Title: | Panomics Marketplace - Quality Control and Statistical Analysis for Panomics Data |
---|---|
Description: | Provides functionality for quality control processing and statistical analysis of mass spectrometry (MS) omics data, in particular proteomic (either at the peptide or the protein level), lipidomic, and metabolomic data, as well as RNA-seq based count data and nuclear magnetic resonance (NMR) data. This includes data transformation, specification of groups that are to be compared against each other, filtering of features and/or samples, data normalization, data summarization (correlation, PCA), and statistical comparisons between defined groups. Implements methods described in: Webb-Robertson et al. (2014) <doi:10.1074/mcp.M113.030932>. Webb-Robertson et al. (2011) <doi:10.1002/pmic.201100078>. Matzke et al. (2011) <doi:10.1093/bioinformatics/btr479>. Matzke et al. (2013) <doi:10.1002/pmic.201200269>. Polpitiya et al. (2008) <doi:10.1093/bioinformatics/btn217>. Webb-Robertson et al. (2010) <doi:10.1021/pr1005247>. |
Authors: | Lisa Bramer [aut, cre], Kelly Stratton [aut], Daniel Claborne [aut], Evan Glasscock [ctb], Rachel Richardson [ctb], David Degnan [ctb], Evan Martin [ctb] |
Maintainer: | Lisa Bramer <[email protected]> |
License: | BSD_2_clause + file LICENSE |
Version: | 2.4.6 |
Built: | 2024-12-14 06:28:20 UTC |
Source: | CRAN |
Test if a file is an edata file
.is_edata(edata)
.is_edata(edata)
edata |
Must be a dataframe. Required. |
A boolean where TRUE means the file is an acceptable edata file.
Selects biomolecules for normalization via choosing all biomolecules currently in the data
all_subset(e_data, edata_id)
all_subset(e_data, edata_id)
e_data |
a |
edata_id |
character string indicating the name of the peptide, protein,
lipid, or metabolite identifier. Usually obtained by calling
|
This function returns the subset of all biomolecules. These will be used for normalization.
Character vector containing all biomolecules.
Kelly Stratton
The method identifies biomolecules to be filtered specifically according data requirements for running an ANOVA.
anova_filter(nonmiss_per_group, min_nonmiss_anova, comparisons = NULL)
anova_filter(nonmiss_per_group, min_nonmiss_anova, comparisons = NULL)
nonmiss_per_group |
a list of length two. The first element giving the
total number of possible samples for each group. The second element giving
a data.frame with the first column giving the biomolecule identifier and
the second through kth columns giving the number of non-missing
observations for each of the |
min_nonmiss_anova |
the minimum number of nonmissing biomolecule values required, in each group, in order for the biomolecule to not be filtered. Must be greater than or equal to 2; default value is 2. |
comparisons |
data.frame with columns for "Control" and "Test" containing the different comparisons of interest. Comparisons will be made between the Test and the corresponding Control. If left NULL, then all pairwise comparisons are executed. |
This function filters biomolecules that do not have at least
min.nonmiss.allowed
values per group, where groups are from
group_designation
.
filter.peps a character vector of the biomolecules to be filtered out prior to ANOVA or IMD-ANOVA
Kelly Stratton
This is the ANOVA part of the IMD-ANOVA test proposed in Webb-Robertson et al. (2010).
anova_test( omicsData, groupData, comparisons, pval_adjust_multcomp, pval_adjust_fdr, pval_thresh, covariates, paired, equal_var, parallel )
anova_test( omicsData, groupData, comparisons, pval_adjust_multcomp, pval_adjust_fdr, pval_thresh, covariates, paired, equal_var, parallel )
omicsData |
A pmartR data object of any class |
groupData |
'data.frame' that assigns sample names to groups |
comparisons |
'data.frame' with columns for "Control" and "Test" containing the different comparisons of interest. Comparisons will be made between the Test and the corresponding Control If left NULL, then all pairwise comparisons are executed. |
pval_adjust_multcomp |
character string specifying the type of multiple comparisons adjustment to implement. The default, "none", corresponds to no adjustment. Valid options include: "bonferroni", "holm", "tukey", and "dunnett". |
pval_adjust_fdr |
character string specifying the type of FDR adjustment to implement. The default, "none", corresponds to no adjustment. Valid options include: "bonferroni", "BH", "BY", and "fdr". |
pval_thresh |
numeric p-value threshold, below or equal to which peptides are considered differentially expressed. Defaults to 0.05 |
covariates |
A character vector with no more than two variable names that will be used as covariates in the IMD-ANOVA analysis. |
paired |
logical; should the data be paired or not? if TRUE then the 'f_data' element of 'omicsData' is checked for a "Pair" column, an error is returned if none is found |
equal_var |
logical; should the variance across groups be assumed equal? |
parallel |
A logical value indicating if the t test should be run in parallel. |
The order in which different scenarios are handeled:
If the data are paired, then the pairing is accounted for first then each of the next steps is carried out on the new variable that is the difference in the paired individuals.<br>
If covariates are provided, their effect is removed before testing for group differences though mathematically covariates and grouping effects are accounted for simultaneously
ANOVA is executed to assess the effect of each main effects, results in a vector of group means for each biomolecule and variance estimate
Group comparisons defined by 'comaprison' argument are implemented use parameter vector and variance estimates in ANOVA step
a list of 'data.frame's
Results | Edata cname, Variance Estimate, ANOVA F-Statistic, ANOVA p-value, Group means |
Fold_changes | Estimated fold-changes for each comparison |
Fold_changes_pvalues | P-values corresponding to the fold-changes for each comparison |
Fold_change_flags | Indicator of statistical significance (0/+-2 to if adjusted p-value>=pval_thresh or p-value<pval_thresh) |
Bryan Stanfill, Daniel Claborne
Webb-Robertson, Bobbie-Jo M., et al. "Combined statistical analyses of peptide intensities and peptide occurrences improves identification of significant peptides from MS-based proteomics data." Journal of proteome research 9.11 (2010): 5748-5756.
This function takes a filter object of class 'cvFilt', 'rmdFilt',
'moleculeFilt', 'proteomicsFilt', 'imdanovaFilt', 'RNAFilt', 'totalCountFilt',
or 'customFilt' and applies the filter to a dataset of pepData
,
proData
, lipidData
, metabData
, nmrData
or
seqData
.
applyFilt(filter_object, omicsData, ...) ## S3 method for class 'moleculeFilt' applyFilt(filter_object, omicsData, min_num = 2, ...) ## S3 method for class 'totalCountFilt' applyFilt(filter_object, omicsData, min_count, ...) ## S3 method for class 'RNAFilt' applyFilt( filter_object, omicsData, min_nonzero = NULL, size_library = NULL, ... ) ## S3 method for class 'cvFilt' applyFilt(filter_object, omicsData, cv_threshold = 150, ...) ## S3 method for class 'rmdFilt' applyFilt( filter_object, omicsData, pvalue_threshold = 1e-04, min_num_biomolecules = 50, ... ) ## S3 method for class 'proteomicsFilt' applyFilt( filter_object, omicsData, min_num_peps = NULL, redundancy = FALSE, ... ) ## S3 method for class 'imdanovaFilt' applyFilt( filter_object, omicsData, comparisons = NULL, min_nonmiss_anova = NULL, min_nonmiss_gtest = NULL, remove_singleton_groups = TRUE, ... ) ## S3 method for class 'customFilt' applyFilt(filter_object, omicsData, ...)
applyFilt(filter_object, omicsData, ...) ## S3 method for class 'moleculeFilt' applyFilt(filter_object, omicsData, min_num = 2, ...) ## S3 method for class 'totalCountFilt' applyFilt(filter_object, omicsData, min_count, ...) ## S3 method for class 'RNAFilt' applyFilt( filter_object, omicsData, min_nonzero = NULL, size_library = NULL, ... ) ## S3 method for class 'cvFilt' applyFilt(filter_object, omicsData, cv_threshold = 150, ...) ## S3 method for class 'rmdFilt' applyFilt( filter_object, omicsData, pvalue_threshold = 1e-04, min_num_biomolecules = 50, ... ) ## S3 method for class 'proteomicsFilt' applyFilt( filter_object, omicsData, min_num_peps = NULL, redundancy = FALSE, ... ) ## S3 method for class 'imdanovaFilt' applyFilt( filter_object, omicsData, comparisons = NULL, min_nonmiss_anova = NULL, min_nonmiss_gtest = NULL, remove_singleton_groups = TRUE, ... ) ## S3 method for class 'customFilt' applyFilt(filter_object, omicsData, ...)
filter_object |
an object of the class 'cvFilt', 'proteomicsFilt',
'rmdFilt', 'moleculeFilt', 'imdanovaFilt', 'customFilt', 'RNAFilt', or
'totalCountFilt' created by |
omicsData |
an object of the class |
... |
further arguments |
min_num , min_count , min_nonzero , size_library , cv_threshold , pvalue_threshold , min_num_biomolecules , min_num_peps , redundancy , comparisons , min_nonmiss_anova , min_nonmiss_gtest , remove_singleton_groups
|
Arguments that depend on the class of |
Further arguments can be specified depending on the class of the
filter_object
being applied.
For a filter_object
of type 'moleculeFilt':
min_num |
an integer value specifying the minimum number of times each biomolecule must be observed across all samples in order to retain the biomolecule. Default value is 2. |
For a filter_object
of type 'cvFilt':
cv_threshold |
an integer value specifying the maximum coefficient of variation (CV) threshold for the biomolecules. Biomolecules with CV greater than this threshold will be filtered. Default threshold is 150. |
For a filter_object
of type 'rmdFilt':
pvalue_threshold |
numeric value between 0 and 1, specifying the p-value below which samples will be removed from the dataset. Default is 0.001. |
min_num_biomolecules |
numeric value greater than 10 (preferably greater than 50) that specifies the minimum number of biomolecules that must be present in order to create an rmdFilt object. Using values less than 50 is not advised. |
For a filter_object
of type 'proteomicsFilt' either or both of the
following can be applied:
min_num_peps |
an
optional integer value between 1 and the maximum number of peptides that
map to a protein in omicsData. The value specifies the minimum number of
peptides that must map to a protein. Any protein with less than
min_num_peps mapping to it will be removed from the dataset. Default
value is NULL, meaning that this filter is not applied. |
redundancy |
logical indicator of whether to filter out degenerate/redundant peptides (peptides that map to more than one protein). Default value is FALSE. |
For a filter_object
of type 'imdanovaFilt':
min_nonmiss_anova |
integer value specifying the minimum number
of non-missing feature values allowed per group for anova_filter .
Default value is 2. |
min_nonmiss_gtest |
integer value
specifying the minimum number of non-missing feature values allowed per
group for gtest_filter . Default value is 3. |
For a filter_object
of type 'totalCountFilt':
min_count |
integer value specifying the minimum number of
biomolecule counts observed across all samples in order for the biomolecule
to be retained in the dataset. This filter is only applicable for
seqData objects. |
For a filter_object
of type 'RNAFilt' either or both of the
following can be applied:
min_nonzero |
integer value specifying the minimum number of non-zero feature values per sample. |
size_library |
integer value or fraction between 0 and 1
specifying the minimum number of total reads per sample. This filter is
only applicable for seqData objects. |
There are no further arguments for a filter_object
of type '
customFilt'.
An object of the class pepData
, proData
,
lipidData
, metabData
, nmrData
, or seqData
with
specified cname_ids, edata_cnames, and emeta_cnames filtered out of the
appropriate datasets.
Lisa Bramer, Kelly Stratton
library(pmartRdata) to_filter <- molecule_filter(omicsData = pep_object) summary(to_filter, min_num = 2) pep_object2 <- applyFilt( filter_object = to_filter, omicsData = pep_object, min_num = 2 ) summary(pep_object2) # number of Peptides is as expected based on summary of # the filter object that was applied pep_object2 <- group_designation(omicsData = pep_object2, main_effects = "Phenotype") to_filter2 <- imdanova_filter(omicsData = pep_object2) pep_object3 <- applyFilt( filter_object = to_filter2, omicsData = pep_object2, min_nonmiss_anova = 3 )
library(pmartRdata) to_filter <- molecule_filter(omicsData = pep_object) summary(to_filter, min_num = 2) pep_object2 <- applyFilt( filter_object = to_filter, omicsData = pep_object, min_num = 2 ) summary(pep_object2) # number of Peptides is as expected based on summary of # the filter object that was applied pep_object2 <- group_designation(omicsData = pep_object2, main_effects = "Phenotype") to_filter2 <- imdanova_filter(omicsData = pep_object2) pep_object3 <- applyFilt( filter_object = to_filter2, omicsData = pep_object2, min_nonmiss_anova = 3 )
Converts several data frames of isobaric peptide data
to an object of the class 'isobaricpepData'. Objects of the class
'isobaricpepData' are lists with two obligatory components, e_data
and
f_data
. An optional list component, e_meta
, is used if analysis
or visualization at other levels (e.g. protein) is also desired.
as.isobaricpepData( e_data, f_data, e_meta = NULL, edata_cname, fdata_cname, emeta_cname = NULL, techrep_cname = NULL, ... )
as.isobaricpepData( e_data, f_data, e_meta = NULL, edata_cname, fdata_cname, emeta_cname = NULL, techrep_cname = NULL, ... )
e_data |
a |
f_data |
a data frame with |
e_meta |
an optional data frame with at least |
edata_cname |
character string specifying the name of the column
containing the peptide identifiers in |
fdata_cname |
character string specifying the name of the column
containing the sample identifiers in |
emeta_cname |
character string specifying the name of the column
containing the protein identifiers (or other mapping variable) in
|
techrep_cname |
character string specifying the name of the column in
|
... |
further arguments |
The class 'isobaricpepData' is meant to deal with labeled peptide data generated on instruments (e.g. TMT, iTRAQ) where a reference pool sample will be utilized for normalization.
If your data has already undergone normalization to the reference pool, you
should specify isobaric_norm = T
.
Objects of class 'isobaricpepData' contain some attributes that are referenced by downstream functions. These attributes can be changed from their default value by manual specification. A list of these attributes as well as their default values are as follows:
data_scale |
Scale of the data provided in e_data . Acceptable values are 'log2',
'log10', 'log', and 'abundance', which indicate data is log base 2, base 10,
natural log transformed, and raw abundance, respectively. Default is
'abundance'. |
is_normalized | A logical argument, specifying whether the data has been normalized or not (this normalization refers to a statistical normalization, such as median centering or other methods). Default value is FALSE. |
isobaric_norm | A logical argument, specifying whether the data has been normalized to the appropriate reference pool sample or not. Default value is FALSE |
norm_info | Default value is an empty
list, which will be populated with a single named element
is_normalized = is_normalized . When a normalization is applied to the
data, this becomes populated with a list containing the normalization
function, normalization subset and subset parameters, the location and scale
parameters used to normalize the data, and the location and scale parameters
used to backtransform the data (if applicable). |
data_types | Character string describing the type of data, most commonly used for lipidomic data (lipidData objects) or NMR data (nmrData objects) but available for other data classes as well. Default value is NULL. |
Computed values included in the data_info
attribute are as follows:
num_edata | The number of unique
edata_cname entries. |
num_miss_obs | The number of missing observations. |
num_zero_obs | For seqData only: The number of zero observations. |
num_emeta | The number of unique
emeta_cname entries. |
prop_missing | The proportion of
e_data values that are NA. |
prop_zeros | For seqData
only: the proportion of zero counts observed in e_data values. |
num_samps | The number of samples that make up the columns of
e_data . |
meta_info | A logical argument, specifying
whether e_meta is provided. |
Object of class isobaricpepData and pepData.
Lisa Bramer
library(pmartRdata) mypep <- as.isobaricpepData( e_data = isobaric_edata, e_meta = isobaric_emeta, f_data = isobaric_fdata, edata_cname = "Peptide", fdata_cname = "SampleID", emeta_cname = "Protein" )
library(pmartRdata) mypep <- as.isobaricpepData( e_data = isobaric_edata, e_meta = isobaric_emeta, f_data = isobaric_fdata, edata_cname = "Peptide", fdata_cname = "SampleID", emeta_cname = "Protein" )
Converts several data frames of lipid data to an
object of the class 'lipidData'. Objects of the class 'lipidData' are lists
with two obligatory components, e_data
and f_data
. An optional
list component, e_meta
, is used if analysis or visualization at other
levels (e.g. lipid class) is also desired.
as.lipidData( e_data, f_data, e_meta = NULL, edata_cname, fdata_cname, emeta_cname = NULL, techrep_cname = NULL, ... )
as.lipidData( e_data, f_data, e_meta = NULL, edata_cname, fdata_cname, emeta_cname = NULL, techrep_cname = NULL, ... )
e_data |
a |
f_data |
a data frame with |
e_meta |
an optional data frame with |
edata_cname |
character string specifying the name of the column
containing the lipid identifiers in |
fdata_cname |
character string specifying the name of the column
containing the sample identifiers in |
emeta_cname |
character string specifying the name of the column
containing the mapped identifiers in |
techrep_cname |
character string specifying the name of the column in
|
... |
further arguments |
Objects of class 'lipidData' contain some attributes that are referenced by downstream functions. These attributes can be changed from their default value by manual specification. A list of these attributes as well as their default values are as follows:
data_scale |
Scale of the data provided in e_data . Acceptable values are 'log2',
'log10', 'log', and 'abundance', which indicate data is log base 2, base
10, natural log, or raw abundance, respectively. Default
values is 'abundance'. |
is_normalized | A logical argument, specifying whether the data has been normalized or not. Default value is FALSE. |
norm_info | Default value is an empty list, which
will be populated with a single named element is_normalized =
is_normalized . When a normalization is applied to the data, this becomes
populated with a list containing the normalization function, normalization
subset and subset parameters, the location and scale parameters used to
normalize the data, and the location and scale parameters used to
backtransform the data (if applicable). |
data_types | Character string describing the type of data (e.g. 'Positive ion' or ‘Negative ion’ for lipid data). Default value is NULL. |
Computed values included in the data_info
attribute are as follows:
num_edata |
The number of
unique edata_cname entries. |
num_miss_obs |
The number of missing observations. |
num_emeta |
The
number of unique emeta_cname entries. |
prop_missing |
The proportion of e_data values that are
NA. |
num_samps |
The number of samples that make up
the columns of e_data . |
meta_info |
A logical
argument, specifying where the e_meta is provided. |
Object of class lipidData
Lisa Bramer, Kelly Stratton
library(pmartRdata) mylipid <- as.lipidData( e_data = lipid_neg_edata, f_data = lipid_neg_fdata, edata_cname = "Lipid", fdata_cname = "SampleID" )
library(pmartRdata) mylipid <- as.lipidData( e_data = lipid_neg_edata, f_data = lipid_neg_fdata, edata_cname = "Lipid", fdata_cname = "SampleID" )
Converts several data frames of metabolomic data to an
object of the class 'metabData'. Objects of the class 'metabData' are lists
with two obligatory components, e_data
and f_data
. An optional
list component, e_meta
, is used if analysis or visualization at other
levels (e.g. metabolite identification) is also desired.
as.metabData( e_data, f_data, e_meta = NULL, edata_cname, fdata_cname, emeta_cname = NULL, techrep_cname = NULL, ... )
as.metabData( e_data, f_data, e_meta = NULL, edata_cname, fdata_cname, emeta_cname = NULL, techrep_cname = NULL, ... )
e_data |
a |
f_data |
a data frame with |
e_meta |
an optional data frame with |
edata_cname |
character string specifying the name of the column
containing the metabolite identifiers in |
fdata_cname |
character string specifying the name of the column
containing the sample identifiers in |
emeta_cname |
character string specifying the name of the column
containing the mapped identifiers in |
techrep_cname |
character string specifying the name of the column in
|
... |
further arguments |
Objects of class 'metabData' contain some attributes that are referenced by downstream functions. These attributes can be changed from their default value by manual specification. A list of these attributes as well as their default values are as follows:
data_scale |
Scale of the data provided in e_data . Acceptable values are 'log2',
'log10', 'log', and 'abundance', which indicate data is log base 2, base
10, natural log, or raw abundance, respectively. Default is
'abundance'. |
is_normalized | A logical argument, specifying whether the data has been normalized or not. Default value is FALSE. |
norm_info | Default value is an empty list, which will be
populated with a single named element is_normalized = is_normalized .
When a normalization is applied to the data, this becomes populated with a
list containing the normalization function, normalization subset and subset
parameters, the location and scale parameters used to normalize the data,
and the location and scale parameters used to backtransform the data (if
applicable). |
data_types | Character string describing the type of data, most commonly used for lipidomic data (lipidData objects) or NMR data (nmrData objects) but available for other data classes as well. Default value is NULL. |
Computed
values included in the data_info
attribute are as follows:
num_edata | The number of unique edata_cname
entries. |
num_miss_obs | The number of missing observations. |
num_emeta | The number of unique
emeta_cname entries. |
prop_missing | The proportion
of e_data values that are NA. |
num_samps | The number
of samples that make up the columns of e_data . |
meta_info | A logical argument, specifying where the e_meta is provided. |
Object of class metabData
Lisa Bramer, Kelly Stratton
library(pmartRdata) mymetabData <- as.metabData( e_data = metab_edata, f_data = metab_fdata, edata_cname = "Metabolite", fdata_cname = "SampleID" )
library(pmartRdata) mymetabData <- as.metabData( e_data = metab_edata, f_data = metab_fdata, edata_cname = "Metabolite", fdata_cname = "SampleID" )
Create a 'multiData' object from multiple omicsData objects
as.multiData( ..., f_meta = NULL, sample_intersect = FALSE, match_samples = TRUE, keep_sample_info = FALSE, auto_fmeta = FALSE )
as.multiData( ..., f_meta = NULL, sample_intersect = FALSE, match_samples = TRUE, keep_sample_info = FALSE, auto_fmeta = FALSE )
... |
two or more objects of type 'pepData', 'proData', 'metabData',
'lipidData', or 'nmrData', created by |
f_meta |
A data.frame containing sample and group information for all omicsData objects supplied to the function. |
sample_intersect |
logical indicator for whether only the samples that are common across all datasets be kept in f_meta. See details for how samples will be dropped. |
match_samples |
logical indicator. If auto_fmeta = TRUE, whether to attempt to match the names in the sample columns in f_data across all objects in an attempt to align them in f_meta. Defaults to TRUE. |
keep_sample_info |
logical indicator for whether to attempt to append sample information contained in the objects' f_data to the final f_meta via a series of left joins. Defaults to FALSE. |
auto_fmeta |
logical indicator for whether to attempt to automatically construct f_meta from the objects' sample information. Defaults to FALSE. |
Object limits: Currently, as.multiData accepts at most one object from each of classes 'pepData/proData', 'metabData', 'nmrData', and at most two objects of class 'lipidData'.
sample_intersect
will auto-align samples that occur in all datasets.
Specifically, it creates a vector of all samples that are common across all
datasets, and simply creates an f_meta by copying this vector for each dataset
and column-binding them.
Object of class 'multiData' containing the omicsData objects, and the sample alignment information f_meta.
combine_lipidData
if you want to combine lipidData
objects before providing them to as.multiData.
library(pmartRdata) # Combine metabolomics and protein object into multidata, both must be log2 # and normalized. mymetab <- edata_transform(omicsData = metab_object, data_scale = "log2") mymetab <- normalize_global(omicsData = mymetab, subset_fn = "all", norm_fn = "median", apply_norm = TRUE) mypro <- pro_object # Combine without specifically supplying f_meta, either directly, or as one # of the f_datas in any object. mymultidata <- as.multiData(mymetab, mypro, auto_fmeta = TRUE, sample_intersect = TRUE) # Manually supply an f_meta f_meta <- data.frame( "Proteins" = mypro$f_data$SampleID[match(mymetab$f_data$SampleID, mypro$f_data$SampleID)], "Metabolites" = mymetab$f_data$SampleID, "Condition" = mymetab$f_data$Phenotype[match(mymetab$f_data$SampleID, mypro$f_data$SampleID)] ) mymultidata <- as.multiData(mymetab, mypro, f_meta = f_meta) # remove samples that are not common across all data. mymultidata <- as.multiData(mymetab, mypro, f_meta = f_meta, sample_intersect = TRUE)
library(pmartRdata) # Combine metabolomics and protein object into multidata, both must be log2 # and normalized. mymetab <- edata_transform(omicsData = metab_object, data_scale = "log2") mymetab <- normalize_global(omicsData = mymetab, subset_fn = "all", norm_fn = "median", apply_norm = TRUE) mypro <- pro_object # Combine without specifically supplying f_meta, either directly, or as one # of the f_datas in any object. mymultidata <- as.multiData(mymetab, mypro, auto_fmeta = TRUE, sample_intersect = TRUE) # Manually supply an f_meta f_meta <- data.frame( "Proteins" = mypro$f_data$SampleID[match(mymetab$f_data$SampleID, mypro$f_data$SampleID)], "Metabolites" = mymetab$f_data$SampleID, "Condition" = mymetab$f_data$Phenotype[match(mymetab$f_data$SampleID, mypro$f_data$SampleID)] ) mymultidata <- as.multiData(mymetab, mypro, f_meta = f_meta) # remove samples that are not common across all data. mymultidata <- as.multiData(mymetab, mypro, f_meta = f_meta, sample_intersect = TRUE)
Converts several data frames of NMR-generated
metabolomic data to an object of the class 'nmrData'. Objects of the
class 'nmrData' are lists with two obligatory components, e_data
and
f_data
. An optional list component, e_meta
, is used if analysis
or visualization at other levels (e.g. metabolite identification) is also
desired.
as.nmrData( e_data, f_data, e_meta = NULL, edata_cname, fdata_cname, emeta_cname = NULL, techrep_cname = NULL, ... )
as.nmrData( e_data, f_data, e_meta = NULL, edata_cname, fdata_cname, emeta_cname = NULL, techrep_cname = NULL, ... )
e_data |
a |
f_data |
a data frame with |
e_meta |
an optional data frame with |
edata_cname |
character string specifying the name of the column
containing the metabolite identifiers in |
fdata_cname |
character string specifying the name of the column
containing the sample identifiers in |
emeta_cname |
character string specifying the name of the column
containing the mapped identifiers in |
techrep_cname |
character string specifying the name of the column in
|
... |
further arguments |
Objects of class 'nmrData' contain some attributes that are referenced by downstream functions. These attributes can be changed from their default value by manual specification. A list of these attributes as well as their default values are as follows:
data_scale |
Scale of the data provided in e_data . Acceptable values are 'log2',
'log10', 'log', and 'abundance', which indicate data is log base 2, base
10, natural log, or raw abundance, respectively. Default is
'abundance'. |
is_normalized | A logical argument, specifying whether the data has been normalized or not. Default value is FALSE. |
nmr_norm | A logical argument, specifying whether the data has been normalized either to a spiked in metabolite or to a property taking sample-specific values |
#' | |
norm_info | Default value is an
empty list, which will be populated with a single named element
is_normalized = is_normalized . When a normalization is applied to
the data, this becomes populated with a list containing the normalization
function, normalization subset and subset parameters, the location and
scale parameters used to normalize the data, and the location and scale
parameters used to backtransform the data (if applicable). |
data_types | Character string describing the type of data (e.g.'binned' or 'identified', for NMR data). Default value is NULL. |
Computed
values included in the data_info
attribute are as follows:
num_edata | The number of unique edata_cname
entries. |
num_miss_obs | The number of missing observations. |
num_emeta | The number of unique
emeta_cname entries. |
prop_missing | The proportion
of e_data values that are NA. |
num_samps | The number
of samples that make up the columns of e_data . |
meta_info | A logical argument, specifying where the e_meta is provided. |
Object of class nmrData
Lisa Bramer, Kelly Stratton
library(pmartRdata) mynmrData <- as.nmrData( e_data = nmr_identified_edata, f_data = nmr_identified_fdata, edata_cname = "Metabolite", fdata_cname = "SampleID", data_type = "identified" )
library(pmartRdata) mynmrData <- as.nmrData( e_data = nmr_identified_edata, f_data = nmr_identified_fdata, edata_cname = "Metabolite", fdata_cname = "SampleID", data_type = "identified" )
Converts several data frames of (unlabeled or global, as opposed to labeled) peptide data to an
object of the class 'pepData'. Objects of the class 'pepData' are lists with
two obligatory components, e_data
and f_data
. An optional list
component, e_meta
, is used if analysis or visualization at other levels
(e.g. protein) is also desired.
as.pepData( e_data, f_data, e_meta = NULL, edata_cname, fdata_cname, emeta_cname = NULL, techrep_cname = NULL, ... )
as.pepData( e_data, f_data, e_meta = NULL, edata_cname, fdata_cname, emeta_cname = NULL, techrep_cname = NULL, ... )
e_data |
a |
f_data |
a data frame with |
e_meta |
an optional data frame with at least |
edata_cname |
character string specifying the name of the column
containing the peptide identifiers in |
fdata_cname |
character string specifying the name of the column
containing the sample identifiers in |
emeta_cname |
character string specifying the name of the column
containing the protein identifiers (or other mapping variable) in
|
techrep_cname |
character string specifying the name of the column in
|
... |
further arguments |
Objects of class 'pepData' contain some attributes that are referenced by downstream functions. These attributes can be changed from their default value by manual specification. A list of these attributes as well as their default values are as follows:
data_scale |
Scale of the data provided in e_data . Acceptable values are 'log2',
'log10', 'log', and 'abundance', which indicate data is log base 2, base
10, natural log, or raw abundance, respectively. Default is
'abundance'. |
is_normalized | A logical argument, specifying whether the data has been normalized or not. Default value is FALSE. |
norm_info | Default value is an empty list, which will be
populated with a single named element is_normalized = is_normalized .
