 + 1/log10(nrow(x@PairwiseFSTmatrix)),
cexCol = 0.2 + 1/log10(ncol(x@PairwiseFSTmatrix)),
labRow = NULL,
labCol = NULL,
main = NULL,
xlab = NULL,
ylab = NULL,
keep.dendro = FALSE,
verbose = getOption("verbose"),
...

)

heatmap,pairwisefst-method 55

Arguments

x Object of class pairwisefst
Rowv determines if and how the row dendrogram should be computed and reordered.

Either a dendrogram or a vector of values used to reorder the row dendrogram
or NA to suppress any row dendrogram (and reordering) or by default, NULL,
see ‘Details’ below.

Colv determines if and how the column dendrogram should be reordered. Has the
same options as the Rowv argument above and additionally when x is a square
matrix, Colv = "Rowv" means that columns should be treated identically to the
rows (and so if there is to be no row dendrogram there will not be a column one
either).

distfun function used to compute the distance (dissimilarity) between both rows and
columns. Defaults to as.dist.

hclustfun function used to compute the hierarchical clustering when Rowv or Colv are not
dendrograms. Defaults to hclust. Should take as argument a result of distfun
and return an object to which as.dendrogram can be applied.

reorderfun function(d, w) of dendrogram and weights for reordering the row and column
dendrograms. The default uses reorder.dendrogram.

add.expr expression that will be evaluated after the call to image. Can be used to add
components to the plot.

symm logical indicating if x should be treated symmetrically; can only be true when x
is a square matrix.

revC logical indicating if the column order should be reversed for plotting, such that
e.g., for the symmetric case, the symmetry axis is as usual.

scale character indicating if the values should be centered and scaled in either the row
direction or the column direction, or none. The default is "row" if symm false,
and "none" otherwise.

na.rm logical indicating whether NA’s should be removed.
margins numeric vector of length 2 containing the margins (see par(mar = *)) for column

and row names, respectively.
ColSideColors (optional) character vector of length ncol(x) containing the color names for a

horizontal side bar that may be used to annotate the columns of x.
RowSideColors (optional) character vector of length nrow(x) containing the color names for a

vertical side bar that may be used to annotate the rows of x.
cexRow, cexCol positive numbers, used as cex.axis in for the row or column axis labeling. The

defaults currently only use number of rows or columns, respectively.
labRow, labCol character vectors with row and column labels to use; these default to row-

names(x) or colnames(x), respectively.
main, xlab, ylab main, x- and y-axis titles; defaults to none.
keep.dendro logical indicating if the dendrogram(s) should be kept as part of the result (when

Rowv and/or Colv are not NA).
verbose logical indicating if information should be printed.
... additional arguments passed on to image, e.g., col specifying the colors.

56 is.fstats

is.countdata Check countdata objects

Description

Check countdata objects

Usage

is.countdata(x)

Arguments

x The name of the object to be tested

is.fitted.graph Check fitted.graph objects

Description

Check fitted.graph objects

Usage

is.fitted.graph(x)

Arguments

x Object to be tested

is.fstats Check fstats objects

Description

Check fstats objects

Usage

is.fstats(x)

Arguments

x The name of the object to be tested

is.graph.params 57

is.graph.params Check graph.params objects

Description

Check graph.params objects

Usage

is.graph.params(x)

Arguments

x The name (or a path) of the graph.params objet

is.pairwisefst Check pairwisefst objects

Description

Check pairwisefst objects

Usage

is.pairwisefst(x)

Arguments

x The name (or a path) of the pairwisefst object

is.pooldata Check pooldata objects

Description

Check pooldata objects

Usage

is.pooldata(x)

Arguments

x The name of the object to be tested

58 pairwisefst-class

make.example.files Create example files

Description

Write in the current directory example files corresponding to a sync (as obtained when parsing
mpileup files with PoPoolation) and vcf (as obtained when parsing mpileup files with VarScan)
gzipped files

Usage

make.example.files(writing.dir = "")

Arguments

writing.dir Directory where to copy example files (e.g., set writing.dir=getwd() to copy in
the current working directory)

Examples

make.example.files(writing.dir=tempdir())

pairwisefst-class S4 class to represent a pairwise Fst results obtained with the com-
pute.pairwiseFST

Description

S4 class to represent a pairwise Fst results obtained with the compute.pairwiseFST

Slots

values A data frame with npop*(npop-1)/2 rows and 3 (or 7 if blockjackknife is TRUE) columns
containing for both the Fst and Q2, estimates over all the SNPs and if blockjackknife=TRUE,
the estimated block-jackknife and standard error (s.e.). The seventh (or third if blockjack-
knife=FALSE) column gives the number of SNPs.

PairwiseFSTmatrix A npxnp matrix containing the pairwise FST estimates

PairwiseSnpFST A matrix (nsnp rows and npops columns) with read count data for the reference
allele

PairwiseSnpQ1 A matrix (nsnp rows and npops columns) with overall read coverage

PairwiseSnpQ2 A matrix (nsnp rows and 4 columns) detailing for each SNP, the chromosome (or
scaffold), the position, allele 1 and allele 2

blockjacknife A logical indicating whether block-jackknife estimates of standard errors are avail-
able (TRUE) or not (FALSE)

plot,fitted.graph-method 59

See Also

To generate pairwise object, see compute.pairwiseFST

plot,fitted.graph-method

plot pairwisefst object

Description

plot pairwisefst object

Usage

S4 method for signature 'fitted.graph'
plot(x, y)

Arguments

x Object of class fitted.graph

y dummy argument

plot,fstats-method plot fstats object

Description

plot fstats object

Usage

S4 method for signature 'fstats'
plot(x, y, ...)

Arguments

x Object of class fstats

y dummy argument

... Other arguments to be passed to plot_fstats

See Also

see plot_fstats for details on plot_fstats arguments

60 plot,pairwisefst-method

plot,graph.params-method

plot graph in graph.params object

Description

plot graph in graph.params object

Usage

S4 method for signature 'graph.params'
plot(x, y)

Arguments

x Object of class fitted.graph

y dummy argument

plot,pairwisefst-method

plot pairwisefst object

Description

plot pairwisefst object

Usage

S4 method for signature 'pairwisefst'
plot(x, y, ...)

