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This vignette describes how the R package poolfstat can be used to compute various F-, f- and D-statistics
(estimation of FST , hierarchical F–statistics, Patterson’s F2, F3, F ⋆

3 , F4 and D parameters1) in population
genomics studies from allele count or Pool-Seq read count data. The package also includes functions to fit
and construct admixture graphs to infer the demographic history of populations based on the estimated
f -statistics along with their visualization. This document is intended as a hands-on tutorial, providing users
with an overview of the package’s functions with working examples analyzing the Pool-Seq and allele count
simulated data sets described in section 1 and publicly available for download from the Zenodo repository2.
Details and (numerous) references for underlying methods are available in Gautier et al. (2022).
The poolfstat package is currently available for most platforms (Linux, MS Windows and MacOSX) from the
CRAN repository (http://cran.r-project.org/) and can be installed using a standard procedure. Once the
package has been successfully installed on your system, it can be loaded by typing:
library(poolfstat)

1 Preamble: presentation of the working example data set
Genetic data were simulated using the coalescent simulator msprime (Kelleher et al. 2016) for a total of
150 diploid individuals belonging to 6 different populations (n=25 per population) historically related by
the admixture graph shown in Figure 1. Each genome consisted of 20 independent chromosomes of L = 100
Mb assuming a scaled chromosome-wide recombination rate of ρ = 4LNer = 4, 0003. Similarly, the scaled
chromosome-wide mutation θ = 4LNeµ = 4, 0004. More specifically, the following msprime command was
used:

mspms 300 20 -t 4000 -I 6 50 50 50 50 50 50 0 -es 0.0125 6 0.25 -ej 0.0125 6 2 -ej 0.0125
7 3 -ej 0.025 2 1 -ej 0.05 3 1 -ej 0.075 5 4 -ej 0.1 4 1 -r 4000 100000000 -p 8

The simulation output was further parsed to remove all variants with a Minor Allele Frequency (MAF)5

less than 1% resulting in a total of 472,410 remaining SNPs (from 23,246 to 24,237 per chromosome) with
positional information stored in the file snp6p.snpinfo.gz2. From the resulting genotyping data, allele counts
for both the ancestral and derived alleles (taken as reference) were easily obtained by simple counting6. A
Pool-Seq data set without sequencing error was subsequently simulated from the allele count data as described
in Gautier et al. (2022). Briefly, for each SNP i in each population j, a read count rij for the reference
allele we sampled from a Binomial distribution following rij ∼ Bin

(
yij

nj
; cij

)
where yij is the derived allele

count for SNP i in population j, nj is the (haploid) sample size of population j (here nj = 50 for all j)
and cij is the total read coverage at SNP i position7. Varying total read coverage across pools and SNPs
was simulated by sampling the cij ’s from a Poisson distribution with mean λ = 30, i.e., assuming 30X read
coverage for the different pools8. Two files representative of “real-life” data format were finally created to
store the simulated allele count and read count data:

• a file named sim6p.genotreemix.gz2 containing allele count data for each SNP and population in the
same format as the one used in the population program Treemix (Pickrell and Pritchard 2012)

• a file named sim6p.poolseq30X.vcf.gz2 containing read count data for each SNP and population in a vcf
format similar to the one obtained with the software VarScan (Koboldt et al. 2012)

1Following Patterson et al. (2012), we use F to refer to the parameter and f to the statistic estimated from the data
2See http://doi.org/10.5281/zenodo.4709728
3For instance, ρ = 4, 000 if the recombination rate per-base and per-generation is r = 10−8 (i.e., the cM per Mb ratio is equal

to 1) in a population of constant diploid effective size Ne = 103
4For example, a nucleotide diversity of θ = 4, 000 is expected at mutation-drift equilibrium in a population of constant diploid

effective size Ne = 103 if the per-base mutation rate is µ = 10−8
5MAF was estimated over all 300 haploid individuals
6Since the simulated data are haploid, this implicitly assumes Hardy-Weinberg equilibrium for the different populations
7Note that the read count for the alternate allele is simply cij − rij
8Such coverage is actually at the lower limit of what is usually recommended for Pool-Seq experiment
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Figure 1: Simulated scenario relating the 6 populations of the working example. Names of the internal node
populations for which no data is available are written in grey.

2 Reading and manipulating input data
The poolfstat package offers several tools for parsing allele count or Pool-Seq read count input data stored
in various standard formats. It is important to note that distinguishing standard allele count data9

from Pool-Seq read count data is crucial to rely on the appropriate f -statistics estimator (Hivert et
al. 2018; Gautier et al. 2022). Therefore, in the poolfstat package, there are two different S4 object classes
defined for storing data:

• the countdata S4 class for storing allele count data. The documentation page outlines the various
elements (slots) of the class and is accessible through the help function (or ? operator) as follows:

help(countdata)

• the pooldata S4 class for storing read count data (e.g., PoolSeq data). The documentation page outlines
the various elements (slots) of the class and is accessible through the help function (or ? operator) as
follows:

help(pooldata)

These classes characterize the type and origin of the data, and are automatically detected by the computeFST
(section 3.1.1), compute.pairwiseFST (section 3.2) and compute.fstats (section 4) functions, implementing
different unbiased estimators, which ensure the appropriate estimation procedure is utilized.

9i.e., obtained from individual genotyping data
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2.1 Creating a countdata object for allele count data
A countdata object can be created from allele count data stored in two different input file formats:

• The input file format needed for the well-known Treemix program (Pickrell and Pritchard 2012)
using the genotreemix2countdata function

• The input file format required by BayPass program (Gautier 2015) for allele count data using the
function genobaypass2countdata function

The following example demonstrates how to create a countdata object (here named sim6p.allelecount) from
the sim6p.genotreemix.gz example file. This file contains the allele count data (in Treemix file format) for the
simulated example data outlined in section 1:
sim6p.allelecount<-genotreemix2countdata(genotreemix.file = "sim6p.genotreemix.gz")

Information on marker position (chromosome or scaffold of origin of the markers and position on the chromo-
some) can be provided using the snp.pos argument in the genotreemix2countdata and genobaypass2countdata
functions. For example, to incorporate the mapping information stored in the snp6p.snpinfo.gz example file
(section 1), use the following commands10:
positions<-read.table("sim6p.snpinfo.gz",header=TRUE,row.names=1,stringsAsFactors = FALSE)
sim6p.allelecount<-genotreemix2countdata(genotreemix.file = "sim6p.genotreemix.gz",

snp.pos=positions,verbose=FALSE)
sim6p.allelecount #display a summary of the object

* * * Countdata Object * * *
* Number of SNPs = 472410
* Number of Pops = 6
* Pop Names :
P1; P2; P3; P4; P5; P6
* * * * * * * * * * * * * *

Notice
For operations that necessitate marker position informationa, markers are consistently presumed
to be ordered in the genome by their relative position in the input files. If no map information is
provided, a default position is assigned to all SNPs assuming they all map to the same chromosome.
In such instances, some windows or blocks may extend over two consecutive contigsb.

ae.g., block-jackknife estimation of standard errors (Appendix A.1); or estimation of multi-locus statistics on sliding
windows throughout the genome (e.g., section 3.1.1)

bIf the reference assembly used to order the markers is not too fragmented, the block-jackknife estimates of standard
errors may only be slightly affected since the blocks are defined by a number of consecutive markers rather than a
physical length

Additional arguments may permit filtering the data for low marker polymorphism levels (min.maf )
or genotyping call rate (min.indgeno.per.pop). Further information is available in the documentation
pages of the genotreemix2countdata and genobaypass2countdata functions accessible with the commands
?genotreemix2countdata and ?genobaypasstreemix2countdata.

2.2 Creating a pooldata object for Pool-Seq read count data
A pooldata object can be created from Pool-Seq read count data stored in any of the four formats listed
below:

• vcf file generated by most of the SNP calling software commonly used to analyze Pool-Seq data including
VarScan (Koboldt et al. 2012), bcftools/SAMtools (Li et al. 2009), GATK (McKenna et al. 2010) or

10If the number of markers in the snp.pos object does not match the allele count file or the matrix given is not in 2 columns,
default values for marker positions are provided and a warning message is printed in the console
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FreeBayes (Garrison and Marth 2012) using the vcf2pooldata function11

• rsync files generated by the PoPoolation software (Kofler et al. 2011) using the popsync2pooldata
function

• The two input files (pool read count and pool haploid sizes) required by the program BayPass (Gautier
2015) to analyze Pool-Seq data using the genobaypass2pooldata function

• The input file required by the SelEstim program (Vitalis et al. 2014) to analyze Pool-Seq data using
the genoselestim2pooldata function

The following example shows how to create a pooldata object for the simulated Pool-Seq data present in the
sim6p.poolseq30X.vcf.gz vcf file (section 1).
sim6p.readcount30X <-vcf2pooldata(vcf.file="sim6p.poolseq30X.vcf.gz",poolsizes=rep(50,6))

Reading Header lines
VarScan like format detected for allele count data:
the AD field contains allele depth

for the alternate allele and RD field for the reference allele
(N.B., positions with more than one alternate allele will be ignored)
Parsing allele counts
472410 lines processed in 0 h 0 m 2 s : 472410 SNPs found
Data consists of 472410 SNPs for 6 Pools
sim6p.readcount30X #display a summary of the resulting pooldata object

* * * PoolData Object * * *
* Number of SNPs = 472410
* Number of Pools = 6
* Pool Names :
Pool1; Pool2; Pool3; Pool4; Pool5; Pool6
* * * * * * * * * * * * * *

Additional arguments may allow filtering the data according to the read coverage of the pool such as
min.maf, min.rc, min.cov.per.pool or max.cov.per.pool. Additional details are available in the documentation
pages of ecah function, which can be accessed though the commands ?vcf2pooldata, ?popsync2pooldata,
?genobaypass2pooldata and ?genoselestim2pooldata respectively.

2.3 Manipulating countdata and pooldata objects
The pooldata.subset function (respectively countdata.subset) enable the retrieval of particular portions of
the original pooldata (resp. countdata) object (e.g., some SNPs and/or population samples) according to
various criteria (see ?pooldata.subset or ?countdata.subset for more details). In the example below, a
pooldata object is generated from the sim6p.readcount object previously created, which only includes data for
populations P2, P3 and P6 for SNP with a MAF>0.05:
sim6p.readcount30X.subset<-pooldata.subset(sim6p.readcount30X,pool.index=c(2,3,6),

min.maf=0.05,verbose=FALSE)
sim6p.readcount30X.subset #display a summary of the resulting pooldata object

* * * PoolData Object * * *
* Number of SNPs = 241280
* Number of Pools = 3
* Pool Names :
Pool2; Pool3; Pool6
* * * * * * * * * * * * * *

Note that indexes of the retained SNPs from the original data set can be obtained by setting the return.snp.idx
11The vcf file’s format is determined automatically from the genotype format field that includes i) both an AD and RD fields

for VarScan vcf files; or ii) only an AD field (with comma-separated read counts for the different allele) other than VarScan vcf.
Parsing of vcf files has been substantially improved since poolfstat version 1.2 with computationally intensive text manipulation
now implemented in C++ routines inspired by those of the vcfR package (Knaus and Grünwald 2017)
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argument to TRUE within the pooldata.subset or countdata.subset functions. If this is done, the rows of the
matrix stored in the snpinfo slot of the pooldata or countdata output objects are named “rs”snp.idx (where
snp.idx is the SNP index for the original object) making it easy to obtain the indexes of the selected SNPs as
demonstrated below:
sim6p.readcount30X.subset<-pooldata.subset(sim6p.readcount30X,pool.index=c(2,3,6),

min.maf=0.05,return.snp.idx=TRUE,verbose=FALSE)
selected.snps.idx <- as.numeric(sub("rs","",rownames(sim6p.readcount30X.subset@snp.info)))
head(selected.snps.idx)

[1] 1 3 4 5 6 8

For pooldata objects, the pooldata2genobaypass, pooldata2selestim and pooldata2diyabc functions can be
used to generate input files for the aforementioned BayPass and SelEstim programs and DIYABC software
(Collin et al. 2021). These functions also allow for the creation of sub-samples from the original data (see
?pooldata2genobaypass and ?pooldata2selestim for addional information).

3 Estimating FST

The FST parameter is commonly used to quantify the level of structuring of genetic diversity among
populations (see e.g. Hivert et al. 2018 and references therein). It may be defined as:

FST ≡ Q1 − Q2
1 − Q2

where Q1 is the Identity In State (IIS) probability for genes sampled within populations (or pools), and Q2 is
the IIS probability for genes sampled between populations (or pools).

The computeFST and compute.pairwiseFST (for all pairs of populations) functions implement two distinct
FST estimators relying on:

• a decomposition of the total variance of allele or read count frequencies in an analysis-of-variance
framework (Weir and Cockerham 1984) which is the default procedure of the functions (as specified
by the argument method=“Anova”). The implemented estimators are derived in Weir (1996) (eq. 5.2)
(see also Akey et al. 2002) for allele count data (i.e., countdata objects, see 2.1); and in Hivert et al.
(2018) (eq. 9) for (Pool-Seq) read count data (i.e., pooldata objects, see 2.2).

• unbiased estimators Q̂1 and Q̂2 of the IIS probabilities Q1 and Q2 (as specified by the method=“Identity”
argument). For allele count data (i.e., countdata objects, see 2.1) this estimator actually correspond to
the one used by Karlsson et al. (2007). For Pool-Seq read count data (i.e., pooldata objects, see 2.2),
equations A39 and A43 in Hivert et al. (2018) Supplementary Materials describe the estimators for
Q̂1 of the Q̂2 respectively. By default, when using method=Identity, the overall Q̂1 and pairwise Q̂2 are
computed as simple averages of all population-specific Q̂1 and pairwise population Q̂2, respectively. For
completion, when setting weightpid=TRUE, an alternative weighting scheme is performed, as described
in eqs. A46 and A47 of Hivert et al. (2018) for PoolSeq data, and Rousset (2007) for allele count
data.

Note that multi-locus estimates (i.e., genome-wide estimates or sliding windows estimates) are derived as the
sum of locus-specific numerators over the sum of locus-specific denominators of the different quantities (see,
e.g., Hivert et al. 2018 and references therein).

3.1 Estimating genome-wide FST across all the populations
3.1.1 The computeFST function

The computeFST function automatically uses the appropriate estimator given the input object class (either
allele count for countdata objects or Pool-Seq read count data for pooldata objects). For example with the
simulated example data, we obtain the following estimates of FST with:
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• allele count data:
sim6p.allelecount.fst<-computeFST(sim6p.allelecount)

Computation of Fst (Hivert et al., 2018)
Computing SNP-specific Q1 and Q2 (Anova estimator)
sim6p.allelecount.fst$Fst #genome-wide Fst over all populations

Estimate bjack mean bjack s.e. CI95inf CI95sup
0.132319 NA NA NA NA

• Pool-Seq read count data:
sim6p.readcount30X.fst<-computeFST(sim6p.readcount30X,verbose=FALSE)
sim6p.readcount30X.fst$Fst #genome-wide Fst over all populations

Estimate bjack mean bjack s.e. CI95inf CI95sup
0.1324199 NA NA NA NA

Note that the computeFST function defaults to using the Anova method, but this can be modified using the
method argument (as explained in section 3).

3.1.2 Block-Jackknife estimation of F̂ST standard-error and confidence intervals:

Standard error of the FST estimates can be estimated using a block-jackknife sampling approach (see Appendix
A.1). To specify the number of consecutive SNPs defining a block, use the argument nsnp.per.bjack.block (the
default value is nsnp.per.bjack.block=0, which means that no block-jackknife is carried out). The resulting
genome-wide FST estimated as the mean over block-jackknife samples, the block-jackknife standard error and
the 95% confidence interval (i.e., block-jackknife mean ±1.96 s.e.) are then given in the Fst element of the
output list. An example is illustrated below for:

• allele count data:
sim6p.allelecount.fst<-computeFST(sim6p.allelecount,nsnp.per.bjack.block = 1000)

Computation of Fst (Hivert et al., 2018)
Computing SNP-specific Q1 and Q2 (Anova estimator)
Starting Block-Jackknife sampling
462 Jackknife blocks identified with 462000 SNPs (out of 472410 ).
SNPs map to 20 different chrom/scaffolds

Average (min-max) Block Sizes: 4.232 ( 3.515 - 4.975 ) Mb
sim6p.allelecount.fst$Fst

Estimate bjack mean bjack s.e. CI95inf CI95sup
0.1323189779 0.1324888937 0.0007603234 0.1309986599 0.1339791276

Note that the block-jackknife mean may slightly differ from the default genome-wide estimate of FST as it is
only computed from the SNPs eligible for block-jackknife (see Appendix A.1).

• Pool-Seq read count data:
sim6p.readcount30X.fst<-computeFST(sim6p.readcount30X,nsnp.per.bjack.block = 1000,verbose=FALSE)
sim6p.readcount30X.fst$Fst

Estimate bjack mean bjack s.e. CI95inf CI95sup
0.1324199011 0.1326089168 0.0007620463 0.1311153061 0.1341025275
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3.1.3 Computing multi-locus FST to scan the genome over sliding-windows of SNPs

The sliding.window.size argument allows computing multi-locus FST for sliding windows over the different
chromosomes (or scaffolds/contigs), e.g., to carry out genome-scans for adaptive differentiation. Each sliding
window includes a number of consecutive SNPs specified by the sliding.window.size argument. This is
illustrated below for the Pool-Seq read count example data (similar results would be obtained with allele
count data):
sim6p.readcount30X.fst<-computeFST(sim6p.readcount30X,sliding.window.size=50)

Computation of Fst (Hivert et al., 2018)
Computing SNP-specific Q1 and Q2 (Anova estimator)
Start sliding-window scan
20 chromosomes scanned (with more than 50 SNPs)

Average (min-max) Window Sizes 207.4 ( 90.1 - 453.2 ) kb
plot(sim6p.readcount30X.fst$sliding.windows.fvalues$CumMidPos/1e6,

sim6p.readcount30X.fst$sliding.windows.fvalues$MultiLocusFst,
xlab="Cumulated Position (in Mb)",ylab="Muli-locus Fst",
col=as.numeric(sim6p.readcount30X.fst$sliding.windows.fvalues$Chr),pch=16)

abline(h=sim6p.readcount30X.fst$Fst,lty=2)

Figure 2: Manhattan plot of the multi-locus FST computed over sliding-windows of 50 SNPs on the Pool-
Seq example data. The dashed line indicates the estimated overall genome-wide FST . The 20 simulated
chromosomes are represented by alternate colors.