When a normalization is applied to the data, this becomes populated with a
list containing the normalization function, normalization subset and subset
parameters, the location and scale parameters used to normalize the data,
and the location and scale parameters used to backtransform the data (if
applicable). |
data_types | Character string describing the type of data, most commonly used for lipidomic data (lipidData objects) or NMR data (nmrData objects) but available for other data classes as well. Default value is NULL. |
Computed
values included in the data_info
attribute are as follows:
num_edata | The number of unique edata_cname
entries. |
num_miss_obs | The number of missing observations. |
num_emeta | The number of unique
emeta_cname entries. |
prop_missing | The proportion
of e_data values that are NA. |
num_samps | The number
of samples that make up the columns of e_data . |
meta_info | A logical argument, specifying whether e_meta is provided. |
Object of class pepData
Kelly Stratton, Lisa Bramer
library(pmartRdata) mypepData <- as.pepData( e_data = pep_edata, e_meta = pep_emeta, f_data = pep_fdata, edata_cname = "Peptide", fdata_cname = "SampleID", emeta_cname = "RazorProtein" )
library(pmartRdata) mypepData <- as.pepData( e_data = pep_edata, e_meta = pep_emeta, f_data = pep_fdata, edata_cname = "Peptide", fdata_cname = "SampleID", emeta_cname = "RazorProtein" )
Converts several data frames of protein data to an
object of the class 'proData'. Objects of the class 'proData' are lists with
two obligatory components, e_data
and f_data
. An optional list
component, e_meta
, is used if analysis or visualization at other levels
(e.g. gene) is also desired.
as.proData( e_data, f_data, e_meta = NULL, edata_cname, fdata_cname, emeta_cname = NULL, techrep_cname = NULL, ... )
as.proData( e_data, f_data, e_meta = NULL, edata_cname, fdata_cname, emeta_cname = NULL, techrep_cname = NULL, ... )
e_data |
a |
f_data |
a data frame with |
e_meta |
an optional data frame with |
edata_cname |
character string specifying the name of the column
containing the protein identifiers in |
fdata_cname |
character string specifying the name of the column
containing the sample identifiers in |
emeta_cname |
character string specifying the name of the column
containing the gene identifiers (or other mapping variable) in
|
techrep_cname |
character string specifying the name of the column in
|
... |
further arguments |
Objects of class 'proData' contain some attributes that are referenced by downstream functions. These attributes can be changed from their default value by manual specification. A list of these attributes as well as their default values are as follows:
data_scale |
Scale of the data provided in e_data . Acceptable values are 'log2',
'log10', 'log', and 'abundance', which indicate data is log base 2, base
10, natural log, or raw abundance, respectively. Default
values is 'abundance'. |
is_normalized | A logical argument, specifying whether the data has been normalized or not. Default value is FALSE. |
norm_info | Default value is an empty list, which
will be populated with a single named element is_normalized =
is_normalized . When a normalization is applied to the data, this becomes
populated with a list containing the normalization function, normalization
subset and subset parameters, the location and scale parameters used to
normalize the data, and the location and scale parameters used to
backtransform the data (if applicable). |
data_types | Character string describing the type of data, most commonly used for lipidomic data (lipidData objects) or NMR data (nmrData objects) but available for other data classes as well. Default value is NULL. |
Computed values included in the data_info
attribute are as follows:
num_edata | The number of unique
edata_cname entries. |
num_miss_obs | The number of missing observations. |
num_emeta | The number of unique
emeta_cname entries. |
prop_missing | The proportion
of e_data values that are NA. |
num_samps | The number
of samples that make up the columns of e_data . |
meta_info | A logical argument, specifying whether e_meta is provided. |
Object of class proData
Kelly Stratton, Lisa Bramer
library(pmartRdata) myproData <- as.proData( e_data = pro_edata, f_data = pro_fdata, edata_cname = "RazorProtein", fdata_cname = "SampleID", is_normalized = TRUE )
library(pmartRdata) myproData <- as.proData( e_data = pro_edata, f_data = pro_fdata, edata_cname = "RazorProtein", fdata_cname = "SampleID", is_normalized = TRUE )
Converts several data frames of RNA-seq transcript data to
an object of the class 'seqData'. Objects of the class 'seqData' are lists
with two obligatory components, e_data
and f_data
. An optional
list component, e_meta
, is used if analysis or visualization at other
levels (e.g. gene, protein, pathway) is also desired.
as.seqData( e_data, f_data, e_meta = NULL, edata_cname, fdata_cname, emeta_cname = NULL, techrep_cname = NULL, ... )
as.seqData( e_data, f_data, e_meta = NULL, edata_cname, fdata_cname, emeta_cname = NULL, techrep_cname = NULL, ... )
e_data |
a |
f_data |
a data frame with |
e_meta |
an optional data frame with at least |
edata_cname |
character string specifying the name of the column
containing the transcript identifiers in |
fdata_cname |
character string specifying the name of the column
containing the sample identifiers in |
emeta_cname |
character string specifying the name of the column
containing the gene identifiers (or other mapping variable) in
|
techrep_cname |
character string specifying the name of the column in
|
... |
further arguments |
Objects of class 'seqData' contain some attributes that are referenced by downstream functions. These attributes can be changed from their default value by manual specification. A list of these attributes as well as their default values are as follows:
data_scale |
Scale of the data provided in e_data . Only 'counts' is valid for
'seqData'. |
is_normalized | A logical argument, specifying whether the data has been normalized or not. Default value is FALSE. |
norm_info | Default value is an empty list, which will be
populated with a single named element is_normalized = is_normalized .
|
data_types | Character string describing the type of data, most commonly used for lipidomic data (lipidData objects) or NMR data (nmrData objects) but available for other data classes as well. Default value is NULL. |
Computed
values included in the data_info
attribute are as follows:
num_edata | The number of unique edata_cname
entries. |
num_zero_obs | The number of zero-value observations. |
num_emeta | The number of unique
emeta_cname entries. |
prop_missing | The proportion
of e_data values that are NA. |
num_samps | The number
of samples that make up the columns of e_data . |
meta_info | A logical argument, specifying whether e_meta is provided. |
Object of class seqData
Rachel Richardson, Kelly Stratton, Lisa Bramer
library(pmartRdata) myseq <- as.seqData( e_data = rnaseq_edata, e_meta = rnaseq_emeta, f_data = rnaseq_fdata, edata_cname = "Transcript", fdata_cname = "SampleName", emeta_cname = "Transcript" )
library(pmartRdata) myseq <- as.seqData( e_data = rnaseq_edata, e_meta = rnaseq_emeta, f_data = rnaseq_fdata, edata_cname = "Transcript", fdata_cname = "SampleName", emeta_cname = "Transcript" )
Either an omicData and/or a statRes object are accepted. omicData must be transformed and normalized, unless the data is isobaric protein or NMR data. If group_designation() has been run on the omicData object to add "main_effects", the resulting plots will include groups. The main effects group_designation and e_meta columns are merged to the e_data in long format to create the trelliData.omics dataframe, and e_meta is merged to statRes in long format to create trelliData.stat dataframe.
as.trelliData(omicsData = NULL, statRes = NULL)
as.trelliData(omicsData = NULL, statRes = NULL)
omicsData |
an object of the class 'pepData', 'isobaricpepData',
proData', 'metabData', 'lipidData', or 'nmrData', created by
|
statRes |
statRes an object of the class 'statRes', created by
|
An object of class 'trelliData' containing the raw data and optionally, statRes. To be passed to trelliscope building functions.
David Degnan, Lisa Bramer
library(pmartRdata) ########################### ## MS/NMR OMICS EXAMPLES ## ########################### # Transform the data omicsData <- edata_transform(omicsData = pep_object, data_scale = "log2") # Group the data by condition omicsData <- group_designation(omicsData = omicsData, main_effects = c("Phenotype")) # Apply the IMD ANOVA filter imdanova_Filt <- imdanova_filter(omicsData = omicsData) omicsData <- applyFilt(filter_object = imdanova_Filt, omicsData = omicsData, min_nonmiss_anova = 2) # Normalize my pepData omicsData <- normalize_global(omicsData, "subset_fn" = "all", "norm_fn" = "median", "apply_norm" = TRUE, "backtransform" = TRUE) # Implement the IMD ANOVA method and compute all pairwise comparisons # (i.e. leave the `comparisons` argument NULL) statRes <- imd_anova(omicsData = omicsData, test_method = 'combined') # Generate the trelliData object trelliData2 <- as.trelliData(omicsData = omicsData) trelliData3 <- as.trelliData(statRes = statRes) trelliData4 <- as.trelliData(omicsData = omicsData, statRes = statRes) ###################### ## RNA-SEQ EXAMPLES ## ###################### # Group data by condition omicsData_seq <- group_designation(omicsData = rnaseq_object, main_effects = c("Virus")) # Filter low transcript counts omicsData_seq <- applyFilt(filter_object = total_count_filter(omicsData = omicsData_seq), omicsData = omicsData_seq, min_count = 15) # Select a normalization and statistics method (options are 'edgeR', 'DESeq2', and 'voom'). # See ?difexp_seq for more details statRes_seq <- diffexp_seq(omicsData = omicsData_seq, method = "voom") # Generate the trelliData object trelliData_seq2 <- as.trelliData(omicsData = omicsData_seq) trelliData_seq3 <- as.trelliData(statRes = statRes_seq) trelliData_seq4 <- as.trelliData(omicsData = omicsData_seq, statRes = statRes_seq)
library(pmartRdata) ########################### ## MS/NMR OMICS EXAMPLES ## ########################### # Transform the data omicsData <- edata_transform(omicsData = pep_object, data_scale = "log2") # Group the data by condition omicsData <- group_designation(omicsData = omicsData, main_effects = c("Phenotype")) # Apply the IMD ANOVA filter imdanova_Filt <- imdanova_filter(omicsData = omicsData) omicsData <- applyFilt(filter_object = imdanova_Filt, omicsData = omicsData, min_nonmiss_anova = 2) # Normalize my pepData omicsData <- normalize_global(omicsData, "subset_fn" = "all", "norm_fn" = "median", "apply_norm" = TRUE, "backtransform" = TRUE) # Implement the IMD ANOVA method and compute all pairwise comparisons # (i.e. leave the `comparisons` argument NULL) statRes <- imd_anova(omicsData = omicsData, test_method = 'combined') # Generate the trelliData object trelliData2 <- as.trelliData(omicsData = omicsData) trelliData3 <- as.trelliData(statRes = statRes) trelliData4 <- as.trelliData(omicsData = omicsData, statRes = statRes) ###################### ## RNA-SEQ EXAMPLES ## ###################### # Group data by condition omicsData_seq <- group_designation(omicsData = rnaseq_object, main_effects = c("Virus")) # Filter low transcript counts omicsData_seq <- applyFilt(filter_object = total_count_filter(omicsData = omicsData_seq), omicsData = omicsData_seq, min_count = 15) # Select a normalization and statistics method (options are 'edgeR', 'DESeq2', and 'voom'). # See ?difexp_seq for more details statRes_seq <- diffexp_seq(omicsData = omicsData_seq, method = "voom") # Generate the trelliData object trelliData_seq2 <- as.trelliData(omicsData = omicsData_seq) trelliData_seq3 <- as.trelliData(statRes = statRes_seq) trelliData_seq4 <- as.trelliData(omicsData = omicsData_seq, statRes = statRes_seq)
The only acceptable input file type is a single edata file. Transformation and normalization must be specified. Isobaric protein or NMR data does not need to be normalized.
as.trelliData.edata( e_data, edata_cname, omics_type, data_scale_original = "abundance", data_scale = "log2", normalization_fun = "global", normalization_params = list(subset_fn = "all", norm_fn = "median", apply_norm = TRUE, backtransform = TRUE), is_normalized = FALSE, force_normalization = FALSE )
as.trelliData.edata( e_data, edata_cname, omics_type, data_scale_original = "abundance", data_scale = "log2", normalization_fun = "global", normalization_params = list(subset_fn = "all", norm_fn = "median", apply_norm = TRUE, backtransform = TRUE), is_normalized = FALSE, force_normalization = FALSE )
e_data |
a |
edata_cname |
character string specifying the name of the column containing the biomolecule identifiers. It should be the only non-numeric colummn in edata. |
omics_type |
A string specifying the data type. Acceptable options are "pepData", "isobaricpepData", "proData", "metabData", "lipidData", "nmrData", or "seqData". |
data_scale_original |
A character string indicating original scale of the data. Valid values are: 'log2', 'log', 'log10', or 'abundance'. Default is abundance. This parameter is ignored if the data is "seqData". |
data_scale |
A character string indicating the scale to transform the data to. Valid values are: 'log2', 'log', 'log10', or 'abundance'. If the value is the same as data_scale_original, then transformation is not applied. Default is log2. This parameter is ignored if the data is "seqData". |
normalization_fun |
A character string indicating the pmartR normalization function to use on the data, if is_normalized is FALSE. Acceptable choices are 'global', 'loess', and 'quantile'. This parameter is ignored if the data is "seqData". |
normalization_params |
A vector or list where the normalization parameters are the names, and the parameter values are the list values. For example, an acceptable entry for 'normalize_global' would be list("subset_fn" = "all", "norm_fn" = "median", "apply_norm" = TRUE, "backtransform" = TRUE). This parameter is ignored if the data is "seqData". |
is_normalized |
A logical indicator of whether the data is already normalized (and will therefore skip the normalization step). This parameter is ignored if the data is "seqData". |
force_normalization |
A logical indicator to force normalization that is not required for both isobaric protein and NMR data. This parameter is ignored if the data is "seqData." |
An object of class 'trelliData' containing the raw data. To be passed to trelliscope building functions.
David Degnan, Daniel Claborne, Lisa Bramer
library(pmartRdata) ########################### ## MS/NMR OMICS EXAMPLES ## ########################### # Simple MS/NMR Example trelliData1 <- as.trelliData.edata(e_data = pep_edata, edata_cname = "Peptide", omics_type = "pepData") ###################### ## RNA-SEQ EXAMPLES ## ###################### # RNA-seq Example trelliData_seq1 <- as.trelliData.edata(e_data = rnaseq_edata, edata_cname = "Transcript", omics_type = "seqData")
library(pmartRdata) ########################### ## MS/NMR OMICS EXAMPLES ## ########################### # Simple MS/NMR Example trelliData1 <- as.trelliData.edata(e_data = pep_edata, edata_cname = "Peptide", omics_type = "pepData") ###################### ## RNA-SEQ EXAMPLES ## ###################### # RNA-seq Example trelliData_seq1 <- as.trelliData.edata(e_data = rnaseq_edata, edata_cname = "Transcript", omics_type = "seqData")
Applies BP-Quant to a pepData object
bpquant(statRes, pepData, pi_not = 0.9, max_proteoforms = 5, parallel = TRUE)
bpquant(statRes, pepData, pi_not = 0.9, max_proteoforms = 5, parallel = TRUE)
statRes |
an object of the class 'statRes' |
pepData |
an omicsData object of the class 'pepData' that includes the e_meta component |
pi_not |
numeric value between 0 and 1 indicating the background probability/frequency of a zero signature |
max_proteoforms |
a numeric value corresponding to the maximum threshold for the number of possible proteoforms |
parallel |
a logical indicator of whether the calculation will be parallelized |
The result of this function can be used as one the isoformRes
input argument to protein_quant
. The bpquant
function
itself operates as follows: The statRes object contains the signatures data
frame, the pepData object is used for its e_meta data frame. Next the
signatures data frame and e_meta are merged by their edata_cname (e.g.
peptide identifier) columns, this new data frame called protein_sig_data
will be input to bpquant_mod in a “foreach” statement. “Foreach” will
subset protein_sig_data for each unique protein and apply bpquant_mod to
each subset and store the results.
a list of data frames, one for each unique protein. The data frames have three columns, a protein identifier, a peptide identifier, and a "ProteoformID". The class of this list is 'isoformRes'.
library(pmartRdata) mypepData <- group_designation( omicsData = pep_object, main_effects = c("Phenotype") ) mypepData = edata_transform(omicsData = mypepData, data_scale = "log2") imdanova_Filt <- imdanova_filter(omicsData = mypepData) mypepData <- applyFilt( filter_object = imdanova_Filt, omicsData = mypepData, min_nonmiss_anova = 2 ) imd_anova_res <- imd_anova( omicsData = mypepData, test_method = 'combined', pval_adjust_a_multcomp = 'bon', pval_adjust_g_multcomp = 'bon' ) result = bpquant(statRes = imd_anova_res, pepData = mypepData)
library(pmartRdata) mypepData <- group_designation( omicsData = pep_object, main_effects = c("Phenotype") ) mypepData = edata_transform(omicsData = mypepData, data_scale = "log2") imdanova_Filt <- imdanova_filter(omicsData = mypepData) mypepData <- applyFilt( filter_object = imdanova_Filt, omicsData = mypepData, min_nonmiss_anova = 2 ) imd_anova_res <- imd_anova( omicsData = mypepData, test_method = 'combined', pval_adjust_a_multcomp = 'bon', pval_adjust_g_multcomp = 'bon' ) result = bpquant(statRes = imd_anova_res, pepData = mypepData)
The function is written to take input from one protein at a time and requires three inputs: protein_sig, pi_not and max_proteforms
bpquant_mod(protein_sig, pi_not, max_proteoforms)
bpquant_mod(protein_sig, pi_not, max_proteoforms)
protein_sig |
is a matrix or data.frame with p rows and n columns, where p is the number of peptides mapped to the protein of interest and n is the number of tests conducted to generate signatures made up of values 0, 1, and -1. |
pi_not |
is a numeric value between 0 and 1 indicating the background probability/frequency of a zero signature. |
max_proteoforms |
a numeric value, a maximum threshold for the number of possible proteoforms. |
num_proteoforms | the number of proteoforms as identified by bpquant |
unique_sigs | matrix of unique signatures observed |
proteoform_configs | matrix of 0/1 values indicating scenarios of proteoform absence/presence scenarios |
post_prob | vector of posterior probabilities corresponding to each proteoform configuration in "proteoform_configs" |
peptide_idx | vector of 0, 1, 2, . . . values indicating which proteoform each peptide belongs to |
a list of five items: num_proteoforms, unique_sigs, proteoform_configs, post_prob and peptide_idx
Combines two omicsData objects with identical sample information.
combine_lipidData( obj_1, obj_2, retain_groups = FALSE, retain_filters = FALSE, drop_duplicate_emeta = TRUE, ... )
combine_lipidData( obj_1, obj_2, retain_groups = FALSE, retain_filters = FALSE, drop_duplicate_emeta = TRUE, ... )
obj_1 |
omicsData object of the same supported type as obj_2, currently "lipidData". See details for more requirements. |
obj_2 |
omicsData object of the same supported type as obj_1, currently "lipidData". See details for more requirements. |
retain_groups |
logical indicator of whether to attempt to apply existing group information to the new object. Defaults to FALSE. |
retain_filters |
Whether to retain filter information in the new object (defaults to FALSE). |
drop_duplicate_emeta |
a logical indicator of whether duplicate molecule identifiers in e_meta should be dropped |
... |
Extra arguments, not one of 'omicsData', 'main_effects', or 'covariates' to be passed to 'pmartR::group_designation'. |
General requirements:
* sample names: These must be identical for both objects (column names of e_data, and sample identifiers in f_data) * data attributes: Objects must be on the same scale and both be either normalized or unnormalized * group designation: Objects must have the same grouping structure if retain_groups = T
An object of the same type as the two input objects, with their combined data.
library(pmartRdata) obj_1 <- lipid_neg_object obj_2 <- lipid_pos_object # de-duplicate any duplicate edata identifiers all(obj_2$e_data[, get_edata_cname(obj_2)] == obj_2$e_meta[, get_edata_cname(obj_2)]) obj_2$e_data[, get_edata_cname(obj_2)] <- paste0("obj_2_", obj_2$e_data[, get_edata_cname(obj_2)]) obj_2$e_meta[, get_edata_cname(obj_2)] <- obj_2$e_data[, get_edata_cname(obj_2)] combine_object <- combine_lipidData(obj_1 = obj_1, obj_2 = obj_2) # preprocess and group the data and keep filters/grouping structure obj_1 <- edata_transform(omicsData = obj_1, data_scale = "log2") obj_1 <- normalize_global(omicsData = obj_1, subset_fn = "all", norm_fn = "median", apply_norm = TRUE) obj_2 <- edata_transform(omicsData = obj_2, data_scale = "log2") obj_2 <- normalize_global(omicsData = obj_2, subset_fn = "all", norm_fn = "median", apply_norm = TRUE) obj_1 <- group_designation(omicsData = obj_1, main_effects = "Virus") obj_2 <- group_designation(omicsData = obj_2, main_effects = "Virus") obj_1 <- applyFilt(filter_object = molecule_filter(omicsData = obj_1), omicsData = obj_1, min_num = 2) obj_2 <- applyFilt(filter_object = cv_filter(omicsData = obj_2), obj_2, cv_thresh = 60) combine_object_later <- combine_lipidData( obj_1 = obj_1, obj_2 = obj_2, retain_groups = TRUE, retain_filters = TRUE )
library(pmartRdata) obj_1 <- lipid_neg_object obj_2 <- lipid_pos_object # de-duplicate any duplicate edata identifiers all(obj_2$e_data[, get_edata_cname(obj_2)] == obj_2$e_meta[, get_edata_cname(obj_2)]) obj_2$e_data[, get_edata_cname(obj_2)] <- paste0("obj_2_", obj_2$e_data[, get_edata_cname(obj_2)]) obj_2$e_meta[, get_edata_cname(obj_2)] <- obj_2$e_data[, get_edata_cname(obj_2)] combine_object <- combine_lipidData(obj_1 = obj_1, obj_2 = obj_2) # preprocess and group the data and keep filters/grouping structure obj_1 <- edata_transform(omicsData = obj_1, data_scale = "log2") obj_1 <- normalize_global(omicsData = obj_1, subset_fn = "all", norm_fn = "median", apply_norm = TRUE) obj_2 <- edata_transform(omicsData = obj_2, data_scale = "log2") obj_2 <- normalize_global(omicsData = obj_2, subset_fn = "all", norm_fn = "median", apply_norm = TRUE) obj_1 <- group_designation(omicsData = obj_1, main_effects = "Virus") obj_2 <- group_designation(omicsData = obj_2, main_effects = "Virus") obj_1 <- applyFilt(filter_object = molecule_filter(omicsData = obj_1), omicsData = obj_1, min_num = 2) obj_2 <- applyFilt(filter_object = cv_filter(omicsData = obj_2), obj_2, cv_thresh = 60) combine_object_later <- combine_lipidData( obj_1 = obj_1, obj_2 = obj_2, retain_groups = TRUE, retain_filters = TRUE )
For each biomolecule, this function aggregates the technical replicates of the biological samples using a specified aggregation method
combine_techreps(omicsData, combine_fn = NULL, bio_sample_names = NULL)
combine_techreps(omicsData, combine_fn = NULL, bio_sample_names = NULL)
omicsData |
an object of the class 'lipidData', 'metabData', 'pepData',
'proData', 'nmrData', or 'seqData', created by
|
combine_fn |
a character string specifying the function used to aggregate across technical replicates. Currently supported functions are 'sum' and 'mean'. Defaults to 'sum' for seqData and 'mean' for all other omicsData. |
bio_sample_names |
a character string specifying the column in
|
Loss of information after aggregation
f_data: | If there are columns in f_data that have more than 1 value per biological sample, then for each biological sample, only the first value in that column will be retained. Technical replicate specific information will be lost. |
group information: | If a grouping structure has been set
using a main effect from f_data that has more than 1 level within any given
biological sample, that grouping structure will be removed. Call
group_designation again on the aggregated data to assign a grouping
structure. |
sample names: | Identifiers for each biological sample
will replace the identifiers for technical replicates as column names in
e_data as well as the identifier column attr(omicsData,
'fdata_cname') in f_data. |
An object with the same class as omicsData that has been aggregated to the biological sample level
Daniel Claborne
library(pmartRdata) pep_object_averaged <- combine_techreps(omicsData = pep_techrep_object)
library(pmartRdata) pep_object_averaged <- combine_techreps(omicsData = pep_techrep_object)
Selects biomolecules that have complete rows in e_data, equivalent to 'ppp' with proportion = 1.
complete_mols(e_data, edata_id)
complete_mols(e_data, edata_id)
e_data |
a |
edata_id |
character string indicating the name of the peptide, protein,
lipid, or metabolite identifier. Usually obtained by calling
|
Character vector containing the biomolecules with no missing values across all samples.
This function returns an object of class corRes (correlation Result)
cor_result(omicsData)
cor_result(omicsData)
omicsData |
an object of the class 'lipidData', 'metabData', 'pepData',
'proData', 'nmrData', or 'seqData', created by
|
The pairwise correlations between samples are calculated based on
biomolecules that are observed in both samples. For seqData objects,
Spearman correlation is used. For all other data types, Pearson correlation
is used and data must be log transformed. See cor
for further details.
An matrix of class corRes giving the correlation
between samples.