Arguments

x Object of class pairwisefst

y dummy argument

... Some arguments to be passed to plot_fstats

See Also

see plot_fstats for details on plot_fstats arguments

plot_fstats 61

plot_fstats Plot F2, F3, F3star, F4, D or pairwise Fst values with their Confidence
Intervals

Description

Plot F2, F3, F3star, F4, D or pairwise Fst values with their Confidence Intervals

Usage

plot_fstats(
x,
stat.name = "F2",
ci.perc = 95,
value.range = c(NA, NA),
pop.sel = NA,
pop.f3.target = NA,
highlight.signif = TRUE,
main = stat.name,
...

)

Arguments

x An object of class fstats (to plot heterozygosities, divergence, F2, F3, F3star, F4
or D statistics) or pairwisefst (to plot pairwise fst)

stat.name For fstats object, the name of the stat (either heterozygosities, divergence, F2,
F3, F3star, F4 or Dstat)

ci.perc Percentage of the Confidence Interval in number of standard errors (default=95%)

value.range Range of test values (x-axis) to be plotted (default=NA,NA: i.e., all test values
are plotted)

pop.sel Only plot test values involving these populations (default=NA: i.e., all test val-
ues are plotted)

pop.f3.target For F3-statistics, only plot F3 involving pop.f3.target as a target
highlight.signif

If TRUE highlight significant tests in red (see details)

main Main title of the plot (default=stat.name)

... Some other graphical arguments to be passed

Details

Data will only be plotted if jackknife estimates of the estimator s.e. have been performed i.e. if the
functions compute.fstats or compute.pairwiseFST were run with nsnp.per.block>0

62 pooldata-class

Value

A plot of the Fstats of interest. Significant F3 statistics (i.e., showing formal evidence for admix-
ture of the target population) are highlighted in red. Significant F4 statistics (i.e., showing formal
evidence against treeness of the pop. quadruplet) are highlighted in red.

See Also

To generate x object, see compute.pairwiseFST (for pairwisefst object) or compute.fstats (for
fstats object)

Examples

make.example.files(writing.dir=tempdir())
pooldata=popsync2pooldata(sync.file=paste0(tempdir(),"/ex.sync.gz"),

poolsizes=rep(50,15),poolnames=paste0("P",1:15))
res.fstats=compute.fstats(pooldata,nsnp.per.bjack.block=25)
plot_fstats(res.fstats,stat.name="F3",cex=0.5)
plot_fstats(res.fstats,stat.name="F3",value.range=c(NA,0.001),

pop.f3.target=c("P7","P5"),cex.axis=0.7)
plot_fstats(res.fstats,stat.name="F4",cex=0.5)
#allow to reduce the size of the test name (y-axis)
plot_fstats(res.fstats,stat.name="F4",cex=0.5,

pop.sel=c("P1","P2","P3","P4","P5"))
plot_fstats(res.fstats,stat.name="F4",cex=0.5,

pop.sel=c("P1","P2","P3","P4","P5"),highlight.signif=FALSE)

pooldata-class S4 class to represent a Pool-Seq data set.

Description

S4 class to represent a Pool-Seq data set.

Slots

npools The number of pools

nsnp The number of SNPs

refallele.readcount A matrix (nsnp rows and npools columns) with read count data for the
reference allele

readcoverage A matrix (nsnp rows and npools columns) with overall read coverage

snp.info A data frame (nsnp rows and 4 columns) detailing for each SNP, the chromosome (or
scaffold), the position, Reference allele name and Alternate allele name (if available)

poolsizes A vector of length npools with the corresponding haploid pool sizes

poolnames A vector of length npools with the corresponding haploid pool names

pooldata.subset 63

See Also

To generate pooldata object, see vcf2pooldata, popsync2pooldata, genobaypass2pooldata and
genoselestim2pooldata

pooldata.subset Create a subset of the pooldata object that contains Pool-Seq data as
a function of pool and/or SNP indexes

Description

Create a subset of the pooldata object that contains Pool-Seq data as a function of pool and/or SNP
indexes

Usage

pooldata.subset(
pooldata,
pool.index = 1:pooldata@npools,
snp.index = 1:pooldata@nsnp,
min.cov.per.pool = -1,
max.cov.per.pool = 1e+06,
min.maf = -1,
cov.qthres.per.pool = c(0, 1),
return.snp.idx = FALSE,
verbose = TRUE

)

Arguments

pooldata A pooldata object containing Pool-Seq information

pool.index Indexes of the pools (at least two), that should be selected to create the new
pooldata object (default=all the pools)

snp.index Indexes of the SNPs (at least two), that should be selected to create the new
pooldata object (default=all the SNPs)

min.cov.per.pool

Minimal allowed read count (per pool). If at least one pool is not covered by at
least min.cov.perpool reads, the position is discarded

max.cov.per.pool

Maximal allowed read count (per pool). If at least one pool is covered by more
than min.cov.perpool reads, the position is discarded

min.maf Minimal allowed Minor Allele Frequency (computed from the ratio over all read
counts for the reference allele over the read coverage)

cov.qthres.per.pool

A two-elements vector containing the minimal (qmin) and maximal (qmax)
quantile coverage thresholds applied to each pools (0<=qmin<qmax<=1). See
details below

64 pooldata.subset

return.snp.idx If TRUE, the row.names of the snp.info slot of the returned pooldata object
are named as "rsx" where x is the index of SNP in the initial pooldata object
(default=FALSE)

verbose If TRUE return some information

Details

This function allows subsetting a pooldata object by selecting only some pools and/or some SNPs
(e.g., based on their position on the genome). Additional filtering steps on SNPs can be carried out
on the resulting subset to discard SNP with low polymorphism or poorly or too highly covered. In
addition, coverage criteria can be applied on a per-pool basis with the cov.qthres.per.pool argument.
’more specific SNP selection based on their positions on the genome or their characteristics. For
instance if qmax=0.95, a position is discarded if in a given pool it has a number of reads higher than
the 95-th percentile of the empirical coverage distribution in this same pool (defined over the SNPs
selected by snp.index). Similarly, if qmax=0.05, a position is discarded if in a given pool it has a
number of reads lower than the 5-th percentile of the empirical coverage distribution in this same
pool. This mode of selection may be more relevant when considering pools with heterogeneous
read coverages.