No discernible signal of adaptive differentiation, such as an excessively differentiated tower of windows, is
apparent. This was expected, as the data set was simulated under neutrality (see Figure 2).
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3.2 Estimating and visualizing pairwise-population FST

Notice
Computation of the npop × npop matrix of pairwise-population FST with the compute.pairwiseFST
function can be computationally demanding (in terms of time and memory usage), particularly when
the number of population samples in the pooldata or countdata input objects exceeds 50. In this
case, one may rather use the compute.fstats function (section 4.1.1), which is significantly faster
and more memory-efficient. The pairwise FST matrix, acquired through compute.fstats and saved
in the pairwise.fst slot within the fstats output object, can be visualized using heatmap or other
conventional clustering techniques (see section 4.1.1). Note that the FST estimation approach in
compute.fstats corresponds to the “Identity” method described above (section 3), and the function
does not provide SNP-specific estimates in the output (as opposed to compute.pairwiseFST when
output.snp.values=TRUE, see below).

3.2.1 The compute.pairwiseFST and the heatmap functions

The compute.pairwiseFST function enables estimation of genome-wide FST for each of the npop(npop−1)
2

population pairs from data stored in a countdata or pooldata object. As for the computeFST function (section
3), the compute.pairwiseFST function automatically uses the appropriate estimation procedure for the type
of input data (either allele count for countdata objects or Pool-Seq read count data for pooldata objects).
The function returns an S4 object of class pairwisefst class. The documentation page providing detailed
information about the elements (slots) of this class can be accessed with the ? operator or the following
command:
help(pairwisefst)

The pairwise-population FST may then be visualized using the generic heatmap function directly applied on
the obtained pairwisefst object as illustrated below for Pool-Seq example results (similar results are obtained
with the allele count data):
sim6p.pairwisefst<-compute.pairwiseFST(sim6p.readcount30X,verbose=FALSE)

Overall Analysis Time: 0 h 0 m 1 s
heatmap(sim6p.pairwisefst)
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Figure 3: Heatmap representing the pairwise-population FST matrix of the six populations of the 30X
Pool-Seq example data set
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The resulting heat map (Figure 3) is consistent with the simulated scenario (Figure 1). Note that the
population P3 is the closest to the admixed population P6 (leading to their early clustering in the binary
tree representation) as expected from the high contribution of the P3 ancestor (1 − α = 75%) to the admixed
ancestor of P6 and the short timing of admixture (τ = t

2Ne
= 0.0125).

3.2.2 Block-Jackknife estimation of F̂ST standard-error and visualisation of confidence intervals

As with the computeFST function, standard-error of the pairwise-population FST estimates may be estimated
using a block-jackknife sampling approach (see Appendix A.1) by specifying the number of consecutive
SNPs forming each block with the argument nsnp.per.bjack.block (by default nsnp.per.bjack.block=0, i.e.,
no block-jackknife is carried out). The resulting estimated standard-errors may directly be used to derive
confidence intervals (see above) that can also be plotted with the plot_fstats function (or directly using the
plot command that calls plot_fstats for pairwisefst objects). This is illustrated below with the allele count
example data (similar results are obtained with the Pool-Seq read count data) and applying a MAF filtering
of SNPs on each pairwise comparison (for the sake of illustration) :
sim6p.pairwisefst<-compute.pairwiseFST(sim6p.allelecount,min.maf=0.01,

nsnp.per.bjack.block = 1000,verbose=FALSE)

Overall Analysis Time: 0 h 0 m 3 s
#Estimated pairwise Fst are stored in the slot values:
#5 first estimated pairwise
head(sim6p.pairwisefst@values)

Fst Estimate Fst bjack mean Fst bjack s.e. Q2 Estimate Q2 bjack mean Q2 bjack s.e. Nsnp
P1;P2 0.04946710 0.04931981 0.0007439500 0.7369276 0.7121075 0.0006681293 301102
P1;P3 0.09478083 0.09497510 0.0011284444 0.7509383 0.7260094 0.0006276102 333075
P1;P4 0.17816331 0.17846116 0.0015637673 0.7438803 0.7221825 0.0006692343 351210
P1;P5 0.17716282 0.17708538 0.0016019588 0.7434524 0.7246795 0.0006850680 350882
P1;P6 0.07039455 0.07065709 0.0009229865 0.7572024 0.7312169 0.0006507648 337522
P2;P3 0.09543866 0.09543830 0.0011134127 0.7523652 0.7243749 0.0006443638 336438
plot(sim6p.pairwisefst)
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Figure 4: Estimated pairwise-population FST with their 95% confidence intervals for allele count example
data set

The resulting estimated pairwise-population FST displayed in Figure 4 are consistent with the simulated
scenario (Figure 1). The lowest level of differentiation is observed for the P3 and P6 population pair as
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expected from the high contribution of the P3 ancestor (1 − α = 75%) to the admixed ancestor of P6 and
the short timing of admixture (τ = t

2Ne
= 0.0125).

3.3 Hierarchical F–statistics
Computation of hierarchical F–statistics were introduced in version 2.3.0 of the package as described in
Gautier et al. (2024). Given a user-defined grouping of population samples according to a one-level
hierarchy, the model aims at partitioning the total genetic differentiation, denoted F

(h)
ST (to distinguish it from

the standard FST described above, which does not involving any population grouping) into a within-group
(FSG) and between-group (FGT ) component. More specifically, considering the three IIS probabilities of pairs
of genes sampled within the same population (Q1), or each in a different pair of populations belonging to
the same group (Q2) or belonging to two different groups (Q3), these hierarchical F–statistics are defined
respectively as:

• FSG ≡ Q1−Q2
1−Q2

= (1−Q2)−(1−Q1)
1−Q2

which following Nei (1973) may also be interpreted as the relative
excess of genetic diversity (non IIS probability of pairs of genes) attributable to the within-group
structuring

• FGT ≡ Q2−Q3
1−Q3

= (1−Q3)−(1−Q2)
1−Q3

which may similarly be interpreted as the relative excess of genetic
diversity attributable to the between-group structuring (relative to the whole population)

• F
(h)
ST ≡ Q1−Q3

1−Q3
= (1−Q3)−(1−Q1)

1−Q3

Note that the three hierarchical F–statistics are related by the formula: (1 − F
(h)
ST ) = (1 − FSG)(1 − FGT )

Unbiased estimators of hierarchical F–statistics have been implemented in the computeFST function for
both allele count data (stored in countdata objects, see section 2.1) and Pool-Seq read count data (stored
in pooldata objects, see section 2.2), where the appropriate estimator is automatically detected given the
input object class (either allele count for countdata objects or Pool-Seq read count data for pooldata objects).
The population grouping must be specified using the struct argument with a vector of length equal to the
number of population samples containing the group of origin of each. Note that by default struct=NULL, i.e.,
the standard FST is computed. In addition, as for standard FST (see section 3.1.1), hierarchical F–statistics
estimators consist of method-of-moments estimators developed within either an Anova framework (default
option method=“Anova”) or based on unbiased estimators of IIS probability (option method=“Identity”12.
For example with the simulated example data, and defining two groups consisting of i) populations P1, P2,
P3 and P6 (named “GRP_A” below) populations; and ii) the two outgroup populations P4 and P5 (named
“GRP_B” below) ; we obtain the following estimates for the hierarchical F–statistics:

• Pool-Seq read count data:
sim6p.readcount30X.fst<-computeFST(sim6p.readcount30X,

struct=c("GRP_A","GRP_A","GRP_A","GRP_B","GRP_B","GRP_A"),
nsnp.per.bjack.block = 1000)

Computation of hierarchical Fst (Gautier et al., 2024)
2 groups of pop samples declared in struct object:
GRP_A GRP_B

1 2
Computing SNP-specific Q1, Q2 and Q3 (Anova estimator)
Starting Block-Jackknife sampling
462 Jackknife blocks identified with 462000 SNPs (out of 472410 ).
SNPs map to 20 different chrom/scaffolds

Average (min-max) Block Sizes: 4.232 ( 3.515 - 4.975 ) Mb

12As for standard FST , when method=“Identity”, the overall Q̂1, Q̂2 and Q̂3 are computed by default as unweighted averages
of the corresponding and underlying population-specific Q1 or pairwise populations Q2. Weighted averages can be computed by
setting weightpid=TRUE
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sim6p.readcount30X.fst$Fsg #genome-wide Fsg (within-group differentation)

Estimate bjack mean bjack s.e. CI95inf CI95sup
0.087329745 0.087459585 0.000586475 0.086310094 0.088609077
sim6p.readcount30X.fst$Fgt #genome-wide Fgt (between-group differentation)

Estimate bjack mean bjack s.e. CI95inf CI95sup
0.088748182 0.088877100 0.001176005 0.086572130 0.091182071
sim6p.readcount30X.fst$Fst #genome-wide hFst (within-group differentation)

Estimate bjack mean bjack s.e. CI95inf CI95sup
0.168404146 0.168639834 0.001115557 0.166453342 0.170826325

• allele count data:
sim6p.allelecount.fst<-computeFST(sim6p.allelecount,

struct=c("GRP_A","GRP_A","GRP_A","GRP_B","GRP_B","GRP_A"),
nsnp.per.bjack.block = 1000,verbose=FALSE)

sim6p.allelecount.fst$Fsg #genome-wide Fsg (within-group differentation)

Estimate bjack mean bjack s.e. CI95inf CI95sup
0.0872526862 0.0873775127 0.0005814018 0.0862379652 0.0885170602
sim6p.allelecount.fst$Fgt #genome-wide Fgt (between-group differentation)

Estimate bjack mean bjack s.e. CI95inf CI95sup
0.088742957 0.088839709 0.001149783 0.086586134 0.091093283
sim6p.allelecount.fst$Fst #genome-wide hFst (within-group differentation)

Estimate bjack mean bjack s.e. CI95inf CI95sup
0.168252582 0.168454629 0.001104235 0.166290328 0.170618930

Finally, as described above for the standard FST , the sliding.window.size argument allows computing multi-
locus hierarchical F –statistics (i.e., FSG, FGT and F

(h)
ST ) for sliding windows over the different chromosomes (or

scaffolds/contigs), e.g., to carry out genome-scans for adaptive differentiation (either within or across groups of
populations). Each sliding window includes a number of consecutive SNPs specified by the sliding.window.size
argument.

4 Estimating and visualizing f-statistics (f2, FST , f3, f ⋆
3 , f4 and D)

The f2, f3 and f4 statistics were introduced in a seminal paper by Reich and co-workers (Reich et al. 2009)
retracing the history of Indian human population and forms the core components of a general framework for
demographic history inference detailed in Patterson et al. (2012; see also Lipson et al. 2013; Peter 2016;
Lipson 2020). These statistics measure (expected) covariance in allele frequencies among sets of two (F2),
three (F3) or four (F4) populations and are formally defined as follows (denoting pi the SNP reference allele
frequency in population i):

• F2(A; B) ≡E
[
(pA − pB)2

]

• F3(A; B, C) ≡E [(pA − pB) (pA − pC)] ≡1
2 (F2(A; B) + F2(A; C) − F2(B; C))

• F4(A, B; C, D) ≡E [(pA − pB) (pC − pD)] ≡1
2 (F2(A; D) + F2(B; C) − F2(A; C) − F2(B; D))

The definitions of the F parameters are not depending on the reference allele choice since ((1 − pA) − (1 − pB))2 =
(pB − pA)2 = (pA − pB)2. As a consequence, F2 and all the other F parameters may also be defined in terms
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of IIS within and between pairs of population as F2(A; B) = Q1 − Q2 (see section 3) which allows deriving
unbiased estimators for both Pool-Seq read count and standard allele count data (Gautier et al. 2022).

Notice
With I populations, there are

(
I
2
)

= 1
2 I(I − 1) possible F2 (i.e., 15 with I = 6 populations);

3
(

I
3
)

= 1
2 I(I −1)(I −2) possible F3 (i.e., 60 with I = 6 populations); and 3

(
I
4
)

= 1
8 I(I −1)(I −2)(I −3)

possible F4 (i.e., 45 with I = 6 populations). However, due to their underlying linear dependency
(see the above definitions), these 1

8 I(I − 1)(I2 − I + 2) F-statistics form a vector space of dimension
1
2 I(I − 1) the basis of which may be specified by the set of all the

(
I
2
)

possible F2 statistics or, given
a reference population i (randomly chosen among the I ones) the set of all the I − 1 F2 statistics of
the form F2(i; j) (with j ≠ i) and the

(
I−1

2
)

F3 statistics of the form F3(i; j, k) (with j ̸= i; k ̸= i and
j ̸= k) (Patterson et al. 2012; Lipson 2020). The resulting basis is informative about population
history and may be used to fit admixture graph (see section 5).

Moreover, although f2 statistics are difficult to interpret or to compare across pairs of populations (see the
notice below), formal tests of population admixture (“3-populations” test) and tests of treeness of population
quadruplets (“4-populations” test) can directly be performed using f3 (see e.g., section 4.1.2) and f4 (see e.g.,
section 4.1.3) statistics respectively (Patterson et al. 2012). Indeed, if f3(A; B, C) < 0, we can conclude
that population A originates from a population that is admixed between two source populations related to
populations B and C respectively (although the signal may vanish if population A has drifted too much
drifted since admixture or the admixture rates are too close to 0 or 1). Conversely, if f4(A, B; C, D) = 0, the
populations A, B, C and D are related by a bifurcating tree with the unrooted topology (A,B;C,D) although
some may be admixed (if the paths connecting the (A,B) and (C,D) population pairs are not overlapping, see
section 4.1.3 for an example). Finally, under certain circumstances, proportions of ancestry that contributed
to a given admixed population can be estimated with ratios of f4 statistics (see e.g., 4.3) for set of carefully
related populations (Patterson et al. 2012).

Notice
The parameters F2, F3 and F4 are not scaled with respect to the distribution of marker information
content (i.e., heterozygosities). As a consequence, their resulting estimates may strongly depend on
the chosen set of genetic markers (Patterson et al. 2012). The well-known FST parameter and the
two parameters F⋆

3 and D introduced by Patterson et al. (2012) correspond to scaled versions of F2,
F3 and F4 expected to be less sensitive to the SNP ascertainment and thus more comparable across
data sets. As shown in Gautier et al. (2022), these can be defined in terms of IIS probabilities as:

• FST(A; B) ≡ F2(A; B)
1 − QA,B

2
=QA

1 + QB
1 − 2QA,B

2

2
(

1 − QA,B
2

)

• F⋆
3(A; B, C) ≡F3(A; B, C)

1 − QA
1

=QA
1 + QB,C

2 − QA,B
2 − QA,C

2
2

(
1 − QA

1
)

• D(A, B; C, D) ≡ F4(A, B; C, D)(
1 − QA,B

2

) (
1 − QC,D

2

) =QA,C
2 + QB,D

2 − QA,D
2 − QB,C

2

2
(

1 − QA,B
2

) (
1 − QC,D

2

)

Three-population and Four-population tests naturally extend to F ⋆
3 and D statistics respectively. An

advantage of D over F4 is that it is constrained to the [−1, 1] interval and may thus be interpreted
as the magnitude of deviation to treeness of the tested quadruplet (Patterson et al. 2012).

4.1 The compute.fstats function and fstats objects
The compute.fstats function implements unbiased estimators of the parameters F2 (and FST ), F3 (and F ⋆

3 ),
F4 and D defined above for allele count data (stored in countdata objects, see section 2.1) or Pool-Seq read
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count data (stored in pooldata objects, see section 2.2) as described in Gautier et al. (2022)13. The function
also allows estimating within-population heterozygosities (defined as 1 − Q1) which is needed to scale branch
lengths of admixture graphs in drift units (see section 5) or for rooting neighbor-joining trees of unadmixed
populations (see section 6.1); and absolute divergence (defined as 1 − Q2) between all pairs of populations.

Notice
Heterozygosities and pairwise-population absolute divergences are estimated using SNPs ascertained
in the original pooldata (or countdata) input object. These SNPs have typically undergone multiple
filtering criteria, such as discarding genomic positions that are monomorphic in all samples. In addition,
other more complex ascertainment scheme may also have been applied when selecting polymorphic
SNPs, especially for allele counts derived from SNP genotyping assays. Thus, these heterozygosity
and absolute divergence estimates are expected to be (highly) upwardly biased estimates of within-
population nucleotide diversity (often referred to as πw or θ) and between-population nucleotide
absolute divergence (often referred to as πb or dXY ) respectively (e.g., Cruickshank and Hahn
2014). Yet when using data from whole genome sequencing, the estimates of heterozygosity, absolute
divergence, and f2 are expected to be relateda to πw, dXY and da respectively.

aup to a proportional constant determined by the number of callable monomorphic sites and, particularly for
Pool-Seq data, to biases introduced by rare variants or sequencing errors (e.g., Ferretti et al. 2013)

Block-jackknife estimates of standard errors of the different estimators (needed for “Three-populations” and
“Four-populations” tests, see below; and to fit admixture graph, see section 5) and their covariance (needed to
fit admixture graph, see section 5) may also be performed.

As for the computeFST (section 3.1.1) and compute.pairwiseFST (section 3.2), the compute.fstats functions
automatically detects which estimator to implement according to the class of the input object (either
countdata or pooldata). The function estimates by default all the within population heterozygosities, the F2
(and its scaled version FST

14), F3 (and its scaled version F ⋆
3 ) F4 statistics (and the scaled version FST )15.