Kelly Stratton, Lisa Bramer
library(pmartRdata) mymetab <- edata_transform(omicsData = metab_object, data_scale = "log2") my_correlation <- cor_result(omicsData = mymetab) myseq_correlation <- cor_result(omicsData = rnaseq_object)
library(pmartRdata) mymetab <- edata_transform(omicsData = metab_object, data_scale = "log2") my_correlation <- cor_result(omicsData = mymetab) myseq_correlation <- cor_result(omicsData = rnaseq_object)
The method creates a data frame containing the comparisons to be made when performing differential statistics.
create_comparisonDF(comp_type, omicsData, control_group = NULL)
create_comparisonDF(comp_type, omicsData, control_group = NULL)
comp_type |
string specifying either "control" or "pairwise". Specifying "control" indicates that all other groups are to be compared to a single control group. Specifying "pairwise" indicates that all pairwise comparisons are to be made. |
omicsData |
A pmartR data object of any class, which has a 'group_df' attribute created by the 'group_designation()' function |
control_group |
string indicating the group to use for the control group. Only required when comp_type="control". |
This function takes in the omicsData and type of comparison, and returns a data frame where each row corresponds to a comparison of interest.
data frame with columns for Test and Control. Each row corresponds to a comparison of interest.
Kelly Stratton
library(pmartRdata) mymetab <- group_designation(omicsData = metab_object, main_effects = "Phenotype") create_comparisonDF(comp_type = "pairwise", omicsData = mymetab) create_comparisonDF(comp_type = "control", omicsData = mymetab, control_group = "Phenotype1")
library(pmartRdata) mymetab <- group_designation(omicsData = metab_object, main_effects = "Phenotype") create_comparisonDF(comp_type = "pairwise", omicsData = mymetab) create_comparisonDF(comp_type = "control", omicsData = mymetab, control_group = "Phenotype1")
This function creates a customFilt S3 object based on user-specified items to filter out of the dataset
custom_filter( omicsData, e_data_remove = NULL, f_data_remove = NULL, e_meta_remove = NULL, e_data_keep = NULL, f_data_keep = NULL, e_meta_keep = NULL )
custom_filter( omicsData, e_data_remove = NULL, f_data_remove = NULL, e_meta_remove = NULL, e_data_keep = NULL, f_data_keep = NULL, e_meta_keep = NULL )
omicsData |
an object of class 'pepData', 'proData', 'metabData',
'lipidData', 'nmrData', or 'seqData', created by |
e_data_remove |
character vector specifying the names of the e_data identifiers to remove from the data. This argument can only be specified with other 'remove' arguments. |
f_data_remove |
character vector specifying the names of f_data identifiers to remove from the data. This argument can only be specified with other 'remove' arguments. |
e_meta_remove |
character vector specifying the names of the e_meta identifiers to remove from the data. This argument can only be specified with other 'remove' arguments. |
e_data_keep |
character vector specifying the names of the e_data identifiers to keep from the data. This argument can only be specified with other 'keep' arguments. |
f_data_keep |
character vector specifying the names of f_data identifiers to keep from the data. This argument can only be specified with other 'keep' arguments. |
e_meta_keep |
character vector specifying the names of the e_meta identifiers to keep from the data. This argument can only be specified with other 'keep' arguments. |
An S3 object of class 'customFilt', which is a list with 3 elements for e_data, f_data, and e_meta, specifying which entries should be either kept or removed
Kelly Stratton
library(pmartRdata) to_filter <- custom_filter(omicsData = metab_object, e_data_remove = "fumaric acid", f_data_remove = "Sample_1_Phenotype2_B") summary(to_filter) to_filter2 <- custom_filter(omicsData = metab_object, f_data_keep = metab_object$f_data$SampleID[1:10]) summary(to_filter2)
library(pmartRdata) to_filter <- custom_filter(omicsData = metab_object, e_data_remove = "fumaric acid", f_data_remove = "Sample_1_Phenotype2_B") summary(to_filter) to_filter2 <- custom_filter(omicsData = metab_object, f_data_keep = metab_object$f_data$SampleID[1:10]) summary(to_filter2)
This helper function creates custom sample names for plot data object functions
custom_sampnames( omicsData, firstn = NULL, from = NULL, to = NULL, delim = NULL, components = NULL, pattern = NULL, ... )
custom_sampnames( omicsData, firstn = NULL, from = NULL, to = NULL, delim = NULL, components = NULL, pattern = NULL, ... )
omicsData |
an object of the class 'pepData', 'proData',
'metabData', 'lipidData', 'nmrData', or 'seqData', created by |
firstn |
an integer specifying the first n characters to keep as the sample name. This argument is optional. |
from |
an integer specifying the start of the range of characters to keep as the sample name. This argument is optional. If this argument is specified, 'to' must also be specified. |
to |
an integer specifying the end of the range of characters to keep as the sample name. This argument is optional. If this argument is specified, 'from' must also be specified. |
delim |
character delimiter by which to separate sample name components. This argument is optional. If this argument is specified, 'components' must also be specified. |
components |
integer vector specifying which components separated by the delimiter should be kept as the custom sample name. This argument is optional. If this argument is specified, 'delim' must also be specified. |
pattern |
character string specifying the regex pattern to use to extract substrings from the sample names |
... |
extra arguments passed to regexpr if pattern is specified |
This function can be used to create custom (and shorter) sample names to be used when plotting so that axis labels are not so long that they interfere with the graph itself. To use the custom sample names when plotting, specify the optional argument 'use_VizSampNames = TRUE'.
Object of same class as omicsData, with added column in f_data named 'VizSampNames'.
library(pmartRdata) mypep <- edata_transform(omicsData = pep_object, data_scale = "log2") plot(mypep) # specify new names using firstn argument results <- custom_sampnames(omicsData = mypep, firstn = 9) plot(results, use_VizSampNames = TRUE) # specify new names using from and to arguments results <- custom_sampnames(omicsData = mypep, from = 1, to = 9) plot(results, use_VizSampNames = TRUE) # specify new names using delim and components arguments results <- custom_sampnames(omicsData = mypep, delim = "_", components = c(1, 2)) plot(results, use_VizSampNames = TRUE) ## specify new names using pattern arguments (regex) # match everything after "Sample_" pattern1 <- "[0-9]+_[0-9A-Za-z]+_[A-Z]" results <- custom_sampnames(omicsData = mypep, pattern = pattern1) plot(results, use_VizSampNames = TRUE) # match "Sample_" and the number after it pattern2 <- "^Sample_[0-9]+" results <- custom_sampnames(omicsData = mypep, pattern = pattern2) plot(results, use_VizSampNames = TRUE)
library(pmartRdata) mypep <- edata_transform(omicsData = pep_object, data_scale = "log2") plot(mypep) # specify new names using firstn argument results <- custom_sampnames(omicsData = mypep, firstn = 9) plot(results, use_VizSampNames = TRUE) # specify new names using from and to arguments results <- custom_sampnames(omicsData = mypep, from = 1, to = 9) plot(results, use_VizSampNames = TRUE) # specify new names using delim and components arguments results <- custom_sampnames(omicsData = mypep, delim = "_", components = c(1, 2)) plot(results, use_VizSampNames = TRUE) ## specify new names using pattern arguments (regex) # match everything after "Sample_" pattern1 <- "[0-9]+_[0-9A-Za-z]+_[A-Z]" results <- custom_sampnames(omicsData = mypep, pattern = pattern1) plot(results, use_VizSampNames = TRUE) # match "Sample_" and the number after it pattern2 <- "^Sample_[0-9]+" results <- custom_sampnames(omicsData = mypep, pattern = pattern2) plot(results, use_VizSampNames = TRUE)
A pooled CV is calculated for each biomolecule.
cv_filter(omicsData, use_groups = TRUE)
cv_filter(omicsData, use_groups = TRUE)
omicsData |
an object of class 'pepData', 'proData', 'metabData',
'lipidData', or 'nmrData' created by |
use_groups |
logical indicator for whether to utilize group information
from |
For each biomolecule, the CV of each group is calculated as the standard deviation divided by the mean, excluding missing values. A pooled CV estimate is then calculated based on the methods of Ahmed (1995). Any groups consisting of a single sample are excluded from the CV calculation, and thus, from the cv_filter result. If group_designation has not been run on the omicsData object, all samples are considered to belong to the same group.
An S3 object of class 'cvFilt' giving the pooled CV for each biomolecule and additional information used for plotting a data.frame with a column giving the biomolecule name and a column giving the pooled CV value.
Lisa Bramer, Kelly Stratton
Ahmed, S.E. (1995). A pooling methodology for coefficient of variation. The Indian Journal of Statistics. 57: 57-75.
library(pmartRdata) mypep <- group_designation(omicsData = pep_object, main_effects = "Phenotype") to_filter <- cv_filter(omicsData = mypep, use_groups = TRUE) summary(to_filter, cv_threshold = 30)
library(pmartRdata) mypep <- group_designation(omicsData = pep_object, main_effects = "Phenotype") to_filter <- cv_filter(omicsData = mypep, use_groups = TRUE) summary(to_filter, cv_threshold = 30)
For generating statistics for 'seqData' objects
DESeq2_wrapper( omicsData, test = "Wald", p_adjust = "BH", comparisons = NULL, p_cutoff = 0.05, ... )
DESeq2_wrapper( omicsData, test = "Wald", p_adjust = "BH", comparisons = NULL, p_cutoff = 0.05, ... )
omicsData |
an object of type 'seqData', created by |
test |
either "Wald" or "LRT", which will then use either Wald significance tests, or the likelihood ratio test on the difference in deviance between a full and reduced model formula |
p_adjust |
Character string for p-value correction method, refer to ?p.adjust() for valid options. Defaults to "BH" (Benjamini & Hochberg) |
comparisons |
'data.frame' with columns for "Control" and "Test" containing the different comparisons of interest. Comparisons will be made between the Test and the corresponding Control If left NULL, then all pairwise comparisons are executed. |
p_cutoff |
Numeric value between 0 and 1 for setting p-value significance threshold |
... |
additional arguments passed to function |
Runs default DESeq workflow. Defaults to Wald test, no independent filtering, and running in parallel. Additional arguments can be passed for use in the function, refer to DESeq() and results() in DESeq2 package. Requires 'survival' package to run.
Flags (signatures) - Indicator of statistical significance for computed test. Zeros indicate no significance, while +/- 1 indicates direction of significance.
statRes object
Love, M.I., Huber, W., Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 Genome Biology 15(12):550 (2014)
Performs statistical analysis for differential expression of seqData objects, using methods from one of: edgeR, DESeq2, or limma-voom
diffexp_seq( omicsData, method = "edgeR", p_adjust = "BH", comparisons = NULL, p_cutoff = 0.05, ... )
diffexp_seq( omicsData, method = "edgeR", p_adjust = "BH", comparisons = NULL, p_cutoff = 0.05, ... )
omicsData |
object of type 'seqData' created by
|
method |
character string of length one specifying which wrapper to use. Can be 'edgeR', 'DESeq2', or 'voom' |
p_adjust |
character string for p-value correction method, refer to ?p.adjust() for valid options. Defaults to "BH" (Benjamini & Hochberg). |
comparisons |
data frame with columns for "Control" and "Test" containing the different comparisons of interest. Comparisons will be made between the Test and the corresponding Control If left NULL, then all pairwise comparisons are executed. |
p_cutoff |
numeric value between 0 and 1 for setting p-value significance threshold |
... |
additional arguments passed to methods functions. Note, formatting option changes will interfere with wrapping functionality. |
Runs default differential expression workflows.
Flags (signatures) - Indicator of statistical significance. Zeroes indicate no significance, while +/- 1 indicates direction of significance.
Method "edgeR" - Runs default edgeR workflow with empirical Bayes quasi-likelihood F-tests. Additional arguments can be passed for use in the function. Refer to calcNormFactors() and glmQLFit() in edgeR package. Requires the 'edgeR' and 'limma' packages to run.
Method "DESeq2" - Runs default DESeq workflow. Defaults to Wald test, no independent filtering, and running in parallel. Additional arguments can be passed for use in the function. Refer to DESeq() and results() in DESeq2 package. Requires 'survival' package to run.
Method "voom" - Runs default limma-voom workflow using empirical Bayes moderated t-statistics. Additional arguments can be passed for use in the function. Refer to calcNormFactors() in edgeR package. Requires the 'edgeR' and 'limma' packages to run.
object of class statRes
Robinson MD, McCarthy DJ, Smyth GK (2010). “edgeR: a Bioconductor package for differential expression analysis of digital gene expression data.” Bioinformatics, 26(1), 139-140. doi: 10.1093/bioinformatics/btp616.
Love, M.I., Huber, W., Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 Genome Biology 15(12):550 (2014)
Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., and Smyth, G.K. (2015). limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research 43(7), e47.
library(pmartRdata) myseqData <- group_designation(omicsData = rnaseq_object, main_effects = "Virus") edger_results <- diffexp_seq(omicsData = myseqData, method = "edgeR") deseq_results <- diffexp_seq(omicsData = myseqData, method = "DESeq2") voom_results <- diffexp_seq(omicsData = myseqData, method = "voom")
library(pmartRdata) myseqData <- group_designation(omicsData = rnaseq_object, main_effects = "Virus") edger_results <- diffexp_seq(omicsData = myseqData, method = "edgeR") deseq_results <- diffexp_seq(omicsData = myseqData, method = "DESeq2") voom_results <- diffexp_seq(omicsData = myseqData, method = "voom")
For data types other than seqData, this function calculates principal components using projection pursuit estimation, which implements an expectation-maximization (EM) estimation algorithm when data is missing. For seqData counts, a generalized version of principal components analysis for non-normally distributed data is calculated under the assumption of a negative binomial distribution with global dispersion.
dim_reduction(omicsData, k = 2)
dim_reduction(omicsData, k = 2)
omicsData |
an object of the class 'pepdata', 'prodata', 'metabData',
'lipidData', 'nmrData', or 'seqData', created by |
k |
integer number of principal components to return. Defaults to 2. |
Any biomolecules seen in only one sample or with a variance less
than 1E-6 across all samples are not included in the PCA calculations. This
function leverages code from pca
and
glmpca
.
a data.frame with first k
principal component scores, sample
identifiers, and group membership for each sample (if group designation was
previously run on the data). The object is of class dimRes (dimension
reduction Result).
Redestig H, Stacklies W, Scholz M, Selbig J, & Walther D (2007). pcaMethods - a bioconductor package providing PCA methods for incomplete data. Bioinformatics. 23(9): 1164-7.
Townes FW, Hicks SC, Aryee MJ, Irizarry RA (2019). Feature selection and dimension reduction for single-cell RNA-seq based on a multinomial model. Genome Biol. 20, 1–16.
Huang H, Wang Y, Rudin C, Browne EP (2022). Towards a comprehensive evaluation of dimension reduction methods for transcriptomic data visualization. Communications Biology 5, 719.
library(pmartRdata) mylipid <- edata_transform(omicsData = lipid_neg_object, data_scale = "log2") mylipid <- group_designation(omicsData = mylipid, main_effects = "Virus") pca_lipids <- dim_reduction(omicsData = mylipid) myseq <- group_designation(omicsData = rnaseq_object, main_effects = "Virus") pca_seq <- dim_reduction(omicsData = myseq)
library(pmartRdata) mylipid <- edata_transform(omicsData = lipid_neg_object, data_scale = "log2") mylipid <- group_designation(omicsData = mylipid, main_effects = "Virus") pca_lipids <- dim_reduction(omicsData = mylipid) myseq <- group_designation(omicsData = rnaseq_object, main_effects = "Virus") pca_seq <- dim_reduction(omicsData = myseq)
For generating statistics for 'seqData' objects
dispersion_est( omicsData, method, interactive = FALSE, x_lab = NULL, x_lab_size = 11, x_lab_angle = NULL, y_lab = NULL, y_lab_size = 11, title_lab = NULL, title_lab_size = 14, legend_lab = NULL, legend_position = "right", bw_theme = TRUE, palette = NULL, point_size = 0.2, custom_theme = NULL )
dispersion_est( omicsData, method, interactive = FALSE, x_lab = NULL, x_lab_size = 11, x_lab_angle = NULL, y_lab = NULL, y_lab_size = 11, title_lab = NULL, title_lab_size = 14, legend_lab = NULL, legend_position = "right", bw_theme = TRUE, palette = NULL, point_size = 0.2, custom_theme = NULL )
omicsData |
seqData object used to terst dispersions |
method |
either "DESeq2", "edgeR", or "voom" for testing dispersion |
interactive |
Logical. If TRUE produces an interactive plot. |
x_lab |
A character string specifying the x-axis label when the metric argument is NULL. The default is NULL in which case the x-axis label will be "count". |
x_lab_size |
An integer value indicating the font size for the x-axis. The default is 11. |
x_lab_angle |
An integer value indicating the angle of x-axis labels. |
y_lab |
A character string specifying the y-axis label. The default is
NULL in which case the y-axis label will be the metric selected for the
|
y_lab_size |
An integer value indicating the font size for the y-axis. The default is 11. |
title_lab |
A character string specifying the plot title when the
|
title_lab_size |
An integer value indicating the font size of the plot title. The default is 14. |
legend_lab |
A character string specifying the legend title. |
legend_position |
A character string specifying the position of the legend. Can be one of "right", "left", "top", or "bottom". The default is "right". |
bw_theme |
Logical. If TRUE uses the ggplot2 black and white theme. |
palette |
A character string indicating the name of the RColorBrewer
palette to use. For a list of available options see the details section in
|
point_size |
An integer specifying the size of the points. The default is 0.2. |
custom_theme |
a ggplot 'theme' object to be applied to non-interactive plots, or those converted by plotly::ggplotly(). |
DESeq2 option requires package "survival" to be available.
plot result
Robinson MD, McCarthy DJ, Smyth GK (2010). “edgeR: a Bioconductor package for differential expression analysis of digital gene expression data.” Bioinformatics, 26(1), 139-140. doi: 10.1093/bioinformatics/btp616.
Love, M.I., Huber, W., Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 Genome Biology 15(12):550 (2014)
Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., and Smyth, G.K. (2015). limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research 43(7), e47.
library(pmartRdata) myseqData <- group_designation(omicsData = rnaseq_object, main_effects = "Virus") dispersion_est(omicsData = myseqData, method = "edgeR") dispersion_est(omicsData = myseqData, method = "DESeq2") dispersion_est(omicsData = myseqData, method = "voom")
library(pmartRdata) myseqData <- group_designation(omicsData = rnaseq_object, main_effects = "Virus") dispersion_est(omicsData = myseqData, method = "edgeR") dispersion_est(omicsData = myseqData, method = "DESeq2") dispersion_est(omicsData = myseqData, method = "voom")
This function finds all values of x in the e_data element of omicsData and replaces them with y
edata_replace(omicsData, x, y, threshold = NULL)
edata_replace(omicsData, x, y, threshold = NULL)
omicsData |
an object of the class 'pepData', 'proData', 'metabData',
'lipidData', or 'nmrData' created by |
x |
value to be replaced, usually numeric or NA |
y |
replacement value, usually numeric or NA |
threshold |
Positive numeric value. Observed values below this threshold will be replaced by 'y' (in addition to all 'x' values). |
This function is often used to replace any 0 values in peptide, protein, metabolite, or lipid data with NA's. For omicsData on the abundance scale, when the omicsData object is created, any 0's in e_data are automatically converted to NA's. For omicsData on the count scale (e.g. seqData objects), when the omicsData object is created, any NA's in e_data are automatically converted to 0's.
data object of the same class as omicsData
Kelly Stratton
library(pmartRdata) mymetab <- edata_replace(omicsData = metab_object, x = 0, y = NA)
library(pmartRdata) mymetab <- edata_replace(omicsData = metab_object, x = 0, y = NA)
This function takes in an omicsData object and returns a summary of the e_data component. The six summarizing metrics include the mean, standard deviation, median, percent observed, minimum, and maximum.
edata_summary(omicsData, by = "sample", groupvar = NULL)
edata_summary(omicsData, by = "sample", groupvar = NULL)
omicsData |
object of the class 'lipidData', 'metabData', 'pepData',
'proData', or 'nmrData' created by |
by |
character string indicating whether summarizing metrics will be applied by 'sample' or by 'molecule'. Defaults to 'sample'. |
groupvar |
a character vector with no more than two variable names that
should be used to determine group membership of samples. The variable name
must match a column name from |
If groupvar is NULL and group_designation has not been applied to
omicsData, then the metrics will be applied to each column of e_data (when
by = 'sample) or to each row of e_data (when by = 'molecule'). When
groupvar is provided, it must match a column name from f_data
, this
column of f_data is used to group e_data in order to apply the metrics.
A list of six data frames, of class 'dataRes' (data Result), which are the results of applying the metrics (mean, standard deviation, median, percent observed, minimum and maximum) to omicsData$e_data.
library(pmartRdata) mylipid <- edata_transform(omicsData = lipid_pos_object, data_scale = "log2") mylipid <- group_designation(omicsData = mylipid, main_effects = "Virus") result <- edata_summary(omicsData = mylipid, by = "sample", groupvar = NULL)
library(pmartRdata) mylipid <- edata_transform(omicsData = lipid_pos_object, data_scale = "log2") mylipid <- group_designation(omicsData = mylipid, main_effects = "Virus") result <- edata_summary(omicsData = mylipid, by = "sample", groupvar = NULL)
This function applies a transformation to the e_data element of omicsData
edata_transform(omicsData, data_scale)
edata_transform(omicsData, data_scale)
omicsData |
an object of the class 'pepData', 'proData', 'metabData',
'lipidData', or 'nmrData', created by
|
data_scale |
a character string indicating the type of transformation to be applied to the data. Valid values for 'pepData', 'proData', 'metabData', 'lipidData', or 'nmrData': 'log2', 'log', 'log10', or 'abundance'. A value of 'abundance' indicates the data has previously undergone one of the log transformations and should be transformed back to raw values with no transformation applied. Valid values for 'seqData': 'upper', 'median', 'lcpm'. For 'seqData', 'lcpm' transforms by log2 counts per million, 'upper' transforms by the upper quartile of non-zero counts, and 'median' transforms by the median of non-zero counts. |
For all but seqData, this function is intended to be used before analysis of the data begins, and data are typically analyzed on a log scale. This function is not applicable to seqData objects, as any transformations needed e.g. to allow more meaningful visualization of seqData objects are performed within the pertinent functions.
data object of the same class as omicsData
Kelly Stratton, Natalie Heller
library(pmartRdata) mymetab <- edata_transform(omicsData = metab_object, data_scale = "log2") attr(mymetab, "data_info")$data_scale
library(pmartRdata) mymetab <- edata_transform(omicsData = metab_object, data_scale = "log2") attr(mymetab, "data_info")$data_scale
For generating statistics for 'seqData' objects.
edgeR_wrapper( omicsData, p_adjust = "BH", comparisons = NULL, p_cutoff = 0.05, ... )
edgeR_wrapper( omicsData, p_adjust = "BH", comparisons = NULL, p_cutoff = 0.05, ... )
omicsData |
an object of type 'seqData', created by
|
p_adjust |
Character string for p-value correction method, refer to ?p.adjust() for valid options. Defaults to "BH" (Benjamini & Hochberg). |
comparisons |
'data.frame' with columns for "Control" and "Test" containing the different comparisons of interest. Comparisons will be made between the Test and the corresponding Control If left NULL, then all pairwise comparisons are executed. |
p_cutoff |
Numeric value between 0 and 1 for setting p-value significance threshold |
... |
additional arguments passed to methods functions. Note, formatting option changes will interfere with wrapping functionality. |
Requires the 'edgeR' and 'limma' packages. Runs default edgeR workflow with empirical Bayes quasi-likelihood F-tests. Additional arguments can be passed for use in the function, refer to calcNormFactors() and glmQLFit() in edgeR package.
Flags (signatures) - Indicator of statistical significance for computed test. Zeroes indicate no significance, while +/- 1 indicates direction of significance.
statRes object
Robinson MD, McCarthy DJ, Smyth GK (2010). “edgeR: a Bioconductor package for differential expression analysis of digital gene expression data.” Bioinformatics, 26(1), 139-140. doi: 10.1093/bioinformatics/btp616.
Implements overall survival analysis or progression-free survival analysis, depending upon the datatypes supplied to surv_designation, and return the "survfit" object
fit_surv(omicsData)
fit_surv(omicsData)
omicsData |
A pmartR data object of any class, which has a 'group_df' attribute that is usually created by the 'group_designation()' function |
if fitted survival analysis object is returned
## Not run: library(MSomicsSTAT) library(OvarianPepdataBP) # Basic analysis without covariates attr(tcga_ovarian_pepdata_bp, "survDF") <- list(t_death = "survival_time", ind_death = "vital_status") sfit <- fit_surv(tcga_ovarian_pepdata_bp) plot(sfit) # Add some covariate information attr(tcga_ovarian_pepdata_bp, "survDF") <- list( t_death = "survival_time", ind_death = "vital_status", covariates = "g__initial_pathologic_diagnosis_method_g1" ) sfit <- fit_surv(tcga_ovarian_pepdata_bp) plot(sfit, col = c(1, 2)) ## End(Not run)
## Not run: library(MSomicsSTAT) library(OvarianPepdataBP) # Basic analysis without covariates attr(tcga_ovarian_pepdata_bp, "survDF") <- list(t_death = "survival_time", ind_death = "vital_status") sfit <- fit_surv(tcga_ovarian_pepdata_bp) plot(sfit) # Add some covariate information attr(tcga_ovarian_pepdata_bp, "survDF") <- list( t_death = "survival_time", ind_death = "vital_status", covariates = "g__initial_pathologic_diagnosis_method_g1" ) sfit <- fit_surv(tcga_ovarian_pepdata_bp) plot(sfit, col = c(1, 2)) ## End(Not run)
Retrieves the value in check.names attribute from an omicsData object. This function has been deprecated in favor of handling checking names externally, and will always return FALSE.
get_check_names(omicsData)
get_check_names(omicsData)
omicsData |
An object of class pepData, proData, metabData, lipidData, or nmrData. |
A logical value indicating if the syntax of the column names in a
data frame should be checked. See data.frame
for
more details.
This function returns comparisons from statRes or trelliData object
get_comparisons(compObj)
get_comparisons(compObj)
compObj |
is an object with the comparison attribute; specifically
objects of class 'statRes' and 'trelliData' objects derived from 'statRes'
objects in |
returns a data frame with comparisons and their indices
library(pmartRdata) my_prodata = group_designation( omicsData = pro_object, main_effects = c("Phenotype") ) imdanova_Filt = imdanova_filter(omicsData = my_prodata) my_prodata = applyFilt( filter_object = imdanova_Filt, omicsData = my_prodata, min_nonmiss_anova = 2 ) imd_anova_res = imd_anova( omicsData = my_prodata, test_method = 'comb', pval_adjust_a_multcomp = 'bon', pval_adjust_g_multcomp = 'bon' ) result = get_comparisons(imd_anova_res)
library(pmartRdata) my_prodata = group_designation( omicsData = pro_object, main_effects = c("Phenotype") ) imdanova_Filt = imdanova_filter(omicsData = my_prodata) my_prodata = applyFilt( filter_object = imdanova_Filt, omicsData = my_prodata, min_nonmiss_anova = 2 ) imd_anova_res = imd_anova( omicsData = my_prodata, test_method = 'comb', pval_adjust_a_multcomp = 'bon', pval_adjust_g_multcomp = 'bon' ) result = get_comparisons(imd_anova_res)
This function returns data_class attribute from statRes or trelliData object,
inherited from the omicsData used in imd_anova
or
as.trelliData
get_data_class(dcObj)
get_data_class(dcObj)
dcObj |
an object of class 'statRes' or 'trelliData' |
returns the data_class attribute from a 'statRes' or 'trelliData' object
library(pmartRdata) my_prodata = group_designation( omicsData = pro_object, main_effects = c("Phenotype") ) imdanova_Filt = imdanova_filter(omicsData = my_prodata) my_prodata = applyFilt( filter_object = imdanova_Filt, omicsData = my_prodata, min_nonmiss_anova = 2 ) imd_anova_res = imd_anova( omicsData = my_prodata, test_method = 'comb', pval_adjust_a_multcomp = 'bon', pval_adjust_g_multcomp = 'bon' ) result = get_data_class(imd_anova_res)
library(pmartRdata) my_prodata = group_designation( omicsData = pro_object, main_effects = c("Phenotype") ) imdanova_Filt = imdanova_filter(omicsData = my_prodata) my_prodata = applyFilt( filter_object = imdanova_Filt, omicsData = my_prodata, min_nonmiss_anova = 2 ) imd_anova_res = imd_anova( omicsData = my_prodata, test_method = 'comb', pval_adjust_a_multcomp = 'bon', pval_adjust_g_multcomp = 'bon' ) result = get_data_class(imd_anova_res)
Retrieves the values in the data_info attribute from an omicsData object.
get_data_info(omicsData)
get_data_info(omicsData)
omicsData |
An object of class pepData, proData, metabData, lipidData, or nmrData. |
A list containing seven elements:
data_scale – A Character string indicating the scale of the
data in e_data
.
norm_info – A list containing a single element indicating
whether the data in e_data
have been normalized.
num_edata – The number of unique entries present in the
edata_cname
column in e_data
.
num_miss_obs – An integer. The number of missing
observations in e_data
.
num_zero_obs – An integer. The number of zeros
in e_data
for seqData objects.
prop_missing – A number between 0 and 1. The proportion of
missing observations in e_data
.
num_samps – An integer indicating the number of samples or
columns (excluding the identifier column edata_cname
) in
e_data
.
data_types – A character string describing the type of data
in e_data
.