Value

A pooldata object with 7 elements:

1. "refallele.readcount": a matrix with nsnp rows and npools columns containing read counts for
the reference allele (chosen arbitrarily) in each pool

2. "readcoverage": a matrix with nsnp rows and npools columns containing read coverage in
each pool

3. "snp.info": a matrix with nsnp rows and four columns containing respectively the contig (or
chromosome) name (1st column) and position (2nd column) of the SNP; the allele in the
reference assembly (3rd column); the allele taken as reference in the refallele matrix.readcount
matrix (4th column); and the alternative allele (5th column)

4. "poolsizes": a vector of length npools containing the haploid pool sizes

5. "poolnames": a vector of length npools containing the names of the pools

6. "nsnp": a scalar corresponding to the number of SNPs

7. "npools": a scalar corresponding to the number of pools

See Also

To generate pooldata object, see vcf2pooldata, popsync2pooldata

Examples

make.example.files(writing.dir=tempdir())
pooldata=popsync2pooldata(sync.file=paste0(tempdir(),"/ex.sync.gz"),poolsizes=rep(50,15))
subset.by.pools=pooldata.subset(pooldata,pool.index=c(1,2))
subset.by.snps=pooldata.subset(pooldata,snp.index=10:100)
subset.by.pools.and.snps=pooldata.subset(pooldata,pool.index=c(1,2),snp.index=10:100)
subset.by.pools.qcov.thr=pooldata.subset(pooldata,pool.index=1:8,cov.qthres.per.pool=c(0.05,0.95))

pooldata2diyabc 65

pooldata2diyabc Convert a pooldata object into DIYABC input files.

Description

Convert a pooldata object into DIYABC data file for pool-seq data. A file containing SNP details is
also printed out. Options to generate sub-samples (e.g., for large number of SNPs) are also available.
Note that DIYABC SNP filtering criterion is based on MRC (minimal read count) which may be
more stringent than usual MAF-based filtering criterion. It is recommended to parse vcf files and
pooldata objects without any MAF criterion or to prefilter pooldata objects with the desired MRC
(using option snp.index pooldata.subset).

Usage

pooldata2diyabc(
pooldata,
writing.dir = getwd(),
prefix = "",
diyabc.mrc = 1,
subsamplesize = -1,
subsamplingmethod = "thinning"

)

Arguments

pooldata A pooldata object containing Pool-Seq information (see vcf2pooldata and popsync2pooldata)

writing.dir Directory where to create the files (e.g., set writing.dir=getwd() to copy in the
current working directory)

prefix Prefix used for output file names

diyabc.mrc MRC to be applied by DIYABC (note that no filtering based on MRC is done
by the function)

subsamplesize Size of the sub-samples. If <=1 (default), all the SNPs are considered in the
output

subsamplingmethod

If sub-sampling is activated (argument subsamplesize), define the method used
for subsampling that might be either i) "random" (A single data set consisting of
randmly chosen SNPs is generated) or ii) "thinning", sub-samples are generated
by taking SNPs one every nsub=floor(nsnp/subsamplesize) in the order of the
map (a suffix ".subn" is added to each sub-sample files where n varies from 1 to
nsub).

Value

DIYABC data file for pool-seq data

66 pooldata2genobaypass

See Also

To generate pooldata object, see vcf2pooldata, popsync2pooldata

Examples

make.example.files(writing.dir=tempdir())
pooldata=popsync2pooldata(sync.file=paste0(tempdir(),"/ex.sync.gz"),poolsizes=rep(50,15))
pooldata2diyabc(pooldata=pooldata,writing.dir=tempdir())

pooldata2genobaypass Convert a pooldata object into BayPass input files.

Description

Convert a pooldata object into BayPass allele read count and haploid pool size files. A file con-
taining SNP details is also printed out. Options to generate sub-samples (e.g., for large number of
SNPs) are also available.

Usage

pooldata2genobaypass(
pooldata,
writing.dir = getwd(),
prefix = "",
subsamplesize = -1,
subsamplingmethod = "thinning"

)

Arguments

pooldata A pooldata object containing Pool-Seq information (see vcf2pooldata and popsync2pooldata)

writing.dir Directory where to create the files (e.g., set writing.dir=getwd() to copy in the
current working directory)

prefix Prefix used for output file names

subsamplesize Size of the sub-samples. If <=1 (default), all the SNPs are considered in the
output

subsamplingmethod

If sub-sampling is activated (argument subsamplesize), define the method used
for subsampling that might be either i) "random" (A single data set consisting of
randmly chosen SNPs is generated) or ii) "thinning", sub-samples are generated
by taking SNPs one every nsub=floor(nsnp/subsamplesize) in the order of the
map (a suffix ".subn" is added to each sub-sample files where n varies from 1 to
nsub).

pooldata2genoselestim 67

Value

Files containing allele count (in BayPass format), haploid pool size (in BayPass format), and SNP
details (as in the snp.info matrix from the pooldata object)

See Also

To generate pooldata object, see vcf2pooldata, popsync2pooldata

Examples

make.example.files(writing.dir=tempdir())
pooldata=popsync2pooldata(sync.file=paste0(tempdir(),"/ex.sync.gz"),poolsizes=rep(50,15))
pooldata2genobaypass(pooldata=pooldata,writing.dir=tempdir())

pooldata2genoselestim Convert a pooldata object into SelEstim input files.

Description

Convert a pooldata object into SelEstim allele read count. A file containing SNP details is also
printed out. Options to generate sub-samples (e.g., for large number of SNPs) are also available.

Usage

pooldata2genoselestim(
pooldata,
writing.dir = getwd(),
prefix = "",
subsamplesize = -1,
subsamplingmethod = "thinning"

)

Arguments

pooldata A pooldata object containing Pool-Seq information (see vcf2pooldata and popsync2pooldata)

writing.dir Directory where to create the files (e.g., set writing.dir=getwd() to copy in the
current working directory)

prefix Prefix used for output file names

subsamplesize Size of the sub-samples. If <=1 (default), all the SNPs are considered in the
output

subsamplingmethod

If sub-sampling is activated (argument subsamplesize), define the method used
for subsampling that might be either i) "random" (A single data set consisting of
randmly chosen SNPs is generated) or ii) "thinning", sub-samples are generated
by taking SNPs one every nsub=floor(nsnp/subsamplesize) in the order of the
map (a suffix ".subn" is added to each sub-sample files where n varies from 1 to
nsub).