Computation of D statistics (i.e., scaled F4) is not carried out by default (as specified with the computeDstat
argument set to FALSE by default) since this may add some non negligible additional computation time for
data with a large number of populations due to the extra computation of the F4 scaling factor16 although in
the example below (with only 6 populations) the difference in running time is negligible.

The results are then stored in an object of class fstats whose elements (slots) are detailed in the documentation
page accessible with the following command (or the ? operator):
help(fstats)

The underlying f-statistics may then be easily accessible or visualized with the plot_fstats function (or directly
using the plot command that calls plot_fstats for fstats objects) as illustrated below for the allele count
(sim6p.allelecount) and Pool-Seq read count (sim6p.readcount30X) example data17.
##Estimation of f-statistics on count data
sim6p.allelecount.fstats<-compute.fstats(sim6p.allelecount,nsnp.per.bjack.block = 1000,

computeDstat = TRUE)

Block-Jackknife specification
462 Jackknife blocks identified with 462000 SNPs (out of 472410 ).
SNPs map to 20 different chrom/scaffolds
13Although not defined in the same way, estimator for allele count data are strictly equivalent to those by Patterson et al.

(2012)
14The estimator is then actually exactly the same as the one implemented in the compute.pairwiseFST or computeFST

functions when the argument method=“Identity”
15The compute.fstats function is optimized in such a way that the computational cost for the estimation of pairwise FST , F3,

F ⋆
3 and F4 from the F2-statistics and Q2 estimates is negligible
16For instance on a tested allele count real data set consisting of 640,000 SNPs genotyped on 24 populations, compute.fstats

ran in 3 m 13 s (4 m 45 s if nsnp.per.bjack.block = 5000 ) with computeDstat=TRUE and only 2 s (3 s) if computeDstat=FALSE
17Note that estimates of the different statistics are highly similar between the allele count and the Pool-Seq read count data.
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Average (min-max) Block Sizes: 4.232 ( 3.515 - 4.975 ) Mb
Estimating Q1
Estimating Q2
Estimating within-population heterozygosities
Estimating F2, pairwise Fst (method=Identity), and pairwise divergence (1-Q2)
Estimating F3 and F3* (n= 60 configurations)
Estimating F4 and Dstat (n= 45 configurations)

Step 1/2: Estimating Dstat denominators
Step 2/2: Estimating F4 and D- statistics

Estimating Qmat, the error covariance matrix ( 75 x 75 )

Overall Analysis Time: 0 h 0 m 2 s
sim6p.allelecount.fstats

* * * fstats Object * * *
Example of useful visualization functions are plot.fstats
##Estimation of f-statistics on Pool-Seq data (without computation of Dstat)
sim6p.readcount30X.fstats<-compute.fstats(sim6p.readcount30X,nsnp.per.bjack.block = 1000,

verbose=FALSE)
##Estimation of f-statistics on Pool-Seq data (with computation of Dstat)
sim6p.readcount30X.fstats<-compute.fstats(sim6p.readcount30X,nsnp.per.bjack.block = 1000,

computeDstat = TRUE,verbose=FALSE)

4.1.1 f2, FST and pairwise absolute divergence estimates (f2.values, fst.values and divergence
slots of the fstat object)

# count data (3 first f2)
head(sim6p.allelecount.fstats@f2.values,3)

Estimate bjack mean bjack s.e.
P1,P2 0.008294424 0.008274108 0.0001298376
P1,P3 0.016643720 0.016680443 0.0002108642
P1,P4 0.033924154 0.033971079 0.0003456714
# 30X Pool-Seq data (3 first f2)
head(sim6p.readcount30X.fstats@f2.values,3)

Estimate bjack mean bjack s.e.
Pool1,Pool2 0.00829429 0.008275487 0.0001351787
Pool1,Pool3 0.01665818 0.016696323 0.0002159221
Pool1,Pool4 0.03398383 0.034045968 0.0003525136
# count data (3 first Fst)
head(sim6p.allelecount.fstats@fst.values,3)

Estimate bjack mean bjack s.e.
P1,P2 0.04946710 0.04936227 0.0007453263
P1,P3 0.09478083 0.09499692 0.0010947422
P1,P4 0.17816331 0.17843286 0.0015418662
# 30X Pool-Seq data (3 first Fst)
head(sim6p.readcount30X.fstats@fst.values,3)

Estimate bjack mean bjack s.e.
Pool1,Pool2 0.04947320 0.04937253 0.000774369
Pool1,Pool3 0.09487048 0.09508626 0.001119595
Pool1,Pool4 0.17839940 0.17872795 0.001572758
# count data (3 first pairwise genetic divergence)
head(sim6p.allelecount.fstats@divergence,3)
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Estimate bjack mean bjack s.e.
P1,P2 0.1676756 0.1676201 0.0005895541
P1,P3 0.1756022 0.1755893 0.0005931841
P1,P4 0.1904104 0.1903858 0.0006251644
# 30X Pool-Seq data (3 first pairwise genetic divergence)
head(sim6p.readcount30X.fstats@divergence,3)

Estimate bjack mean bjack s.e.
Pool1,Pool2 0.1676522 0.1676132 0.0005941263
Pool1,Pool3 0.1755887 0.1755913 0.0006022428
Pool1,Pool4 0.1904930 0.1904905 0.0006272189

As mentioned above, notice that the pairwise FST estimates are the same as those obtained with the
compute.pairwiseFST function (see section 3.2) run with method=Identity (which are here actually equal
with estimates obtained by the default Anova method because there is no variation in the total allele counts
for all SNPs).

Notice
By construction F2(A; B) = F2(B, A) (and FST (A; B) = FST (B, A)). If iP is the index of population
P in the popnames or poolnames slots of the countdata or pooldata objects (i.e., the column order in
the corresponding allele or read count data matrices) used to obtain the fstats object, the F2(A, B)
(resp. FST (B, A)) configurations reported in the slot f2.values (resp. fst.values) satisfy iA < iB .

When compute.fstats is run with options output.pairwise.fst and output.pairwise.div set to TRUE (default
behavior), the object contains the pairwise-population FST and absolute divergence estimates organized in
a matrix format (pairwise.fst and pairwise.div slots respectively) . These pairwise matrice can then easily
be visualized in the form of heatmaps as illustrated in Figure 5 obtained with utilities from the package
ComplexHeamap18:
require(ComplexHeatmap)
div.hm <- Heatmap(sim6p.readcount30X.fstats@pairwise.div,

cluster_rows =TRUE,cluster_columns=TRUE,name="Divergence",
show_heatmap_legend=FALSE,column_title = "Divergence (1-Q2)")

fst.hm <- Heatmap(sim6p.readcount30X.fstats@pairwise.fst,
cluster_rows =TRUE,cluster_columns=TRUE,name="values",
column_title = "Fst=(Q1-Q2)/(1 - Q2)")

div.hm+fst.hm

4.1.2 f3 and f⋆
3 estimates (f3.values and f3star.values slots of the fstat object) and 3-Population

tests:

# count data (3 first f3)
head(sim6p.allelecount.fstats@f3.values,3)

Estimate bjack mean bjack s.e. Z-score
P1;P2,P3 0.004053338 0.004048392 0.0001176972 34.39668
P1;P2,P4 0.004089298 0.004087474 0.0001326605 30.81155
P1;P2,P5 0.004155216 0.004149524 0.0001341405 30.93416
# 30X Pool-Seq data (3 first f3)
head(sim6p.readcount30X.fstats@f3.values,3)

Estimate bjack mean bjack s.e. Z-score
Pool1;Pool2,Pool3 0.004057570 0.004053794 0.0001247034 32.50750
Pool1;Pool2,Pool4 0.004114142 0.004114670 0.0001365234 30.13893
Pool1;Pool2,Pool5 0.004157049 0.004154896 0.0001411765 29.43051

18https://jokergoo.github.io/ComplexHeatmap-reference/
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Figure 5: Heatmaps of the matrices of estimated pairwise-population absolute divergence (left) and FST

(right) for the 30X Pool-Seq data set.

# count data (3 first f3*)
head(sim6p.allelecount.fstats@f3star.values,3)

Estimate bjack mean bjack s.e. Z-score
P1;P2,P3 0.02552286 0.02549608 0.0007467871 34.14102
P1;P2,P4 0.02574929 0.02574221 0.0008480235 30.35554
P1;P2,P5 0.02616436 0.02613299 0.0008581050 30.45430
# 30X Pool-Seq data (3 first f3*)
head(sim6p.readcount30X.fstats@f3star.values,3)

Estimate bjack mean bjack s.e. Z-score
Pool1;Pool2,Pool3 0.02555404 0.02553297 0.0007888059 32.36915
Pool1;Pool2,Pool4 0.02591032 0.02591640 0.0008722134 29.71337
Pool1;Pool2,Pool5 0.02618054 0.02616977 0.0009009973 29.04533

Notice
By construction F3(A; B, C) = F3(A; C, B) (and F ⋆

3 (A; B, C) = F ⋆
3 (A; C, B)). If iP is the index of

population P in the popnames or poolnames slots of the countdata or pooldata objects (i.e., the
column order in the corresponding allele or read count data matrices) used to obtain the fstats object,
the F3(A; B, C) (and F ⋆

3 (A; B, C)) configurations reported in the slot f3.values satisfy iB < iC .

As shown in the above example, activation of block-jackknife estimation of standard errors (i.e., argument
nsnp.per.bjack.block>0) results in the computation of Z-scores (i.e., ratio of the block-jackknife estimated
mean and standard-error) which quantifies the deviation of the estimated f3-statistics from 0 (in units of s.e.).
This gives a simple decision criterion for three-population tests of admixture (i.e., negative f3 or negative f⋆

3 ).
For instance a Z-score < −1.65 provides evidence for admixture (i.e., significantly negative f3) at the 95%
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significance threshold:
# count data (F3-based 3-pop test)
tst.sel<-sim6p.allelecount.fstats@f3.values$`Z-score`< -1.65
sim6p.allelecount.fstats@f3.values[tst.sel,]

Estimate bjack mean bjack s.e. Z-score
P6;P2,P3 -0.0002671143 -0.0002623528 8.638581e-05 -3.036989
# 30X Pool-Seq data (F3-based 3-pop test)
tst.sel<-sim6p.readcount30X.fstats@f3.values$`Z-score`< -1.65
sim6p.readcount30X.fstats@f3.values[tst.sel,]

Estimate bjack mean bjack s.e. Z-score
Pool6;Pool2,Pool3 -0.0002417509 -0.0002304611 8.851744e-05 -2.603567
# count data (F3*-based 3-pop test)
tst.sel<-sim6p.allelecount.fstats@f3star.values$`Z-score`< -1.65
sim6p.allelecount.fstats@f3star.values[tst.sel,]

Estimate bjack mean bjack s.e. Z-score
P6;P2,P3 -0.001631657 -0.001603205 0.0005274779 -3.039379
# 30X Pool-Seq data (F3*-based 3-pop test)
tst.sel<-sim6p.readcount30X.fstats@f3star.values$`Z-score`< -1.65
sim6p.readcount30X.fstats@f3star.values[tst.sel,]

Estimate bjack mean bjack s.e. Z-score
Pool6;Pool2,Pool3 -0.001475866 -0.001407435 0.0005402774 -2.605024

In agreement with the simulated scenario (Figure 1), both the allele count and Pool-Seq read count data
support an admixed origin for population P6 with ancestral sources related to P2 and P3.

4.1.3 f4 and D estimates (f4.values and Dstat.values slots of the fstat object) and 4-Population
tests:

# count data (3 first f4)
head(sim6p.allelecount.fstats@f4.values,3)

Estimate bjack mean bjack s.e. Z-score
P1,P2;P3,P4 3.595944e-05 3.908225e-05 1.154193e-04 0.3386111
P1,P2;P3,P5 1.018776e-04 1.011325e-04 1.197917e-04 0.8442359
P1,P2;P3,P6 5.594310e-04 5.622762e-04 6.138658e-05 9.1595941
# 30X Pool-Seq data (3 first f4)
head(sim6p.readcount30X.fstats@f4.values,3)

Estimate bjack mean bjack s.e. Z-score
Pool1,Pool2;Pool3,Pool4 5.657166e-05 6.087576e-05 1.194004e-04 0.5098456
Pool1,Pool2;Pool3,Pool5 9.947887e-05 1.011014e-04 1.253135e-04 0.8067878
Pool1,Pool2;Pool3,Pool6 5.653400e-04 5.621051e-04 6.409453e-05 8.7699380
# count data (3 first D)
head(sim6p.allelecount.fstats@Dstat.values,3)

Estimate bjack mean bjack s.e. Z-score
P1,P2;P3,P4 0.0006651386 0.0007230774 0.002135688 0.3385688
P1,P2;P3,P5 0.0018826436 0.0018705234 0.002216171 0.8440338
P1,P2;P3,P6 0.0107508025 0.0108152267 0.001182842 9.1434253
# 30X Pool-Seq data (3 first D)
head(sim6p.readcount30X.fstats@Dstat.values,3)

Estimate bjack mean bjack s.e. Z-score
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Pool1,Pool2;Pool3,Pool4 0.001045743 0.001125524 0.002208046 0.5097373
Pool1,Pool2;Pool3,Pool5 0.001837431 0.001868847 0.002316956 0.8065961
Pool1,Pool2;Pool3,Pool6 0.010853673 0.010799873 0.001235136 8.7438717

Notice
When comparing two pairs of populations (A, B) and (C, D), the f4 statistics for the 8 quadruplets
(A,B;C,D); (B,A;C,D); (A,B;D,C); (B,A;D,C); (C,D;A,B); (C,D;B,A); (D,C;A,B) and (D,C;B,A) have
the same absolute value by definition of the F4 parameter:

F4(A, B; C, D) = F4(B, A; D, C) = F4(C, D; A, B) = F4(D, C; A, B)
−F4(A, B; C, D) = F4(B, A; C, D) = F4(C, D; B, A) = F4(D, C; B, A) = F4(A, B; D, C)

and similarly

D(A, B; C, D) = D(B, A; D, C) = D(C, D; A, B) = D(D, C; A, B)
−D(A, B; C, D) = D(B, A; C, D) = D(C, D; B, A) = D(D, C; B, A) = D(A, B; D, C)

If iP is the index of population P in the popnames or poolnames slots of the countdata or pooldata
objects (i.e., the column order in the corresponding allele or read count data matrices) used to
obtain the fstats object, the F4(A, B; C, D) (and D(A, B; C, D)) configurations reported in the slot
f4.values (and Dstat.values) satisfy iA < iB ; iA < iC and iC < iD.

As for f3 and f⋆
3 (section 4.1.2), activating block-jackknife estimation of standard errors (i.e., the argument

nsnp.per.bjack.block>0) results in the computation of Z-scores (i.e., ratio of the block-jackknife estimated
mean and standard-error) which quantifies the deviation of the estimated f4-statistics from 0 (in units of
s.e.). This gives a simple decision criterion for four-population tests of treeness (i.e., non null F4 or D).
For instance a Z-score lower than 1.96 in absolute value provides no evidence against the null-hypothesis of
treeness for the tested population configuration at the 95% significance threshold:
# count data
tst.sel<-abs(sim6p.allelecount.fstats@f4.values$`Z-score`)<1.96
sim6p.allelecount.fstats@f4.values[tst.sel,]

Estimate bjack mean bjack s.e. Z-score
P1,P2;P3,P4 3.595944e-05 3.908225e-05 1.154193e-04 0.3386111
P1,P2;P3,P5 1.018776e-04 1.011325e-04 1.197917e-04 0.8442359
P1,P2;P4,P5 6.591816e-05 6.205022e-05 9.313675e-05 0.6662270
P1,P3;P4,P5 1.309202e-05 1.464589e-05 1.268061e-04 0.1154983
P1,P6;P4,P5 4.031413e-05 4.458874e-05 1.058348e-04 0.4213050
P2,P3;P4,P5 -5.282615e-05 -4.740433e-05 1.302898e-04 -0.3638376
P2,P6;P4,P5 -2.560403e-05 -1.746147e-05 1.085089e-04 -0.1609221
P3,P6;P4,P5 2.722212e-05 2.994286e-05 7.650662e-05 0.3913760
# 30X Pool-Seq data
tst.sel<-abs(sim6p.readcount30X.fstats@f4.values$`Z-score`)<1.96
as.data.frame(sim6p.readcount30X.fstats@f4.values)[tst.sel,]

Estimate bjack mean bjack s.e. Z-score
Pool1,Pool2;Pool3,Pool4 5.657166e-05 6.087576e-05 1.194004e-04 0.50984558
Pool1,Pool2;Pool3,Pool5 9.947887e-05 1.011014e-04 1.253135e-04 0.80678780
Pool1,Pool2;Pool4,Pool5 4.290721e-05 4.022566e-05 9.502690e-05 0.42330817
Pool1,Pool3;Pool4,Pool5 3.769747e-07 -3.302134e-06 1.277902e-04 -0.02584028
Pool1,Pool6;Pool4,Pool5 4.073843e-05 4.734750e-05 1.053345e-04 0.44949661
Pool2,Pool3;Pool4,Pool5 -4.253023e-05 -4.352780e-05 1.336022e-04 -0.32580156
Pool2,Pool6;Pool4,Pool5 -2.168779e-06 7.121841e-06 1.102031e-04 0.06462467
Pool3,Pool6;Pool4,Pool5 4.036145e-05 5.064964e-05 8.000836e-05 0.63305432

In other words, both the allele count and Pool-Seq read count data only provide no evidence against the null
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hypothesis of treeness at the 95% threshold for quadruplets involving i) non-admixed populations (P1, P2,
P3, P4 and P5 ) for configurations consistent with the simulated scenario; and ii) the admixed population P6
for configurations of the form (P6,X;P4,P5) where P4 and P5 are the two outgroup populations and X=P1,
P2 or P3. This is actually expected since for these latter quadruplets, the path connecting P4 and P5 is not
overlapping with either of the paths connecting P6 to P1, P2 or P3 in the simulated graph (Figure 1).