This function returns the norm_info element of the data_info attribute indicating whether the data have been normalized.
get_data_norm(omicsObject)
get_data_norm(omicsObject)
omicsObject |
an object of the class 'pepData', 'proData', 'metabData',
'lipidData', 'nmrData', 'statRes', or 'trelliData', usually created by
|
A logical value indicating whether the data have been normalized.
This function returns current data scale which may be different from the
original data scale (if edata_transform
was used).
get_data_scale(omicsObject)
get_data_scale(omicsObject)
omicsObject |
an object of the class 'pepData', 'proData', 'metabData',
'lipidData', 'nmrData', 'statRes', or 'trelliData', usually created by
|
a character string describing data scale
Retrieves the character string indicating the scale the data was originally on when read into R.
get_data_scale_orig(omicsObject)
get_data_scale_orig(omicsObject)
omicsObject |
an object of class 'pepData', 'proData', 'metabData', 'lipidData', or 'nmrData'. |
A character string.
This function returns the name of the column in e_data that contains the biomolecule IDs.
get_edata_cname(omicsObject)
get_edata_cname(omicsObject)
omicsObject |
an object of the class 'pepData', 'proData', 'metabData',
'lipidData', 'nmrData', 'statRes', or 'trelliData', usually created by
|
a character string describing e_data cname
This function returns the name of the column in e_meta that contains the mapping variable IDs.
get_emeta_cname(omicsObject)
get_emeta_cname(omicsObject)
omicsObject |
an object of the class 'pepData', 'proData', 'metabData',
'lipidData', 'nmrData', 'statRes', or 'trelliData', usually created by
|
a character string describing e_meta cname
This function returns the name of the column in f_data that contains the names of the samples.
get_fdata_cname(omicsObject)
get_fdata_cname(omicsObject)
omicsObject |
an object of the class 'pepData', 'proData', 'metabData',
'lipidData', 'nmrData', 'statRes', or 'trelliData', usually created by
|
a character string describing f_data cname
Retrieves the values in the filters attribute from an omicsData object.
get_filter_type(omicsData)
get_filter_type(omicsData)
omicsData |
An object of class pepData, proData, metabData, lipidData, seqData, or nmrData. |
vector of filters used on omicsData
Retrieves the values in the filters attribute from an omicsData object.
get_filters(omicsData)
get_filters(omicsData)
omicsData |
An object of class pepData, proData, metabData, lipidData, or nmrData. |
A list containing filter class objects. Each element in this list corresponds to a filter applied to the data. The filters will be listed in the order they were applied. A filter object contains two elements:
threshold – The threshold used to filter e_data
. This
value depends on the type of filter applied.
filtered – A vector containing the identifiers from the
edata_cname
column that will be filtered.
method – A character string indicating the type of method used to filter. This only applies when imdanova_filter is used.
Retrieves the values in the group_DF attribute from an omicsData object.
get_group_DF(omicsData)
get_group_DF(omicsData)
omicsData |
An object of class pepData, proData, metabData, lipidData, or nmrData. |
A data.frame with columns for sample ID and group. If two main effects are provided the original main effect levels for each sample are returned as the third and fourth columns of the data frame. Additionally, the covariates provided will be listed as attributes of this data frame.
For generating group design formulas and correctly ordered group data for seqData statistical functions
get_group_formula(omicsData)
get_group_formula(omicsData)
omicsData |
an object of type 'seqData', created by |
A list with two elements:
grouping_info: A data.frame with the grouping information used in the statistical analysis
formula_string: A character string with the formula used in the statistical analysis
This function returns a table with number of samples per group
get_group_table(omicsObject)
get_group_table(omicsObject)
omicsObject |
an object of the class 'pepData', 'proData', 'metabData',
'lipidData', 'nmrData', 'statRes', or 'trelliData', usually created by
|
a table containing number of samples per group
Retrieves the values in the isobaric_info attribute from an omicsData object.
get_isobaric_info(omicsData)
get_isobaric_info(omicsData)
omicsData |
An object of class pepData, proData, metabData, lipidData, or nmrData. |
A list containing the following six elements:
exp_cname –
channel_cname –
refpool_channel –
refpool_cname –
refpool_notation –
norm_info – A list containing a single logical element that indicates whether the data have been normalized to a reference pool.
This function returns the norm_info element of the isobaric_info attribute which indicates if the data have been isobaric normalized.
get_isobaric_norm(omicsData)
get_isobaric_norm(omicsData)
omicsData |
an object of the class 'pepData', 'isobaricpepData' or
'proData', usually created by |
A logical value indicating whether the data have been isobaric normalized.
Compute the least squares means from a prediction grid and estimated coefficients
get_lsmeans(data, xmatrix, pred_grid, Betas, continuous_covar_inds = NULL)
get_lsmeans(data, xmatrix, pred_grid, Betas, continuous_covar_inds = NULL)
data |
The raw data from which the estimates were computed |
xmatrix |
The design matrix from which the prediction grid was constructed |
pred_grid |
The prediction grid, obtained from |
Betas |
The estimated coefficients |
continuous_covar_inds |
The column indices of xmatrix corresponding to continuous covariates. |
A data frame of the least squares means
Daniel Claborne
Retrieves the values in the meta_info attribute from an omicsData object.
get_meta_info(omicsData)
get_meta_info(omicsData)
omicsData |
An object of class pepData, proData, metabData, lipidData, or nmrData. |
A list containing two elements:
meta_data – Logical. Indicates if the e_meta
data
frame was provided.
num_emeta – The number of unique entries present in the
emeta_cname
column in e_meta
.
Retrieves the values in the nmr_info attribute from an omicsData object.
get_nmr_info(omicsData)
get_nmr_info(omicsData)
omicsData |
An object of class pepData, proData, metabData, lipidData, or nmrData. |
A list containing the following three elements:
metabolite_name –
sample_property_cname –
norm_info – A list containing two logical elements that indicate i) whether the data have been normalized to a spiked in metabolite or to a property taking sample-specific values and ii) whether the data have been back transformed so the values are on a similar scale to the raw values before normalization.
This function returns the norm_info element of the nmr_info attribute which indicates if the data have been NMR normalized.
get_nmr_norm(omicsData)
get_nmr_norm(omicsData)
omicsData |
an object of the class 'nmrData'. |
A logical value indicating whether the data have been NMR normalized.
Build the prediction grid to compute least squares means.
get_pred_grid( group_df, main_effect_names, covariate_names = NULL, fspec = as.formula("~.") )
get_pred_grid( group_df, main_effect_names, covariate_names = NULL, fspec = as.formula("~.") )
group_df |
A dataframe with the reserved 'Group' column, and columns for main effects and covariates. |
main_effect_names |
Character vector with the column names of the main effects in group_df. |
covariate_names |
Character vector with the column names of the covariates in group_df. |
fspec |
A formula specification to be passed to |
A matrix of the prediction grid
Daniel Claborne
Gets the parameters for the highest ranked methods from spans.
get_spans_params(SPANSRes_obj, sort_by_nmols = FALSE)
get_spans_params(SPANSRes_obj, sort_by_nmols = FALSE)
SPANSRes_obj |
an object of the class SPANSRes obtained by calling
|
sort_by_nmols |
a logical indicator of whether to sort by number of
molecules used in the normalization (see |
A list of lists, where there are multiple sublists only if there were
ties for the top SPANS score. Each sublist contains named elements for the
subset and normalization methods, and the parameters used for the subset
method.
library(pmartRdata) # data must be log transformed and grouped myobject <- edata_transform(omicsData = pep_object, data_scale = "log2") myobject <- group_designation(omicsData = myobject, main_effects = "Phenotype") spans_result <- spans_procedure(omicsData = myobject) # a list of the parameters for any normalization procedure with the best SPANS score best_params <- get_spans_params(spans_result) # extract the arguments from the first list element subset_fn = best_params[[1]]$subset_fn norm_fn = best_params[[1]]$norm_fn params = best_params[[1]]$params if (is.null(params[[1]])) { params = NULL } # pass arguments to normalize global norm_object <- normalize_global(omicsData = myobject, subset_fn = subset_fn, norm_fn = norm_fn, params = params)
library(pmartRdata) # data must be log transformed and grouped myobject <- edata_transform(omicsData = pep_object, data_scale = "log2") myobject <- group_designation(omicsData = myobject, main_effects = "Phenotype") spans_result <- spans_procedure(omicsData = myobject) # a list of the parameters for any normalization procedure with the best SPANS score best_params <- get_spans_params(spans_result) # extract the arguments from the first list element subset_fn = best_params[[1]]$subset_fn norm_fn = best_params[[1]]$norm_fn params = best_params[[1]]$params if (is.null(params[[1]])) { params = NULL } # pass arguments to normalize global norm_object <- normalize_global(omicsData = myobject, subset_fn = subset_fn, norm_fn = norm_fn, params = params)
Takes the results of anova_test() and returns group comparison p-values
group_comparison_anova( data, groupData, comparisons, Xfull, Xred, anova_results_full, beta_to_mu_full, beta_to_mu_red )
group_comparison_anova( data, groupData, comparisons, Xfull, Xred, anova_results_full, beta_to_mu_full, beta_to_mu_red )
data |
The expression values without the id column |
groupData |
data frame that assigns sample names to groups |
comparisons |
dataframe that defines the comparsions of interest |
Xfull |
design matrix for the full model with interaction terms between the main effects |
Xred |
design matrix for the reduced model with no interaction terms between the main effects |
anova_results_full |
results of the |
beta_to_mu_full |
matrix that maps the beta coefficients to the group means for the full model |
beta_to_mu_red |
matrix that maps the beta coefficients to the group means for the reduced model |
A data.frame containing the p-values from the group comparisons.
Bryan Stanfill, Daniel Claborne
Takes the results of imd_test() and returns group comparison p-values
group_comparison_imd(groupData, comparisons, observed, absent)
group_comparison_imd(groupData, comparisons, observed, absent)
groupData |
data frame that assigns sample names to groups |
comparisons |
dataframe that defiens the comparsions of interest |
observed |
matrix of number of observed counts |
absent |
matrix of number of observed counts |
A data.frame containing the p-values from the group comparisons.
Bryan Stanfill
The method assigns each sample to a group, for use in future analyses, based on the variable(s) specified as main effects.
group_designation( omicsData, main_effects = NULL, covariates = NULL, cov_type = NULL, pair_id = NULL, pair_group = NULL, pair_denom = NULL, batch_id = NULL )
group_designation( omicsData, main_effects = NULL, covariates = NULL, cov_type = NULL, pair_id = NULL, pair_group = NULL, pair_denom = NULL, batch_id = NULL )
omicsData |
an object of the class 'lipidData', 'metabData', 'pepData',
'proData', 'isobaricpepData', 'nmrData', or 'seqData', usually created by
|
main_effects |
a character vector with no more than two variable names
that should be used as main effects to determine group membership of
samples. The variable name must match a column name from |
covariates |
a character vector of no more than two variable names that should be used as covariates in downstream analyses. Covariates are typically variables that a user wants to account for in the analysis but quantifying/examining the effect of the variable is not of interest. |
cov_type |
An optional character vector (must be the same length as
|
pair_id |
A character string indicating the column in |
pair_group |
A character string specifying the column in |
pair_denom |
A character string specifying which pair group is the "control". When taking the difference, the value for the control group will be subtracted from the non-control group value. |
batch_id |
an optional character vector of no more than one variable that should be used as batch information for downstream analyses. Batch ID is similar to covariates but unlike covariates it is specific to that of specific batch effects |
Groups are formed based on the levels of the main effect variables. One or two main effect variables are allowed. In the case of two main effect variables, groups are formed based on unique combinations of the levels of the two main effect variables. Any samples with level NA for a main effect variable will be removed from the data and will not be included in the final group designation results. Groups with a single sample are allowed, as is a single group.
An object of the same class as the input omicsData
object -
the provided object with the samples filtered out, if any NAs were produced
in designating groups. An attribute 'group_DF', a data.frame with columns
for sample id and group, is added to the object. If two main effects are
provided the original main effect levels for each sample are returned as
the third and fourth columns of the data.frame. Additionally, the
covariates provided will be listed as attributes of this data.frame.
Lisa Bramer, Kelly Stratton
library(pmartRdata) mylipid <- group_designation( omicsData = lipid_pos_object, main_effects = "Virus" ) attr(mylipid, "group_DF")
library(pmartRdata) mylipid <- group_designation( omicsData = lipid_pos_object, main_effects = "Virus" ) attr(mylipid, "group_DF")
The method identifies peptides, proteins, lipids, or metabolites to be filtered specifically according to the G-test.
gtest_filter(nonmiss_per_group, min_nonmiss_gtest, comparisons = NULL)
gtest_filter(nonmiss_per_group, min_nonmiss_gtest, comparisons = NULL)
nonmiss_per_group |
list created by |
min_nonmiss_gtest |
the minimum number of non-missing peptide values allowed in a minimum of one group. Default value is 3. |
comparisons |
data.frame with columns for "Control" and "Test" containing the different comparisons of interest. Comparisons will be made between the Test and the corresponding Control. If left NULL, then all pairwise comparisons are executed. |
Two methods are available for determining the peptides to be
filtered. The naive approach is based on min.nonmiss.allowed
, and
looks for peptides that do not have at least min.nonmiss.allowed
values per group. The other approach also looks for peptides that do not
have at least a minimum number of values per group, but this minimum number
is determined using the G-test and a p-value threshold supplied by the
user. The G-test is a test of independence, used here to test the null
hypothesis of independence between the number of missing values across
groups.
filter.peps a character vector of the peptides to be filtered out prior to the G-test or IMD-ANOVA
Kelly Stratton
This is the IMD-ANOVA test defined in Webb-Robertson et al. (2010).
imd_anova( omicsData, comparisons = NULL, test_method, pval_adjust_a_multcomp = "none", pval_adjust_g_multcomp = "none", pval_adjust_a_fdr = "none", pval_adjust_g_fdr = "none", pval_thresh = 0.05, equal_var = TRUE, parallel = TRUE )
imd_anova( omicsData, comparisons = NULL, test_method, pval_adjust_a_multcomp = "none", pval_adjust_g_multcomp = "none", pval_adjust_a_fdr = "none", pval_adjust_g_fdr = "none", pval_thresh = 0.05, equal_var = TRUE, parallel = TRUE )
omicsData |
pmartR data object of any class, which has a 'group_df' attribute created by the 'group_designation()' function |
comparisons |
data frame with columns for "Control" and "Test" containing the different comparisons of interest. Comparisons will be made between the Test and the corresponding Control. If left NULL, then all pairwise comparisons are executed. |
test_method |
character string specifying the filter method to use: "combined", "gtest", or "anova". Specifying "combined" implements both the gtest and anova filters. |
pval_adjust_a_multcomp |
character string specifying the type of multiple comparison adjustment to implement for ANOVA tests. Valid options include: "bonferroni", "holm", "tukey", and "dunnett". The default is "none" which corresponds to no p-value adjustment. |
pval_adjust_g_multcomp |
character string specifying the type of multiple comparison adjustment to implement for G-test tests. Valid options include: "bonferroni" and "holm". The default is "none" which corresponds to no p-value adjustment. |
pval_adjust_a_fdr |
character string specifying the type of FDR adjustment to implement for ANOVA tests. Valid options include: "bonferroni", "BH", "BY", and "fdr". The default is "none" which corresponds to no p-value adjustment. |
pval_adjust_g_fdr |
character string specifying the type of FDR adjustment to implement for G-test tests. Valid options include: "bonferroni", "BH", "BY", and "fdr". The default is "none" which corresponds to no p-value adjustment. |
pval_thresh |
numeric p-value threshold, below or equal to which biomolecules are considered differentially expressed. Defaults to 0.05 |
equal_var |
logical; should the variance across groups be assumed equal? |
parallel |
logical value indicating whether or not to use a "doParallel" loop when running the G-Test with covariates. Defaults to TRUE. |
An object of class 'statRes', which is a data frame containing columns (when relevant based on the test(s) performed) for: e_data cname, group counts, group means, ANOVA p-values, IMD p-values, fold change estimates on the same scale as the data (e.g. log2, log10, etc.), and fold change significance flags (0 = not significant; +1 = significant and positive fold change (ANOVA) or more observations in test group relative to reference group (IMD); -1 = significant and negative fold change (ANOVA) or fewer observations in test group relative to reference group (IMD))
Bryan Stanfill, Kelly Stratton
Webb-Robertson, Bobbie-Jo M., et al. "Combined statistical analyses of peptide intensities and peptide occurrences improves identification of significant peptides from MS-based proteomics data." Journal of proteome research 9.11 (2010): 5748-5756.
library(pmartRdata) # Transform the data mymetab <- edata_transform(omicsData = metab_object, data_scale = "log2") # Group the data by condition mymetab <- group_designation(omicsData = mymetab, main_effects = c("Phenotype")) # Apply the IMD ANOVA filter imdanova_Filt <- imdanova_filter(omicsData = mymetab) mymetab <- applyFilt(filter_object = imdanova_Filt, omicsData = mymetab, min_nonmiss_anova = 2) # Implement IMD ANOVA and compute all pairwise comparisons # (i.e. leave the comparisons argument NULL), with FDR adjustment anova_res <- imd_anova(omicsData = mymetab, test_method = "anova", pval_adjust_a_multcomp = "Holm", pval_adjust_a_fdr = "BY") imd_res <- imd_anova(omicsData = mymetab, test_method = "gtest", pval_adjust_g_multcomp = "bon", pval_adjust_g_fdr = "BY") imd_anova_res <- imd_anova(omicsData = mymetab, test_method = "combined", pval_adjust_a_fdr = "BY", pval_adjust_g_fdr = "BY") imd_anova_res <- imd_anova(omicsData = mymetab, test_method = "combined", pval_adjust_a_multcomp = "bon", pval_adjust_g_multcomp = "bon", pval_adjust_a_fdr = "BY", pval_adjust_g_fdr = "BY") # Two main effects and a covariate mymetab <- group_designation(omicsData = mymetab, main_effects = c("Phenotype", "SecondPhenotype"), covariates = "Characteristic") imd_anova_res <- imd_anova(omicsData = mymetab, test_method = 'comb') # Same but with custom comparisons comp_df <- data.frame(Control = c("Phenotype1", "A"), Test = c("Phenotype2", "B")) custom_comps_res <- imd_anova(omicsData = mymetab, comparisons = comp_df, test_method = "combined")
library(pmartRdata) # Transform the data mymetab <- edata_transform(omicsData = metab_object, data_scale = "log2") # Group the data by condition mymetab <- group_designation(omicsData = mymetab, main_effects = c("Phenotype")) # Apply the IMD ANOVA filter imdanova_Filt <- imdanova_filter(omicsData = mymetab) mymetab <- applyFilt(filter_object = imdanova_Filt, omicsData = mymetab, min_nonmiss_anova = 2) # Implement IMD ANOVA and compute all pairwise comparisons # (i.e. leave the comparisons argument NULL), with FDR adjustment anova_res <- imd_anova(omicsData = mymetab, test_method = "anova", pval_adjust_a_multcomp = "Holm", pval_adjust_a_fdr = "BY") imd_res <- imd_anova(omicsData = mymetab, test_method = "gtest", pval_adjust_g_multcomp = "bon", pval_adjust_g_fdr = "BY") imd_anova_res <- imd_anova(omicsData = mymetab, test_method = "combined", pval_adjust_a_fdr = "BY", pval_adjust_g_fdr = "BY") imd_anova_res <- imd_anova(omicsData = mymetab, test_method = "combined", pval_adjust_a_multcomp = "bon", pval_adjust_g_multcomp = "bon", pval_adjust_a_fdr = "BY", pval_adjust_g_fdr = "BY") # Two main effects and a covariate mymetab <- group_designation(omicsData = mymetab, main_effects = c("Phenotype", "SecondPhenotype"), covariates = "Characteristic") imd_anova_res <- imd_anova(omicsData = mymetab, test_method = 'comb') # Same but with custom comparisons comp_df <- data.frame(Control = c("Phenotype1", "A"), Test = c("Phenotype2", "B")) custom_comps_res <- imd_anova(omicsData = mymetab, comparisons = comp_df, test_method = "combined")
Tests the null hypothesis that the number of missing observations is independent of the groups. A g-test is used to test this null hypothese against the alternative that the groups and missing data are related. This is usually performed in conjuction with an ANOVA which tests if the mean response (which varies with data type) is the same across groups; this combination is called IMD_ANOVA. It's probably a good idea to first filter the data with 'imd_anova_filter' to see if there is enough infomration to even do this test. See Webb-Robertson et al. (2010) for more.
imd_test( omicsData, groupData, comparisons, pval_adjust_multcomp, pval_adjust_fdr, pval_thresh, covariates, paired, parallel = TRUE )
imd_test( omicsData, groupData, comparisons, pval_adjust_multcomp, pval_adjust_fdr, pval_thresh, covariates, paired, parallel = TRUE )
omicsData |
A pmartR data object of any class |
groupData |
'data.frame' that assigns sample names to groups |
comparisons |
'data.frame' with columns for "Control" and "Test" containing the different comparisons of interest. Comparisons will be made between the Test and the corresponding Control If left NULL, then all pairwise comparisons are executed. |
pval_adjust_multcomp |
A character string specifying the type of multiple comparisons adjustment to implement. The default setting, "none", is to not apply an adjustment. Valid options include: "bonferroni" and "holm". |
pval_adjust_fdr |
A character string specifying the type of FDR adjustment to implement. The default setting, "none", is to not apply an adjustment. Valid options include: "bonferroni", "BH", "BY", and "fdr". |
pval_thresh |
numeric p-value threshold, below or equal to which peptides are considered differentially expressed. Defaults to 0.05 |
covariates |
A character vector with no more than two variable names that will be used as covariates in the IMD-ANOVA analysis. |
paired |
A logical value that determines whether paired data should be accounted for |
parallel |
A logical value indicating whether or not to use a "doParallel" loop when running the G-Test with covariates. The default is TRUE. |
a list of 'data.frame's
Results | e_data cname, Count of non-missing data for each group, Global G-test statistic and p-value |
Gstats | Value of the g statistics for each of the pairwise comparisons specified by the `comparisons` argument |
Pvalues | p-values for each of the pairwise comparisons specified by `comparisons` argument |
Flags | Indicator of statistical significance where the sign of the flag reflects the difference in the ratio of non-missing observations (0/+-2 to if adjusted p-value>=pval_thresh or p-value<pval_thresh) |
Bryan Stanfill
Webb-Robertson, Bobbie-Jo M., et al. "Combined statistical analyses of peptide intensities and peptide occurrences improves identification of significant peptides from MS-based proteomics data." Journal of proteome research 9.11 (2010): 5748-5756.
This function returns an imdanovaFilt object for use with
applyFilt
imdanova_filter(omicsData)
imdanova_filter(omicsData)
omicsData |
object of one of the classes "pepData", "isobaricpepData",
"proData", "lipidData", "metabData", or "nmrData", created by
|
The output from this function can be used in conjunction with
applyFilt
to filter out molecules that are not present in
enough samples to do statistical comparisons. If any singleton groups are
present in the omicsData object, those groups are not part of the filter
object that is returned.
An S3 object of class imdanovaFilt (also a data.frame) containing the molecule identifier and number of samples in each group with non-missing values for that molecule.
Kelly Stratton
library(pmartRdata) mypep <- group_designation(omicsData = pep_object, main_effects = "Phenotype") to_filter <- imdanova_filter(omicsData = mypep) summary(to_filter, min_nonmiss_anova = 2)
library(pmartRdata) mypep <- group_designation(omicsData = pep_object, main_effects = "Phenotype") to_filter <- imdanova_filter(omicsData = mypep) summary(to_filter, min_nonmiss_anova = 2)
Select biomolecules for normalization via the method of the top L order statistics (LOS)
los(e_data, edata_id, L = 0.05)
los(e_data, edata_id, L = 0.05)
e_data |
a |
edata_id |
character string indicating the name of the column giving the
peptide, protein, lipid, or metabolite identifier. Usually obtained by
calling |
L |
numeric value between 0 and 1, indicating the top proportion of biomolecules to be retained (default value 0.05) |
The biomolecule abundances of the top L
order statistics are
identified and returned. Specifically, for each sample, the biomolecules with
the top L
proportion of highest absolute abundance are retained, and
the union of these biomolecules is taken as the subset identified.
Character vector containing the biomolecules belonging to the subset.
Kelly Stratton, Lisa Bramer
Calculate normalization parameters for the data via median absolute deviation (MAD) transformation.
mad_transform( e_data, edata_id, subset_fn, feature_subset, backtransform = FALSE, apply_norm = FALSE, check.names = NULL )
mad_transform( e_data, edata_id, subset_fn, feature_subset, backtransform = FALSE, apply_norm = FALSE, check.names = NULL )
e_data |
a |
edata_id |
character string indicating the name of the peptide, protein,
lipid, or metabolite identifier. Usually obtained by calling
|
subset_fn |
character string indicating the subset function to use for normalization. |
feature_subset |
character vector containing the feature names in the subset to be used for normalization |
backtransform |
logical argument. If TRUE, the parameters for backtransforming the data after normalization will be calculated so that the values are on a scale similar to their raw values. See details for more information. Defaults to FALSE. |
apply_norm |
logical argument. If TRUE, the normalization will be applied to the data. Defaults to FALSE. |
check.names |
deprecated |
Each feature is scaled by subtracting the median of the feature subset specified for normalization and then dividing the result by the median absolute deviation (MAD) of the feature subset specified for normalization to get the normalized data. The location estimates are the subset medians for each sample. The scale estimates are the subset MADs for each sample. Medians are taken ignoring any NA values. If backtransform is TRUE, the normalized feature values are multiplied by a pooled MAD (estimated from all samples) and a global median of the subset data (across all samples) is added back to the normalized values.