68 poppair_idx

Value

Files containing allele count (in SelEstim Pool-Seq format) and SNP details (as in the snp.info
matrix from the pooldata object)

See Also

To generate pooldata object, see vcf2pooldata, popsync2pooldata

Examples

make.example.files(writing.dir=tempdir())
pooldata=popsync2pooldata(sync.file=paste0(tempdir(),"/ex.sync.gz"),poolsizes=rep(50,15))
pooldata2genoselestim(pooldata=pooldata,writing.dir=tempdir())

poppair_idx poppair_idx

Description

Compute the index of the pairwise comparison from the idx of each pop

Arguments

idx_pop1 Integer giving the (0-indexed) index of the first pop

idx_pop2 Integer giving the (0-indexed) index of the second pop

nidx Integer giving the total number of indexes (i.e., number of pops)

Details

If idx_pop2 < idx_pop1, indexes are reversed

Value

Return the (0-indexed) index for the row associated to the pairwise comparison in the ordered flat
list of all (npop*(npop-1))/2 pairwise stats

Examples

#

popsync2pooldata 69

popsync2pooldata Convert Popoolation Sync files into a pooldata object

Description

Convert Popoolation Sync files into a pooldata object

Usage

popsync2pooldata(
sync.file = "",
poolsizes = NA,
poolnames = NA,
min.rc = 1,
min.cov.per.pool = -1,
max.cov.per.pool = 1e+06,
min.maf = 0.01,
noindel = TRUE,
nlines.per.readblock = 1e+06,
nthreads = 1

)

Arguments

sync.file The name (or a path) of the Popoolation sync file (might be in compressed for-
mat)

poolsizes A numeric vector with haploid pool sizes

poolnames A character vector with the names of pool

min.rc Minimal allowed read count per base. Bases covered by less than min.rc reads
are discarded and considered as sequencing error. For instance, if nucleotides A,
C, G and T are covered by respectively 100, 15, 0 and 1 over all the pools, setting
min.rc to 0 will lead to discard the position (the polymorphism being considered
as tri-allelic), while setting min.rc to 1 (or 2, 3..14) will make the position be
considered as a SNP with two alleles A and C (the only read for allele T being
disregarded).

min.cov.per.pool

Minimal allowed read count (per pool). If at least one pool is not covered by at
least min.cov.perpool reads, the position is discarded

max.cov.per.pool

Maximal allowed read count (per pool). If at least one pool is covered by more
than min.cov.perpool reads, the position is discarded

min.maf Minimal allowed Minor Allele Frequency (computed from the ratio overal read
counts for the reference allele over the read coverage)

noindel If TRUE, positions with at least one indel count are discarded

70 randomallele.pca

nlines.per.readblock

Number of Lines read simultaneously. Should be adapted to the available RAM.

nthreads Number of available threads for parallelization of some part of the parsing (de-
fault=1, i.e., no parallelization)

Value

A pooldata object containing 7 elements:

1. "refallele.readcount": a matrix with nsnp rows and npools columns containing read counts for
the reference allele (chosen arbitrarily) in each pool

2. "readcoverage": a matrix with nsnp rows and npools columns containing read coverage in
each pool

3. "snp.info": a matrix with nsnp rows and four columns containing respectively the contig (or
chromosome) name (1st column) and position (2nd column) of the SNP; the allele taken as
reference in the refallele.readcount matrix (3rd column); and the alternative allele (4th col-
umn)

4. "poolsizes": a vector of length npools containing the haploid pool sizes

5. "poolnames": a vector of length npools containing the names of the pools

6. "nsnp": a scalar corresponding to the number of SNPs

7. "npools": a scalar corresponding to the number of pools

Examples

make.example.files(writing.dir=tempdir())
pooldata=popsync2pooldata(sync.file=paste0(tempdir(),"/ex.sync.gz"),poolsizes=rep(50,15))

randomallele.pca PCA of a pooldata or countdata object using a random allele approach

Description

PCA of a pooldata or countdata object using a random allele approach

Usage

randomallele.pca(
x,
scale = TRUE,
return.snploadings = FALSE,
plot.pcs = c(1, 2),
...

)

rooted.njtree.builder 71

Arguments

x A pooldata object containing Pool-Seq information or a countdata object con-
taining allele count information

scale If FALSE the random allele data matrix is not scaled (default=TRUE)
return.snploadings

If TRUE return the SNP loadings (may be large)

plot.pcs A vector with two-elements giving the two PCs to plot. If NULL, no plotting is
done.

... graphical parameters (see plot function)

Details

PCA is performed by singular-value decomposition (SVD) of a npop (or npools) x nsnp matrix
of a single randomly sampled allele (i.e. or read for pooldata object) for each SNP and for each
population (inspired by Skoglund and Jakobsson, 2011, https://doi.org/10.1073/pnas.1108181108).
Although this approach leads to information loss, it allows to efficiently account for unequal sample
size (and read coverages for pool-seq data) and have little impact on the resulting representation
when the number of SNPs is large. Note also that the implemented approach is similar to that
implemented in the PCA_MDS module of the software ANGSD by Korneliussen et al. (2014) (see
http://www.popgen.dk/angsd/index.php/PCA_MDS).

Value

An object of class fstats (see help(fstats) for details)

See Also

To generate pooldata object, see vcf2pooldata, popsync2pooldata,genobaypass2pooldata or
genoselestim2pooldata. To generate coundata object, see genobaypass2countdata or genotreemix2countdata.

Examples

make.example.files(writing.dir=tempdir())
pooldata<-popsync2pooldata(sync.file=paste0(tempdir(),"/ex.sync.gz"),poolsizes=rep(50,15))
res.pca<-randomallele.pca(pooldata)

rooted.njtree.builder Construct and root an Neighbor-Joining tree of presumably nonad-
mixed leaves

Description

Construct and root an Neighbor-Joining tree of presumably nonadmixed leaves

72 rooted.njtree.builder

Usage

rooted.njtree.builder(
fstats,
pop.sel,
edge.fact = 1000,
plot.nj = FALSE,
verbose = TRUE

)

Arguments

fstats Object of class fstats that contains estimates of the fstats (see compute.fstats)
pop.sel Names of the leaves (pops) used to build the nj tree (at least 3 required)
edge.fact The multiplying factor of edges length in graph representation
plot.nj If TRUE plot the Neighbor-Joining tree
verbose If TRUE extra information is printed on the terminal

Details

A Neighbor-Joining tree is first built (using nj function from the package ape) based on the F2-
distance matrix of the leaves in pop.sel which are presumably non-admixed (see the function find.tree.popset
to find such groups of scaffold populations using estimated F3 and F4 test statistics). For non-
admixed leaves, F2 are indeed expected to be additive along the resulting binary tree (see Lipson et
al., 2013). The resulting tree is then rooted using the method described in Lipson et al. (2013) which
is based on the property that the estimated heterozygosity of the root h_R equals h_R=1-Q2(A,B)
if A and B are two populations sharing R as the only common ancestor in the tree. This estimator
should then be consistent across all the possible pairs of populations A and B that are only connected
through R in the tree (i.e., that each belong to one of the two partitions of the tree defined by a root
position R). Note that 1-Q2(A,B)=(1-Q1(A))/2 + (1-Q1(B))/2 + F2(A,B)=(h_A+h_B)/2+F2(A,B)
where h_A, h_B and F2(A,B) are estimated with the function compute.fstats.