4.1.4 Population heterozygostity estimates (heterozygosities slot of the fstat object)

# count data (3 first populations)
head(sim6p.allelecount.fstats@heterozygosities,3)

Estimate bjack mean bjack s.e.
P1 0.1588121 0.1587849 0.0005972556
P2 0.1599502 0.1599070 0.0006057583
P3 0.1591048 0.1590328 0.0005900926
# 30X Pool-Seq data (3 first populations)
head(sim6p.readcount30X.fstats@heterozygosities,3)

Estimate bjack mean bjack s.e.
Pool1 0.1587839 0.1587670 0.0006012812
Pool2 0.1599319 0.1599083 0.0006096762
Pool3 0.1590771 0.1590230 0.0006024449

4.2 The plot_fstats function for visualization of heterozygosities, f2 (and pair-
wise FST and absolute divergence), f3 (and f ⋆

3 ) and f4 (and D) estimates and
their confidence intervals

The plot_fstats function (that may be called directly using plot on fstats objects) allows plotting all or only
some (using the pop.sel, pop.f3.target or value.range arguments) of the estimated f2, fST , f3, f⋆

3 , f4 or D
statistics from a fstats object. In addition, for f3, f⋆

3 , f4 and D statistics, the highlight.signif argument allows
highlighting in red significant (as defined with the ci.perc argument) three-population or four-population
tests. Some example plots are shown in Figures 7, 8 and 9 which were generated with the following codes:

4.2.1 Example of heterozygosities plot (Figure 6)

layout(matrix(1:2,1,2,byrow=T))
plot(sim6p.allelecount.fstats,stat.name="heterozygosities",main="Heterozygosities (Allele Count)")
plot(sim6p.readcount30X.fstats,stat.name="heterozygosities",main="Heterozygosities (30X Pool-Seq)")

As expected, the admixed population P6 shows the highest heterozygosity.

4.2.2 Example of f2 statistics plot (Figure 7)

layout(matrix(1:2,2,1,byrow=T))
plot(sim6p.allelecount.fstats,main="F2 (Allele Count)")
plot(sim6p.readcount30X.fstats,main="F2 (30X Pool-Seq)")

Similar plots may be obtained for the pairwise FST (i.e., scaled f2) by specifying stat.name=“Fst” (see also
the compute.pairwiseFST functions described in section 3.2) or absolute divergence (i.e., denominator of FST )
by specifying stat.name=“divergence”.

4.2.3 Example of f3 statistics plot (Figure 8)

layout(matrix(1:4,2,2,byrow=T))
plot(sim6p.allelecount.fstats,stat.name="F3",main="F3 (Allele Count)")
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Figure 6: Estimated within-population heterozygosities with their 95% confidence intervals for the allele
count and 30X Pool-Seq data sets

Figure 7: Estimated f2 statistics with their 95% confidence intervals for the allele count and 30X Pool-Seq
data sets

plot(sim6p.readcount30X.fstats,stat.name="F3",main="F3 (30X Pool-Seq)")
plot(sim6p.readcount30X.fstats,stat.name="F3",pop.f3.target=c("Pool6","Pool1"),

main="30X Pool-Seq (only F3 with P6 or P1 as target pops)")
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plot(sim6p.readcount30X.fstats,stat.name="F3",value.range=c(NA,5e-3),
main="30X Pool-Seq (only F3 < 5e-3)")

Figure 8: Estimated f3 statistics with their 95% confidence intervals for the allele count and 30X Pool-Seq
data sets

Similar plots may be obtained for the scaled f3 (i.e., f⋆
3 ) by specifying stat.name=“F3star”.

4.2.4 Example of f4 and D statistics plot (Figure 9)

layout(matrix(1:6,3,2,byrow=T))
plot(sim6p.allelecount.fstats,stat.name="Dstat",main="D (Allele Count)")
plot(sim6p.readcount30X.fstats,stat.name="Dstat",main="D (30X Pool-Seq)")
plot(sim6p.allelecount.fstats,stat.name="F4",main="F4 (Allele Count)")
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plot(sim6p.readcount30X.fstats,stat.name="F4",main="F4 (30X Pool-Seq)")
plot(sim6p.readcount30X.fstats,stat.name="F4",pop.sel=c("Pool1","Pool2"),

main="30X Pool-Seq (only F4 with both P1 and P2)")
plot(sim6p.readcount30X.fstats,stat.name="F4",value.range=c(-2e-3,2e-3),

main="30X Pool-Seq (only -2e-3 < F4 < 2e-3)")
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Figure 9: Estimated f4 and D statistics with their 95% confidence intervals for the allele count and 30X
Pool-Seq data sets

4.3 Estimating admixture proportions with f4-ratios
Given an admixture graph (assumed to be correct), ratios of f4-statistics (Patterson et al. 2012) may
provide estimates of the relative contributions of the ancestral sources of a (two-way) admixed populations
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(P6 in our example) if outgroups (P1 and P4 or P5 in our example) for the two source population proxies
(e.g., P2 and P3 in our example) have been sampled. For instance, the proportion α of P2-related ancestry
in population P6 (Figure 1) is equal to:

α = F4 (P1, P4; P3, P6)
F4 (P1, P4; P3, P2) = F4 (P1, P5; P3, P6)

F4 (P1, P5; P3, P2)

The compute.f4ratio function implements f4-ratio based estimators of admixture proportion from an fs-
tats object. It requires to specify both the numerator (num.quadruplet argument) and the denominator
(den.quadruplet) F4 quadruplets. The following examples illustrates how to use the function to the admixture
proportion α (αsimulated = 0.25) from the P2-related source that contributed to the P6 ancestral population
(Figure 1). Note that standard errors and 95% CI interval (i.e., block-jackknife mean ±1.96 s.e.) of the esti-
mated admixture proportions are automatically computed if the input fstats object was obtained by running
the compute.fstats function with return.F2.blockjackknife.samples = TRUE (and nsnp.per.bjack.block>0 ) to
activate block-jackknife estimation of s.e. as showed below (if not, only the α estimate is provided in the
output object):
# count data (two possible estimates)
sim6p.allelecount.fstats<-compute.fstats(sim6p.allelecount,nsnp.per.bjack.block = 1000,

verbose=FALSE,return.F2.blockjackknife.samples = TRUE)
compute.f4ratio(sim6p.allelecount.fstats,num.quadruplet = "P1,P4;P3,P6",

den.quadruplet="P1,P4;P3,P2")

Estimate bjack mean bjack s.e. CI95inf CI95sup
0.24972091 0.25119795 0.02164778 0.20876830 0.29362759
compute.f4ratio(sim6p.allelecount.fstats,num.quadruplet = "P1,P5;P3,P6",

den.quadruplet="P1,P5;P3,P2")

Estimate bjack mean bjack s.e. CI95inf CI95sup
0.24629232 0.24679424 0.02133432 0.20497898 0.28860950
# 30X Pool-Seq data (two possible estimates)
sim6p.readcount30X.fstats<-compute.fstats(sim6p.readcount30X,nsnp.per.bjack.block = 1000,

verbose=FALSE,return.F2.blockjackknife.samples = TRUE)
compute.f4ratio(sim6p.readcount30X.fstats,num.quadruplet = "Pool1,Pool4;Pool3,Pool6",

den.quadruplet="Pool1,Pool4;Pool3,Pool2")

Estimate bjack mean bjack s.e. CI95inf CI95sup
0.25284998 0.25569842 0.02328972 0.21005057 0.30134627
compute.f4ratio(sim6p.readcount30X.fstats,num.quadruplet = "Pool1,Pool5;Pool3,Pool6",

den.quadruplet="Pool1,Pool5;Pool3,Pool2")

Estimate bjack mean bjack s.e. CI95inf CI95sup
0.24559004 0.24601949 0.02288319 0.20116844 0.29087053

Note that the simulated value (α = 0.25) is within the confidence interval and actually less than 0.25 standard
error higher than the F4-ratio estimate.

5 Using f-statistics to estimate parameters of admixture graphs
The f-statistics can be used to estimate the parameters (branch lengths and/or admixture proportions) of
trees or admixture graphs (i.e., trees including admixture edges) that summarize the demographic history of
the surveyed populations. The approach implemented in poolfstat to fit admixture graphs from f-statistics is
directly inspired (and actually highly similar) to the one used in the qpGraph software originally described by
Patterson et al. (2012; see also Lipson 2020). The core functions used for admixture graph fitting consist
of:

• the generate.graph.params function to define graph parameters specifying the candidate graph to fit
and the underlying f-statistics provided as an fstats object (section 4)
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• the fit.graph function to estimate graph parameters using an optimization algorithm
• the compare.fitted.fstats function to assess model fit by comparing estimated and fitted f-statistics

(Patterson et al. 2012; Lipson 2020)
• the add.leave function to evaluate all the possible admixture graphs (or trees) resulting from the addition

of a new leave to an existing graph (connected with either non-admixed or admixed edges).

5.1 Creating a graph.params object with the generate.graph.params function
5.1.1 Specifying the structure of the admixture graph in a graph.params object

Admixture graph specification including the structure of the graph (i.e., topology consisting of edges and, if
any admixture proportions) are defined in an object of class graph.params detailed in the documentation
page accessible with the following command (or the ? operator):
help(graph.params)

The graph.params objects may be constructed with the generate.graph.params function from a user-defined
(character) matrix specifying the structure of the admixture graph (or tree if no admixture edges are included)
and consisting of three columns defining for each edge (whether admixed or not) i) the child node; ii) the
parent node; iii) the admixture proportion (blank for non-admixed edges). As a result, in the input matrix,
each admixture event is specified by two rows for the two admixture edges corresponding to the same
admixed child node and two different source nodes as the parent node (i.e., source populations). Their third
column elements contain the two underlying admixture proportions coded as a and (1-a) (the parentheses
are mandatory and an error message is printed if absent) where a is the name of the admixture proportion
(names of admixture proportions should not include space). The example below shows the construction of
a graph.params object specifying the admixture graph for the scenario used to simulate the example data
(Figure 1):
sim.graph<-rbind(c("P1","P7",""),c("P2","s1",""),c("P3","s2",""),c("P6","S",""),

c("S","s1","a"),c("S","s2","(1-a)"),c("s2","P8",""),c("s1","P7",""),
c("P4","P9",""),c("P5","P9",""),c("P7","P8",""),
c("P8","R",""),c("P9","R",""))

sim.graph.params<-generate.graph.params(sim.graph)
sim.graph.params

* * * graph.params Object * * *
Example of useful functions are:

plot() to visualize the graph (interface for grViz() from the DiagrammeR package)
fit.graph() to estimate graph parameter values

* * * * * * * * * * * * * * * *

The root is automatically identified by the generate.graph.params function (as the node only present in the
parent node column) and several checks are made within the function. It is however recommended to check
the graph by plotting using the plot function. The following code shows how to plot the graph stored in the
example sim.graph.params object that was generated above (Figure 10):
plot(sim.graph.params)
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Figure 10: Plot of the admixture graph specifying the simulated scenario

Notice
The plot function applied to graph.params objects internally calls the grViz function from the
DiagrammeR package (Iannone 2020) which actually generates an object of class htmlwidget that
will print itself into HTML in a browser. Also, if run within the Rstudio IDE, the graph will be
plotted in the View panea. Hence, graph plots may not be easily exported from R into a pdf (or
other) device although the following trick may be useful to that end:
require(webshot,htmlwidgets,imager)
tmp<-plot(sim.graph.params) #plot the graph
saveWidget(tmp,"tmp.html") ; webshot("tmp.html","tmp.png")
load.image("tmp.png") %>% autocrop() %>% plot(axes=F)

To insert a graph plot into an external document or edit it (e.g., to change node or edge colors, node
names, etc.), one may also directly rely on its dot coded definitionb stored in the dot.graph slot of the
graph.params (or fitted.graph, see section 5.2) object outside R. A graph dot file may also be generated
by specifying an output file name prefix with the outfileprefix argument of the generate.graph.params
functionc.

aRegularly clearing the View items using the broom icon is recommended
bFrom the open source graph visualization software graphviz (https://graphviz.org/). For instance, dot files

can be converted into png file using the command dot -Tpng inputgraph.dot in a Linux terminal. Several online
user-friendly implementations also allow very convenient manipulation of dot files from a web-browser, see e.g.,
https://dreampuf.github.io/GraphvizOnline

cAlternatively, one may also use the command writeLines(x@dot.graph,con=outfile) where x is the graph.params
object and outfile is the desired name of the dot output file (e.g., “out.dot”)

The graph.params object produced by the generate.graph.params function includes a symbolic representation
of the graph incidence matrix (slot graph.matrix) which consists of a nl leaves by ne edges matrix containing
the edges weight for the paths from each leave to the root19. Examples for the sim.graph.params object that
specifies the simulation scenario are given below:
#names of the edges (automatically given)
sim.graph.params@edges.names

[1] "P7<->P1" "s1<->P2" "s2<->P3" "S<->P6" "P8<->s2" "P7<->s1" "P9<->P4" "P9<->P5" "P8<->P7" "R<->P8" "R<->P9"

#names of the admixture proportions (automatically given)
sim.graph.params@adm.params.names

[1] "a"
#graph incidence matrix
sim.graph.params@graph.matrix

19In the symbolic representation, the names for the graph edges and admixture proportions correspond to those stored in the
edges.names and adm.params.names slots of the graph.params object respectively
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P7<->P1 s1<->P2 s2<->P3 S<->P6 P8<->s2 P7<->s1 P9<->P4 P9<->P5 P8<->P7 R<->P8 R<->P9
P1 "1" "0" "0" "0" "0" "0" "0" "0" "1" "1" "0"
P2 "0" "1" "0" "0" "0" "1" "0" "0" "1" "1" "0"
P3 "0" "0" "1" "0" "1" "0" "0" "0" "0" "1" "0"
P6 "0" "0" "0" "1" "1-a" "a" "0" "0" "a" "1" "0"
P4 "0" "0" "0" "0" "0" "0" "1" "0" "0" "0" "1"
P5 "0" "0" "0" "0" "0" "0" "0" "1" "0" "0" "1"

Notice
As mentioned by Pickrell and Pritchard (2012), Patterson et al. (2012) and Lipson (2020),
the three branch lengths surrounding an admixture event (e.g., edges s1 ↔ S, s2 ↔ S and S ↔ P6
connecting s1 to S ; s2 to S ; and S to P6 respectively for the admixture event in Figure 10)
are not identifiable and can only be estimated jointly in a single compound parameter (e.g., ζ =
a2 × es1↔S + (1 − a)2 × es2↔S + eS↔P6 in Figure 10) unless samples from the source populations
(s1, s2 and/or S) or samples from different populations deriving from the same admixed source are
available (Lipson 2020). Following Patterson et al. (2012) and Lipson (2020), this identifiability
issue is solved by nullifying the length of admixture edges (i.e., setting es1↔S = es2↔S = 0 in the
above example) which may lead to some overestimation of the divergence (branch length) of the
admixed population (here P6 ) from its direct admixed ancestor (here S) if the two source populations
(here s1 and s2 ) have experienced strong divergence since their separation from the graph connecting
the other populations (which is not the case in the simulated example in which both es1↔S and
es2->S are equal to 0). This differs from the choice made by Pickrell and Pritchard (2012) in the
Treemix model consisting of setting eS↔P6 = 0 and es2↔S = 0 (if a > 0.5) or es1↔S = 0 (if a < 0.5).

The graph incidence matrix plays a pivotal role for graph fitting since the fit.graph function (see section 5.1.2)
use it to build the model equations. A (simplified) symbolic representation of these model equations together
with expression for the parameters F2, F3 and F4 can also be generated from a graph.params object with the
graph.params2symbolic.fstats function (see section 7.2).

5.1.2 Creating a graph.params object with f-statistics estimates for admixture graph fitting

The f-statistics estimates (f2 and f3) need to be included within the graph.params object to allow further
fitting of the admixture graph (i.e., estimation of its edge lengths and, if any, admixture proportions) with the
fit.graph function (see section 5.2). This can be done by providing the generate.graph.params function with
an fstats object including all the f2 and f3 statistics involving the graph leaves (which is usually the case)
and block-jackknife estimates of their standard errors and error covariance matrix (i.e., the compute.fstats
function used to generate the fstats object must have been run with nsnp.per.bjack.block>0), otherwise an
error message is returned20. If nl the number of leaves of the admixture graph and A a “reference” population
among the nl ones21, the generate.graph.params function selects the estimates (block-jackknife means) for
the nl − 1 f2 statistics of the form f2(A; B) (with B a leave population other than A) and the

(
nl−1

2
)

f3
statistics of the form F3(A; B, C) (with B and C two leave populations other than A) which form the basis
of the f-statistics vector (see section 4). The basis f-statistics are stored in the f2.target and f3.target slots
of the resulting graph.params object (with their corresponding names available in the f2.target.pops and
f3.target.pops slots respectively). In addition, as required to further fit the admixture graph (see section
5.2), the nl(nl−1)

2 by nl(nl−1)
2 covariance matrix of the basis f-statistics is stored in the f.Qmat slot of the

graph.params object. Optionally, if available in the fstats object, estimates of the leaves heterozygoties (needed
to scale fitted branch lengths in drift units, see 5.2.1) are stored in the Het slot of the graph.params object.
The following code shows how to generate a graph.params object for the example (allele count) data:
sim.graph.params<-generate.graph.params(sim.graph,fstats = sim6p.allelecount.fstats)

20Conversely, the fstats object may include f-statistics involving populations other than the graph leaves, the gener-
ate.graph.params function selecting only the f-statistics relevant for the fitting of the input graph

21by default, A is the first population in the vector of leaves but, although of limited interest, another reference population
may be specified with the popref argument
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Total Number of Parameters: 11 (10 edges lengths + 1 adm. coeff.)
Total Number of Statistics: 15 (5 F2 and 10 F3)

As shown above, the functions returns the number of parameters npar = 2nl + 2na − 3 of the admixture
graph where na and nl are the number of admixture events na and the number of leaves nl, respectively
(Lipson 2020). Note that the plotting properties of the graph.params object remain the same whether fstats
information is included or not (i.e., the plot function may be used as above to generate the representation
displayed in Figure 10).