List containing two elements: norm_params
is list with two
elements:
scale | numeric vector of length n median absolute deviations (MAD) for each sample |
location | numeric vector of length n medians for each sample
|
backtransform_params
is a list with two elements:
scale | numeric value giving pooled MAD |
location | numeric value giving global median across all samples |
If backtransform
is set to TRUE then each list item under
backtransform_params
will be NULL.
If apply_norm
is TRUE, the transformed data is returned as a third
list item.
Lisa Bramer, Kelly Stratton
Calculate normalization parameters for the data via via mean centering.
mean_center( e_data, edata_id, subset_fn, feature_subset, backtransform = FALSE, apply_norm = FALSE, check.names = NULL )
mean_center( e_data, edata_id, subset_fn, feature_subset, backtransform = FALSE, apply_norm = FALSE, check.names = NULL )
e_data |
e_data a |
edata_id |
character string indicating the name of the peptide, protein,
lipid, or metabolite identifier. Usually obtained by calling
|
subset_fn |
character string indicating the subset function to use for normalization. |
feature_subset |
character vector containing the feature names in the subset to be used for normalization |
backtransform |
logical argument. If TRUE, the data will be back transformed after normalization so that the values are on a scale similar to their raw values. See details for more information. Defaults to FALSE. |
apply_norm |
logical argument. If TRUE, the normalization will be applied to the data. Defaults to FALSE. |
check.names |
deprecated |
The sample-wise mean of the feature subset specified for normalization is subtracted from each feature in e_data to get the normalized data. The location estimates are the sample-wise means of the subset data. There are no scale estimates for mean centering, though the function returns a NULL list element as a placeholdfer for a scale estimate. If backtransform is TRUE, the global median of the subset data (across all samples) is added back to the normalized values. Medians are taken ignoring any NA values.
List containing two elements: norm_params
is list with two
elements:
scale | NULL |
location | numeric vector of length n means for each sample
|
backtransform_params
is a list with two elements:
scale | NULL |
location | numeric value giving global median across all samples |
If backtransform
is set to TRUE then each list item under
backtransform_params
will be NULL.
If apply_norm
is TRUE, the transformed data is returned as a third
list item.
Lisa Bramer, Kelly Stratton
Calculate normalization parameters for the data via median centering.
median_center( e_data, edata_id, subset_fn, feature_subset, backtransform = FALSE, apply_norm = FALSE, check.names = NULL )
median_center( e_data, edata_id, subset_fn, feature_subset, backtransform = FALSE, apply_norm = FALSE, check.names = NULL )
e_data |
a |
edata_id |
character string indicating the name of the peptide, protein,
lipid, or metabolite identifier. Usually obtained by calling
|
subset_fn |
character string indicating the subset function to use for normalization. |
feature_subset |
character vector containing the feature names in the subset to be used for normalization |
backtransform |
logical argument. If TRUE, the data will be back transformed after normalization so that the values are on a scale similar to their raw values. See details for more information. Defaults to FALSE. |
apply_norm |
logical argument. If TRUE, the normalization will be applied to the data. Defaults to FALSE. |
check.names |
deprecated |
The sample-wise median of the feature subset specified for normalization is subtracted from each feature in e_data to get the normalized data. The location estimates are the sample-wise medians of the subset data. There are no scale estimates for median centering, though the function returns a NULL list element as a placeholder for a scale estimate. If backtransform is TRUE, the global median of the subset data (across all samples) is added back to the normalized values. Medians are taken ignoring any NA values.
List containing two elements: norm_params
is list with two
elements:
scale | NULL |
location | numeric vector of length n medians for each sample
|
backtransform_params
is a list with two elements:
scale | NULL |
location | numeric value giving global median across all samples |
If backtransform
is set to TRUE then each list item under
backtransform_params
will be NULL.
If apply_norm
is TRUE, the transformed data is returned as a third
list item.
Lisa Bramer, Kelly Stratton
This function takes in an omicsData object, and outputs a list of two data frames, one containing the number of missing values by sample, and the other containing the number of missing values by molecule
missingval_result(omicsData)
missingval_result(omicsData)
omicsData |
an object of class "pepData", "proData", "metabData",
"lipidData", "nmrData", or "seqData", created by |
S3 object of class naRes, which is a list of two data frames, one containing the number of missing values per sample, and the other containing the number of missing values per molecule. For count data, zeroes represent missing values; for abundance data, NA's represent missing values. This object can be used with 'plot' and 'summary' methods to examine the missing values in the dataset.
library(pmartRdata) result1 = missingval_result(omicsData = lipid_neg_object) result2 = missingval_result(omicsData = metab_object)
library(pmartRdata) result1 = missingval_result(omicsData = lipid_neg_object) result2 = missingval_result(omicsData = metab_object)
This function returns a moleculeFilt object for use with
applyFilt
molecule_filter(omicsData, use_groups = FALSE, use_batch = FALSE)
molecule_filter(omicsData, use_groups = FALSE, use_batch = FALSE)
omicsData |
object of the class 'pepData', 'proData', 'metabData',
'lipidData', 'nmrData', or 'seqData', created by |
use_groups |
logical indicator for whether to utilize group information
from |
use_batch |
logical indicator for whether to utilize batch information
from |
Attribute of molecule_filt object is "total_poss_obs", the number of total possible observations for each feature (same as the number of samples)
An S3 object of class 'moleculeFilt' (also a data.frame) that contains the molecule identifier and the number of samples for which the molecule was observed (i.e. not NA)
Kelly Stratton
library(pmartRdata) to_filter <- molecule_filter(omicsData = pep_object) summary(to_filter, min_num = 2)
library(pmartRdata) to_filter <- molecule_filter(omicsData = pep_object) summary(to_filter, min_num = 2)
This function computes the number of non-missing observations for samples, based on a group designation, for every biomolecule in the dataset
nonmissing_per_group(omicsData)
nonmissing_per_group(omicsData)
omicsData |
an optional object of one of the classes "pepData",
"proData", "metabData", "lipidData", or "nmrData", usually created by
|
a list of length two. The first element giving the total number of
possible samples for each group. The second element giving a
data.frame with the first column giving the peptide and the second
through kth columns giving the number of non-missing observations for
each of the k
groups.
Lisa Bramer, Kelly Stratton
Calculates normalization parameters based on the data using the specified subset and normalization functions with option to apply the normalization to the data.
normalize_global( omicsData, subset_fn, norm_fn, params = NULL, apply_norm = FALSE, backtransform = FALSE, min_prop = NULL, check.names = NULL )
normalize_global( omicsData, subset_fn, norm_fn, params = NULL, apply_norm = FALSE, backtransform = FALSE, min_prop = NULL, check.names = NULL )
omicsData |
an object of the class 'pepData', 'proData', 'metabData',
'lipidData', 'nmrData', created by |
subset_fn |
character string indicating the subset function to use for normalization. See details for the current offerings. |
norm_fn |
character string indicating the normalization function to use for normalization. See details for the current offerings. |
params |
additional arguments passed to the specified subset function. See details for parameter specification and default values. |
apply_norm |
logical argument indicating if the normalization should be
applied to the data. Defaults to FALSE. If TRUE, the normalization is
applied to the data and an S3 object of the same class as |
backtransform |
logical argument indicating if parameters for back
transforming the data, after normalization, should be calculated. Defaults
to FALSE. If TRUE, the parameters for back transforming the data after
normalization will be calculated, and subsequently included in the data
normalization if |
min_prop |
numeric threshold between 0 and 1 giving the minimum value
for the proportion of biomolecules subset (rows of |
check.names |
deprecated |
Below are details for specifying function and parameter options.
If apply_norm is FALSE, an S3 object of type 'normRes' is returned. This object contains a list with: subset method, normalization method, normalization parameters, number of biomolecules used in normalization, and proportion of biomolecules used in normalization. plot() and summary() methods are available for this object. If apply_norm is TRUE, then the normalized data is returned in an object of the appropriate S3 class (e.g. pepData).
Specifying a subset function indicates the subset
of biomolecules (rows of e_data
) that should be used for computing
normalization factors. The following are valid options: "all", "los",
"ppp", "complete", "rip", and "ppp_rip". The option "all" is the subset
that includes all biomolecules (i.e. no subsetting is done). The option
"los" identifies the subset of the biomolecules associated with the top
L
order statistics, where L
is a proportion between 0 and 1.
Specifically, the biomolecules falling within the top L
proportion of highest
absolute abundance are retained for each sample, and the union of these
biomolecules is taken as the subset identified (Wang et al., 2006). The option
"ppp" (originally stands for percentage of peptides present) identifies the
subset of biomolecules that are present/non-missing for a minimum
proportion
of samples (Karpievitch et al., 2009; Kultima et al.,
2009). The option "complete" retains molecules with no missing data across
all samples, equivalent to "ppp" with proportion = 1. The option "rip"
identifies biomolecules with complete data that have a p-value greater than a
defined threshold alpha
(common values include 0.1 or 0.25) when
subjected to a Kruskal-Wallis test based (non-parametric one-way ANOVA) on
group membership (Webb-Robertson et al., 2011). The option "ppp_rip" is
equivalent to "rip" however rather than requiring biomolecules with complete
data, biomolecules with at least a proportion
of non-missing values are
subject to the Kruskal-Wallis test.
Specifying a normalization function indicates how normalization scale and location parameters should be calculated. The following are valid options: "median", "mean", "zscore", and "mad". For median centering, the location estimates are the sample-wise medians of the subset data and there are no scale estimates. For mean centering, the location estimates are the sample-wise means of the subset data and there are no scale estimates. For z-score transformation, the location estimates are the subset means for each sample and the scale estimates are the subset standard deviations for each sample. For median absolute deviation (MAD) transformation, the location estimates are the subset medians for each sample and the scale estimates are the subset MADs for each sample.
params
ArgumentParameters for the chosen subset function should be specified in a list
with the function specification followed by an equal sign and the desired
parameter value. For example, if LOS with 0.1 is desired, one should use
params = list(los = 0.1)
. ppp_rip can be specified in one of two
ways: specify the parameters with each separate function or combine using a
nested list (e.g. params = list(ppp_rip = list(ppp = 0.5, rip =
0.2))
).
The following functions have parameters that can be specified:
los | a value between 0 and 1 indicating the top proportion of order statistics. Defaults to 0.05 if unspecified. |
ppp | a value between 0 and 1 specifying the proportion of samples that must have non-missing values for a biomolecule to be retained. Defaults to 0.5 if unspecified. |
rip | a value between 0 and 1 specifying the p-value threshold for determining rank invariance. Defaults to 0.2 if unspecified. |
ppp_rip | two values corresponding to the RIP and PPP parameters above. Defaults to 0.5 and 0.2, respectively. |
The purpose of back transforming data is to ensure values are on a scale similar to their raw values before normaliztion. The following values are calculated and/or applied for backtransformation purposes:
median |
scale is NULL and location parameter is a global median across all samples |
mean
|
scale is NULL and location parameter is a global median across all samples |
zscore |
scale is pooled standard deviation and location is global mean across all samples |
mad |
scale is pooled median absolute deviation and location is global median across all samples |
Lisa Bramer
Webb-Robertson BJ, Matzke MM, Jacobs JM, Pounds JG, Waters KM. A statistical selection strategy for normalization procedures in LC-MS proteomics experiments through dataset-dependent ranking of normalization scaling factors. Proteomics. 2011;11(24):4736-41.
library(pmartRdata) mymetab <- edata_transform( omicsData = metab_object, data_scale = "log2" ) mymetab <- group_designation( omicsData = mymetab, main_effects = "Phenotype" ) norm_object <- normalize_global( omicsData = mymetab, subset_fn = "all", norm_fn = "median" ) norm_data <- normalize_global( omicsData = mymetab, subset_fn = "all", norm_fn = "median", apply_norm = TRUE, backtransform = TRUE )
library(pmartRdata) mymetab <- edata_transform( omicsData = metab_object, data_scale = "log2" ) mymetab <- group_designation( omicsData = mymetab, main_effects = "Phenotype" ) norm_object <- normalize_global( omicsData = mymetab, subset_fn = "all", norm_fn = "median" ) norm_data <- normalize_global( omicsData = mymetab, subset_fn = "all", norm_fn = "median", apply_norm = TRUE, backtransform = TRUE )
This function is intended to be used in SPANS only. It is a VERY trimmed down version of normalize_global. It is trimmed down because within SPANS we only need the norm_params element from the output of the normalize_global function. All of the other options and output can be ignored.
normalize_global_basic(edata, norm_fn)
normalize_global_basic(edata, norm_fn)
edata |
a |
norm_fn |
character string indicating the normalization function to use for normalization. See details for the current offerings. |
A list containing the location and scale parameters for normalizing the data.
Examine reference pool samples and apply normalization of study samples to their corresponding reference pool sample
normalize_isobaric( omicsData, exp_cname = NULL, apply_norm = FALSE, channel_cname = NULL, refpool_channel = NULL, refpool_cname = NULL, refpool_notation = NULL )
normalize_isobaric( omicsData, exp_cname = NULL, apply_norm = FALSE, channel_cname = NULL, refpool_channel = NULL, refpool_cname = NULL, refpool_notation = NULL )
omicsData |
an object of the class 'isobaricpepData' |
exp_cname |
character string specifying the name of the column
containing the experiment/plate information in |
apply_norm |
logical, indicates whether normalization should be applied to omicsData$e_data |
channel_cname |
optional character string specifying the name of the
column containing the instrument channel a sample was run on in
|
refpool_channel |
optional character string specifying which channel contains the reference pool sample. Only used when this is the same from experiment to experiment. This argument is optional. See Details for how to specify information regarding reference pool samples. If using this argument, the 'channel_cname' argument must also be specified; in this case, 'refpool_cname' and 'refpool_notation' should not be specified. |
refpool_cname |
optional character string specifying the name of the
column containing information about which samples are reference samples in
|
refpool_notation |
optional character string specifying the value in the refpool_channel column which denotes that a sample is a reference sample. This argument is optional. See Details for how to specify information regarding reference pool samples. If using this argument, the 'refpool_cname' argument must also be specified; in this case, 'channel_cname' and 'refpool_channel' should not be specified. |
There are two ways to specify the information needed for identifying reference samples which should be used for normalization:
specify channel_cname
and refpool_channel
. This should be
used when the reference sample for each experiment/plate was always located
in the same channel. Here channel_cname
gives the column name for
the column in f_data
which gives information about which channel
each sample was run on, and refpool_channel
is a character string
specifying the value in channel_colname
that corresponds to the
reference sample channel.
specify refpool_cname
and
refpool_notation
. This should be used when the reference sample is
not in a consistent channel across experiments/plates. Here,
refpool_cname
gives the name of the column in f_data
which
indicates whether a sample is a reference or not, and
refpool_notation
is a character string giving the value used to
denote a reference sample in that column.
In both cases you must specify
exp_cname
which gives the column name for the column in
f_data
containing information about which experiment/plate a sample
was run on.
If apply_norm = TRUE, an object of class 'isobaricpepData', normalized to reference pool, and with the attribute 'isobaric_info' updated to include information about the reference pool samples and the normalization procedure. Otherwise an object of class 'isobaricnormRes' containing similar information about the normalization process
library(pmartRdata) myiso <- edata_transform(isobaric_object, "log2") # Don't apply the normalization quite yet; # can use summary() and plot() to view reference pool samples myiso_refpools <- normalize_isobaric( omicsData = myiso, exp_cname = "Plex", apply_norm = FALSE, refpool_cname = "Virus", refpool_notation = "Pool" ) summary(myiso_refpools) # Now apply the normalization; # can use plot() to view the study samples after reference pool normalization myiso_norm <- normalize_isobaric( omicsData = myiso, exp_cname = "Plex", apply_norm = TRUE, refpool_cname = "Virus", refpool_notation = "Pool" )
library(pmartRdata) myiso <- edata_transform(isobaric_object, "log2") # Don't apply the normalization quite yet; # can use summary() and plot() to view reference pool samples myiso_refpools <- normalize_isobaric( omicsData = myiso, exp_cname = "Plex", apply_norm = FALSE, refpool_cname = "Virus", refpool_notation = "Pool" ) summary(myiso_refpools) # Now apply the normalization; # can use plot() to view the study samples after reference pool normalization myiso_norm <- normalize_isobaric( omicsData = myiso, exp_cname = "Plex", apply_norm = TRUE, refpool_cname = "Virus", refpool_notation = "Pool" )
Perform Loess normalization
normalize_loess(omicsData, method = "fast", span = 0.4)
normalize_loess(omicsData, method = "fast", span = 0.4)
omicsData |
an object of the class 'pepData', 'proData', 'metabData',
'lipidData', or 'nmrData', created by |
method |
character string specifying which variant of the cyclic loess method to use. Options are "fast" (default), "affy", or "pairs" |
span |
span of loess smoothing window, between 0 and 1. |
A wrapper for the normalizeCyclicLoess function from the limma package.
The normalized data is returned in an object of the appropriate S3 class (e.g. pepData), on the same scale as omicsData (e.g. if omicsData contains log2 transformed data, the normalization will be performed on the non-log2 scale and then re-scaled after normalization to be returned on the log2 scale).
Bolstad, B. M., Irizarry R. A., Astrand, M., and Speed, T. P. (2003). A comparison of normalization methods for high density oligonucleotide array data based on bias and variance. Bioinformatics 19, 185-193.
Ballman, KV Grill, DE, Oberg, AL and Therneau, TM (2004). Faster cyclic loess: normalizing RNA arrays via linear models. Bioinformatics 20, 2778-2786.
normalizeCyclicLoess
in the limma
package
library(pmartRdata) mypep <- edata_transform(pep_object, "log2") result <- normalize_loess(mypep)
library(pmartRdata) mypep <- edata_transform(pep_object, "log2") result <- normalize_loess(mypep)
The data is normalized either to a spiked-in metabolite or to a sample-specific property
normalize_nmr( omicsData, apply_norm = FALSE, backtransform = FALSE, metabolite_name = NULL, sample_property_cname = NULL )
normalize_nmr( omicsData, apply_norm = FALSE, backtransform = FALSE, metabolite_name = NULL, sample_property_cname = NULL )
omicsData |
an object of the class 'nmrData' |
apply_norm |
logical, indicates whether normalization should be applied
to omicsData$e_data. Defaults to FALSE. If TRUE, the normalization is
applied to the data and an S3 object of the same class as |
backtransform |
logical argument indicating if parameters for back
transforming the data, after normalization, should be calculated. Defaults
to FALSE. If TRUE, the parameters for back transforming the data after
normalization will be calculated, and subsequently included in the data
normalization if |
metabolite_name |
optional character string specifying the name of the
(spiked in) metabolite in |
sample_property_cname |
optional character string specifying the name of the column in f_data containing information to use for instrument normalization of the nmrData object, such as a concentration. These values will be used to divide the raw abundance of the corresponding sample in e_data (if e_data is log transformed, this function accounts for that by temporarily un-log transforming the data and then returning normalized data on the same scale it was provided). If using this argument, the 'metabolite_name' argument should not be specified. |
There are two ways to specify the information needed for performing instrument normalization on an nmrData object:
specify metabolite_name
. This should be used when normalization to a
spiked in standard is desired. Here metabolite_name
gives the name of
the metabolite in e_data (and e_meta, if present) corresponding to the spiked
in standard. If any samples have a missing value for this metabolite, an
error is returned.
specify sample_property_cname
. This should be
used when normalizing to a sample property, such as concentration, is
desired. Here, sample_property_cname
gives the name of the column in
f_data
which contains the property to use for normalization. If any
samples have a missing value for this column, and error is returned.
If apply_norm
is TRUE, an object of class 'nmrData', normalized
and with information about the normalization process in 'nmr_info'. Otherwise,
an object of class 'nmrnormRes' is returned, with the same info about
normalization in attribute 'nmr_info' to be passed to plotting and summary functions.
The purpose of back transforming data is to ensure values are on a scale similar to their raw values before normalization. The following values are calculated and/or applied for backtransformation purposes:
If normalization using a metabolite in
e_data is specified |
location parameter is the median of the
values for metabolite_name |
If normalization using a
sample property in f_data is specified |
location parameter is
the median of the values in sample_property |
See examples below.
library(pmartRdata) # Normalize using a metabolite (this is merely an example of how to use this specification; # the metabolite used was not actually spiked-in for the purpose of normalization) mynmr <- edata_transform( omicsData = nmr_identified_object, data_scale = "log2" ) nmr_norm <- normalize_nmr( omicsData = mynmr, apply_norm = TRUE, metabolite_name = "unkm1.53", backtransform = TRUE ) # Normalization using a sample property mynmr <- edata_transform( omicsData = nmr_identified_object, data_scale = "log2" ) nmr_norm <- normalize_nmr( omicsData = mynmr, apply_norm = TRUE, sample_property_cname = "Concentration", backtransform = TRUE )
library(pmartRdata) # Normalize using a metabolite (this is merely an example of how to use this specification; # the metabolite used was not actually spiked-in for the purpose of normalization) mynmr <- edata_transform( omicsData = nmr_identified_object, data_scale = "log2" ) nmr_norm <- normalize_nmr( omicsData = mynmr, apply_norm = TRUE, metabolite_name = "unkm1.53", backtransform = TRUE ) # Normalization using a sample property mynmr <- edata_transform( omicsData = nmr_identified_object, data_scale = "log2" ) nmr_norm <- normalize_nmr( omicsData = mynmr, apply_norm = TRUE, sample_property_cname = "Concentration", backtransform = TRUE )
Perform quantile normalization
normalize_quantile(omicsData)
normalize_quantile(omicsData)
omicsData |
an object of the class 'pepData', 'proData', 'metabData',
'lipidData', 'nmrData', created by |
Quantile normalization is an algorithm for normalizing a set of data vectors by giving them the same distribution. It is applied to data on the abundance scale (e.g. not a log scale). It is often used for microarray data.
The method is implemented as described in Bolstad et al. (2003).
The normalized data is returned in an object of the appropriate S3 class (e.g. pepData), on the same scale as omicsData (e.g. if omicsData contains log2 transformed data, the normalization will be performed on the non-log2 scale and then re-scaled after normalization to be returned on the log2 scale).
Kelly Stratton
Bolstad, B. M., Irizarry, R. A., Åstrand, M., & Speed, T. P. (2003). A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics, 19(2), 185-193.
library(pmartRdata) myfilt <- molecule_filter(omicsData = metab_object) # quantile normalization requires complete data # summary(myfilt, min_num = 50) mymetab <- applyFilt(filter_object = myfilt, omicsData = metab_object, min_num = 50) norm_data <- normalize_quantile(omicsData = mymetab)
library(pmartRdata) myfilt <- molecule_filter(omicsData = metab_object) # quantile normalization requires complete data # summary(myfilt, min_num = 50) mymetab <- applyFilt(filter_object = myfilt, omicsData = metab_object, min_num = 50) norm_data <- normalize_quantile(omicsData = mymetab)
Perform scaling of data from zero to one.
normalize_zero_one_scaling(omicsData)
normalize_zero_one_scaling(omicsData)
omicsData |
an object of the class 'pepData', 'proData', 'metabData',
'lipidData', 'nmrData', created by |
The sample-wise minimum of the features is subtracted from each feature in e_data, then divided by the difference between the sample-wise minimum and maximum of the features to get the normalized data. The location estimates are not applicable for this data and the function returns a NULL list element as a placeholder. The scale estimates are the sample-wise feature ranges. All NA values are replaced with zero.
Normalized omicsData object of class 'pepData', 'proData', 'metabData',
'lipidData', 'nmrData', created by as.pepData
,
as.proData
, as.metabData
,
as.lipidData
, as.nmrData
, respectively.