Value

A list with the following elements:

1. "n.rooted.trees": The number of possible rooted binary trees that were evaluated
2. "fitted.rooted.trees.list": a list of objects of class fitted.graph containing information on all the

possible graphs (indexed from 1 to n.rooted.trees). Each tree may be visualized or further used
using functions applied to objects of class fitted.graph (e.g., plot, add.leave)

3. best.rooted.tree The tree (object of class fitted.graph) among all the graphs within fitted.rooted.trees.list
displaying the minimal the minimal sd over estimates of h_P (see details)

4. "root.het.est.var": For a matrix of n.tree rows (same order as in the list rooted.tree) and 4
columns with i) the average estimated root heterozygosity h_R across all the pairs of popu-
lation leave that are relevant for estimation (see details); ii) the size of the range of variation
and iii) the s.d. of the estimates of h_R, and iv) the number of population pairs relevant for
estimation

5. "nj.tree.eval": If n.edges>3, gives the five worst configuration fit (by calling the compare.fitted.fstats
function) which are the same irrespective of rooting

scan_allele_info 73

See Also

see fit.graph, generate.graph.params and add.leaf.

scan_allele_info scan_allele_info

Description

Scan allele information in ALT field of a vcf

Usage

.scan_allele_info(allele_info)

Arguments

allele_info a character string vector (ALT field of the vcf)

Details

Scan allele information in ALT field of a vcf to identify the number of alleles and if there is indels

Value

Return a vector with two elements consisting i) the number of alleles (1+number of comma) and ii)
0 or 1 if an indel is detected

Examples

.scan_allele_info(c("A,C","T","AAT"))

show,countdata-method Show countdata object

Description

Show countdata object

Usage

S4 method for signature 'countdata'
show(object)

Arguments

object Object of class countdata

74 show,fstats-method

show,fitted.graph-method

Show fitted.graph object

Description

Show fitted.graph object

Usage

S4 method for signature 'fitted.graph'
show(object)

Arguments

object Object of class fitted.graph

show,fstats-method Show fstats object

Description

Show fstats object

Usage

S4 method for signature 'fstats'
show(object)

Arguments

object Object of class fstats

show,graph.params-method 75

show,graph.params-method

Show graph.params object

Description

Show graph.params object

Usage

S4 method for signature 'graph.params'
show(object)

Arguments

object Object of class graph.params

show,pairwisefst-method

Show pairwisefst object

Description

Show pairwisefst object

Usage

S4 method for signature 'pairwisefst'
show(object)

Arguments

object Object of class pairwisefst

76 sim.readcounts

show,pooldata-method Show pooldata object

Description

Show pooldata object

Usage

S4 method for signature 'pooldata'
show(object)

Arguments

object Object of class pooldata

sim.readcounts Simulate read counts from count data and return a pooldata object

Description

Simulate read counts from count data and return a pooldata object

Usage

sim.readcounts(
x,
lambda.cov = rep(50, x@npops),
overdisp = 1,
seq.eps = 0,
exp.eps = 0,
maf.thr = 0,
min.rc = 2,
genome.size = 0,
verbose = TRUE

)

Arguments

x A countdata object containing allele count information

lambda.cov Numeric vector of length npop giving the expected coverage of each pool

overdisp Numeric value giving overdispersion of coverages (see details)

seq.eps Numeric value giving the sequencing error rate

exp.eps Numeric value giving the experimental error leading to unequal contribution of
individual to the pool reads

sim.readcounts 77

maf.thr Float giving the MAF threshold for SNP filtering

min.rc Integer giving the minimal read count for an allele to be considered as true allele

genome.size Size of the genome (only considered when seq.eps>0 to simulated spurious
SNPs generated at monomorphic position)

verbose If TRUE extra information is printed on the terminal

Details

The function implements a simulation approach similar to that described in Gautier et al. (2021).
Read coverages are sampled from a distribution specified by the lambda.cov vector and the overdisp
scalar. Note that overdisp is the same for all pop sample but the expected coveragese (specified in
the lambda.cov vector) may vary across pool. If overdisp=1 (default), coverages are assumed Pois-
son distributed with mean (and variance) equal to the value specified in the lambda.cov vector. If
overdisp>1, coverages follows a Negative Binomial distribution with a mean equal to lambda and
variance equal to overdisp*lambda. Finally, if overdisp<1, no variation in coverage is introduced
and all coverages are equal to the value specified in the lambda vector although they may (slightly)
vary in the output when seq.eps>0 due to the removal of error reads. The seq.eps parameter control
sequencing error rate. Sequencing errors are modeled following Gautier et al. (2021) i.e. read
counts for the four possible bases are sampled from a multinomial distribution Multinom(c,{f*(1-
eps)+(1-f)*eps/3;f*eps/3+(1-f)*(1-eps),eps/3,eps/3}) where c is the read coverage and f the refer-
ence allele frequencies (obtained from the count data). When seq.eps>0, spurious SNPs may be
generated at monomorphic positions (the number of which being equal to the size of the genome,
provided with the genome.size argument, minus the number of SNPs in the countdata object). These
spurious SNPs are simulated using the same error model (Multinom(c,{1-eps,eps/3,eps/3,eps/3}).
Only bi-allelic SNPs passing filtering conditions specified by min.rc (which controls the minimal
read count for an allele to be deemed as true, i.e. if more than two alleles have >= min.rc counts then
the SNP is excluded because non-bi-allelic) and maf.thr (threshold on the major allele frequency
computed over all read counts) are included in the output. Experimental error exp.eps control the
contribution of individual (assumed diploid) to the pools following the model described in Gautier
et al. (2013). The parameter exp.eps corresponds to the coefficient of variation of the individual
contributions. For example, in a pool of 10 individuals and a Poisson distributed coverage of mean
100, exp.eps=0.5 correspond to a situation where the 5 most contributing individuals contribute
>2 times reads than the others. When exp.eps tends toward 0, all individuals contribute equally
to the pool and there is no experimental error. Note that the number of (diploid) individuals for each
SNP and pop. sample is deduced from the input total count (it may thus differ over SNP when the
total counts are not the same).

Value

A pooldata object containing simulated read counts

See Also

To generate coundata object, see genobaypass2countdata or genotreemix2countdata.