5.2 Fitting a graph with the fit.graph function
The fit.graph functions provides estimate of the parameters (i.e., edge length and admixture proportions) of an
admixture graph stored in a graph.params object as detailed in Gautier et al. (2022) and directly inspired by
Patterson et al. (2012). Briefly, let f̂ represent the vector of length nl(nl−1)

2 (where nl is the number of graph
leaves) of the estimated f2 and F3 basis f-statistics22 and g(e; a) = X(a)×e the vector of these expected basis
f-statistics values given the vector of graph edges lengths e and the incidence matrix X(a) that depends on the
structure of the graph and the admixture rates a23. Let further Q represent the nl(nl−1)

2 by nl(nl−1)
2 covariance

matrix of the basis F-statistics estimates estimated by block-jackknife and stored in the slot f.Qmat of the
input graph.params object (see 5.1.2)24. The function attempts to find the graph parameter values (ê and â)
that minimize a cost (score of the model) defined as S(e; a) =

(
f̂ − g(e; a)

)′
Q−1

(
f̂ − g(e; a)

)
. As mentioned

by Patterson et al. (2012), given admixture rates a, S(e; a) is actually quadratic in the edge lengths e allow
the fit.graph function to rely on the Lawson-Hanson non-negative linear least squares algorithm implemented
in the nnls function (nnls package) to estimate the vector ê that minimizes S(e; a) (subject to the constraint of
positive edge lengths). Full minimization of S(e; a) is thus reduced to the identification of the admixture rates
a which is performed using the L-BFGS-B method25 implemented in the optim function (stats package). The
eps.admix.prop argument allows specifying the lower and upper bound of the admixture rates to eps.admix.prop
and 1-eps.admix.prop respectively. In addition, assuming f̂ ∼ N (g(ê; â), Q)26, S(ê; â) = −2log(L) − K where
L is the likelihood of the fitted graph and K = n log(2π) + log(|Q|) allowing to almost directly derive a BIC
(Bayesian Information Criterion) of the fitted graph from the optimized score S(ê; â)27. The BIC may be
used for comparison of different admixture graphs (see section 5.3) providing they were all fitted based on
the same vector of f-statistics (i.e., they include the same set of populations). Indeed, when comparing two
graphs G1 and G2 with BIC equal to BIC1 and BIC2, ∆12 = BIC2 − BIC1 ≃ 2 log (BF12) where BF12 is
the Bayes Factor associated to G1 and G2 graph comparison (eq. 9, Kass and Raftery 1995). The (slightly)
modified Jeffreys’ rule proposed by Kass and Raftery (1995) might further be used to evaluate to which
extent the data support G1 or G2 with e.g., ∆12 > 6 (respectively ∆12 > 10) providing “strong” (respectively
“very strong”) evidence in favor of G1

28.

The fit.graph function returns an object of class fitted.graph detailed in the documentation page accessible
with the following command (or the ? operator):
help(fitted.graph)

The following code shows how to fit the example graph stored in the graph.params object sim.graph.params
generated above and some features of the resulting fitted.graph object:

22stored in the f2.target and f3.target slots of the input graph.params object, see section 5.1.2
23If there is no admixture in the graph, X(a) only contains only 0 or 1
24The argument Q.lambda of the fit.graph function may be used to add a small constant (e.g., 10−4) to all to the diagonal

elements of Q (i.e., the variance of the basis f-statistics estimates) as proposed by Patterson et al. (2012; see also Lipson 2020)
to avoid numerical problems. Note that Qmat.diag.adjust is always set 0 in the final estimate of the score S or the BIC

25Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm with box constraints
26i.e., the observed vector of f-statistics is multivariate normal distributed around the expected g(e; a) vector specified by the

admixture graph and the covariance structure empirically estimated
27BIC = S + npar log

(
1
2 nl(nl − 1)

)
− 1

2 nl(nl − 1) log(2π) − log(| Q |)
28The two thresholds of 6 and 10 on ∆BIC corresponds to thresholds of 13 and 21 deciban (units of 10 log10 scale) on BF. The

original Jeffreys’ rule considered BF12 thresholds of 10, 15 and 20 decibans (corresponding to ∆BIC thresholds of 4.6, 6.9 and
9.2) as “strong”, “very strong” and “decisive” evidence in favor of model 1.
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sim.fittedgraph<-fit.graph(sim.graph.params)

Starting estimation of admixture rates (LBFGS score optimisation)
Initial score= 316.0469

Estimation ended in 0 m 0 s
Final Score: 1.004106
BIC: 276.6086

#Estimated edge lengths
sim.fittedgraph@edges.length

P7<->P1 s1<->P2 s2<->P3 S<->P6 P8<->s2 P7<->s1 P9<->P4 P9<->P5 P8<->P7 R<->P8 R<->P9
0.004079551 0.001970516 0.002148837 0.002111818 0.006334944 0.002228311 0.012858490 0.012529775 0.004160468 0.006445943 0.006445943

#Estimated admixture proportion
sim.fittedgraph@admix.prop

[1] 0.2478947
#Final Score
sim.fittedgraph@score

[1] 1.004106
#BIC
sim.fittedgraph@bic

[1] 276.6086

The fitted.graph object also stores the output results from the optim optimization function in the slot op-
tim.results. For instance, in the example below, convergence was reached without any issue (convergence=0 )29:
#optim function results (list)
sim.fittedgraph@optim.results

$par
[1] 0.2478947

$value
[1] 1.004106

$counts
function gradient

8 8

$convergence
[1] 0

$message
[1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"

As for graph.params objects (see section 5.1.1), the plot function may be directly applied to fitted.graph objects
to plot the admixture graph with estimated parameter values30. The admix.fact and edge.fact argument
of the fit.graph function allow to apply a multiplying factor to the printed branch lengths and admixture
proportions (by default admix.fact=100, i.e., admixture proportions are printed in %; and edge.fact=1000,

29In case of convergence problem (i.e., convergence not equal to 0), a message detailing execution error in the optimization
algorithm is stored in the optim.results component named message. For more details, see the documentation for the optim
function with the command ?optim providing the package optim is loaded

30the graph is also coded in dot format with a character vector stored in the dot.graph slot of the resulting fitted.graph object.
As for generate.graph.params, a dot file may also be printed out by specifying an output file name prefix with the outfileprefix
argument of the fit.graph function (or using the command writeLines(x@dot.graph,con=outfile) where x is the fitted.graph object
and outfile is the desired named of the dot output file). See 5.1.1 for more details on how to externally export and customize dot
files
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i.e. edge lengths are printed in h). Figure 11 shows the fitted example graph and was generated with the
following command:
plot(sim.fittedgraph)
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Figure 11: Plot of the admixture graph specifying the simulated scenario with fitted parameter values (x1000
for edge lengths)

Notice
The two edges from the root node of the graph are not identifiable and only their joint lengths can
be estimated. The root position is arbitrarily set in the mid position (i.e., the two root edges have
the same length by construction as shown in Figure 11).

5.2.1 Scaling of branch lengths in drift units

The estimated edge lengths are in the same scale as the other f-statistics which limits their interpretation
since they strongly depend on the SNP ascertainment process (see section 4). Lipson et al. (2013) showed
however that the lengths may be approximately scaled in genetic drift units (i.e., in units of τ = t

2Ne
where

t is a number of generations and Ne is the diploid effective population along the branch) using estimates
of overall marker heterozygosities within (i.e., 1 − Q1) or across (i.e., 1 − Q2) population (Gautier et al.
2022). Briefly, for a given edge P ↔ C relating a child node C to its parent node P with an (unscaled)
estimated branch length êP↔C, τ̂P↔C = 2 êP↔C

ĥP

where τ̂P↔C is the estimated branch length scaled in drift

units and ĥP is the estimated heterozygosity in the (parent) node P . The parent node heterozygosities can be
estimated from leaves to root by using the property hP = hC + 2eP↔C = 0 that relate the child C and parent
P node heterozygosities (hC and hP respectively) and eP↔C (Lipson et al. 2013). When the drift.scaling
argument is set to TRUE31, the fit.graph function returns the edge lengths scaled in drift units in a slot
named edges.length.scaled together with the estimated node heterozygosities (nodes.het slot) as shown below
with the example data:
sim.fittedgraph.scaled<-fit.graph(sim.graph.params,drift.scaling = TRUE,verbose=FALSE)

Note that the obtained results are the same as above with no drift scaling since the latter is a post-processing
step independent of admixture graph parameters estimation
#Estimated edge lengths
sim.fittedgraph.scaled@edges.length.scaled

P7<->P1 s1<->P2 s2<->P3 S<->P6 P8<->s2 P7<->s1 P9<->P4 P9<->P5 P8<->P7 R<->P8 R<->P9

31providing the input graph.params object includes estimates of within-population heterozygosities (see section 5.1.2)
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0.04964054 0.02405296 0.02631275 0.02516072 0.07378969 0.02711439 0.14321071 0.13954967 0.04846131 0.07700936 0.07700936

When plotting the resulting fitted.graph objects, branch lengths are displayed in drift scaled units as shown in
the Figure 12 below obtained with the following command:
plot(sim.fittedgraph.scaled)
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Figure 12: Plot of the admixture graph specifying the simulated scenario with fitted edge lengths scaled in
drift units (x1,000)

The estimated branch lengths are close to the simulated ones (Figure 1) as represented below (see Gautier
et al. 2022 for a more in-depth exploration of the accuracy of the estimates):

P7<->P1 s1<->P2 s2<->P3 S<->P6 P8<->s2 P7<->s1 P9<->P4 P9<->P5 P8<->P7 R<->P8+R<->P9
Estimated 0.04964054 0.02405296 0.02631275 0.02516072 0.07378969 0.02711439 0.1432107 0.1395497 0.04846131 0.1540187
Simulated 0.05000000 0.02500000 0.02500000 0.02500000 0.07500000 0.02500000 0.1500000 0.1500000 0.05000000 0.1500000

5.2.2 Estimating 95% confidence intervals of the estimated parameters values

Calling the fit.graph function with the compute.ci argument set to TRUE allows deriving (rough) 95%
confidence intervals for the admixture graph parameter estimates. The procedure considers each parameter in
turn (the other parameters being set to their estimated values) and consists of interpreting the score difference
Sν − S⋆ (where S⋆ is the fitted graph score associated with estimated parameter value ν⋆ and Sν is the score
associated with a parameter value ν ̸= ν⋆) as a likelihood-ratio test statistics following a χ2 distribution with
one degree of freedom (see Gautier et al. 2022 for details). The lower and upper boundaries νmin and νmax
of the 95% CI (such Sν − S⋆ < 3.84 for all νmin < ν < νmax) are then simply computed using a bisection
method (with a 10−4 precision threshold).
sim.fittedgraph.with.ci<-fit.graph(sim.graph.params,compute.ci=TRUE,

drift.scaling = TRUE,verbose = FALSE)
#95% CI for the admixture proportion
sim.fittedgraph.with.ci@admix.prop.ci

95% Inf. 95% Sup.
a 0.2354879 0.2604726
#95% CI for edge length (including drift scaled as drift.scaling=TRUE)
sim.fittedgraph.with.ci@edges.length.ci

95% Inf. 95% Sup. 95% Inf. (drift scaled) 95% Sup. (drift scaled)
P7<->P1 0.003888322 0.004322695 0.04731364 0.05259916
s1<->P2 0.001785780 0.002153260 0.02179800 0.02628362
s2<->P3 0.001947384 0.002392453 0.02384593 0.02929586
S<->P6 0.001913835 0.002294537 0.02280190 0.02733768
P8<->s2 0.006037994 0.006638187 0.07033080 0.07732187
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P7<->s1 0.002019406 0.002471907 0.02457242 0.03007851
P9<->P4 0.012406433 0.013340492 0.13817596 0.14857899
P9<->P5 0.012040331 0.013011938 0.13409851 0.14491974
P8<->P7 0.003835432 0.004464375 0.04467527 0.05200122
R<->P8 0.006219328 0.006686937 0.07430200 0.07988849
R<->P9 0.006219328 0.006686937 0.07430200 0.07988849

The simulated values are all within the estimated 95% CI of the estimated value except for the long eP9↔P4
and eP9↔P5 branches that are slightly higher than the upper boundary. Note also that if the 95% CI for the
admixture proportion a contains the simulated value of 0.25, it is narrower than the one that may be derived
from the block-jackknife estimate of the F4-ratio standard error (see section 4.3 and Gautier et al. 2022 for
a more thorough evaluation of the estimated 95% CI).

5.2.3 Assessing the fit of the graph with the compare.fitted.fstats function

As outlined by Patterson et al. (2012) and Lipson (2020), a straightforward but highly informative
approach to assess the fit of the graph is to compare the f-statistics derived from the fitted admixture graph
parameters to the estimated ones, i.e., to evaluate to which extent the fitted F-statistics lie within the
confidence intervals of the estimated ones. This may be summarized by computing a Z-score of the residuals
for each f-statistics as Z = f−g

σ2
g

where f and g stand for the fitted and estimated values respectively and σ2
g

is the standard error of g. This information is available for the basis f-statistics in the fitted.outstats slot of
the fitted.graph object generated by the fit.graph functions, as illustrated below:
#Fitted basis F-stats
sim.fittedgraph.scaled@fitted.outstats

Stat. value Fitted Value Z-score
P1,P2 0.008274108 0.008278377 0.03287705
P1,P3 0.016680443 0.016723801 0.20561875
P1,P4 0.033971079 0.033990395 0.05587988
P1,P5 0.033727224 0.033661681 -0.18890298
P1,P6 0.012237561 0.012265163 0.16197671
P1;P2,P3 0.004048392 0.004079551 0.26473869
P1;P2,P4 0.004087474 0.004079551 -0.05972586
P1;P2,P5 0.004149524 0.004079551 -0.52164304
P1;P2,P6 0.004610668 0.004631937 0.19288765
P1;P3,P4 0.008230291 0.008240019 0.05210482
P1;P3,P5 0.008244937 0.008240019 -0.02672913
P1;P3,P6 0.011937638 0.011973206 0.20637613
P1;P4,P5 0.021148713 0.021131906 -0.06164584
P1;P4,P6 0.007189623 0.007208661 0.11673856
P1;P5,P6 0.007234212 0.007208661 -0.16250691

However, the fit should be evaluated for all the f-statistics (not only those forming the f-statistics vector-space
basis used to fit the admixture graph) with the compare.fitted.fstats function. This may in turn provide
insights into those populations (or graph edges) leading to poor fit (Lipson 2020). As shown below, the
function requires the original fstats object (that may contain f-statistics for additional populations not
represented in the admixture graph) and the fitted.graph object. It then produces a matrix with information
on all the fitted stats and the n.worst.stats (by default n.worst.stats=5) f-statistics, i.e. with the lowest
absolute Z-score, are directly printed in the console:
sim.fitted.fstats.comp<-compare.fitted.fstats(sim6p.allelecount.fstats,sim.fittedgraph)

5 Worst fit for:
Estimated Fitted Z–score

P1,P2;P3,P5 1.011325e-04 0.000000e+00 -0.8442359
P1,P2;P5,P6 4.611437e-04 5.523863e-04 0.7459512
P1,P2;P4,P5 6.205022e-05 -3.469447e-18 -0.6662270
P2;P1,P5 4.124584e-03 4.198826e-03 0.5401737
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P1;P2,P5 4.149524e-03 4.079551e-03 -0.5216430
#Information on the last five fitted F-statistics
tail(sim.fitted.fstats.comp)

Estimated Fitted Z–score
P2,P6;P3,P4 -4.787097e-03 -0.004764545 0.16513038
P2,P6;P3,P5 -4.804558e-03 -0.004764545 0.27257790
P2,P6;P4,P5 -1.746147e-05 0.000000000 0.16092207
P3,P4;P5,P6 -1.765179e-02 -0.017656432 -0.01671976
P3,P5;P4,P6 -1.762185e-02 -0.017656432 -0.12418834
P3,P6;P4,P5 2.994286e-05 0.000000000 -0.39137603

As shown above, no outlying fitted f-statistics (e.g., with |Z| > 2) is observed on the example providing strong
support for the fitted admixture graph.

5.3 Adding a new leaf to an existing graph
The add.leaf function allows to perform iterative calls to the fit.graph function in order to evaluate all possible
connections of a given leaf (population) to an existing graph with non-admixed and/or admixed edges. Three
input arguments are required:

• a graph specified within a graph.params object (obtained with the generate.graph.params function, see
section 5.1.1) or a fitted.graph object (obtained with the fit.graph, add.leaf or graph.builder functions,
see sections 5.2 and 6.2 below allowing more convenient exploration of the admixture graph space via
recursive calls)

• the name of the leaf to add (leaf.to.add argument)
• an fstats object (see 4) containing a minima estimates of all the f2 and f3 statistics (and their standard

errors) involving the leaves of the input graph and the leaf to add

By default the function tests all the possible positions of the candidate leaf (leaf.to.add) to the graph with
non-admixed (including a new rooting with the candidate leaf as an outgroup) or admixed edges. If ne

is the number of non-admixed edges in the original graph, the number of tested graphs equals ne + 1 for
non-admixed candidate edges32 and 1

2 ne(ne − 1) for admixed candidate edges33. Optional arguments may
allow disabling the evaluation of non-admixed (by setting the only.test.non.admixed.edges argument to TRUE)
or admixed (by setting the only.test.admixed.edges argument to TRUE) candidate edges.

The object returned by the add.leaf function is a list consisting of:

• an element named n.graphs corresponding to the number of tested graphs
• an element named fitted.graphs.list which consists of a list of fitted.graph objects (indexed from 1 to

n.graphs and in the same order as the list “graphs”) containing the fit.graph function results for each
candidate graph

• an element named best.fitted.graph which is the fitted.graph object associated to the candidate graph
with minimal BIC (see 5.2) among all the n.graphs graphs within fitted.graphs.list.