Rachel Richardson
library(pmartRdata) mymetab <- edata_transform( omicsData = metab_object, data_scale = "log2" ) mymetab <- group_designation( omicsData = mymetab, main_effects = "Phenotype" ) norm_data <- normalize_zero_one_scaling( omicsData = mymetab )
library(pmartRdata) mymetab <- edata_transform( omicsData = metab_object, data_scale = "log2" ) mymetab <- group_designation( omicsData = mymetab, main_effects = "Phenotype" ) norm_data <- normalize_zero_one_scaling( omicsData = mymetab )
Computes p-values from a test of dependence between normalization parameters and group assignment of a normalized omicsData or normRes object
normRes_tests(norm_obj, test_fn = "kw")
normRes_tests(norm_obj, test_fn = "kw")
norm_obj |
object of class 'pepData', 'proData', 'lipidData',
'metabData', 'isobaricpepData', or 'nmrData' that has had |
test_fn |
character string indicating the statistical test to use. Current options are "anova" and "kw" for a Kruskal-Wallis test. |
A list with 2 entries containing the p_value of the test performed on the location and scale (if it exists) parameters.
library(pmartRdata) mymetab <- edata_transform(omicsData = metab_object, data_scale = "log2") mymetab <- group_designation(omicsData = mymetab, main_effects = "Phenotype") # provide the normRes object mynorm <- normalize_global(omicsData = mymetab, subset_fn = "all", norm_fn = "median", apply_norm = FALSE) norm_pvals <- normRes_tests(norm_obj = mynorm) # provide normalized omicsData object mymetab <- normalize_global(omicsData = mymetab, subset_fn = "all", norm_fn = "median", apply_norm = TRUE) norm_pvals <- normRes_tests(norm_obj = mymetab) # NMR data object mynmr <- edata_transform(omicsData = nmr_identified_object, data_scale = "log2") mynmr <- group_designation(mynmr, main_effects = "Condition") mynmrnorm <- normalize_nmr( omicsData = mynmr, apply_norm = TRUE, sample_property_cname = "Concentration" ) mynmrnorm <- normalize_global(omicsData = mynmrnorm, subset_fn = "all", norm_fn = "median", apply_norm = TRUE, backtransform = TRUE) norm_pvals <- normRes_tests(norm_obj = mynmrnorm)
library(pmartRdata) mymetab <- edata_transform(omicsData = metab_object, data_scale = "log2") mymetab <- group_designation(omicsData = mymetab, main_effects = "Phenotype") # provide the normRes object mynorm <- normalize_global(omicsData = mymetab, subset_fn = "all", norm_fn = "median", apply_norm = FALSE) norm_pvals <- normRes_tests(norm_obj = mynorm) # provide normalized omicsData object mymetab <- normalize_global(omicsData = mymetab, subset_fn = "all", norm_fn = "median", apply_norm = TRUE) norm_pvals <- normRes_tests(norm_obj = mymetab) # NMR data object mynmr <- edata_transform(omicsData = nmr_identified_object, data_scale = "log2") mynmr <- group_designation(mynmr, main_effects = "Condition") mynmrnorm <- normalize_nmr( omicsData = mynmr, apply_norm = TRUE, sample_property_cname = "Concentration" ) mynmrnorm <- normalize_global(omicsData = mynmrnorm, subset_fn = "all", norm_fn = "median", apply_norm = TRUE, backtransform = TRUE) norm_pvals <- normRes_tests(norm_obj = mynmrnorm)
Depending upon the pval_adjust
method selected, the supplied p_values are compared against an adjusted pval_thresh
value or the provided
means are used to compute new statistics, p-values are computed and compared against the provided pval_thresh
. A data.frame
that indicates which
of the tests are significant, 1 if significant or 0 if insignificant. If means
is also provided and the p-value is signficant then the direction
of the change is indicated by the sign on 1, i.e., means<0 and p_value<pval_thresh will return -1, similarly for means>0.
p_adjustment_anova( p_values, diff_mean, t_stats, sizes, pval_adjust_multcomp, pval_adjust_fdr )
p_adjustment_anova( p_values, diff_mean, t_stats, sizes, pval_adjust_multcomp, pval_adjust_fdr )
p_values |
A matrix (or |
diff_mean |
A matrix (or |
t_stats |
A matrix (or |
sizes |
A matrix (or |
pval_adjust_multcomp |
character vector specifying the type of multiple comparisons adjustment to implement. A NULL value corresponds to no adjustment. Valid options include: holm, bonferroni, dunnett, tukey or none. |
pval_adjust_fdr |
character vector specifying the type of FDR adjustment to implement. A NULL value corresponds to no adjustment. Valid options include: bonferroni, BH, BY, fdr, or none. |
a data frame with the following columns: group means, global G-test statistic and corresponding p-value
Bryan Stanfill
Implements overall survival analysis or progression-free survival analysis, depending upon the datatypes supplied to surv_designation, and plot the resulting Kaplan-Meier curve.
plot_km(omicsData)
plot_km(omicsData)
omicsData |
A pmartR data object of any class, which has a 'group_df' attribute that is usually created by the 'group_designation()' function |
a Kaplan-Meier curve
## Not run: library(MSomicsSTAT) library(OvarianPepdataBP) attr(tcga_ovarian_pepdata_bp, "survDF") <- list(t_death = "survival_time", ind_death = "vital_status") plot_km(omicsData = tcga_ovarian_pepdata_bp) # Add covariates to "survDF" attribute attr(tcga_ovarian_pepdata_bp, "survDF") <- list( t_death = "survival_time", ind_death = "vital_status", covariates = "age_at_initial_pathologic_diagnosis" ) plot_km(omicsData = tcga_ovarian_pepdata_bp) ## End(Not run)
## Not run: library(MSomicsSTAT) library(OvarianPepdataBP) attr(tcga_ovarian_pepdata_bp, "survDF") <- list(t_death = "survival_time", ind_death = "vital_status") plot_km(omicsData = tcga_ovarian_pepdata_bp) # Add covariates to "survDF" attribute attr(tcga_ovarian_pepdata_bp, "survDF") <- list( t_death = "survival_time", ind_death = "vital_status", covariates = "age_at_initial_pathologic_diagnosis" ) plot_km(omicsData = tcga_ovarian_pepdata_bp) ## End(Not run)
For plotting an S3 object of type 'corRes'
## S3 method for class 'corRes' plot( x, omicsData = NULL, order_by = NULL, colorbar_lim = c(NA, NA), x_text = TRUE, y_text = TRUE, interactive = FALSE, x_lab = NULL, y_lab = NULL, x_lab_size = 11, y_lab_size = 11, x_lab_angle = 90, title_lab = NULL, title_lab_size = 14, legend_lab = NULL, legend_position = "right", color_low = NULL, color_high = NULL, bw_theme = TRUE, use_VizSampNames = FALSE, ... )
## S3 method for class 'corRes' plot( x, omicsData = NULL, order_by = NULL, colorbar_lim = c(NA, NA), x_text = TRUE, y_text = TRUE, interactive = FALSE, x_lab = NULL, y_lab = NULL, x_lab_size = 11, y_lab_size = 11, x_lab_angle = 90, title_lab = NULL, title_lab_size = 14, legend_lab = NULL, legend_position = "right", color_low = NULL, color_high = NULL, bw_theme = TRUE, use_VizSampNames = FALSE, ... )
x |
An object of class "corRes" created via |
omicsData |
an object of the class 'pepData', 'isobaricpepData',
'proData', 'lipidData', 'metabData', 'nmrData' or 'seqData' created via
|
order_by |
A character string specifying a column in f_data by which to order the samples. |
colorbar_lim |
A pair of numeric values specifying the minimum and maximum values to use in the heat map color bar. Defaults to 'c(NA, NA)', in which case ggplot2 automatically sets the minimum and maximum values based on the correlation values in the data. |
x_text |
logical value. Indicates whether the x-axis will be labeled with the sample names. The default is TRUE. |
y_text |
logical value. Indicates whether the y-axis will be labeled with the sample names. The default is TRUE. |
interactive |
logical value. If TRUE produces an interactive plot. |
x_lab |
character string specifying the x-axis label |
y_lab |
character string specifying the y-axis label |
x_lab_size |
integer value indicating the font size for the x-axis. The default is 11. |
y_lab_size |
integer value indicating the font size for the y-axis. The default is 11. |
x_lab_angle |
integer value indicating the angle of x-axis labels. The default is 90. |
title_lab |
character string specifying the plot title |
title_lab_size |
integer value indicating the font size of the plot title. The default is 14. |
legend_lab |
character string specifying the legend title. |
legend_position |
character string specifying the position of the legend. Can be one of "right", "left", "top", "bottom", or "none". The default is "none". |
color_low |
character string specifying the color of the gradient for low values |
color_high |
character string specifying the color of the gradient for high values |
bw_theme |
logical value. If TRUE uses the ggplot2 black and white theme. |
use_VizSampNames |
logical value. Indicates whether to use custom sample names. The default is FALSE. |
... |
further arguments passed to or from other methods. |
ggplot2 plot object if interactive is FALSE, or plotly plot object if interactive is TRUE
library(pmartRdata) mymetab <- edata_transform(omicsData = metab_object, data_scale = "log2") mymetab <- group_designation(omicsData = mymetab, main_effects = "Phenotype") my_correlation <- cor_result(omicsData = mymetab) plot(my_correlation, omicsData = mymetab, order_by = "Phenotype") myseq_correlation <- cor_result(omicsData = rnaseq_object) plot(myseq_correlation)
library(pmartRdata) mymetab <- edata_transform(omicsData = metab_object, data_scale = "log2") mymetab <- group_designation(omicsData = mymetab, main_effects = "Phenotype") my_correlation <- cor_result(omicsData = mymetab) plot(my_correlation, omicsData = mymetab, order_by = "Phenotype") myseq_correlation <- cor_result(omicsData = rnaseq_object) plot(myseq_correlation)
Currently plotting a customFilt object is not supported
## S3 method for class 'customFilt' plot(x, ...)
## S3 method for class 'customFilt' plot(x, ...)
x |
An object of class customFilt. |
... |
further arguments passed to or from other methods. |
No return value, implemented to provide information to user.
For plotting an S3 object of type 'cvFilt'
## S3 method for class 'cvFilt' plot( x, cv_threshold = NULL, interactive = FALSE, x_lab = NULL, y_lab = NULL, x_lab_size = 11, y_lab_size = 11, x_lab_angle = 0, title_lab = NULL, title_lab_size = 14, legend_lab = NULL, legend_position = "right", log_scale = TRUE, n_breaks = 15, n_bins = 30, bw_theme = TRUE, palette = NULL, ... )
## S3 method for class 'cvFilt' plot( x, cv_threshold = NULL, interactive = FALSE, x_lab = NULL, y_lab = NULL, x_lab_size = 11, y_lab_size = 11, x_lab_angle = 0, title_lab = NULL, title_lab_size = 14, legend_lab = NULL, legend_position = "right", log_scale = TRUE, n_breaks = 15, n_bins = 30, bw_theme = TRUE, palette = NULL, ... )
x |
object of class cvFilt generated via
|
cv_threshold |
numeric value for cv threshold above which to remove the corresponding biomolecules |
interactive |
logical value. If TRUE produces an interactive plot. |
x_lab |
character string specifying the x-axis label. |
y_lab |
character string specifying the y-axis label. The default is
NULL in which case the y-axis label will be the metric selected for the
|
x_lab_size |
integer value indicating the font size for the x-axis. The default is 11. |
y_lab_size |
integer value indicating the font size for the y-axis. The default is 11. |
x_lab_angle |
integer value indicating the angle of x-axis labels. The default is 0. |
title_lab |
character string specifying the plot title |
title_lab_size |
integer value indicating the font size of the plot title. The default is 14. |
legend_lab |
character string specifying the legend title |
legend_position |
character string specifying the position of the legend. Can be one of "right", "left", "top", "bottom", or "none". The default is "none". |
log_scale |
logical value. Indicates whether to use a log2 transformed x-axis. The default is TRUE. |
n_breaks |
integer value specifying the number of breaks to use. You may get less breaks if rounding causes certain values to become non-unique. The default is 15. |
n_bins |
integer value specifying the number of bins to draw in the histogram. The default is 30. |
bw_theme |
logical value. If TRUE uses the ggplot2 black and white theme. |
palette |
character string indicating the name of the RColorBrewer
palette to use. For a list of available options see the details section in
|
... |
further arguments passed to or from other methods. |
ggplot2 plot object if interactive is FALSE, or plotly plot object if interactive is TRUE
library(pmartRdata) data(pep_object) mypep <- group_designation( omicsData = pep_object, main_effects = "Phenotype" ) cvfilt <- cv_filter(omicsData = mypep) plot(cvfilt, cv_threshold = 20) plot(cvfilt, cv_threshold = 10, log_scale = FALSE)
library(pmartRdata) data(pep_object) mypep <- group_designation( omicsData = pep_object, main_effects = "Phenotype" ) cvfilt <- cv_filter(omicsData = mypep) plot(cvfilt, cv_threshold = 20) plot(cvfilt, cv_threshold = 10, log_scale = FALSE)
For plotting an S3 object of type dataRes
## S3 method for class 'dataRes' plot( x, metric = NULL, density = FALSE, ncols = NULL, interactive = FALSE, x_lab = NULL, x_lab_sd = NULL, x_lab_median = NULL, y_lab = NULL, y_lab_sd = NULL, y_lab_median = NULL, x_lab_size = 11, y_lab_size = 11, x_lab_angle = NULL, title_lab = NULL, title_lab_sd = NULL, title_lab_median = NULL, title_lab_size = 14, legend_lab = NULL, legend_position = "right", point_size = 2, bin_width = 1, bw_theme = TRUE, palette = NULL, ... )
## S3 method for class 'dataRes' plot( x, metric = NULL, density = FALSE, ncols = NULL, interactive = FALSE, x_lab = NULL, x_lab_sd = NULL, x_lab_median = NULL, y_lab = NULL, y_lab_sd = NULL, y_lab_median = NULL, x_lab_size = 11, y_lab_size = 11, x_lab_angle = NULL, title_lab = NULL, title_lab_sd = NULL, title_lab_median = NULL, title_lab_size = 14, legend_lab = NULL, legend_position = "right", point_size = 2, bin_width = 1, bw_theme = TRUE, palette = NULL, ... )
x |
object of class dataRes, created by the
|
metric |
character string indicating which metric to use in plot: 'mean', 'median', 'sd, 'pct_obs', 'min', or 'max' |
density |
logical value, defaults to FALSE. If TRUE, a density plot of the specified metric is returned. |
ncols |
integer value specifying the number columns for the histogram
facet_wrap. This argument is used when |
interactive |
logical value. If TRUE, produces an interactive plot. |
x_lab |
character string specifying the x-axis label when the metric argument is NULL. The default is NULL in which case the x-axis label will be "count". |
x_lab_sd |
character string used for the x-axis label for the
mean/standard deviation plot when the |
x_lab_median |
character string used for the x-axis label for the
mean/median plot when the |
y_lab |
character string specifying the y-axis label. The default is
NULL in which case the y-axis label will be the metric selected for the
|
y_lab_sd |
character string used for the y-axis label for the
mean/standard deviation plot when the |
y_lab_median |
character string used for the y-axis label for the
mean/median plot when the |
x_lab_size |
integer value indicating the font size for the x-axis. The default is 11. |
y_lab_size |
integer value indicating the font size for the y-axis. The default is 11. |
x_lab_angle |
integer value indicating the angle of x-axis labels |
title_lab |
character string specifying the plot title when the
|
title_lab_sd |
character string used for the plot title for the
mean/standard deviation plot when the |
title_lab_median |
character string used for the plot title for the
mean/median plot when the |
title_lab_size |
integer value indicating the font size of the plot title. The default is 14. |
legend_lab |
character string specifying the legend title. |
legend_position |
character string specifying the position of the legend. Can be one of "right", "left", "top", or "bottom". The default is "right". |
point_size |
integer specifying the size of the points. The default is 2. |
bin_width |
integer indicating the bin width in a histogram. The default is 0.5. |
bw_theme |
logical value. If TRUE, uses the ggplot2 black and white theme. |
palette |
character string indicating the name of the RColorBrewer
palette to use. For a list of available options see the details section in
|
... |
further arguments passed to or from other methods. |
This function can only create plots for dataRes objects whose 'by' = 'molecule' and 'groupvar' attribute is non NULL
ggplot2 plot object if interactive is FALSE, or plotly plot object if interactive is TRUE
library(pmartRdata) mylipid <- edata_transform(omicsData = lipid_pos_object, data_scale = "log2") result <- edata_summary( omicsData = mylipid, by = "molecule", groupvar = "Virus" ) plot(result)
library(pmartRdata) mylipid <- edata_transform(omicsData = lipid_pos_object, data_scale = "log2") result <- edata_summary( omicsData = mylipid, by = "molecule", groupvar = "Virus" ) plot(result)
For plotting an S3 object of type 'dimRes'
## S3 method for class 'dimRes' plot( x, omicsData = NULL, color_by = NULL, shape_by = NULL, interactive = FALSE, x_lab = NULL, y_lab = NULL, x_lab_size = 11, y_lab_size = 11, x_lab_angle = 0, title_lab = NULL, title_lab_size = 14, legend_lab = NULL, legend_position = "right", point_size = 4, bw_theme = TRUE, palette = NULL, ... )
## S3 method for class 'dimRes' plot( x, omicsData = NULL, color_by = NULL, shape_by = NULL, interactive = FALSE, x_lab = NULL, y_lab = NULL, x_lab_size = 11, y_lab_size = 11, x_lab_angle = 0, title_lab = NULL, title_lab_size = 14, legend_lab = NULL, legend_position = "right", point_size = 4, bw_theme = TRUE, palette = NULL, ... )
x |
object of class dimRes created by the |
omicsData |
optional omicsData for use in specifying a column name in
fdata when using |
color_by |
character string specifying which column to use to control the color for plotting. NULL indicates the default value of the main effect levels (if present). "Group" uses the "Group" column of group_DF. NA indicates no column will be used, and will use the default theme color. If an omicsData object is passed, any other value will use the specified column of f_data. |
shape_by |
character string specifying which column to use to control the shape for plotting. NULL indicates the default value of the second main effect levels (if present). "Group" uses the "Group" column of group_DF. NA indicates no column will be used, and will use the default theme shape. If an omicsData object is passed, any other value will use the specified column of f_data. |
interactive |
logical value. If TRUE produces an interactive plot. |
x_lab |
character string specifying the x-axis label |
y_lab |
character string specifying the y-axis label. The default is
NULL in which case the y-axis label will be the metric selected for the
|
x_lab_size |
integer value indicating the font size for the x-axis. The default is 11. |
y_lab_size |
integer value indicating the font size for the y-axis. The default is 11. |
x_lab_angle |
integer value indicating the angle of x-axis labels. The default is 0. |
title_lab |
character string specifying the plot title |
title_lab_size |
integer value indicating the font size of the plot title. The default is 14. |
legend_lab |
character string specifying the legend title |
legend_position |
character string specifying the position of the legend. Can be one of "right", "left", "top", "bottom", or "none". The default is "none". |
point_size |
An integer specifying the size of the points. The default is 4. |
bw_theme |
logical value. If TRUE uses the ggplot2 black and white theme. |
palette |
character string indicating the name of the RColorBrewer
palette to use. For a list of available options see the details section in
|
... |
further arguments passed to or from other methods. |
ggplot2 plot object if interactive is FALSE, or plotly plot object if interactive is TRUE
library(pmartRdata) mylipid <- edata_transform(omicsData = lipid_neg_object, data_scale = "log2") mylipid <- group_designation(omicsData = mylipid, main_effects = "Virus") pca_lipids <- dim_reduction(omicsData = mylipid) plot(pca_lipids) myseq <- group_designation(omicsData = rnaseq_object, main_effects = "Virus") pca_seq <- dim_reduction(omicsData = myseq) plot(pca_seq)
library(pmartRdata) mylipid <- edata_transform(omicsData = lipid_neg_object, data_scale = "log2") mylipid <- group_designation(omicsData = mylipid, main_effects = "Virus") pca_lipids <- dim_reduction(omicsData = mylipid) plot(pca_lipids) myseq <- group_designation(omicsData = rnaseq_object, main_effects = "Virus") pca_seq <- dim_reduction(omicsData = myseq) plot(pca_seq)
For plotting an S3 object of type 'imdanovaFilt'
## S3 method for class 'imdanovaFilt' plot( x, min_nonmiss_anova = NULL, min_nonmiss_gtest = NULL, interactive = FALSE, x_lab = NULL, y_lab = NULL, x_lab_size = 11, y_lab_size = 11, x_lab_angle = 0, title_lab = NULL, title_lab_size = 14, legend_lab = NULL, legend_position = "right", point_size = 3, line_size = 0.75, text_size = 3, bw_theme = TRUE, palette = NULL, display_count = TRUE, ... )
## S3 method for class 'imdanovaFilt' plot( x, min_nonmiss_anova = NULL, min_nonmiss_gtest = NULL, interactive = FALSE, x_lab = NULL, y_lab = NULL, x_lab_size = 11, y_lab_size = 11, x_lab_angle = 0, title_lab = NULL, title_lab_size = 14, legend_lab = NULL, legend_position = "right", point_size = 3, line_size = 0.75, text_size = 3, bw_theme = TRUE, palette = NULL, display_count = TRUE, ... )
x |
Object of class imdanovaFilt (also a data frame) containing the molecule identifier and number of samples in each group with non-missing values for that molecule |
min_nonmiss_anova |
An integer indicating the minimum number of
non-missing feature values allowed per group for |
min_nonmiss_gtest |
An integer indicating the minimum number of
non-missing feature values allowed per group for |
interactive |
logical value. If TRUE produces an interactive plot. |
x_lab |
character string specifying the x-axis label |
y_lab |
character string specifying the y-axis label |
x_lab_size |
integer value indicating the font size for the x-axis. The default is 11. |
y_lab_size |
integer value indicating the font size for the y-axis. The default is 11. |
x_lab_angle |
integer value indicating the angle of x-axis labels. The default is 0. |
title_lab |
character string specifying the plot title. |
title_lab_size |
integer value indicating the font size of the plot title. The default is 14. |
legend_lab |
character string specifying the legend title. |
legend_position |
character string specifying the position of the legend. Can be one of "right", "left", "top", "bottom", or "none". The default is "none". |
point_size |
integer specifying the size of the points. The default is 3. |
line_size |
integer specifying the thickness of the line. The default is 0.75. |
text_size |
integer specifying the size of the text (number of biomolecules per group). The default is 3. |
bw_theme |
logical value. If TRUE uses the ggplot2 black and white theme. |
palette |
character string indicating the name of the RColorBrewer
palette to use. For a list of available options see the details section in
|
display_count |
logical value. Indicates whether the missing value counts by sample will be displayed on the bar plot. The default is TRUE. |
... |
further arguments passed to or from other methods. |
ggplot2 plot object if interactive is FALSE, or plotly plot object if interactive is TRUE
library(pmartRdata) data(pep_object) mypep <- group_designation(omicsData = pep_object, main_effects = "Phenotype") to_filter <- imdanova_filter(omicsData = mypep) plot(to_filter, min_nonmiss_anova = 2, min_nonmiss_gtest = 3)
library(pmartRdata) data(pep_object) mypep <- group_designation(omicsData = pep_object, main_effects = "Phenotype") to_filter <- imdanova_filter(omicsData = mypep) plot(to_filter, min_nonmiss_anova = 2, min_nonmiss_gtest = 3)
Creates box plots for an S3 object of type 'isobaricnormRes'
## S3 method for class 'isobaricnormRes' plot( x, order = FALSE, interactive = FALSE, x_lab = NULL, y_lab = NULL, x_lab_size = 11, y_lab_size = 11, x_lab_angle = NULL, title_lab = NULL, title_lab_size = 14, legend_lab = NULL, legend_position = "none", bw_theme = TRUE, palette = NULL, ... )
## S3 method for class 'isobaricnormRes' plot( x, order = FALSE, interactive = FALSE, x_lab = NULL, y_lab = NULL, x_lab_size = 11, y_lab_size = 11, x_lab_angle = NULL, title_lab = NULL, title_lab_size = 14, legend_lab = NULL, legend_position = "none", bw_theme = TRUE, palette = NULL, ... )
x |
an object of type isobaricnormRes, created by
|
order |
logical value. If TRUE the samples will be ordered by the column of f_data containing the experiment/plate information. |
interactive |
logical value. If TRUE produces an interactive plot. |
x_lab |
character string specifying the x-axis label |
y_lab |
character string specifying the y-axis label |
x_lab_size |
integer value indicating the font size for the x-axis. The default is 11. |
y_lab_size |
integer value indicating the font size for the y-axis. The default is 11. |
x_lab_angle |
integer value indicating the angle of x-axis labels. |
title_lab |
character string specifying the plot title. |
title_lab_size |
integer value indicating the font size of the plot title. The default is 14. |
legend_lab |
character string specifying the legend title. |
legend_position |
character string specifying the position of the legend. Can be one of "right", "left", "top", "bottom", or "none". The default is "none". |
bw_theme |
logical value. If TRUE uses the ggplot2 black and white theme. |
palette |
character string indicating the name of the RColorBrewer
palette to use. For a list of available options see the details section in
|
... |
further arguments passed to or from other methods. |
ggplot2 plot object if interactive is FALSE, or plotly plot object if interactive is TRUE
library(pmartRdata) myiso <- edata_transform(omicsData = isobaric_object, data_scale = "log2") result <- normalize_isobaric(myiso, exp_cname = "Plex", apply_norm = FALSE, refpool_cname = "Virus", refpool_notation = "Pool" ) plot(result)
library(pmartRdata) myiso <- edata_transform(omicsData = isobaric_object, data_scale = "log2") result <- normalize_isobaric(myiso, exp_cname = "Plex", apply_norm = FALSE, refpool_cname = "Virus", refpool_notation = "Pool" ) plot(result)
For plotting isobaricpepData S3 objects
## S3 method for class 'isobaricpepData' plot( x, order_by = NULL, color_by = NULL, facet_by = NULL, facet_cols = NULL, interactive = FALSE, x_lab = NULL, y_lab = NULL, x_lab_size = 11, y_lab_size = 11, x_lab_angle = 90, title_lab = NULL, title_lab_size = 14, legend_lab = NULL, legend_position = "right", ylimit = NULL, bw_theme = TRUE, palette = NULL, use_VizSampNames = FALSE, ... )
## S3 method for class 'isobaricpepData' plot( x, order_by = NULL, color_by = NULL, facet_by = NULL, facet_cols = NULL, interactive = FALSE, x_lab = NULL, y_lab = NULL, x_lab_size = 11, y_lab_size = 11, x_lab_angle = 90, title_lab = NULL, title_lab_size = 14, legend_lab = NULL, legend_position = "right", ylimit = NULL, bw_theme = TRUE, palette = NULL, use_VizSampNames = FALSE, ... )
x |
An isobaricpepData object |
order_by |
character string specifying the column name of f_data by
which to order the boxplots. If |
color_by |
character string specifying the column name of f_data by
which to color the boxplots. If |
facet_by |
character string specifying the column name of f_data with which to create a facet plot. Default value is NULL. |
facet_cols |
optional integer specifying the number of columns to show in the facet plot. |
interactive |
logical value. If TRUE produces an interactive plot. |
x_lab |
character string specifying the x-axis label. |
y_lab |
character string specifying the y-axis label. The default is
NULL in which case the y-axis label will be the metric selected for the
|
x_lab_size |
integer value indicating the font size for the x-axis. The default is 11. |
y_lab_size |
integer value indicating the font size for the y-axis. The default is 11. |
x_lab_angle |
integer value indicating the angle of x-axis labels. The default is 0. |
title_lab |
character string specifying the plot title. |
title_lab_size |
integer value indicating the font size of the plot title. The default is 14. |
legend_lab |
character string specifying the legend title. |
legend_position |
character string specifying the position of the legend. Can be one of "right", "left", "top", "bottom", or "none". The default is "none". |
ylimit |
numeric vector of length 2 specifying y-axis lower and upper limits. |
bw_theme |
logical value. If TRUE uses the ggplot2 black and white theme. |
palette |
character string indicating the name of the RColorBrewer
palette to use. For a list of available options see the details section in
|
use_VizSampNames |
logical value. Indicates whether to use custom sample names. The default is FALSE. |
... |
further arguments passed to or from other methods. |
ggplot2 plot object if interactive is FALSE, or plotly plot object if interactive is TRUE
library(pmartRdata) myiso <- edata_transform(omicsData = isobaric_object, data_scale = "log2") plot(myiso)
library(pmartRdata) myiso <- edata_transform(omicsData = isobaric_object, data_scale = "log2") plot(myiso)
For plotting lipidData S3 objects
## S3 method for class 'lipidData' plot( x, order_by = NULL, color_by = NULL, facet_by = NULL, facet_cols = NULL, interactive = FALSE, x_lab = NULL, y_lab = NULL, x_lab_size = 11, y_lab_size = 11, x_lab_angle = 90, title_lab = NULL, title_lab_size = 14, legend_lab = NULL, legend_position = "right", ylimit = NULL, bw_theme = TRUE, palette = NULL, use_VizSampNames = FALSE, ... )
## S3 method for class 'lipidData' plot( x, order_by = NULL, color_by = NULL, facet_by = NULL, facet_cols = NULL, interactive = FALSE, x_lab = NULL, y_lab = NULL, x_lab_size = 11, y_lab_size = 11, x_lab_angle = 90, title_lab = NULL, title_lab_size = 14, legend_lab = NULL, legend_position = "right", ylimit = NULL, bw_theme = TRUE, palette = NULL, use_VizSampNames = FALSE, ... )
x |