Examples

#not run

78 simureads_mono

simureads_mono simureads_mono

Description

Simulate read counts for monomorphic position when there is sequencing error

Usage

.simureads_mono(npos, npop, lambda, overdisp, min_rc, min_maf, eps)

Arguments

npos Integer giving the number of positions (close to genome size)

npop Integer giving the number of population samples

lambda Numeric Vector of length npop giving the expected coverage of each pool

overdisp Numeric value giving overdispersion of coverages and their distribution (see
details)

min_rc Integer giving the minimal read count for an allele to be considered as true allele

min_maf Float giving the MAF threshold for SNP filtering

eps Numeric value giving the sequencing error

Details

The function implements a simulation approach similar to that described in Gautier et al. (2021).
Read coverages are sampled from a distribution specified by the lambda and overdisp vectors. Note
that overdisp is the same for all pop sample but lambda (expected coverages) may vary across
pool. If overdisp=1 (default in the R function), coverages are assumed Poisson distributed and
the mean and variance of the coverages for the pool are both equal to the value specified in the
lambda vector. If overdisp>1, coverages follows a Negative Binomial distribution with a mean
equal the lamda but a variance equal to overdisp*lambda. Finally, if overdisp<1, no variation in
coverage is introduced and all coverages are equal to the value specified in the lambda vector al-
though they may (slightly) vary in the output when eps>0 due to the removal of error reads. The
eps parameter control sequencing error rate. Sequencing errors are modeled following Gautier et
al. (2021) i.e. read counts for the four possible bases are sampled from a multinomial distribution
Multinom(c,{1-eps;eps/3,eps/3,eps/3}) where c is the read coverage. Only bi-allelic SNPs (after
considering min_rc) satisfying with MAF>min_maf are included in the output.

Value

Return an Integer matrix with nsnp rows and 2*npop columns (1:npop=ref allele readcount; (npop+1):2*npop=coverage)

Examples

#

simureads_poly 79

simureads_poly simureads_poly

Description

Simulate read counts from count data

Usage

.simureads_poly(
y_count,
n_count,
lambda,
overdisp,
min_rc,
min_maf,
eps,
eps_exp

)

Arguments

y_count Integer Matrix with nsnp rows and npop columns giving allele counts at the
reference allele

n_count Integer Matrix with nsnp rows and npop columns giving total counts

lambda Numeric Vector of length npop giving the expected coverage of each pool

overdisp Numeric value giving overdispersion of coverages and their distribution (see
details)

min_rc Integer giving the minimal read count for an allele to be considered as true allele

min_maf Float giving the MAF threshold for SNP filtering

eps Numeric value giving the sequencing error

eps_exp Numeric value giving the experimental error leading to unequal contribution of
individual to the pool reads

Details

The function implements a simulation approach similar to that described in Gautier et al. (2021).
Read coverages are sampled from a distribution specified by the lambda and overdisp vectors. Note
that overdisp is the same for all pop sample but lambda (expected coverages) may vary across pool.
If overdisp=1 (default in the R function), coverages are assumed Poisson distributed and the mean
and variance of the coverages for the pool are both equal to the value specified in the lambda vector.
If overdisp>1, coverages follows a Negative Binomial distribution with a mean equal the lamda but
a variance equal to overdisp*lambda. Finally, if overdisp<1, no variation in coverage is introduced
and all coverages are equal to the value specified in the lambda vector although they may (slightly)

80 sliding.windows.fstat

vary in the output when eps>0 due to the removal of error reads. The eps parameter control se-
quencing error rate. Sequencing errors are modeled following Gautier et al. (2021) i.e. read counts
for the four possible bases are sampled from a multinomial distribution Multinom(c,{f*(1-eps)+(1-
f)*eps/3;f*eps/3+(1-f)*(1-eps),eps/3,eps/3}) where c is the read coverage and f the reference allele
frequencies (obtained from the count data). Experimental error eps_exp control the contribution of
individual (assumed diploid) to the pools following the model described in Gautier et al. (2013).
The parameter eps_exp corresponds to the coefficient of variation of the individual contributions
When eps_exp tends toward 0, all individuals contribute equally to the pool and there is no ex-
perimental error. For example, with 10 individuals, eps_exp=0.5 correspond to a situation where
5 individuals contribute 2.8x more reads than the five others. Note that the number of (diploid)
individuals for each SNP and pop. sample is deduced from the input total count (it may thus differ
over SNP when the total counts are not the same).

Value

Return an Integer matrix with nsnp rows and 2*npop columns (1:npop=ref allele readcount; (npop+1):2*npop=coverage)

Examples

#

sliding.windows.fstat Compute sliding window estimates of F-statistics or ratio of F-
statistics over the genome

Description

Compute sliding window estimates of F-statistics or ratio of F-statistics over the genome

Usage

sliding.windows.fstat(
x,
num.pop.idx = NULL,
den.pop.idx = NULL,
num.stat = NULL,
den.stat = NULL,
window.def = c("nsnp", "bp")[1],
sliding.window.size = NULL,
window.overlap.fact = 0.5,
bp.start.first.snp = TRUE,
verbose = TRUE

)

sliding.windows.fstat 81

Arguments

x A pooldata object containing Pool-Seq information or a countdata object con-
taining allele count information

num.pop.idx A vector of length 1 to 4 (depending on num.stat) giving the index of the pop-
ulations. If num.stat="het", num.pop.idx must be of length 1: num.pop.idx=i
specifies the ith pop in x. If num.stat="div", "F2" or "Fst", num.pop.idx must be
of length 2: num.pop.idx=c(i,j) specifies the pairs of populations with indexes
i and j in x. If num.stat="F3" or "F3star", num.pop.idx must be of length 3
(num.pop.idx=c(i,j,k) specifies the F3(pop_i;pop_j,pop_k) populations triplet).
Finally, if num.stat="F4" or "Dstat", num.pop.idx must be of length 4: num.pop.idx=c(i,j,k)
specifies the F4(pop_i,pop_j;pop_k,pop_l) populations quadruplet i.e. the com-
puted (numerator) statistic computed is (F2(pop_i,pop_k)-F2(pop_i,pop_l)-F2(pop_j,pop_k)+F2(pop_j,pop_l))/2.

den.pop.idx A vector of length 1 to 4 (see num.pop.idx description) giving the index of the
populations specifying the F-statistic. If NULL, the computed statistic is the one
specified by num.pop.idx.

num.stat the name of the (numerator) stat which must be "het" (1-Q1), "div" (1-Q2), "F2",
"Fst", "F3", "F3star", "F4" or "Dstat"

den.stat the name of the (numerator) stat which must be "het" (1-Q1), "div" (1-Q2), "F2",
"Fst", "F3", "F3star", "F4" or "Dstat"

window.def Either "nsnp" or "bp" to define windows by either a number of SNPs or a size in
bp, respectively

sliding.window.size

A numeric value giving the number of SNPs or the size (in bp) of the windows
depending window.def

window.overlap.fact

A numeric value (between 0 and 1) giving the percentage of overlap between
consecutive windows (default=0.5)

bp.start.first.snp

When window.def="bp", if TRUE (default) the windowing start at the first SNP
position, if FALSE the windowing start at position 1

verbose If TRUE extra information is printed on the terminal

Details

Compute sliding window estimates of F-statistics or ratio of F-statistics over the genome.