• an element named bic which is a vector consisting of the n.graphs BIC (indexed from 1 to n.graphs and
in the same order as the fitted.graphs.list list).

Use of the add.leaf function is illustrated below on the example data by evaluating the connection of the
P6 population on the graph (actually tree) connecting the five other populations (P1, P2, P3, P4 and P5 )
specified according to the simulated topology in a graph.params object (5.1.1) named sim5p.tree.params and
plotted in Figure 13:
sim5p.tree<-sim.graph<-rbind(c("P1","P7",""),c("P2","P7",""),c("P3","P8",""),

c("P7","P8",""),c("P4","P9",""),c("P5","P9",""),
c("P8","R",""),c("P9","R",""))

32The newly added node is named “N-”leaf.to.add
33The three added nodes are named “S-”leaf.to.add, “S1-”leaf.to.add and “S2-”leaf.to.add and the admixture proportions are

named with a letter (A to Z depending on the number of admixed nodes already present in the graph)
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sim5p.tree.params<-generate.graph.params(sim5p.tree)
#Note: fstats object is not necessary at this stage
plot(sim5p.tree.params)

P1 P2

P3 P4 P5P7

P8 P9

R

Figure 13: Plot of the five-population graph on which to add the P6 population with the add.leaf function

All the possible positions of the P6 population on the sim5p.tree graph (here using the f-statistics estimated
on the simulated allele count data, see section 4), are tested as follows:
add.P6<-add.leaf(sim5p.tree.params,leaf.to.add="P6",

fstats=sim6p.allelecount.fstats,
verbose=FALSE,drift.scaling=TRUE)

Note that the verbose option set to FALSE allows disabling the printing of the progress and timing of each
analysis (which may be useful in practice) and the drift.scaling option set to TRUE allows passing it to each
fit.graph call to obtained estimates of branch lengths in drift units (see section 5.2).

The graph with the lowest BIC among all the tested graphs may then be plotted by calling the plot function
on the corresponding fitted.graph object stored in the best.fitted.graph element of the add.P6 output list with
the following command that generates Figure 14:
plot(add.P6$best.fitted.graph)

P6

P2

P3P1

P4 P5

S-P6

25

P7

49

S1-P6

27

24 25%

P8

50

S2-P6

76

26

75%

P9

143 140

R

77 77

Figure 14: Plot of the graph with the lowest BIC among all the possible graphs connecting P6 to the
five-population tree tested by the add.leaf. The fitted edge lengths are in drift units (x1000) since drift.scaling
argument was set to TRUE when calling add.leaf.

The best fitting graph based on BIC criterion (stored in the best.fitted.graph slot of the output list) is in
perfect agreement with the simulated scenario (Figure 1). It actually corresponds to the one directly fitted
using the simulated scenario which was represented in Figure 12 above (only the names of the nodes involved
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in the admixture events differ since automatically given by the add.leaf function). In addition, comparisons
of the BIC of the different graphs provide strong support in favor of this best fitting graph, the second lowest
BIC being more than 86 units larger i.e., far above the threshold of 10 for very strong evidence (see section
5.2):
#D_BIC w.r.t. best fitted BIC
D_BIC=add.P6$bic-add.P6$best.fitted.graph@bic
#5 First lowest DeltaBIC (the first value of zero corresponding to the best fitted graph)
head(sort(D_BIC))

[1] 0.00000 86.31675 86.31675 279.48967 284.90577 284.90577

6 Building admixture graph from scratch
Lipson et al. (2013) proposed a two-step approach (implemented in the MixMapper software34) to build
admixture graph when prior knowledge about history and relationships of investigated population is limited
(which is usually the case). It consists of first building a scaffold tree of unadmixed populations and then
adding the remaining populations successively on the graph. Such a supervised approach nevertheless requires
to carefully assess at each step the graph fit and possibly try different ordering in the inclusion of populations
(or removal of some populations). The poolfstat package provides functions to help building scaffold trees that
may further be used as input tree for the add.leaf function previously described above (5.3) to implement the
Lipson et al. (2013) two-step approach.

6.1 Building scaffold trees of unadmixed populations
In the absence of admixture, the f2 statistics among all pairs of populations are expected to be additive
along the paths of the (binary) tree summarizing the history of the populations (Lipson et al. 2013). As a
result, the (unrooted) tree topology and branch lengths connecting unadmixed populations may be inferred
with a neighbor-joining algorithm to derive a scaffold tree for further admixture graph construction. Based
on the estimated f-statistics stored in a fstats object, the functions described below allows to i) identify
candidate sets of unadmixed populations among the genotyped ones (find.tree.popset function); ii) infer a
neighbor-joining scaffold tree from a candidate set of unadmixed populations (rooted.njtree.builder function);
and iii) to infer root position based on the consistency of within population heterozygosities between the two
resulting partitions of rooted trees (see p1799 in Lipson et al. 2013).

6.1.1 The find.tree.popset function to identify sets of candidate scaffold populations

The find.tree.popset function selects maximal sets of unadmixed populations from an fstats object35. The
procedure involves i) discarding all the populations showing a significantly negative f3 at a significance
theshold specified with the f3.zcore.threshold argument (equal to −1.65 by default, i.e., 95% significance
threshold, see section 4.1.2); and ii) keeping only sets of populations with all possible quadruplets passing
the f4-based test of treeness i.e., with an absolute f4 Z-score lower than a threshold specified with the
f4.zcore.threshold argument (equal 2 by default, i.e., 95% significance threshold, see section 4.1.3). The latter
step is implemented via a greedy algorithm (that may be run in parallel by specifying a number of threads
with the nthreads argument) consisting of trying to extend the size of the population sets from all sets of
four populations after adding candidate populations one at a time. If the number of populations is large,
this algorithm may take some times. Note that increasing (respectively decreasing) f3.zcore.threshold toward
value closer to 0 may allow decreasing (respectively increasing) the number of initial candidate populations
to be tested for inclusion in a set. Similarly, increasing (respectively decreasing) f4.zcore.threshold may allow
increasing (respectively decreasing) the size of the sets. When applied to the example allele count and read
count data, a single set of 5 unadmixed populations (P1, P2, P3, P4 and P5 ) is retrieved as expected from
the simulated scenario (Figure 1):

34http://cb.csail.mit.edu/cb/mixmapper/
35providing it was Z-scores were estimated for f3 and f4 statistics, i.e., that block-jackknife estimates of s.e. were carried out,

see section 4
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# count data
scaf.pops<-find.tree.popset(sim6p.allelecount.fstats,verbose=FALSE)
scaf.pops$pop.sets

[,1] [,2] [,3] [,4] [,5]
PopSet1 "P1" "P2" "P3" "P4" "P5"
# 30X Pool-Seq data
scaf.pops<-find.tree.popset(sim6p.readcount30X.fstats,verbose=FALSE)
scaf.pops$pop.sets

[,1] [,2] [,3] [,4] [,5]
PopSet1 "Pool1" "Pool2" "Pool3" "Pool4" "Pool5"

As previously mentioned (section 4), for a given set consisting of n populations, a total of 3
(

n
4
)

= 1
8 n(n −

1)(n − 2)(n − 3) quadruplets can be formed. In other words, a given set of four populations A, B, C and D is
actually represented by only three quadruplets representative of the three possible unrooted tree topologies36

i) (A,B;C,D); ii) (A,C;B,D); and iii) (A,D;B,C). Among these, only a single quadruplet is expected to pass
the treeness test (i.e., if the correct unrooted tree topology is (A,C;B,D), then the absolute value of the
Z-scores associated to f4(A,B;C,D) and f4(A,D;B,C) or their equivalent will be high). For each of identified
sets of presumably unadmixed populations, the list of the

(
n
4
)

quadruplets passing the treeness test is given
in the passing.quadruplets element of the output list as illustrated below:
# list of the 15 quadruplets passing the treeness test for the identified set
scaf.pops$passing.quaduplets

[,1] [,2] [,3]
PopSet1 "Pool1,Pool3;Pool4,Pool5" "Pool2,Pool3;Pool4,Pool5" "Pool1,Pool2;Pool4,Pool5"

[,4] [,5]
PopSet1 "Pool1,Pool2;Pool3,Pool4" "Pool1,Pool2;Pool3,Pool5"

In addition, for each of the identified sets, the range of variation of the passing quadruplets is given in the
Z_f4.range element of the output list:
scaf.pops$Z_f4.range

Min. |Zscore| Max. |Zscore|
PopSet1 0.02584028 0.8067878

When several sets are identified, this information may be useful to prioritize the sets of unadmixed populations
(e.g., via a minimax criterion consisting of choosing the set of populations that has the lowest maximal
absolute Z-score for its underlying quadruplets that pass the treeness test).

6.1.2 The rooted.njtree.builder to building (and root) a tree of candidate scaffold populations

The rooted.njtree.builder allows first building a Neighbor-Joining37 of a set of presumably unadmixed
populations (as obtained e.g., from the find.tree.popset functions) given as a vector of population names in
the pop.sel argument based on the matrix of their pairwise f2 stored in the provided fstats object (fstats
argument). The resulting (unrooted) tree is then rooted by relying on the property that root R heterozygosity
hR = 1 − QA,B

2 estimated from all the possible pairs of populations A and B that satisfies the property of
being only connected through R in the tree (i.e., A and B each belong to one of the two tree partitions
defined by the R) should be consistent (Lipson et al. 2013). In other words, the most likely rooted tree
among the (2nl − 3) possible ones should be the one displaying the narrower range of variation of the hR

estimates. Note that the root position is always placed in the mid-position of the candidate branch.

The object returned by the rooted.njtree.builder function is a list consisting of:
36for each of these quadruplets, seven other equivalent combinations formed by permuting populations within each pair can be

defined as mentioned in the notice p19
37relying on the nj function from the popular package ape (Paradis et al. 2004)
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• an element named n.rooted.trees corresponding to the number of possible rooted binary trees that were
evaluated

• an element named fitted.rooted.trees.list which consists of a list of fitted.graph objects (indexed from 1
to n.rooted.trees).

• an element named best.rooted.tree which corresponds to the fitted.graph object associated with the most
likely rooted tree (among all the fitted.rooted.trees.list ones) identified as the one displaying the minimal
standard deviation over the hR estimates

• an element named root.het.est.var consisting of a matrix of n.rooted.trees rows and 4 columns with i) the
average estimated root heterozygosity hR across all the pairs of leaves that are relevant for estimation
(see above); ii) the size of the range of variation; iii) the standard deviation of the hR estimates, and iv)
the number of population pairs relevant for estimation

• if n.edges>3, an element named nj.tree.eval that gives for each evaluated rooted tree, the five f−statistics
configuration displaying the worst fit, i.e., with the five highest absolute Z-score for the predicted value
(obtained by internally calling the compare.fitted.fstats function). Note that these are independent of
the rooting (so cannot be used to infer the root position).

Use of the rooted.njtree.builder function is illustrated below to build the scaffold tree (using Pool-Seq read
count data) based on the set of unadmixed populations (identified with find.tree.popset) and plotted with
the plot function applied to the fitted.graph object of the resulting list (best.rooted.tree element) to generate
Figure 15:
scaf.tree<-rooted.njtree.builder(fstats=sim6p.readcount30X.fstats,

pop.sel=scaf.pops$pop.sets[1,],plot.nj=FALSE)

Score of the NJ tree: 0.6884542
Construction of all the 7 possible rooted tree from the NJ tree
(stored as graph in the rooted.graph object of the output list)
plot(scaf.tree$best.rooted.tree)
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Figure 15: Plot of the rooted scaffold tree of unadmixed populations inferred by rooted.njtree.builder. The
fitted edge lengths are in a drift scale (x1000).

The fit of the Neighbor-Joining tree can be checked by inspecting the nj.tree.eval element:
scaf.tree$nj.tree.eval

Estimated Fitted Z–score
Pool1,Pool2;Pool3,Pool5 1.011014e-04 0.000000e+00 -0.8067878
Pool1,Pool2;Pool3,Pool4 6.087576e-05 0.000000e+00 -0.5098456
Pool2;Pool1,Pool5 4.120591e-03 4.181198e-03 0.4330143
Pool1;Pool2,Pool5 4.154896e-03 4.094289e-03 -0.4293005
Pool1,Pool2;Pool4,Pool5 4.022566e-05 3.469447e-18 -0.4233082

The following range of variation of the hR estimates were obtained for the different possible root position:
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scaf.tree$root.het.est.var

Mean Range sd ncomps
Tree1 0.1814754 0.0234940763 0.0115371318 4
Tree2 0.1810025 0.0228772762 0.0113327886 4
Tree3 0.1857808 0.0155159278 0.0076153034 6
Tree4 0.1907099 0.0007923822 0.0002825614 6
Tree5 0.1880369 0.0113894828 0.0055518382 4
Tree6 0.1878868 0.0111334494 0.0054505348 4
Tree7 0.1833542 0.0152408946 0.0085429545 4

The “best” inferred rooted scaffold tree (i.e., the fourth one with both lowest range of hR variation) is
consistent with the simulated scenario. It may further be used as a reference graph to construct the complete
admixture graph after adding Pool6 population using the add.leaf function (see 5.3). The obtained graph
plotted in Figure 16 with the commands below is very close to the one previously inferred with allele count
data (Figure 14) and very strongly supported by the data:
add.pool6<-add.leaf(scaf.tree$best.rooted.tree,leaf.to.add="Pool6",

fstats=sim6p.readcount30X.fstats,verbose=FALSE,drift.scaling=TRUE)
plot(add.pool6$best.fitted.graph)
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Figure 16: Plot of the graph with the lowest BIC among all the possible graphs connecting Pool6 to the
scaffold tree of unadmixed population tested by the add.leaf. The fitted edge lengths are in drift units (x1000)
since drift.scaling argument was set to TRUE when calling add.leaf.

#D_BIC w.r.t. best fitted BIC
D_BIC=add.pool6$bic-add.pool6$best.fitted.graph@bic
#5 First lowest DeltaBIC (the first value of zero corresponding to the best fitted graph)
head(sort(D_BIC))

[1] 0.00000 78.75611 78.75611 254.27229 259.68839 259.68839

Notice
In practice, the rooted.njtree.builder function should be used with caution since both the Neighbor-
Joining tree construction and the heterozygosity-based rooting of the tree may be sensitive to
long-branch attraction (most particularly if some highly diverged populations are included). The
inferred topology may even violate treeness test for some of the quadruplets (see e.g., the empirical
example detailed in the Supplementary Vignette V2 by Gautier et al. 2022).
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6.2 Extending an initial tree (or graph) with the graph.builder function
The graph.builder function implements an heuristic to carry out a larger exploration of the space of possible
graphs (but usually still not exhaustive) obtained from the joint addition of several populations (leaves) given
as an input vector (leaves.to.add argument) to an existing graph (as generated using the rooted.njtree.builder
function described above or included in a graph.params or fitted.graph object) or a list of graphs. The
algorithm consists of adding the leaves in the order of the input vector to each of the graphs stored in a heap
via successive calls to the add.leaf function (section 5.3). More precisely, the heap first consists of the initial
input graph (or list of graph) and at each iteration, the function add.leaf is used to evaluate all the possible
connections of each candidate leaf (with non-admixed or admixed edges) to all the graphs of the heap. For
each of the latter, the newly fitted graphs displaying a BIC less than heap.dbic units (set to 6 by default)
away from the best fitting graph (i.e., the one with the lowest BIC ) included in the new heap. Once all
the graphs have been evaluated, if the heap contains more than max.heap.size (set to 25 graphs by default)
graphs, only the max.heap.size graphs with the lowest BIC are kept in the heap. Finally, after testing the
latest candidate leaf, only the graphs with a BIC less than heap.dbic units away from the graph with lowest
BIC in the heap are retained in the final list of graphs.

The object returned by the function is a list consisting of:

• an element named n.graphs corresponding to the final number of graphs
• an element named fitted.graphs.list which consists of a list of fitted.graph objects (indexed from 1 to

n.graphs) containing the fit.graph function results for each graph
• an element named best.fitted.graph which is the fitted.graph object associated to the graph with the

lowest BIC among all the n.graphs graphs included in fitted.graphs.list.
• an element named bic which is a vector containing the BIC of the n.graphs BIC (indexed from 1 to

n.graphs and in the same order as fitted.graphs.list).

Use of the graph.builder function is illustrated below on the PoolSeq example data by starting from an initial
rooted tree constructed with the rooted.njtree.builder for the three populations Pool1, Pool3, Pool4 and Pool5.
This tree is extended by successively adding the two remaining populations Pool2 and Pool6 :
#build an initial 3 population trees with "Pool1","Pool3","Pool4" and "Pool5"
init.tree<-rooted.njtree.builder(fstats=sim6p.readcount30X.fstats,

pop.sel=c("Pool1","Pool3","Pool4","Pool5"),plot.nj=FALSE)

Score of the NJ tree: 0.0006790273
Construction of all the 5 possible rooted tree from the NJ tree
(stored as graph in the rooted.graph object of the output list)
#adding the three remaining pops
final.graphs<-graph.builder(x=init.tree$best.rooted.tree,leaves.to.add=c("Pool2","Pool6"),

fstats=sim6p.readcount30X.fstats)

####################
Adding: Pool2

21 graphs evaluated in 0 h 0 m 1 s
6 graphs stored in the heap
####################
Adding: Pool6

261 graphs evaluated in 0 h 0 m 5 s
7 graphs stored in the heap

Final Number of graphs: 7
(min. BIC= 275.8408 )

Overall Analysis Time: 0 h 0 m 5 s ( 282 graphs evaluated)
#D_BIC w.r.t. to the "true" graph as identified previously (object add.pool6$best.fitted.graph)
D_BIC=final.graphs$bic-add.pool6$best.fitted.graph@bic
#5 First lowest DeltaBIC (the first value of zero corresponding to the best fitted graph)
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head(sort(D_BIC))

[1] 5.684342e-14 4.667688e+00 4.923348e+00 4.923348e+00 4.923348e+00
[6] 5.416100e+00

Among the 7 final graphs, the one with the lowest BIC is exactly the same as the one plotted in Figure 16 and
corresponds to the simulated scenario. It should however be noticed that other alternative graphs are also
identified with a good support. Moreover, starting with other population trees (e.g., a three population tree
consisting of Pool1, Pool2 and Pool5 ) could result in several graphs with the same support (i.e., ∆BIC = 0)
but with a different positioning of the root (not shown). In practice, it may be important to start with
scaffold trees that are as large as possible and representative of the structuring of diversity of the represented
populations (i.e., not too unbalanced with respect to the leaves to be added). Some prior knowledge about
the relationships of some of the populations may also be helpful to that respect. As examplified in the
Supplementary Vignette V2 of Gautier et al. (2022), it is also highly recommended to test different orders
of inclusion (possibly all) of the leaves (as specified in the vector leaves.to.add).