lipidData object |
order_by |
character string specifying the column name of f_data by
which to order the boxplots. If |
color_by |
character string specifying the column name of f_data by
which to color the boxplots. If |
facet_by |
character string specifying the column name of f_data with which to create a facet plot. Default value is NULL. |
facet_cols |
optional integer specifying the number of columns to show in the facet plot. |
interactive |
logical value. If TRUE produces an interactive plot. |
x_lab |
character string specifying the x-axis label. |
y_lab |
character string specifying the y-axis label. The default is
NULL in which case the y-axis label will be the metric selected for the
|
x_lab_size |
integer value indicating the font size for the x-axis. The default is 11. |
y_lab_size |
integer value indicating the font size for the y-axis. The default is 11. |
x_lab_angle |
integer value indicating the angle of x-axis labels. The default is 0. |
title_lab |
character string specifying the plot title. |
title_lab_size |
integer value indicating the font size of the plot title. The default is 14. |
legend_lab |
character string specifying the legend title. |
legend_position |
character string specifying the position of the legend. Can be one of "right", "left", "top", "bottom", or "none". The default is "none". |
ylimit |
numeric vector of length 2 specifying y-axis lower and upper limits. |
bw_theme |
logical value. If TRUE uses the ggplot2 black and white theme. |
palette |
character string indicating the name of the RColorBrewer
palette to use. For a list of available options see the details section in
|
use_VizSampNames |
logical value. Indicates whether to use custom sample names. The default is FALSE. |
... |
further arguments passed to or from other methods. |
ggplot2 plot object if interactive is FALSE, or plotly plot object if interactive is TRUE
library(pmartRdata) mylipid <- edata_transform(omicsData = lipid_pos_object, data_scale = "log2") plot(mylipid, order_by = "Virus", color_by = "Virus")
library(pmartRdata) mylipid <- edata_transform(omicsData = lipid_pos_object, data_scale = "log2") plot(mylipid, order_by = "Virus", color_by = "Virus")
For plotting metabData S3 objects
## S3 method for class 'metabData' plot( x, order_by = NULL, color_by = NULL, facet_by = NULL, facet_cols = NULL, interactive = FALSE, x_lab = NULL, y_lab = NULL, x_lab_size = 11, y_lab_size = 11, x_lab_angle = 90, title_lab = NULL, title_lab_size = 14, legend_lab = NULL, legend_position = "right", ylimit = NULL, bw_theme = TRUE, palette = NULL, use_VizSampNames = FALSE, ... )
## S3 method for class 'metabData' plot( x, order_by = NULL, color_by = NULL, facet_by = NULL, facet_cols = NULL, interactive = FALSE, x_lab = NULL, y_lab = NULL, x_lab_size = 11, y_lab_size = 11, x_lab_angle = 90, title_lab = NULL, title_lab_size = 14, legend_lab = NULL, legend_position = "right", ylimit = NULL, bw_theme = TRUE, palette = NULL, use_VizSampNames = FALSE, ... )
x |
metabData object |
order_by |
character string specifying the column name of f_data by
which to order the boxplots. If |
color_by |
character string specifying the column name of f_data by
which to color the boxplots. If |
facet_by |
character string specifying the column name of f_data with which to create a facet plot. Default value is NULL. |
facet_cols |
optional integer specifying the number of columns to show in the facet plot. |
interactive |
logical value. If TRUE produces an interactive plot. |
x_lab |
character string specifying the x-axis label. |
y_lab |
character string specifying the y-axis label. The default is
NULL in which case the y-axis label will be the metric selected for the
|
x_lab_size |
integer value indicating the font size for the x-axis. The default is 11. |
y_lab_size |
integer value indicating the font size for the y-axis. The default is 11. |
x_lab_angle |
integer value indicating the angle of x-axis labels. The default is 0. |
title_lab |
character string specifying the plot title. |
title_lab_size |
integer value indicating the font size of the plot title. The default is 14. |
legend_lab |
character string specifying the legend title. |
legend_position |
character string specifying the position of the legend. Can be one of "right", "left", "top", "bottom", or "none". The default is "none". |
ylimit |
numeric vector of length 2 specifying y-axis lower and upper limits. |
bw_theme |
logical value. If TRUE uses the ggplot2 black and white theme. |
palette |
character string indicating the name of the RColorBrewer
palette to use. For a list of available options see the details section in
|
use_VizSampNames |
logical value. Indicates whether to use custom sample names. The default is FALSE. |
... |
further arguments passed to or from other methods. |
ggplot2 plot object if interactive is FALSE, or plotly plot object if interactive is TRUE
library(pmartRdata) mymetab <- edata_transform(omicsData = metab_object, data_scale = "log2") plot(mymetab, order_by = "Phenotype", color_by = "Phenotype")
library(pmartRdata) mymetab <- edata_transform(omicsData = metab_object, data_scale = "log2") plot(mymetab, order_by = "Phenotype", color_by = "Phenotype")
For plotting an S3 object of type 'moleculeFilt':
## S3 method for class 'moleculeFilt' plot( x, min_num = NULL, cumulative = TRUE, interactive = FALSE, x_lab = NULL, y_lab = NULL, x_lab_size = 11, y_lab_size = 11, x_lab_angle = 0, title_lab = NULL, title_lab_size = 14, legend_lab = NULL, legend_position = "right", text_size = 3, bar_width = 0.8, bw_theme = TRUE, palette = NULL, display_count = TRUE, ... )
## S3 method for class 'moleculeFilt' plot( x, min_num = NULL, cumulative = TRUE, interactive = FALSE, x_lab = NULL, y_lab = NULL, x_lab_size = 11, y_lab_size = 11, x_lab_angle = 0, title_lab = NULL, title_lab_size = 14, legend_lab = NULL, legend_position = "right", text_size = 3, bar_width = 0.8, bw_theme = TRUE, palette = NULL, display_count = TRUE, ... )
x |
object of class moleculeFilt that contains the molecule identifier and the number of samples for which the molecule was measured (not NA) |
min_num |
An integer specifying the minimum number of samples in which a
biomolecule must appear. If a value is specified, a horizontal line will be
drawn when |
cumulative |
logical indicating whether the number of biomolecules observed in at least (TRUE) x number of samples or exactly (FALSE) x number of samples should be plotted. Defaults to TRUE. |
interactive |
logical value. If TRUE produces an interactive plot. |
x_lab |
character string specifying the x-axis label |
y_lab |
character string specifying the y-axis label. The default is
NULL in which case the y-axis label will be the metric selected for the
|
x_lab_size |
integer value indicating the font size for the x-axis. The default is 11. |
y_lab_size |
integer value indicating the font size for the y-axis. The default is 11. |
x_lab_angle |
integer value indicating the angle of x-axis labels. The default is 0. |
title_lab |
character string specifying the plot title |
title_lab_size |
integer value indicating the font size of the plot title. The default is 14. |
legend_lab |
character string specifying the legend title. |
legend_position |
character string specifying the position of the legend. Can be one of "right", "left", "top", "bottom", or "none". The default is "none". |
text_size |
integer specifying the size of the text (number of biomolecules by sample) within the bar plot. The default is 3. |
bar_width |
integer indicating the width of the bars in the bar plot. The default is 0.8. |
bw_theme |
logical value. If TRUE uses the ggplot2 black and white theme. |
palette |
character string indicating the name of the RColorBrewer
palette to use. For a list of available options see the details section in
|
display_count |
logical value. Indicates whether the missing value counts by sample will be displayed on the bar plot. The default is TRUE. |
... |
further arguments passed to or from other methods. |
ggplot2 plot object if interactive is FALSE, or plotly plot object if interactive is TRUE
library(pmartRdata) data(pep_object) molfilt <- molecule_filter(omicsData = pep_object) plot(molfilt, min_num = 5) plot(molfilt, min_num = 3, cumulative = FALSE)
library(pmartRdata) data(pep_object) molfilt <- molecule_filter(omicsData = pep_object) plot(molfilt, min_num = 5) plot(molfilt, min_num = 3, cumulative = FALSE)
For plotting an S3 object of type 'naRes'
## S3 method for class 'naRes' plot( x, omicsData, plot_type = "bar", nonmissing = FALSE, proportion = FALSE, order_by = NULL, color_by = NULL, interactive = FALSE, x_lab_bar = NULL, x_lab_scatter = NULL, y_lab_bar = NULL, y_lab_scatter = NULL, x_lab_size = 11, y_lab_size = 11, x_lab_angle = 60, title_lab_bar = NULL, title_lab_scatter = NULL, title_lab_size = 14, legend_lab_bar = NULL, legend_lab_scatter = NULL, legend_position = "right", point_size = 2, text_size = 3, bar_width = 0.8, bw_theme = TRUE, palette = NULL, display_count = TRUE, coordinate_flip = FALSE, use_VizSampNames = FALSE, ... )
## S3 method for class 'naRes' plot( x, omicsData, plot_type = "bar", nonmissing = FALSE, proportion = FALSE, order_by = NULL, color_by = NULL, interactive = FALSE, x_lab_bar = NULL, x_lab_scatter = NULL, y_lab_bar = NULL, y_lab_scatter = NULL, x_lab_size = 11, y_lab_size = 11, x_lab_angle = 60, title_lab_bar = NULL, title_lab_scatter = NULL, title_lab_size = 14, legend_lab_bar = NULL, legend_lab_scatter = NULL, legend_position = "right", point_size = 2, text_size = 3, bar_width = 0.8, bw_theme = TRUE, palette = NULL, display_count = TRUE, coordinate_flip = FALSE, use_VizSampNames = FALSE, ... )
x |
list of two data frames, one containing the number of missing values by sample, and the other containing missing values by molecule |
omicsData |
object of class 'pepData', 'proData', 'metabData',
'lipidData', nmrData', or 'seqData', created by |
plot_type |
character string specifying which type of plot to produce. The two options are 'bar' or 'scatter'. |
nonmissing |
logical value. When FALSE, plots missing values. When TRUE, plots non-missing values. |
proportion |
logical value. When TRUE, plots the proportion of missing
(or non-missing if |
order_by |
A character string specifying a column in f_data by which to
order the samples. Specifying "Group" will use the "Group" column of the
object's |
color_by |
A character string specifying a column in f_data by which to
color the bars or the points depending on the |
interactive |
logical value. If TRUE produces an interactive plot. |
x_lab_bar |
character string used for the x-axis label for the bar plot |
x_lab_scatter |
character string used for the x-axis label for the scatter plot |
y_lab_bar |
character string used for the y-axis label for the bar plot |
y_lab_scatter |
character string used for the y-axis label for the scatter plot |
x_lab_size |
integer value indicating the font size for the x-axis. The default is 11. |
y_lab_size |
integer value indicating the font size for the y-axis. The default is 11. |
x_lab_angle |
integer value indicating the angle of x-axis labels. |
title_lab_bar |
character string used for the plot title when
|
title_lab_scatter |
character string used for the plot title when
|
title_lab_size |
integer value indicating the font size of the plot title. The default is 14. |
legend_lab_bar |
character string specifying the legend title when creating a bar plot. |
legend_lab_scatter |
character string specifying the legend title when creating a scatter plot. |
legend_position |
character string specifying the position of the legend. Can be one of "right", "left", "top", or "bottom". The default is "right". |
point_size |
An integer specifying the size of the points. The default is 2. |
text_size |
An integer specifying the size of the text (number of missing values by sample) within the bar plot. The default is 3. |
bar_width |
An integer indicating the width of the bars in the bar plot. The default is 0.8. |
bw_theme |
logical value. If TRUE uses the ggplot2 black and white theme. |
palette |
character string indicating the name of the RColorBrewer
palette to use. For a list of available options see the details section in
|
display_count |
logical value. Indicates whether the missing value counts by sample will be displayed on the bar plot. The default is TRUE. |
coordinate_flip |
logical value. Indicates whether the x and y axes will be flipped. The default is FALSE. |
use_VizSampNames |
logical value. Indicates whether to use custom sample names. The default is FALSE. |
... |
further arguments passed to or from other methods. |
This function takes in an object of class naRes and creates either a
bar or scatter plot of missing values. When plot_type = 'bar', a sample
name by missing values count bar chart is returned. When plot_type =
'scatter' a mean intensity vs number of missing values (per molecule)
scatter plot is returned. Note: If the omicsData object has had
group_designation
applied to it, the points in the plot will
be colored by group.
ggplot2 plot object if interactive is FALSE, or plotly plot object if interactive is TRUE
library(pmartRdata) mylipid <- group_designation(omicsData = lipid_neg_object, main_effects = "Virus") result <- missingval_result(omicsData = mylipid) plot(result, omicsData = mylipid, plot_type = "bar", x_lab_angle = 50, order_by = "Virus", color_by = "Virus") plot(result, omicsData = mylipid, plot_type = "scatter", x_lab_angle = 50, color_by = "Virus") result <- missingval_result(omicsData = rnaseq_object) plot(result, omicsData = rnaseq_object, plot_type = "bar")
library(pmartRdata) mylipid <- group_designation(omicsData = lipid_neg_object, main_effects = "Virus") result <- missingval_result(omicsData = mylipid) plot(result, omicsData = mylipid, plot_type = "bar", x_lab_angle = 50, order_by = "Virus", color_by = "Virus") plot(result, omicsData = mylipid, plot_type = "scatter", x_lab_angle = 50, color_by = "Virus") result <- missingval_result(omicsData = rnaseq_object) plot(result, omicsData = rnaseq_object, plot_type = "bar")
For plotting nmrData S3 objects
## S3 method for class 'nmrData' plot( x, order_by = NULL, color_by = NULL, facet_by = NULL, facet_cols = NULL, interactive = FALSE, x_lab = NULL, y_lab = NULL, x_lab_size = 11, y_lab_size = 11, x_lab_angle = 90, title_lab = NULL, title_lab_size = 14, legend_lab = NULL, legend_position = "right", ylimit = NULL, bw_theme = TRUE, palette = NULL, use_VizSampNames = FALSE, ... )
## S3 method for class 'nmrData' plot( x, order_by = NULL, color_by = NULL, facet_by = NULL, facet_cols = NULL, interactive = FALSE, x_lab = NULL, y_lab = NULL, x_lab_size = 11, y_lab_size = 11, x_lab_angle = 90, title_lab = NULL, title_lab_size = 14, legend_lab = NULL, legend_position = "right", ylimit = NULL, bw_theme = TRUE, palette = NULL, use_VizSampNames = FALSE, ... )
x |
nmrData object |
order_by |
character string specifying the column name of f_data by
which to order the boxplots. If |
color_by |
character string specifying the column name of f_data by
which to color the boxplots. If |
facet_by |
character string specifying the column name of f_data with which to create a facet plot. Default value is NULL. |
facet_cols |
An optional integer specifying the number of columns to show in the facet plot. |
interactive |
logical value. If TRUE produces an interactive plot. |
x_lab |
character string specifying the x-axis label. |
y_lab |
character string specifying the y-axis label. The default is
NULL in which case the y-axis label will be the metric selected for the
|
x_lab_size |
integer value indicating the font size for the x-axis. The default is 11. |
y_lab_size |
integer value indicating the font size for the y-axis. The default is 11. |
x_lab_angle |
integer value indicating the angle of x-axis labels. The default is 0. |
title_lab |
character string specifying the plot title. |
title_lab_size |
integer value indicating the font size of the plot title. The default is 14. |
legend_lab |
character string specifying the legend title. |
legend_position |
character string specifying the position of the legend. Can be one of "right", "left", "top", "bottom", or "none". The default is "none". |
ylimit |
A numeric vector of length 2 specifying y-axis lower and upper limits. |
bw_theme |
logical value. If TRUE uses the ggplot2 black and white theme. |
palette |
character string indicating the name of the RColorBrewer
palette to use. For a list of available options see the details section in
|
use_VizSampNames |
logical value. Indicates whether to use custom sample names. The default is FALSE. |
... |
further arguments passed to or from other methods. |
ggplot2 plot object if interactive is FALSE, or plotly plot object if interactive is TRUE
library(pmartRdata) mynmr <- edata_transform(omicsData = nmr_identified_object, data_scale = "log2") plot(mynmr)
library(pmartRdata) mynmr <- edata_transform(omicsData = nmr_identified_object, data_scale = "log2") plot(mynmr)
Creates a scatter plot for an S3 object of type 'nmrnormRes'
## S3 method for class 'nmrnormRes' plot( x, nmrData = NULL, order_by = NULL, color_by = NULL, interactive = FALSE, x_lab = NULL, y_lab = NULL, x_lab_size = 11, y_lab_size = 11, x_lab_angle = 90, title_lab = NULL, title_lab_size = 14, legend_lab = NULL, legend_position = "none", point_size = 2, bw_theme = TRUE, palette = NULL, ... )
## S3 method for class 'nmrnormRes' plot( x, nmrData = NULL, order_by = NULL, color_by = NULL, interactive = FALSE, x_lab = NULL, y_lab = NULL, x_lab_size = 11, y_lab_size = 11, x_lab_angle = 90, title_lab = NULL, title_lab_size = 14, legend_lab = NULL, legend_position = "none", point_size = 2, bw_theme = TRUE, palette = NULL, ... )
x |
an object of type nmrnormRes, created by
|
nmrData |
An nmrData object. |
order_by |
A character string specifying a column in f_data by which to order the samples. |
color_by |
A character string specifying a column in f_data by which to color the points. |
interactive |
logical value. If TRUE produces an interactive plot. |
x_lab |
character string specifying the x-axis label |
y_lab |
character string specifying the y-axis label |
x_lab_size |
integer value indicating the font size for the x-axis. The default is 11. |
y_lab_size |
integer value indicating the font size for the y-axis. The default is 11. |
x_lab_angle |
integer value indicating the angle of x-axis labels. |
title_lab |
character string specifying the plot title. |
title_lab_size |
integer value indicating the font size of the plot title. The default is 14. |
legend_lab |
character string specifying the legend title. |
legend_position |
character string specifying the position of the legend. Can be one of "right", "left", "top", "bottom", or "none". The default is "none". |
point_size |
integer specifying the size of the points. The default is 2. |
bw_theme |
logical value. If TRUE uses the ggplot2 black and white theme. |
palette |
character string indicating the name of the RColorBrewer
palette to use. For a list of available options see the details section in
|
... |
further arguments passed to or from other methods. |
ggplot2 plot object if interactive is FALSE, or plotly plot object if interactive is TRUE
library(pmartRdata) mynmr <- edata_transform(omicsData = nmr_identified_object, data_scale = "log2") mynmrnorm <- normalize_nmr( omicsData = mynmr, apply_norm = FALSE, metabolite_name = "unkm1.53" ) plot(mynmrnorm) mynmrnorm2 <- normalize_nmr( omicsData = mynmr, apply_norm = FALSE, sample_property_cname = "Concentration" ) plot(mynmrnorm2)
library(pmartRdata) mynmr <- edata_transform(omicsData = nmr_identified_object, data_scale = "log2") mynmrnorm <- normalize_nmr( omicsData = mynmr, apply_norm = FALSE, metabolite_name = "unkm1.53" ) plot(mynmrnorm) mynmrnorm2 <- normalize_nmr( omicsData = mynmr, apply_norm = FALSE, sample_property_cname = "Concentration" ) plot(mynmrnorm2)
For plotting an S3 object of type 'normRes'
## S3 method for class 'normRes' plot( x, order_by = NULL, color_by = NULL, facet_by = NULL, facet_cols = NULL, interactive = FALSE, x_lab = NULL, y_lab = NULL, x_lab_size = 11, y_lab_size = 11, x_lab_angle = 90, title_lab = NULL, title_lab_size = 14, legend_lab = NULL, legend_position = "right", ylimit = NULL, bw_theme = TRUE, palette = NULL, use_VizSampNames = FALSE, ... )
## S3 method for class 'normRes' plot( x, order_by = NULL, color_by = NULL, facet_by = NULL, facet_cols = NULL, interactive = FALSE, x_lab = NULL, y_lab = NULL, x_lab_size = 11, y_lab_size = 11, x_lab_angle = 90, title_lab = NULL, title_lab_size = 14, legend_lab = NULL, legend_position = "right", ylimit = NULL, bw_theme = TRUE, palette = NULL, use_VizSampNames = FALSE, ... )
x |
normRes object created by the normalize_global function |
order_by |
character string specifying the column name of f_data by
which to order the boxplots. If |
color_by |
character string specifying the column name of f_data by
which to color the boxplots. If |
facet_by |
character string specifying the column name of f_data with which to create a facet plot. Default value is NULL. |
facet_cols |
optional integer specifying the number of columns to show in the facet plot. |
interactive |
logical value. If TRUE produces an interactive plot. |
x_lab |
character string specifying the x-axis label. |
y_lab |
character string specifying the y-axis label. The default is
NULL in which case the y-axis label will be the metric selected for the
|
x_lab_size |
integer value indicating the font size for the x-axis. The default is 11. |
y_lab_size |
integer value indicating the font size for the y-axis. The default is 11. |
x_lab_angle |
integer value indicating the angle of x-axis labels. The default is 0. |
title_lab |
character string specifying the plot title. |
title_lab_size |
integer value indicating the font size of the plot title. The default is 14. |
legend_lab |
character string specifying the legend title. |
legend_position |
character string specifying the position of the legend. Can be one of "right", "left", "top", "bottom", or "none". The default is "none". |
ylimit |
numeric vector of length 2 specifying y-axis lower and upper limits. |
bw_theme |
logical value. If TRUE uses the ggplot2 black and white theme. |
palette |
character string indicating the name of the RColorBrewer
palette to use. For a list of available options see the details section in
|
use_VizSampNames |
logical value. Indicates whether to use custom sample names. The default is FALSE. |
... |
further arguments passed to or from other methods. |
ggplot2 plot object if interactive is FALSE, or plotly plot object if interactive is TRUE
library(pmartRdata) mymetab <- edata_transform( omicsData = metab_object, data_scale = "log2" ) mymetab <- group_designation( omicsData = mymetab, main_effects = "Phenotype" ) norm_object <- normalize_global( omicsData = mymetab, subset_fn = "all", norm_fn = "median" ) plot(norm_object, order_by = "Phenotype", color_by = "Phenotype")
library(pmartRdata) mymetab <- edata_transform( omicsData = metab_object, data_scale = "log2" ) mymetab <- group_designation( omicsData = mymetab, main_effects = "Phenotype" ) norm_object <- normalize_global( omicsData = mymetab, subset_fn = "all", norm_fn = "median" ) plot(norm_object, order_by = "Phenotype", color_by = "Phenotype")
For plotting pepData S3 objects
## S3 method for class 'pepData' plot( x, order_by = NULL, color_by = NULL, facet_by = NULL, facet_cols = NULL, interactive = FALSE, x_lab = NULL, y_lab = NULL, x_lab_size = 11, y_lab_size = 11, x_lab_angle = 90, title_lab = NULL, title_lab_size = 14, legend_lab = NULL, legend_position = "right", ylimit = NULL, bw_theme = TRUE, palette = NULL, use_VizSampNames = FALSE, ... )
## S3 method for class 'pepData' plot( x, order_by = NULL, color_by = NULL, facet_by = NULL, facet_cols = NULL, interactive = FALSE, x_lab = NULL, y_lab = NULL, x_lab_size = 11, y_lab_size = 11, x_lab_angle = 90, title_lab = NULL, title_lab_size = 14, legend_lab = NULL, legend_position = "right", ylimit = NULL, bw_theme = TRUE, palette = NULL, use_VizSampNames = FALSE, ... )
x |
pepData object |
order_by |
character string specifying the column name of f_data by
which to order the boxplots. If |
color_by |
character string specifying the column name of f_data by
which to color the boxplots. If |
facet_by |
character string specifying the column name of f_data with which to create a facet plot. Default value is NULL. |
facet_cols |
An optional integer specifying the number of columns to show in the facet plot. |
interactive |
logical value. If TRUE produces an interactive plot. |
x_lab |
character string specifying the x-axis label. |
y_lab |
character string specifying the y-axis label. The default is
NULL in which case the y-axis label will be the metric selected for the
|
x_lab_size |
integer value indicating the font size for the x-axis. The default is 11. |
y_lab_size |
integer value indicating the font size for the y-axis. The default is 11. |
x_lab_angle |
integer value indicating the angle of x-axis labels. The default is 0. |
title_lab |
character string specifying the plot title. |
title_lab_size |
integer value indicating the font size of the plot title. The default is 14. |
legend_lab |
character string specifying the legend title. |
legend_position |
character string specifying the position of the legend. Can be one of "right", "left", "top", "bottom", or "none". The default is "none". |
ylimit |
numeric vector of length 2 specifying y-axis lower and upper limits. |
bw_theme |
logical value. If TRUE uses the ggplot2 black and white theme. |
palette |
character string indicating the name of the RColorBrewer
palette to use. For a list of available options see the details section in
|
use_VizSampNames |
logical value. Indicates whether to use custom sample names. The default is FALSE. |
... |
further arguments passed to or from other methods. |
ggplot2 plot object if interactive is FALSE, or plotly plot object if interactive is TRUE
library(pmartRdata) data(pep_object) mypep <- edata_transform(omicsData = pep_object, data_scale = "log2") plot(mypep, order_by = "Phenotype", color_by = "Phenotype")
library(pmartRdata) data(pep_object) mypep <- edata_transform(omicsData = pep_object, data_scale = "log2") plot(mypep, order_by = "Phenotype", color_by = "Phenotype")
For plotting proData S3 objects
## S3 method for class 'proData' plot( x, order_by = NULL, color_by = NULL, facet_by = NULL, facet_cols = NULL, interactive = FALSE, x_lab = NULL, y_lab = NULL, x_lab_size = 11, y_lab_size = 11, x_lab_angle = 90, title_lab = NULL, title_lab_size = 14, legend_lab = NULL, legend_position = "right", ylimit = NULL, bw_theme = TRUE, palette = NULL, use_VizSampNames = FALSE, ... )
## S3 method for class 'proData' plot( x, order_by = NULL, color_by = NULL, facet_by = NULL, facet_cols = NULL, interactive = FALSE, x_lab = NULL, y_lab = NULL, x_lab_size = 11, y_lab_size = 11, x_lab_angle = 90, title_lab = NULL, title_lab_size = 14, legend_lab = NULL, legend_position = "right", ylimit = NULL, bw_theme = TRUE, palette = NULL, use_VizSampNames = FALSE, ... )
x |
proData object |
order_by |
character string specifying the column name of f_data by
which to order the boxplots. If |
color_by |
character string specifying the column name of f_data by
which to color the boxplots. If |
facet_by |
character string specifying the column name of f_data with which to create a facet plot. Default value is NULL. |
facet_cols |
optional integer specifying the number of columns to show in the facet plot. |
interactive |
logical value. If TRUE produces an interactive plot. |
x_lab |
character string specifying the x-axis label. |
y_lab |
character string specifying the y-axis label. The default is
NULL in which case the y-axis label will be the metric selected for the
|
x_lab_size |
integer value indicating the font size for the x-axis. The default is 11. |
y_lab_size |
integer value indicating the font size for the y-axis. The default is 11. |
x_lab_angle |
integer value indicating the angle of x-axis labels. The default is 0. |
title_lab |
character string specifying the plot title. |
title_lab_size |
integer value indicating the font size of the plot title. The default is 14. |
legend_lab |
character string specifying the legend title. |
legend_position |
character string specifying the position of the legend. Can be one of "right", "left", "top", "bottom", or "none". The default is "none". |
ylimit |
numeric vector of length 2 specifying y-axis lower and upper limits. |
bw_theme |
logical value. If TRUE uses the ggplot2 black and white theme. |
palette |
character string indicating the name of the RColorBrewer
palette to use. For a list of available options see the details section in
|
use_VizSampNames |
logical value. Indicates whether to use custom sample names. The default is FALSE. |
... |
further arguments passed to or from other methods. |
ggplot2 plot object if interactive is FALSE, or plotly plot object if interactive is TRUE
library(pmartRdata) plot(pro_object, order_by = "Phenotype", color_by = "Phenotype")
library(pmartRdata) plot(pro_object, order_by = "Phenotype", color_by = "Phenotype")
For plotting an S3 object of type 'proteomicsFilt':