Value

A data frame with 7 columns with for each window in a row their i) chromosome/contig of origin;
ii) start and iii) end position; iv) the mid-position of each window; v) the cumulated mid-position
of each window (to facilitate further plotting); vi) the number of SNPs included in the computation
of window value; and vii) the estimated value of the statistic

See Also

To generate pooldata object, see vcf2pooldata, popsync2pooldata,genobaypass2pooldata or
genoselestim2pooldata. To generate coundata object, see genobaypass2countdata or genotreemix2countdata.

82 vcf2pooldata

Examples

make.example.files(writing.dir=tempdir())
pooldata=popsync2pooldata(sync.file=paste0(tempdir(),"/ex.sync.gz"),poolsizes=rep(50,15))

vcf2pooldata Convert a VCF file into a pooldata object.

Description

Convert VCF files into a pooldata object.

Usage

vcf2pooldata(
vcf.file = "",
poolsizes = NA,
poolnames = NA,
min.cov.per.pool = -1,
min.rc = 1,
max.cov.per.pool = 1e+06,
min.maf = -1,
remove.indels = FALSE,
min.dist.from.indels = 0,
nlines.per.readblock = 1e+06,
verbose = TRUE

)

Arguments

vcf.file The name (or a path) of the Popoolation sync file (might be in compressed for-
mat)

poolsizes A numeric vector with haploid pool sizes

poolnames A character vector with the names of pool
min.cov.per.pool

Minimal allowed read count (per pool). If at least one pool is not covered by at
least min.cov.perpool reads, the position is discarded

min.rc Minimal allowed read count per base (options silenced for VarScan vcf). Bases
covered by less than min.rc reads are discarded and considered as sequencing
error. For instance, if nucleotides A, C, G and T are covered by respectively
100, 15, 0 and 1 over all the pools, setting min.rc to 0 will lead to discard the
position (the polymorphism being considered as tri-allelic), while setting min.rc
to 1 (or 2, 3..14) will make the position be considered as a SNP with two alleles
A and C (the only read for allele T being disregarded). For VarScan vcf, markers
with more than one alternative allele are discarded because the VarScan AD field
only contains one alternate read count.

vcf2pooldata 83

max.cov.per.pool

Maximal allowed read count (per pool). If at least one pool is covered by more
than min.cov.perpool reads, the position is discarded

min.maf Minimal allowed Minor Allele Frequency (computed from the ratio overall read
counts for the reference allele over the read coverage)

remove.indels Remove indels identified using the number of characters of the alleles in the REF
or ALT fields (i.e., if at least one allele is more than 1 character, the position is
discarded)

min.dist.from.indels

Remove SNPs within min.dist.from.indels from an indel i.e. SNP with position
p verifying (indel.pos-min.dist)<=p<=(indel.pos+min.dist+l.indels-1) where l.indel=length
of the ref. indel allele. If min.dist.from.indels>0, INDELS are also removed
(i.e., remove.indels is set to TRUE).

nlines.per.readblock

Number of Lines read simultaneously. Should be adapted to the available RAM.

verbose If TRUE extra information is printed on the terminal

Details

Genotype format in the vcf file for each pool is assumed to contain either i) an AD field con-
taining allele counts separated by a comma (as produced by popular software such as GATK or
samtools/bcftools) or ii) both a RD (reference allele count) and a AD (alternate allele count) as
obtained with the VarScan mpileup2snp program (when run with the –output-vcf option). The un-
derlying format is automatically detected by the function. For VarScan generated vcf, it should be
noticed that SNPs with more than one alternate allele are discarded (because only a single count
is then reported in the AD fields) making the min.rc unavailable. The VarScan –min-reads2 option
might replace to some extent this functionality although SNP where the two major alleles in the
Pool-Seq data are different from the reference allele (e.g., expected to be more frequent when using
a distantly related reference genome for mapping) will be disregarded.

Value

A pooldata object containing 7 elements:

1. "refallele.readcount": a matrix with nsnp rows and npools columns containing read counts for
the reference allele (chosen arbitrarily) in each pool

2. "readcoverage": a matrix with nsnp rows and npools columns containing read coverage in
each pool

3. "snp.info": a matrix with nsnp rows and four columns containing respectively the contig (or
chromosome) name (1st column) and position (2nd column) of the SNP; the allele taken as
reference in the refallele.readcount matrix (3rd column); and the alternative allele (4th col-
umn)

4. "poolsizes": a vector of length npools containing the haploid pool sizes

5. "poolnames": a vector of length npools containing the names of the pools

6. "nsnp": a scalar corresponding to the number of SNPs

7. "npools": a scalar corresponding to the number of pools

84 vcf2pooldata

Examples

make.example.files(writing.dir=tempdir())
pooldata=vcf2pooldata(vcf.file=paste0(tempdir(),"/ex.vcf.gz"),poolsizes=rep(50,15))