7 Other utilities
7.1 Principal Component Analysis with randomallele.pca:
The randomallele.pca implements a Principal Component Analysis on allele count data (stored in countdata
objects, see section 2.1) or Pool-Seq read count data (stored in pooldata objects, see section 2.2) to provide
an overall visualization of the genetic structuring of (population) samples. To account for possible unequal
sample size and read coverages (for pool-seq data), the PCA is performed (via singular-value decomposition)
on a npop (or npools) x nsnp matrix of a single randomly sampled allele (or read for pooldata object) for
each SNP and for each population38. This procedure was inspired by Skoglund and Jakobsson (2011) and
is similar to that implemented in the PCA_MDS module of the software ANGSD (Korneliussen et al.
2014).

Figure 17 illustrates PCA of the allele and read count simulated data sets using randomallele.pca. Note that
the resulting objects contains loadings for the different PCA allowing to draw custom plots:
tmp=cbind(matrix(rep(c(1,3),each=2),4,2),matrix(rep(c(1,4),each=2),4,1),

matrix(rep(c(2,4),each=2),4,1),matrix(rep(c(2,5),each=2),4,2))
layout(tmp)
#PCA on the count data (the object)
sim6p.allelecount.pca=randomallele.pca(sim6p.allelecount,col=1:6,pch=16,main="Allele Count data")
#PCA on the read count data (the object)
sim6p.readcount30X.pca=randomallele.pca(sim6p.readcount30X,col=1:6,pch=16,main="Read Count data")
#plotting PC1 and PC3; PC1 and PC4; and PC1 and PC5
#(using the sim6p.readcount30X.pca information to avoid
#rerunning randomallele.pca with plot.pcs=c(1,3)....)
i=1
for(j in 3:5){
plot(sim6p.readcount30X.pca$pop.loadings[,i],sim6p.readcount30X.pca$pop.loadings[,j],

xlab=paste0("PC",i," (",round(sim6p.readcount30X.pca$perc.var[i],2),"%)"),
ylab=paste0("PC",j," (",round(sim6p.readcount30X.pca$perc.var[j],2),"%)"),
col=1:6,pch=16,main="Read Count data")

text(sim6p.readcount30X.pca$pop.loadings[,i],
sim6p.readcount30X.pca$pop.loadings[,j],sim6p.readcount30X@poolnames)

abline(h=0,lty=2,col="grey") ; abline(v=0,lty=2,col="grey")
}

As expected, very similar representations are obtained with the allele or read count data. Also, as expected
from the simulation scenario (Figure 1), the first axis separates the two outgroup populations P4 and P5

38The resulting information loss has generally (very) little impact on the resulting representation as the number of SNPs is
usually very high
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Figure 17: Principal Component Analyses (using random allele sampling) for the allele count and 30X
Pool-Seq data sets

from the other populations, the second axis separates P4 and P5; etc.

7.2 Symbolic representation of the F parameters, admixture graph equations
and the scaled covariance matrix Ω with graph.params2symbolic.fstats

Given a graph topology relating the populations stored in a graph.params object, the graph.params2symbolic.fstats
functions provide symbolic representation of the model equations used to fit the underlying admixture
graph and all the F2, F3 and F4 parameters together with the scaled covariance matrix of population allele
frequencies called Ω after Gautier (2015). Such representation may be useful for a closer examination of
graph properties (or education purposes). The output objects consists of a list with the following elements:

• a character matrix named model.matrix consisting of the matrix M relating the parameters underlying
the basis f-statistics and graph edge lengths in the model equations defined as f = Mb where f is the
vector of the basis f-statistics (row names of the model.matrix M) and b is the vector of graph edges
(column names of model.matrix M).

• a character matrix named omega consisting of the the scaled covariance matrix of population allele
frequencies Ω (see e.g., Gautier 2015).

• a character vector F2.equations consisting of the symbolic representations of all the 1
2 nl(nl − 1) F2

parameters (with edge and admixture proportion parameter names as defined in the graph.params
object)

• a character vector F3.equations consisting of the symbolic representations of all the 1
2 nl(nl − 1)(nl − 2)

F3 parameters (with edge and admixture proportion parameter names as defined in the graph.params
object)

• a character vector F4.equations consisting of the symbolic representations of all the 1
8 nl(nl − 1)(nl −
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2)(nl − 3) F4 parameters (with edge and admixture proportion parameter names as defined in the
graph.params object)

These different equations can also be printed in an output text file (with name specified by the outfile
argument). The following example shows results obtained using the graph.params object sim.graph.params
generated in 5.1.1 (Figure 10) that specifies the simulation scenario (Figure 1):
sim.fstats.sym<-graph.params2symbolic.fstats(sim.graph.params,outfile = "Fstats_equations")

Equations will be printed in file Fstats_equations
#Model equations matrix
sim.fstats.sym$model.matrix

P7<->P1 s1<->P2 s2<->P3 S<->P6 P8<->s2 P7<->s1 P9<->P4 P9<->P5 P8<->P7 R<->P8 R<->P9
F2(P1,P2) "1" "1" "0" "0" "0" "1" "0" "0" "0" "0" "0"
F2(P1,P3) "1" "0" "1" "0" "1" "0" "0" "0" "1" "0" "0"
F2(P1,P4) "1" "0" "0" "0" "0" "0" "1" "0" "1" "1" "1"
F2(P1,P5) "1" "0" "0" "0" "0" "0" "0" "1" "1" "1" "1"
F2(P1,P6) "1" "0" "0" "1" "a^2-2*a+1" "a^2" "0" "0" "a^2-2*a+1" "0" "0"
F3(P1;P2,P3) "1" "0" "0" "0" "0" "0" "0" "0" "0" "0" "0"
F3(P1;P2,P4) "1" "0" "0" "0" "0" "0" "0" "0" "0" "0" "0"
F3(P1;P2,P5) "1" "0" "0" "0" "0" "0" "0" "0" "0" "0" "0"
F3(P1;P2,P6) "1" "0" "0" "0" "0" "a" "0" "0" "0" "0" "0"
F3(P1;P3,P4) "1" "0" "0" "0" "0" "0" "0" "0" "1" "0" "0"
F3(P1;P3,P5) "1" "0" "0" "0" "0" "0" "0" "0" "1" "0" "0"
F3(P1;P3,P6) "1" "0" "0" "0" "1-a" "0" "0" "0" "1-a" "0" "0"
F3(P1;P4,P5) "1" "0" "0" "0" "0" "0" "0" "0" "1" "1" "1"
F3(P1;P4,P6) "1" "0" "0" "0" "0" "0" "0" "0" "1-a" "0" "0"
F3(P1;P5,P6) "1" "0" "0" "0" "0" "0" "0" "0" "1-a" "0" "0"

#scaled covariance matrix of allele frequencies (Omega)
sim.fstats.sym$omega

P1 P2 P3
P1 "P7<->P1+P8<->P7+R<->P8" "P8<->P7+R<->P8" "R<->P8"
P2 "P8<->P7+R<->P8" "s1<->P2+P7<->s1+P8<->P7+R<->P8" "R<->P8"
P3 "R<->P8" "R<->P8" "s2<->P3+P8<->s2+R<->P8"
P6 "P8<->P7*a+R<->P8" "(P7<->s1+P8<->P7)*a+R<->P8" "P8<->s2+R<->P8-P8<->s2*a"
P4 "0" "0" "0"
P5 "0" "0" "0"

P6 P4 P5
P1 "P8<->P7*a+R<->P8" "0" "0"
P2 "(P7<->s1+P8<->P7)*a+R<->P8" "0" "0"
P3 "P8<->s2+R<->P8-P8<->s2*a" "0" "0"
P6 "S<->P6+(P8<->s2+P7<->s1+P8<->P7)*a^2-2*P8<->s2*a+P8<->s2+R<->P8" "0" "0"
P4 "0" "P9<->P4+R<->P9" "R<->P9"
P5 "0" "R<->P9" "P9<->P5+R<->P9"

#F2 statistics (first five)
head(sim.fstats.sym$F2.equations)

[1] "F2(P1,P2) = P7<->P1+s1<->P2+P7<->s1"
[2] "F2(P1,P3) = P7<->P1+P8<->P7+s2<->P3+P8<->s2"
[3] "F2(P1,P6) = P7<->P1+(a^2-2*a+1)*P8<->P7+S<->P6+(a^2-2*a+1)*P8<->s2+a^2*P7<->s1"
[4] "F2(P1,P4) = P7<->P1+P8<->P7+R<->P8+P9<->P4+R<->P9"
[5] "F2(P1,P5) = P7<->P1+P8<->P7+R<->P8+P9<->P5+R<->P9"
[6] "F2(P2,P3) = s1<->P2+P7<->s1+P8<->P7+s2<->P3+P8<->s2"
#F3 statistics (first five)
head(sim.fstats.sym$F3.equations)

[1] "F3(P1;P2,P3) = P7<->P1"
[2] "F3(P1;P2,P6) = P7<->P1+a*P7<->s1"
[3] "F3(P1;P2,P4) = P7<->P1"
[4] "F3(P1;P2,P5) = P7<->P1"
[5] "F3(P1;P3,P6) = P7<->P1+(1-a)*P8<->P7+(1-a)*P8<->s2"
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[6] "F3(P1;P3,P4) = P7<->P1+P8<->P7"
#F4 statistics (first five)
head(sim.fstats.sym$F4.equations)

[1] "F4(P1,P2;P3,P6) = P7<->s1*a"
[2] "F4(P1,P2;P3,P4) = 0"
[3] "F4(P1,P2;P3,P5) = 0"
[4] "F4(P1,P2;P6,P4) = -P7<->s1*a"
[5] "F4(P1,P2;P6,P5) = -P7<->s1*a"
[6] "F4(P1,P2;P4,P5) = 0"

7.3 Exporting data for the R package admixtools2 or the program qpGraph:
7.3.1 Interfacing with the admixtools R package (with compute.fstats)

Setting option return.F2.blockjackknife.samples to TRUE when running compute.fstats (section 4.1) allows
to include an array with estimates of each pairwise-population f2 for each block-jackknife blocks over the
genome (i.e., of dimension npop × npop × nblocks) in the slot named F2.bjack.samples of the output fstats
objects. This array can be directly imported into the R package admixtools39 that contains highly valuable
utilities implementing refined algorithms to build admixture graphs (Maier et al. 2023), along with functions
to estimate f-statistics:
#computing fstats and outputting F2 block-jacknife block estimates
sim6p.readcount30X.fstats<-compute.fstats(sim6p.readcount30X,nsnp.per.bjack.block = 1000,

return.F2.blockjackknife.samples = TRUE,verbose=FALSE)
#Example showing how functions from admixtools (here to compute F4)
#can simply be used with the F2 block-jacknife block estimates (slot F2.bjack.samples)
#obtained from poolfstat
require(admixtools)
f4.admixtools=admixtools::f4(sim6p.readcount30X.fstats@F2.bjack.samples)
head(f4.admixtools) #with admixtools based on F2 unbiased estimates for Pool-Seq data obtained with poolfstat

# A tibble: 6 x 8
pop1 pop2 pop3 pop4 est se z p
<chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>

1 Pool1 Pool2 Pool3 Pool4 0.0000609 0.000119 0.510 6.10e- 1
2 Pool1 Pool3 Pool2 Pool4 0.00419 0.000179 23.3 1.76e-120
3 Pool1 Pool4 Pool2 Pool3 0.00413 0.000175 23.5 2.22e-122
4 Pool1 Pool2 Pool3 Pool5 0.000101 0.000125 0.807 4.20e- 1
5 Pool1 Pool3 Pool2 Pool5 0.00418 0.000175 23.9 5.42e-126
6 Pool1 Pool5 Pool2 Pool3 0.00408 0.000183 22.3 2.16e-110
head(sim6p.readcount30X.fstats@f4.values)

Estimate bjack mean bjack s.e. Z-score
Pool1,Pool2;Pool3,Pool4 5.657166e-05 6.087576e-05 1.194004e-04 0.5098456
Pool1,Pool2;Pool3,Pool5 9.947887e-05 1.011014e-04 1.253135e-04 0.8067878
Pool1,Pool2;Pool3,Pool6 5.653400e-04 5.621051e-04 6.409453e-05 8.7699380
Pool1,Pool2;Pool4,Pool5 4.290721e-05 4.022566e-05 9.502690e-05 0.4233082
Pool1,Pool2;Pool4,Pool6 5.087683e-04 5.012293e-04 1.208465e-04 4.1476513
Pool1,Pool2;Pool5,Pool6 4.658611e-04 4.610037e-04 1.275648e-04 3.6138791

As expected and illustrated above for f4, the results are exactly the same (although the output matrices are
not ordered in the same way) for estimates of f-statistics. More interestingly, the poolfstat object can further
be used to fit or find graphs with admixtools functions admixtools::qpGraph and admixtools::find_graphs
respectively as illustrated in the code below used to draw Figure 18. Note that the graph fitted with
admixtools::qpGraph when specifying the simulated scenario is exactly the same as the similar one fitted with
poolfstat::fit.graph function (compare Figures 18A and 11 respectively) .

39https://uqrmaie1.github.io/admixtools/articles/admixtools.html
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require(admixtools)
require(gridExtra)
#Specifying the simulation graph in admixtools2 format
#(matrix with each row specifying an edge
#i.e. the first two columns of poolfstat graph.params@graph object in reverse order)
adm.sim.graph=rbind(c("R","P9"),c("R","P8"),c("P9","Pool4"),c("P9","Pool5"),

c("P8","P7"),c("P8","S2"),c("S2","Pool3"),
c("P7","Pool1"),c("P7","S1"),c("S1","Pool2"),
c("S1","S"),c("S2","S"),c("S","Pool6"))

#fitting the graph with admixtools::qpgraph function
qpg_results = admixtools::qpgraph(sim6p.readcount30X.fstats@F2.bjack.samples, adm.sim.graph)
#find graph specifying one admixture event and pop P5 as an outgroup
fg_results=admixtools::find_graphs(sim6p.readcount30X.fstats@F2.bjack.samples,numadmix = 1,

outpop = "Pool5",verbose=FALSE)
#plotting the two graphs
g1<-plot_graph(qpg_results$edges,title = "A) qpgraph results")
g2<-plot_graph(fg_results$edges[[which.min(fg_results$score)]],

title = "B) find_graphs")
grid.arrange(g1,g2,ncol=2)
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Figure 18: Results obtained when analyzing the F2.bjack.samples object generated by compute.fstats function
for simulated Pool-Seq read count data with the functions qpgraph (A) function for simulated Pool-Seq read
count data with the functions qpgraph (A) and find_graphs (B) from the admixtools package.

The graph with the lowest score obtained from scratch (and specifying a single admixture events) by using
admixtools::find_graphs is similar to the true simulated one except for the positioning of the root (which is
not identifiable). The root’s position was actually influenced by specifying P5 as an outgroup. The score of
the top graph, which outperformed the second-place graphs by over one order of magnitude, is only slightly
higher than the score achieved using the true simulated topology:
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head(sort(fg_results$score))

[1] 1.125752 78.821158 78.821207 96.885161 97.361679 97.387510
qpg_results$score

[1] 1.124248

7.3.2 Creating files for the qpGraph software (with graph.params2qpGraphFiles):

The graph.params2qpGraphFiles function allows creating the files required by the qpGraph software
(Patterson et al. 2012) from a graph.params object that includes estimates of f-statistics (see section 5.1.2).
If f is the prefix character specified with the outfileprefix argument of the function (by default f=out), these
are:

• a file named “f.graph” that specifies the graph in qpGraph format
• a file named “f.fstats” with estimates of F-statistics (and their covariance) included in the input

graph.params object
• a parameter file named “f.parqpGraph” to run qpGraph (this file may be edited by hand if other options

are needed).

The qpGraph software (v7365 and above to allow f-statistics estimates to be provided as input) may then be
run on a terminal using the following options:

qpGraph -p f.parqpGraph -g f.graph -o out.ggg -d out.dot.input

The “f.fstats” f-statistics file must be in the same directory or its PATH should be explicitly specified by
editing the “f.parqpGraph” parameter file. The following example runs qpGraph (providing appropriate
install of the software) on the sim.graph.params object generated in 5.2 (see Figure 11 representing the fitted
graph obtained with the fit.graph function):
graph.params2qpGraphFiles(sim.graph.params,outfileprefix = "sim.graph",verbose = FALSE)
#running qpGraph (assumed to be installed locally) outside R
system("qpGraph -p sim.graph.parqpGraph -g sim.graph.graph -o sim.graph.g -d sim.graph.dot")
#plotting the dot file generated by qpGraph with grViz (as done internally by poolfstat)
require(DiagrammeR)
grViz("sim.graph.dot")

sim.graph.graph	::								P1									P2									P3									P5						0.000000					0.000101					0.000101					0.000120					0.840
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Figure 19: Fitting results obtained by qpGraph on the same data as the one used to generate Figure 11.
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Comparison of Figures 19 and 11 shows that the same results are obtained with the two fitting methods (note
that edge lengths are not scaled in drift units on the two figures).

7.4 Simulating Pool-Seq read count data from a count data object with
sim.readcounts:

The sim.readcounts function allows simulation read count data in the form of a pooldata object (see section
2.2) from read count data (stored in countdata object, see section 2.1). It implements the simulation approach
described in Gautier et al. (2024) that combines simulation procedures previously described in Hivert
et al. (2018) and Gautier et al. (2022). Briefly, read coverages for each and every marker position and
within each pool from a distribution specified by the lambda.cov vector specifying the expected coverages λp

of each pool p, and the overdisp scalar specifying the overdispersion α of marker coverages within each pool.
In other words, the overdispersion of SNP coverages is expected to the same magnitude for all the pools
but the expected coverages are allowed to vary across pools. If overdisp=1 (default), coverages are assumed
Poisson distributed with mean (and variance) equal to the value λp specified in the lambda.cov vector. If
overdisp>1, coverages follow a Negative Binomial distribution with mean equal to λp and variance equal to
α × λp. Finally, if overdisp<1, no variation in coverage is introduced and all coverages are equal to the value
specified in the lambda vector although they may (slightly) vary in the output when seq.eps > 0 due to the
removal of some error reads. Indeed, the seq.eps parameter control the rate ϵseq of sequencing errors, which
are modeled following Gautier et al. (2022) i.e., the vector of r read counts for the four possible bases are
sampled from a multinomial distribution:

r ∼ Mult

(
c;

{
(1 − ϵseq)f + 1

3ϵseq(1 − f); 1
3ϵseqf + (1 − ϵseq)(1 − f); 1

3ϵseq; 1
3ϵseq

})

where c is the read coverage and f the reference allele frequencies (obtained from the count data). When
ϵseq > 0, spurious SNPs may be generated even at monomorphic positions. The genome.size argument
giving the size of the genome G in bp allows providing a number of monomorphic positions which is equal to
G − nsnp where nsnp is obtained from the input countdata object). The spurious SNPs are then simulated
using the same error model i.e. sampling read counts r for the four possible bases (the reference allele count
corresponding to the first element of the output vector) from:

r ∼ Mult

(
c;

{
1 − ϵseq; 1

3ϵseq; 1
3ϵseq; 1

3ϵseq

})

Only bi-allelic SNPs passing filtering conditions specified by min.rc (which controls the minimal read count
for an allele to be deemed as true, i.e. if more than two alleles have ≥min.rc counts, the SNP is excluded
because non-bi–allelic) and maf.thr (threshold on the major allele frequency computed over all read counts)
are included in the output. Finally, experimental error exp.eps control the contribution of individual (assumed
diploid) to the pools following the model described in Gautier et al. (2013), where the parameter exp.eps
corresponds to the coefficient of variation of the individual contributions40. When exp.eps=0 (default), all
individuals are assumed to equally contribute (on average) to the pool sequences (i.e., there is no experimental
error).

The examples below shows the simulation of a Pool-Seq data set from the sim6p.allelecount object containing
allele count data for different simulation designs with increasing complexity:

• with varying expected coverages for the different pools (from 50X to 100X) which result in estimated
FST similar to those obtained with the original allele count data set:

sim<-sim.readcounts(sim6p.allelecount,lambda.cov = seq(50,100,10))

40For example, with 10 individuals, exp.eps=0.5 correspond to a situation where the 5 most contributing individuals contribute
> 2 times reads than the others when λ = 100.
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Start simulation of Read counts for the 472410 polymorphic SNPs included in the count data object
Simulation ended: 470621 SNPs retained
Simulation finished: 470621 retained in the output pooldata object
computeFST(sim,nsnp.per.bjack.block = 1000,verbose=FALSE)$Fst

Estimate bjack mean bjack s.e. CI95inf CI95sup
0.1355276879 0.1357371674 0.0008104223 0.1341487397 0.1373255950

• with varying expected coverages for the different pools (from 50X to 100X) and increased overdispersion
of the coverages which also result in estimated FST similar to those obtained with the original allele
count data set:

sim<-sim.readcounts(sim6p.allelecount,lambda.cov = seq(50,100,10),overdisp = 2)

Start simulation of Read counts for the 472410 polymorphic SNPs included in the count data object
Simulation ended: 470471 SNPs retained
Simulation finished: 470471 retained in the output pooldata object
computeFST(sim,nsnp.per.bjack.block = 1000,verbose=FALSE)$Fst

Estimate bjack mean bjack s.e. CI95inf CI95sup
0.1354919367 0.1357020869 0.0008030536 0.1341281018 0.1372760721

• with varying expected coverages for the different pools (from 50X to 100X) and an experimental error
(i.e., unequal contribution of individuals to their pool sequences) of 50%, which leads to a slight inflation
of the estimates:

sim<-sim.readcounts(sim6p.allelecount,lambda.cov = seq(50,100,10),exp.eps = 0.5)

Start simulation of Read counts for the 472410 polymorphic SNPs included in the count data object
Simulation ended: 469569 SNPs retained
Simulation finished: 469569 retained in the output pooldata object
computeFST(sim,nsnp.per.bjack.block = 1000,verbose=FALSE)$Fst

Estimate bjack mean bjack s.e. CI95inf CI95sup
0.1397878773 0.1399716787 0.0008065392 0.1383908618 0.1415524956

• with varying expected coverages for the different pools (from 50X to 100X) and a sequencing error rate
of 0.1% with a genome size set to 2 Gb (see section 1) to account for spurious SNPs generated by errors
(at monomorphic positions). Note that running time are significantly increased (ca. linearly with the
genome size). In addition, the default SNP filtering options then leads to several tens of millions of
(spurious) SNPs with very low polymorphism levels. As a result the estimated FST is almost null:

sim<-sim.readcounts(sim6p.allelecount,lambda.cov = seq(50,100,10),
seq.eps = 1e-3,genome.size = 2e9)

Start simulation of Read counts for the 472410 polymorphic SNPs included in the count data object
Simulation ended: 470396 SNPs retained
Start simulation of spurious SNPs for 1999529604 monomorphic positions
Simulation of spurious SNPs ended: 59863011 SNPs retained
Simulation finished: 60333407 retained in the output pooldata object
computeFST(sim,nsnp.per.bjack.block = 1000,verbose=FALSE)$Fst

Estimate bjack mean bjack s.e. CI95inf CI95sup
8.824066e-04 8.234541e-04 6.938747e-05 6.874547e-04 9.594536e-04
rm(sim)

• same as above but with increasing maf.thr to 1% to limit the number of these spurious SNPs (this
could also have been done with pooldata.subset function applied to the previous output object), which
allows removing most of the bias introduced by spurious SNPs:
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sim<-sim.readcounts(sim6p.allelecount,lambda.cov = seq(50,100,10),
seq.eps = 1e-3,genome.size = 2e9,maf.thr = 0.01)

Start simulation of Read counts for the 472410 polymorphic SNPs included in the count data object
Simulation ended: 449209 SNPs retained
Start simulation of spurious SNPs for 1999550791 monomorphic positions
Simulation of spurious SNPs ended: 124295 SNPs retained
Simulation finished: 573504 retained in the output pooldata object
computeFST(sim,nsnp.per.bjack.block = 1000,verbose=FALSE)$Fst

Estimate bjack mean bjack s.e. CI95inf CI95sup
0.1314868436 0.1316459432 0.0007654105 0.1301457386 0.1331461477

7.5 Performing genome-scan based on f−statistics (or ratio of f−statistics)
for specific user-defined population sample configuration with slid-
ing.window.fstat

The sliding.window.fstat function allows the calculation of multi-locus estimates of any user-defined f -statistic
(including within-population heterozygosities) or ratio of f -statistics for sliding windows over the different
chromosomes (or scaffolds/contigs). The windows can be defined either by a number of consecutive SNPs or
in base pairs using the window.def argument (set to “nsnp” or “bp”, respectively) and sliding.window.size
(specifying the number of SNPs or size in bp, respectively). The multi-locus statistic is specified with the
arguments i) num.pop.idx (giving the index of the input countdata or pooldata object); and ii) num. stat
(giving the name of the statistic, which must be one of “het” (1-Q1); “div” (1-Q2); “F2” ; “Fst” ; “F3” ;
“F3star” ; “F4” ; or “Dstat”). Similarly, the den.pop.idx and den.stat arguments allow you to specify the
denominator statistics for the ratio. An example is given below with the Pool-Seq read count example data
(similar results would be obtained with allele count data) considering a genome-scan with D-statistics for the
(P1,P6;P3,P5) quadruplet configuration over 1 Mb sliding windows:
sim6p.readcount30X.dstat<-sliding.windows.fstat(sim6p.readcount30X,

num.pop.idx = c(1,6,3,5),num.stat = "Dstat",
window.def = "bp",sliding.window.size = 1e6)

Computing SNP-specific values
For the num.pop.idx combination
Defining Windows
4000 (overlapping) windows identified

Average (min-max) window sizes (in kb): 1000 ( 1000 - 1000 )
Average (min-max) nb. of SNPs per window: 235.6 ( 86 - 337 )

Computing window statistics
head(sim6p.readcount30X.dstat)

Chr Start End MidPos CumMidPos nsnp Value
1 1 1282 1001282 501282 501282 217 -0.04539610
2 1 501282 1501282 1001282 1001282 190 0.07588678
3 1 1001282 2001282 1501282 1501282 213 0.08374941
4 1 1501282 2501282 2001282 2001282 222 0.05972340
5 1 2001282 3001282 2501282 2501282 264 -0.03923422
6 1 2501282 3501282 3001282 3001282 280 -0.06042487
plot(sim6p.readcount30X.dstat$CumMidPos/1e6,sim6p.readcount30X.dstat$Value,

xlab="Cumulated Position (in Mb)",ylab="Muli-locus D(P1,P6;P3,P5)",
col=as.numeric(sim6p.readcount30X.dstat$Chr),pch=16)

No discernible signal of adaptive introgression from P3, such as an excessively localized high number of
windows with negative D is apparent. This was expected, as the data set was simulated under neutrality (see
Figure 2).
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Figure 20: Manhattan plot of the multi-locus D-statistic (for the P1,P6;P3,P5 quadruplet configuration)
computed over sliding-windows of 1 Mb on the Pool-Seq example data. The 20 simulated chromosomes are
represented by alternate colors.

49



8 References
Akey J. M., Zhang G., Zhang K., Jin L., Shriver M. D., 2002 Interrogating a high-density SNP map for

signatures of natural selection. Genome Research 12: 1805–1814.

Collin F.-D., Durif G., Raynal L., Lombaert E., Gautier M., Vitalis R., Marin J.-M., Estoup A.,
2021 Extending approximate bayesian computation with supervised machine learning to infer demographic
history from genetic polymorphisms using DIYABC random forest. Molecular Ecology Resources 21:
2598–2613.

Cruickshank T. E., Hahn M. W., 2014 Reanalysis suggests that genomic islands of speciation are due to
reduced diversity, not reduced gene flow. Molecular Ecology 23: 3133–3157.

Ferretti L., Ramos-Onsins S. E., Pérez-Enciso M., 2013 Population genomics from pool sequencing.
Molecular Ecology 22: 5561–5576.

Garrison E., Marth G., 2012 Haplotype-based variant detection from short-read sequencing. arXiv:
1207.3907.

Gautier M., Foucaud J., Gharbi K., Cézard T., Galan M., Loiseau A., Thomson M., Pudlo P.,
Kerdelhué C., Estoup A., 2013 Estimation of population allele frequencies from next-generation
sequencing data: Pool-versus individual-based genotyping. Molecular Ecology 22: 3766–3779.

Gautier M., 2015 Genome-wide scan for adaptive divergence and association with population-specific
covariates. Genetics 201: 1555–1579.

Gautier M., Vitalis R., Flori L., Estoup A., 2022 f-statistics estimation and admixture graph construction
with pool-seq or allele count data using the R package poolfstat. Molecular Ecology Resources 22: 1394–
1416.

Gautier M., Coronado-Zamora M., Vitalis R., 2024 Estimating hierarchical F–statistics from Pool–Seq
data. bioRxiv: 2024.11.22.624688.

Hivert V., Leblois R., Petit E. J., Gautier M., Vitalis R., 2018 Measuring genetic differentiation from
pool-seq data. Genetics 210: 315–330.

Iannone R., 2020 DiagrammeR: Graph/network visualization.

Karlsson E. K., Baranowska I., Wade C. M., Salmon Hillbertz N. H. C., Zody M. C., Anderson
N., Biagi T. M., Patterson N., Pielberg G. R., Kulbokas E. J., Comstock K. E., Keller E. T.,
Mesirov J. P., Euler H. von, Kämpe O., Hedhammar A., Lander E. S., Andersson G., Andersson
L., Lindblad-Toh K., 2007 Efficient mapping of mendelian traits in dogs through genome-wide association.
Nature Genetics 39: 1321–1328.

Kass R. E., Raftery A. E., 1995 Bayes factors. Journal of the American Statistical Association 90: 773–795.

Kelleher J., Etheridge A. M., McVean G., 2016 Efficient coalescent simulation and genealogical analysis
for large sample sizes. PLoS Computational Biology 12: e1004842.

Knaus B. J., Grünwald N. J., 2017 Vcfr: A package to manipulate and visualize variant call format data
in R. Molecular Ecology Resources 17: 44–53.

Koboldt D. C., Zhang Q., Larson D. E., Shen D., McLellan M. D., Lin L., Miller C. A., Mardis E.
R., Ding L., Wilson R. K., 2012 VarScan 2: Somatic mutation and copy number alteration discovery in

50



cancer by exome sequencing. Genome Research 22: 568–576.

Kofler R., Orozco-terWengel P., De Maio N., Pandey R. V., Nolte V., Futschik A., Kosiol
C., Schlötterer C., 2011 PoPoolation: A toolbox for population genetic analysis of next generation
sequencing data from pooled individuals. PloS One 6: e15925.

Korneliussen T. S., Albrechtsen A., Nielsen R., 2014 ANGSD: Analysis of next generation sequencing
data. BMC Bioinformatics 15: 356.

Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin
R., Subgroup 1000. G. P. D. P., 2009 The sequence alignment/map format and SAMtools. Bioinformatics
25: 2078–2079.

Lipson M., Loh P.-R., Levin A., Reich D., Patterson N., Berger B., 2013 Efficient moment-based
inference of admixture parameters and sources of gene flow. Molecular Biology and Evolution 30:
1788–1802.

Lipson M., 2020 Applying f-statistics and admixture graphs: Theory and examples. Molecular Ecology
Resources 20: 1658–1667.

Maier R., Flegontov P., Flegontova O., Isıldak U., Changmai P., Reich D., 2023 On the limits of
fitting complex models of population history to f -statistics. eLife 12: e85492.

McKenna A., Hanna M., Banks E., Sivachenko A., Cibulskis K., Kernytsky A., Garimella K.,
Altshuler D., Gabriel S., Daly M., DePristo M. A., 2010 The genome analysis toolkit: A MapReduce
framework for analyzing next-generation DNA sequencing data. Genome Research 20: 1297–1303.

Nei M., 1973 Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA 70:
3321–3323.

Paradis E., Claude J., Strimmer K., 2004 APE: Analyses of phylogenetics and evolution in r language.
Bioinformatics 20: 289–290.

Patterson N., Moorjani P., Luo Y., Mallick S., Rohland N., Zhan Y., Genschoreck T., Webster
T., Reich D., 2012 Ancient admixture in human history. Genetics 192: 1065–1093.

Peter B. M., 2016 Admixture, population structure, and f-statistics. Genetics 202: 1485–1501.

Pickrell J. K., Pritchard J. K., 2012 Inference of population splits and mixtures from genome-wide allele
frequency data. PLoS Genetics 8: e1002967.

Reich D., Thangaraj K., Patterson N., Price A. L., Singh L., 2009 Reconstructing indian population
history. Nature 461: 489–494.

Rousset F., 2007 Inferences from spatial population genetics. In: Balding DJ, Bishop M, Cannings C (Eds.),
Handbook of statistical genetics, John Wiley; Sons, Ltd, Chichester, England, pp. 945–979.

Skoglund P., Jakobsson M., 2011 Archaic human ancestry in east asia. Proceedings of the National
Academy of Sciences 108: 18301–18306.

Vitalis R., Gautier M., Dawson K. J., Beaumont M. A., 2014 Detecting and measuring selection from
gene frequency data. Genetics 196: 799–817.

Weir B. S., Cockerham C. C., 1984 Estimating F-statistics for the analysis of population structure.

51



Evolution 38: 1358–1370.

Weir B. S., 1996 Genetic data analysis II : Methods for discrete population genetic data. Sinauer Associates,
Sunderland, Mass.

52



A Apprendix
A.1 Block-Jackknife estimation of standard errors
Standard-error of genome-wide estimates of FST and other f -statistics can estimated using a block-jackknife
sampling approach (see Patterson et al. 2012 and references therein). The algorithm implemented in
poolfstat consists of dividing the genome into contiguous chunks of a pre-defined number of SNPs (specified
by the argument nsnp.per.bjack.block of the computeFST, compute.pairwiseFST or compute.fstats functions,
see sections 3.1.1, 3.2 and 4 respectively) and then removing each block in turn to quantify the variability of
the estimates. If nb blocks are available and f̂i is the estimate of the statistics when removing all the SNPs
belonging to block i, the standard error σ̂f of the estimator f̂ of the statistics of interest is computed as:

σ̂f =

√√√√nb − 1
nb

i=nb∑

i=1

(
f̂i − µ̂f

)2

where µ̂f = 1
nb

i=nb∑
i=1

f̂i which may be slightly different from the estimator obtained with all the markers since

the latter may include SNPs that are not eligible for block-jackknife sampling (e.g., those at the chromo-
some/scaffolds boundaries or those belonging to chromosome/scaffolds with less than nsnp.per.bjack.block
SNPs). Finally, block-jackknife sampling may also be used to obtain estimates of the covariance between the
estimates f̂a and f̂ b as (using similar notations):

Ĉov
(

f̂a; f̂ b
)

= nb − 1
nb

i=nb∑

i=1

(
f̂a

i − µ̂fa

) (
f̂ b

i − µ̂fb

)
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