Index

.block_sum (block_sum), 6

.block_sum2 (block_sum2), 6

.compute_F3fromF2 (compute_F3fromF2), 15

.compute_F3fromF2samples
(compute_F3fromF2samples), 15

.compute_F4DfromF2samples
(compute_F4DfromF2samples), 16

.compute_F4fromF2 (compute_F4fromF2), 17

.compute_F4fromF2samples
(compute_F4fromF2samples), 18

.compute_H1 (compute_H1), 18

.compute_Q2 (compute_Q2), 19

.compute_QmatfromF2samples
(compute_QmatfromF2samples), 20

.compute_blockDdenom
(compute_blockDdenom), 14

.compute_snpFstAov (compute_snpFstAov),
21

.compute_snpHierFstAov
(compute_snpHierFstAov), 21

.compute_snpQ1 (compute_snpQ1), 22

.compute_snpQ1onepop
(compute_snpQ1onepop), 23

.compute_snpQ1rw (compute_snpQ1rw), 24

.compute_snpQ2 (compute_snpQ2), 25

.compute_snpQ2onepair
(compute_snpQ2onepair), 25

.compute_snpQ2rw (compute_snpQ2rw), 26

.extract_allele_names
(extract_allele_names), 30

.extract_nonvscan_counts
(extract_nonvscan_counts), 31

.extract_vscan_counts
(extract_vscan_counts), 32

.find_indelneighbor_idx
(find_indelneighbor_idx), 34

.generateF3names (generateF3names), 42

.generateF4names (generateF4names), 42

.scan_allele_info (scan_allele_info), 73

.simureads_mono (simureads_mono), 78

.simureads_poly (simureads_poly), 79

add.leaf, 4, 50, 73

bjack_cov, 5
block_sum, 6
block_sum2, 6

compare.fitted.fstats, 7, 37
compute.f4ratio, 8
compute.fstats, 7, 9, 34, 40, 62
compute.pairwiseFST, 9, 10, 11, 39, 59, 62
compute_blockDdenom, 14
compute_F3fromF2, 15
compute_F3fromF2samples, 15
compute_F4DfromF2samples, 16
compute_F4fromF2, 17
compute_F4fromF2samples, 18
compute_H1, 18
compute_Q2, 19
compute_QmatfromF2samples, 20
compute_snpFstAov, 21
compute_snpHierFstAov, 21
compute_snpQ1, 22
compute_snpQ1onepop, 23
compute_snpQ1rw, 24
compute_snpQ2, 25
compute_snpQ2onepair, 25
compute_snpQ2rw, 26
computeFST, 12
countdata (countdata-class), 27
countdata-class, 27
countdata.subset, 27
countdata2genobaypass, 29

extract_allele_names, 30
extract_nonvscan_counts, 31
extract_vscan_counts, 32

find.tree.popset, 33

85

86 INDEX

find_indelneighbor_idx, 34
fit.graph, 5, 7, 35, 38, 40, 50, 51, 73
fitted.graph (fitted.graph-class), 37
fitted.graph-class, 37
fstats (fstats-class), 38
fstats-class, 38

gen.fitted.graph (fitted.graph-class),
37

generate.graph.params, 5, 37, 39, 50–53,
73

generate.jackknife.blocks, 41
generateF3names, 42
generateF4names, 42
genobaypass2countdata, 8, 10, 12, 14, 27,

29, 30, 43, 71, 77, 81
genobaypass2pooldata, 8, 10, 12, 14, 44, 63,

71, 81
genoselestim2pooldata, 8, 10, 12, 14, 46,

63, 71, 81
genotreemix2countdata, 8, 10, 12, 14, 27,

29, 30, 47, 71, 77, 81
graph.builder, 49
graph.params (graph.params-class), 50
graph.params-class, 50
graph.params2qpGraphFiles, 40, 51, 52
graph.params2symbolic.fstats, 40, 51, 53

heatmap,pairwisefst-method, 54

is.countdata, 56
is.fitted.graph, 56
is.fstats, 56
is.graph.params, 57
is.pairwisefst, 57
is.pooldata, 57

make.example.files, 58

pairwisefst (pairwisefst-class), 58
pairwisefst-class, 58
plot, 71
plot,fitted.graph-method, 59
plot,fstats-method, 59
plot,graph.params-method, 60
plot,pairwisefst-method, 60
plot_fstats, 59, 60, 61
pooldata (pooldata-class), 62
pooldata-class, 62

pooldata.subset, 63, 65
pooldata2diyabc, 65
pooldata2genobaypass, 66
pooldata2genoselestim, 67
poppair_idx, 68
popsync2pooldata, 8, 10, 12, 14, 63–68, 69,

71, 81

randomallele.pca, 70
rooted.njtree.builder, 71

scan_allele_info, 73
show,countdata-method, 73
show,fitted.graph-method, 74
show,fstats-method, 74
show,graph.params-method, 75
show,pairwisefst-method, 75
show,pooldata-method, 76
sim.readcounts, 76
simureads_mono, 78
simureads_poly, 79
sliding.windows.fstat, 80

vcf2pooldata, 8, 10, 12, 14, 31, 34, 63–68,
71, 81, 82

	add.leaf
	bjack_cov
	block_sum
	block_sum2
	compare.fitted.fstats
	compute.f4ratio
	compute.fstats
	compute.pairwiseFST
	computeFST
	compute_blockDdenom
	compute_F3fromF2
	compute_F3fromF2samples
	compute_F4DfromF2samples
	compute_F4fromF2
	compute_F4fromF2samples
	compute_H1
	compute_Q2
	compute_QmatfromF2samples
	compute_snpFstAov
	compute_snpHierFstAov
	compute_snpQ1
	compute_snpQ1onepop
	compute_snpQ1rw
	compute_snpQ2
	compute_snpQ2onepair
	compute_snpQ2rw
	countdata-class
	countdata.subset
	countdata2genobaypass
	extract_allele_names
	extract_nonvscan_counts
	extract_vscan_counts
	find.tree.popset
	find_indelneighbor_idx
	fit.graph
	fitted.graph-class
	fstats-class
	generate.graph.params
	generate.jackknife.blocks
	generateF3names
	generateF4names
	genobaypass2countdata
	genobaypass2pooldata
	genoselestim2pooldata
	genotreemix2countdata
	graph.builder
	graph.params-class
	graph.params2qpGraphFiles
	graph.params2symbolic.fstats
	heatmap,pairwisefst-method
	is.countdata
	is.fitted.graph
	is.fstats
	is.graph.params
	is.pairwisefst
	is.pooldata
	make.example.files
	pairwisefst-class
	plot,fitted.graph-method
	plot,fstats-method
	plot,graph.params-method
	plot,pairwisefst-method
	plot_fstats
	pooldata-class
	pooldata.subset
	pooldata2diyabc
	pooldata2genobaypass
	pooldata2genoselestim
	poppair_idx
	popsync2pooldata
	randomallele.pca
	rooted.njtree.builder
	scan_allele_info
	show,countdata-method
	show,fitted.graph-method
	show,fstats-method
	show,graph.params-method
	show,pairwisefst-method
	show,pooldata-method
	sim.readcounts
	simureads_mono
	simureads_poly
	sliding.windows.fstat
	vcf2pooldata
	Index