## S3 method for class 'proteomicsFilt' plot( x, plot_type = "num_peps", min_num_peps = NULL, interactive = FALSE, x_lab_pep = NULL, x_lab_pro = NULL, y_lab_pep = NULL, y_lab_pro = NULL, x_lab_size = 11, y_lab_size = 11, x_lab_angle = 0, title_lab_pep = NULL, title_lab_pro = NULL, title_lab_size = 14, legend_lab = NULL, legend_position = "right", text_size = 3, bar_width = 0.8, bw_theme = TRUE, palette = NULL, display_count = TRUE, ... )
## S3 method for class 'proteomicsFilt' plot( x, plot_type = "num_peps", min_num_peps = NULL, interactive = FALSE, x_lab_pep = NULL, x_lab_pro = NULL, y_lab_pep = NULL, y_lab_pro = NULL, x_lab_size = 11, y_lab_size = 11, x_lab_angle = 0, title_lab_pep = NULL, title_lab_pro = NULL, title_lab_size = 14, legend_lab = NULL, legend_position = "right", text_size = 3, bar_width = 0.8, bw_theme = TRUE, palette = NULL, display_count = TRUE, ... )
x |
object of class proteomicsFilt, which is a list with two elements. The first element is a data frame of counts for each unique peptide. The second element is a data frame with the counts for the number of peptides that map to each unique protein. |
plot_type |
character string specifying the type of plot to be displayed. The available options are "num_peps" or "redundancy". If "num_peps" the plot is displayed that shows the counts of proteins that have a specific number of peptides mapping to them. If "redundancy" the plot showing the counts of peptides that map to a specific number of proteins is displayed. |
min_num_peps |
an optional integer value between 1 and the maximum
number of peptides that map to a protein in the data. The value specifies
the minimum number of peptides that must map to a protein. Any protein with
less than |
interactive |
logical value. If TRUE produces an interactive plot. |
x_lab_pep |
character string used for the x-axis label for the num_peps plot. The default is NULL in which case the default x-axis label will be used. |
x_lab_pro |
character string used for the x-axis label for the redundancy plot. The default is NULL in which case the default x-axis label will be used. |
y_lab_pep |
character string used for the y-axis label for the num_peps plot. The default is NULL in which case the default y-axis label will be used. |
y_lab_pro |
character string used for the y-axis label for the redundancy plot. The default is NULL in which case the default y-axis label will be used. |
x_lab_size |
integer value indicating the font size for the x-axis. The default is 11. |
y_lab_size |
integer value indicating the font size for the y-axis. The default is 11. |
x_lab_angle |
integer value indicating the angle of x-axis labels. The default is 0. |
title_lab_pep |
character string specifying the num_peps plot title. The default is NULL in which case the default title will be used. |
title_lab_pro |
character string specifying the redundancy plot title. The default is NULL in which case the default title will be used. |
title_lab_size |
integer value indicating the font size of the plot title. The default is 14. |
legend_lab |
character string specifying the legend title |
legend_position |
character string specifying the position of the legend. Can be one of "right", "left", "top", "bottom", or "none". The default is "none". |
text_size |
An integer specifying the size of the text (number of peptides or proteins depending on the plot) within the bar plot. The default is 3. |
bar_width |
An integer indicating the width of the bars in the bar plot. The default is 0.8. |
bw_theme |
logical value. If TRUE uses the ggplot2 black and white theme. |
palette |
character string indicating the name of the RColorBrewer
palette to use. For a list of available options see the details section in
|
display_count |
logical value. Indicates whether the peptide or protein counts will be displayed on the bar plot. The default is TRUE. |
... |
further arguments passed to or from other methods. |
ggplot2 plot object if interactive is FALSE, or plotly plot object if interactive is TRUE
library(pmartRdata) data(pep_object) my_filter <- proteomics_filter(omicsData = pep_object) plot(my_filter, min_num_peps = 3) plot(my_filter, plot_type = "redundancy")
library(pmartRdata) data(pep_object) my_filter <- proteomics_filter(omicsData = pep_object) plot(my_filter, min_num_peps = 3) plot(my_filter, plot_type = "redundancy")
For plotting an S3 object of type 'rmdFilt'
## S3 method for class 'rmdFilt' plot( x, pvalue_threshold = NULL, sampleID = NULL, order_by = NULL, interactive = FALSE, x_lab = NULL, y_lab = NULL, x_lab_size = 11, y_lab_size = 11, x_lab_angle = 90, title_lab = NULL, title_lab_size = 14, legend_lab = NULL, legend_position = "right", point_size = 3, bw_theme = TRUE, palette = NULL, use_VizSampNames = FALSE, ... )
## S3 method for class 'rmdFilt' plot( x, pvalue_threshold = NULL, sampleID = NULL, order_by = NULL, interactive = FALSE, x_lab = NULL, y_lab = NULL, x_lab_size = 11, y_lab_size = 11, x_lab_angle = 90, title_lab = NULL, title_lab_size = 14, legend_lab = NULL, legend_position = "right", point_size = 3, bw_theme = TRUE, palette = NULL, use_VizSampNames = FALSE, ... )
x |
object of class rmdFilt created via |
pvalue_threshold |
numeric threshold for the Robust Mahalanobis Distance (RMD)
p-value. If |
sampleID |
character vector specifying the sample names to be plotted. If specified, the plot function produces a boxplot instead of a scatterplot. A point, colored by sample, will be placed on each boxplot for that sample's value for the given metric. The default value is NULL. |
order_by |
character string specifying a variable by which to order
the samples in the plot. This variable must be found in the column names of
fdata from the rmdFilt object. If |
interactive |
logical value. If TRUE produces an interactive plot. |
x_lab |
character string specifying the x-axis label |
y_lab |
character string specifying the y-axis label. The default is
NULL in which case the y-axis label will be the metric selected for the
|
x_lab_size |
integer value indicating the font size for the x-axis. The default is 11. |
y_lab_size |
integer value indicating the font size for the y-axis. The default is 11. |
x_lab_angle |
integer value indicating the angle of x-axis labels. The default is 90. |
title_lab |
character string specifying the plot title. |
title_lab_size |
integer value indicating the font size of the plot title. The default is 14. |
legend_lab |
character string specifying the legend title |
legend_position |
character string specifying the position of the legend. Can be one of "right", "left", "top", "bottom", or "none". The default is "none". |
point_size |
An integer specifying the size of the points. The default is 3. |
bw_theme |
logical value. If TRUE uses the ggplot2 black and white theme. |
palette |
character string indicating the name of the RColorBrewer
palette to use. For a list of available options see the details section in
|
use_VizSampNames |
logical value. Indicates whether to use custom sample names. The default is FALSE. |
... |
further arguments passed to or from other methods. |
ggplot2 plot object if interactive is FALSE, or plotly plot object if interactive is TRUE
library(pmartRdata) mymetab <- edata_transform(omicsData = metab_object, data_scale = "log2") mymetab <- group_designation(omicsData = mymetab, main_effects = "Phenotype") rmd_results <- rmd_filter(omicsData = mymetab, metrics = c("MAD", "Skewness", "Correlation")) plot(rmd_results, pvalue_threshold = 0.0001, order_by = "Phenotype")
library(pmartRdata) mymetab <- edata_transform(omicsData = metab_object, data_scale = "log2") mymetab <- group_designation(omicsData = mymetab, main_effects = "Phenotype") rmd_results <- rmd_filter(omicsData = mymetab, metrics = c("MAD", "Skewness", "Correlation")) plot(rmd_results, pvalue_threshold = 0.0001, order_by = "Phenotype")
For plotting an S3 object of type 'RNAFilt'
## S3 method for class 'RNAFilt' plot( x, plot_type = "library", size_library = NULL, min_nonzero = NULL, interactive = FALSE, x_lab = NULL, y_lab = NULL, x_lab_size = 11, y_lab_size = 11, x_lab_angle = 90, title_lab = NULL, title_lab_size = 14, legend_lab = "", legend_position = "right", text_size = 3, bar_width = 0.8, bw_theme = TRUE, palette = NULL, ... )
## S3 method for class 'RNAFilt' plot( x, plot_type = "library", size_library = NULL, min_nonzero = NULL, interactive = FALSE, x_lab = NULL, y_lab = NULL, x_lab_size = 11, y_lab_size = 11, x_lab_angle = 90, title_lab = NULL, title_lab_size = 14, legend_lab = "", legend_position = "right", text_size = 3, bar_width = 0.8, bw_theme = TRUE, palette = NULL, ... )
x |
object of class RNAFilt that contains the sample identifier, library size, number of non-zero biomolecules, and proportion of non-zero biomolecules |
plot_type |
character string, specified as "library" or "biomolecule". "library" displays library size for each sample, "biomolecule" displays the number of unique biomolecules with non-zero counts per sample. |
size_library |
integer cut-off for sample library size (i.e. number of reads). Defaults to NULL. |
min_nonzero |
integer or float between 0 and 1. Cut-off for number of unique biomolecules with non-zero counts or as a proportion of total biomolecules. Defaults to NULL. |
interactive |
logical value. If TRUE produces an interactive plot. |
x_lab |
character string specifying the x-axis label |
y_lab |
character string specifying the y-axis label. The default is
NULL in which case the y-axis label will be the metric selected for the
|
x_lab_size |
integer value indicating the font size for the x-axis. The default is 11. |
y_lab_size |
integer value indicating the font size for the y-axis. The default is 11. |
x_lab_angle |
integer value indicating the angle of x-axis labels. The default is 0. |
title_lab |
character string specifying the plot title |
title_lab_size |
integer value indicating the font size of the plot title. The default is 14. |
legend_lab |
character string specifying the legend title |
legend_position |
character string specifying the position of the legend. Can be one of "right", "left", "top", "bottom", or "none". The default is "none". |
text_size |
An integer specifying the size of the text (number of biomolecules by sample) within the bar plot. The default is 3. |
bar_width |
An integer indicating the width of the bars in the bar plot. The default is 0.8. |
bw_theme |
logical value. If TRUE uses the ggplot2 black and white theme. |
palette |
character string indicating the name of the RColorBrewer
palette to use. For a list of available options see the details section in
|
... |
further arguments passed to or from other methods. |
ggplot2 plot object if interactive is FALSE, or plotly plot object if interactive is TRUE
library(pmartRdata) seqfilt <- RNA_filter(omicsData = rnaseq_object) plot(seqfilt)
library(pmartRdata) seqfilt <- RNA_filter(omicsData = rnaseq_object) plot(seqfilt)
For plotting seqData S3 objects
## S3 method for class 'seqData' plot( x, order_by = NULL, color_by = NULL, facet_by = NULL, facet_cols = NULL, interactive = FALSE, x_lab = NULL, y_lab = NULL, x_lab_size = 11, y_lab_size = 11, x_lab_angle = 90, title_lab = NULL, title_lab_size = 14, legend_lab = NULL, legend_position = "right", ylimit = NULL, bw_theme = TRUE, palette = NULL, use_VizSampNames = FALSE, transformation = NULL, ... )
## S3 method for class 'seqData' plot( x, order_by = NULL, color_by = NULL, facet_by = NULL, facet_cols = NULL, interactive = FALSE, x_lab = NULL, y_lab = NULL, x_lab_size = 11, y_lab_size = 11, x_lab_angle = 90, title_lab = NULL, title_lab_size = 14, legend_lab = NULL, legend_position = "right", ylimit = NULL, bw_theme = TRUE, palette = NULL, use_VizSampNames = FALSE, transformation = NULL, ... )
x |
seqData object |
order_by |
character string specifying the column name of f_data by
which to order the boxplots. If |
color_by |
character string specifying the column name of f_data by
which to color the boxplots. If |
facet_by |
character string specifying the column name of f_data with which to create a facet plot. Default value is NULL. |
facet_cols |
optional integer specifying the number of columns to show in the facet plot. |
interactive |
logical value. If TRUE produces an interactive plot. |
x_lab |
character string specifying the x-axis label. |
y_lab |
character string specifying the y-axis label. The default is
NULL in which case the y-axis label will be the metric selected for the
|
x_lab_size |
integer value indicating the font size for the x-axis. The default is 11. |
y_lab_size |
integer value indicating the font size for the y-axis. The default is 11. |
x_lab_angle |
integer value indicating the angle of x-axis labels. The default is 0. |
title_lab |
character string specifying the plot title. |
title_lab_size |
integer value indicating the font size of the plot title. The default is 14. |
legend_lab |
character string specifying the legend title. |
legend_position |
character string specifying the position of the legend. Can be one of "right", "left", "top", "bottom", or "none". The default is "none". |
ylimit |
numeric vector of length 2 specifying y-axis lower and upper limits. |
bw_theme |
logical value. If TRUE uses the ggplot2 black and white theme. |
palette |
character string indicating the name of the RColorBrewer
palette to use. For a list of available options see the details section in
|
use_VizSampNames |
logical value. Indicates whether to use custom sample names. The default is FALSE. |
transformation |
character string. String of length 1 defining a transformation for visualizing count data. Valid options are 'lcpm', 'upper', and 'median'. 'lcpm' - For each column: scale column intensities by (total column sum/1 million), then log2 transform. 'median' - For each column: scale column intensities by median column intensities, then back-transform to original scale. 'upper' - For each column: scale column intensities by 75th quantile column intensities, then back-transform to original scale. For 'median' and 'upper' options, all zeros are converted to NAs. |
... |
further arguments passed to or from other methods. |
ggplot2 plot object if interactive is FALSE, or plotly plot object if interactive is TRUE
library(pmartRdata) plot(rnaseq_object, transformation = "lcpm")
library(pmartRdata) plot(rnaseq_object, transformation = "lcpm")
For plotting an S3 object of type 'SPANSRes'
## S3 method for class 'SPANSRes' plot( x, interactive = FALSE, x_lab = NULL, y_lab = NULL, x_lab_size = 11, y_lab_size = 11, x_lab_angle = NULL, title_lab = NULL, title_lab_size = 14, legend_lab = NULL, legend_position = "right", color_low = NULL, color_high = NULL, bw_theme = TRUE, ... )
## S3 method for class 'SPANSRes' plot( x, interactive = FALSE, x_lab = NULL, y_lab = NULL, x_lab_size = 11, y_lab_size = 11, x_lab_angle = NULL, title_lab = NULL, title_lab_size = 14, legend_lab = NULL, legend_position = "right", color_low = NULL, color_high = NULL, bw_theme = TRUE, ... )
x |
an object of the class 'SPANSRes', created by
|
interactive |
logical value. If TRUE produces an interactive plot. |
x_lab |
character string specifying the x-axis label. |
y_lab |
character string specifying the y-axis label. |
x_lab_size |
integer value indicating the font size for the x-axis. The default is 11. |
y_lab_size |
integer value indicating the font size for the y-axis. The default is 11. |
x_lab_angle |
integer value indicating the angle of x-axis labels. The default is NULL. |
title_lab |
character string specifying the plot title |
title_lab_size |
integer value indicating the font size of the plot title. The default is 14. |
legend_lab |
character string specifying the legend title |
legend_position |
character string specifying the position of the legend. Can be one of "right", "left", "top", "bottom", or "none". The default is "none". |
color_low |
character string specifying the color of the gradient for low values. |
color_high |
character string specifying the color of the gradient for high values |
bw_theme |
logical value. If TRUE uses the ggplot2 black and white theme. |
... |
further arguments passed to or from other methods. |
ggplot2 plot object if interactive is FALSE, or plotly plot object if interactive is TRUE
library(pmartRdata) data(pep_object) mypep <- edata_transform(omicsData = pep_object, data_scale = "log2") mypep <- group_designation(omicsData = mypep, main_effects = "Phenotype") myspans <- spans_procedure(omicsData = mypep) plot(myspans)
library(pmartRdata) data(pep_object) mypep <- edata_transform(omicsData = pep_object, data_scale = "log2") mypep <- group_designation(omicsData = mypep, main_effects = "Phenotype") myspans <- spans_procedure(omicsData = mypep) plot(myspans)
Produces plots that summarize the results contained in a 'statRes' object.
## S3 method for class 'statRes' plot( x, plot_type = "bar", fc_threshold = NULL, fc_colors = c("red", "black", "green"), stacked = TRUE, show_sig = TRUE, color_low = NULL, color_high = NULL, plotly_layout = NULL, interactive = FALSE, x_lab = NULL, x_lab_size = 11, x_lab_angle = NULL, y_lab = NULL, y_lab_size = 11, title_lab = NULL, title_lab_size = 14, legend_lab = NULL, legend_position = "right", text_size = 3, bw_theme = TRUE, display_count = TRUE, custom_theme = NULL, cluster = FALSE, free_y_axis = FALSE, ... )
## S3 method for class 'statRes' plot( x, plot_type = "bar", fc_threshold = NULL, fc_colors = c("red", "black", "green"), stacked = TRUE, show_sig = TRUE, color_low = NULL, color_high = NULL, plotly_layout = NULL, interactive = FALSE, x_lab = NULL, x_lab_size = 11, x_lab_angle = NULL, y_lab = NULL, y_lab_size = 11, title_lab = NULL, title_lab_size = 14, legend_lab = NULL, legend_position = "right", text_size = 3, bw_theme = TRUE, display_count = TRUE, custom_theme = NULL, cluster = FALSE, free_y_axis = FALSE, ... )
x |
'statRes' object to be plotted, usually the result of 'imd_anova' |
plot_type |
defines which plots to be produced, options are "bar", "volcano", "gheatmap", "fcheatmap"; defaults to "bar". See details for plot descriptions. |
fc_threshold |
optional threshold value for fold change estimates.
Modifies the volcano plot as follows: Vertical lines are added at
(+/-) |
fc_colors |
vector of length three with character color values interpretable by ggplot. i.e. c("orange", "black", "blue") with the values being used to color negative, non-significant, and positive fold changes respectively |
stacked |
TRUE/FALSE for whether to stack positive and negative fold change sections in the barplot, defaults to TRUE |
show_sig |
This input is used when |
color_low |
This input is used when |
color_high |
This input is used when |
plotly_layout |
This input is used when |
interactive |
TRUE/FALSE for whether to create an interactive plot using plotly. Not valid for all plots. |
x_lab |
character string specifying the x-axis label. |
x_lab_size |
integer value indicating the font size for the x-axis. The default is 11. |
x_lab_angle |
integer value indicating the angle of x-axis labels. |
y_lab |
character string specifying the y-axis label. |
y_lab_size |
integer value indicating the font size for the y-axis. The default is 11. |
title_lab |
character string specifying the plot title. |
title_lab_size |
integer value indicating the font size of the plot title. The default is 14. |
legend_lab |
character string specifying the legend title. |
legend_position |
character string specifying the position of the legend. Can be one of "right", "left", "top", "bottom", or "none". The default is "none". |
text_size |
integer specifying the size of the text (number of non-missing values) within the plot. The default is 3. |
bw_theme |
logical value. If TRUE uses the ggplot2 black and white theme. |
display_count |
logical value. Indicates whether the non-missing counts will be displayed on the bar plot. The default is TRUE. |
custom_theme |
a ggplot 'theme' object to be applied to non-interactive plots, or those converted by plotly::ggplotly(). |
cluster |
logical for heatmaps; TRUE will cluster biomolecules on X axis. defaults to TRUE for seqData statistics and FALSE for all others. |
free_y_axis |
Logical. If TRUE the y axis for each bar plot can have its own range. The default is FALSE. |
... |
further arguments passed to or from other methods. |
Plot types:
"bar" ?pmartR::statres_barplot
Bar-chart with bar heights
indicating the number of significant biomolecules, grouped by test type and
fold change direction.
"volcano" ?pmartR::statres_volcano_plot
Scatter plot showing
negative-log-pvalues against fold change. Colored by statistical
significance and fold change.
"gheatmap" ?pmartR::gtest_heatmap
Heatmap with x and y axes
indicating the number of nonmissing values for two groups. Colored by
number of biomolecules that fall into that combination of nonmissing values.
"fcheatmap" Heatmap showing all biomolecules across comparisons, colored by fold change.
ggplot2 plot object if interactive is FALSE, or plotly plot object if interactive is TRUE
library(pmartRdata) # Group the data by condition mypro <- group_designation( omicsData = pro_object, main_effects = c("Phenotype") ) # Apply the IMD ANOVA filter imdanova_Filt <- imdanova_filter(omicsData = mypro) mypro <- applyFilt( filter_object = imdanova_Filt, omicsData = mypro, min_nonmiss_anova = 2 ) # Implement the IMD ANOVA method and compuate all pairwise comparisons # (i.e. leave the `comparisons` argument NULL) anova_res <- imd_anova(omicsData = mypro, test_method = 'anova') plot(anova_res) plot(anova_res, plot_type = "volcano") imd_res <- imd_anova(omicsData = mypro, test_method = 'gtest') plot(imd_res) imd_anova_res <- imd_anova( omicsData = mypro, test_method = 'comb', pval_adjust_a_multcomp = 'bon', pval_adjust_g_multcomp = 'bon' ) plot(imd_anova_res, bw_theme = TRUE) plot(imd_anova_res, plot_type = "volcano", bw_theme = TRUE)
library(pmartRdata) # Group the data by condition mypro <- group_designation( omicsData = pro_object, main_effects = c("Phenotype") ) # Apply the IMD ANOVA filter imdanova_Filt <- imdanova_filter(omicsData = mypro) mypro <- applyFilt( filter_object = imdanova_Filt, omicsData = mypro, min_nonmiss_anova = 2 ) # Implement the IMD ANOVA method and compuate all pairwise comparisons # (i.e. leave the `comparisons` argument NULL) anova_res <- imd_anova(omicsData = mypro, test_method = 'anova') plot(anova_res) plot(anova_res, plot_type = "volcano") imd_res <- imd_anova(omicsData = mypro, test_method = 'gtest') plot(imd_res) imd_anova_res <- imd_anova( omicsData = mypro, test_method = 'comb', pval_adjust_a_multcomp = 'bon', pval_adjust_g_multcomp = 'bon' ) plot(imd_anova_res, bw_theme = TRUE) plot(imd_anova_res, plot_type = "volcano", bw_theme = TRUE)
For plotting an S3 object of type 'totalCountFilt':
## S3 method for class 'totalCountFilt' plot( x, min_count = NULL, interactive = FALSE, x_lab = NULL, y_lab = NULL, x_lab_size = 11, y_lab_size = 11, x_lab_angle = 0, title_lab = NULL, title_lab_size = 14, legend_lab = "", legend_position = "right", text_size = 3, bar_width = 0.8, bw_theme = TRUE, palette = NULL, ... )
## S3 method for class 'totalCountFilt' plot( x, min_count = NULL, interactive = FALSE, x_lab = NULL, y_lab = NULL, x_lab_size = 11, y_lab_size = 11, x_lab_angle = 0, title_lab = NULL, title_lab_size = 14, legend_lab = "", legend_position = "right", text_size = 3, bar_width = 0.8, bw_theme = TRUE, palette = NULL, ... )
x |
object of class totalCountFilt that contains the molecule identifier and the number of total counts for which the molecule was measured (not NA). |
min_count |
integer specifying the minimum number of samples in which a biomolecule must appear. Defaults to NULL. |
interactive |
logical value. If TRUE produces an interactive plot. |
x_lab |
character string specifying the x-axis label |
y_lab |
character string specifying the y-axis label. The default is
NULL in which case the y-axis label will be the metric selected for the
|
x_lab_size |
integer value indicating the font size for the x-axis. The default is 11. |
y_lab_size |
integer value indicating the font size for the y-axis. The default is 11. |
x_lab_angle |
integer value indicating the angle of x-axis labels. The default is 0. |
title_lab |
character string specifying the plot title |
title_lab_size |
integer value indicating the font size of the plot title. The default is 14. |
legend_lab |
character string specifying the legend title |
legend_position |
character string specifying the position of the legend. Can be one of "right", "left", "top", "bottom", or "none". The default is "none". |
text_size |
integer specifying the size of the text (number of biomolecules by sample) within the bar plot. The default is 3. |
bar_width |
integer indicating the width of the bars in the bar plot. The default is 0.8. |
bw_theme |
logical value. If TRUE uses the ggplot2 black and white theme. |
palette |
character string indicating the name of the RColorBrewer
palette to use. For a list of available options see the details section in
|
... |
further arguments passed to or from other methods. |
ggplot2 plot object if interactive is FALSE, or plotly plot object if interactive is TRUE
library(pmartRdata) seqfilt <- total_count_filter(omicsData = rnaseq_object) plot(seqfilt, min_count = 15)
library(pmartRdata) seqfilt <- total_count_filter(omicsData = rnaseq_object) plot(seqfilt, min_count = 15)
Provides functionality for quality control processing and statistical analysis of mass spectrometry (MS) omics data, in particular proteomic (either at the peptide or the protein level), lipidomic, and metabolomic data, as well as RNA-seq based count data and nuclear magnetic resonance (NMR) data. This includes data transformation, specification of groups that are to be compared against each other, filtering of features and/or samples, data normalization, data summarization (correlation, PCA), and statistical comparisons between defined groups.
No return value, used to appease R CMD check.
This function removes rows and columns in e_data, f_data, and e_meta based on either remove or keep criteria.
pmartR_filter_worker(filter_object, omicsData)
pmartR_filter_worker(filter_object, omicsData)
filter_object |
A list of three elements. Each element contains a set of names to either remove or keep from e_data, f_data, and e_meta. |
omicsData |
an object of the class |
A list with three elements: first is the filtered e_data object, second is the filtered f_data object, and third is the filtered e_meta object.
Kelly Stratton, Lisa Bramer
Selects biomolecules for normalization via the method of percentage of the peptides (or proteins, metabolites, etc.) present (PPP)
ppp(e_data, edata_id, proportion = 0.5)
ppp(e_data, edata_id, proportion = 0.5)
e_data |
a |
edata_id |
character string indicating the name of the peptide, protein,
lipid, or metabolite identifier. Usually obtained by calling
|
proportion |
numeric value between 0 and 1, indicating the proportion at or above which a biomolecule must be present across all samples in order to be retained (default value 0.5) |
Biomolecules present across proportion
samples are designated as
PPP.
Character vector containing the biomolecules belonging to the PPP subset.
Kelly Stratton
Selects biomolecules for normalization via the method of proportion of biomolecules present and rank invariant biomolecules (ppp_rip)
ppp_rip(e_data, edata_id, fdata_id, groupDF, alpha = 0.2, proportion = 0.5)
ppp_rip(e_data, edata_id, fdata_id, groupDF, alpha = 0.2, proportion = 0.5)
e_data |
a |
edata_id |
character string indicating the name of the peptide, protein,
lipid, or metabolite identifier. Usually obtained by calling
|
fdata_id |
character string indicating the name of the sample column name in f_data. |
groupDF |
data.frame created by |
alpha |
numeric p-value threshold, above which the biomolecules are retained as rank invariant (default value 0.25) |
proportion |
numeric value between 0 and 1, indicating the percentage at or above which a biomolecule must be present across all samples in order to be retained (default value 0.5) |
Biomolecules present across proportion
samples are subjected to a
Kruskal-Wallis test (non-parametric one-way ANOVA, where NAs are ignored)
on group membership, and those biomolecules with p-value greater than a
defined threshold alpha
(common values include 0.1 or 0.25) are
retained as rank-invariant biomolecules.
Character vector containing the biomolecules belonging to the ppp_rip subset.
Kelly Stratton
This function takes in a pepData object and returns a proData object
pquant(pepData, combine_fn)
pquant(pepData, combine_fn)
pepData |
omicsData object of class 'pepData' |
combine_fn |
A character string that can either be 'mean' or 'median'. |
An omicsData object of class 'proData'
This function creates a melted version of e_data, grouped by edata_id and group designation, for future use of implementing a IMD_ANOVA filter
pre_imdanova_melt(e_data, groupDF, samp_id)
pre_imdanova_melt(e_data, groupDF, samp_id)
e_data |
|
groupDF |
data frame created by |
samp_id |
character string specifying the name of the column containing
the sample identifiers in |
a data frame of class "grouped_dt" which is compatible with functions in the dplyr package
Lisa Bramer, Kelly Stratton
Changes the flags columns from a statRes object into a format that the statRes plot funcitons can handle. pmartR is an unruly beast that cannot be tamed!!
prep_flags(x, test)
prep_flags(x, test)
x |
A statRes object. |
test |
character string indicating the type of test run. |
A data frame with the sample IDs and significance flags from a statistical test.
For printing an S3 object of type 'customFilt'
## S3 method for class 'customFilt' print(x, ...)
## S3 method for class 'customFilt' print(x, ...)
x |
An object of type 'customFilt' |
... |
further arguments passed to or from other methods |
No return value, prints details about x
Print method for summary of custom filter
## S3 method for class 'customFilterSummary' print(x, ...)
## S3 method for class 'customFilterSummary' print(x, ...)
x |
the custom filter summary to print |
... |
further arguments passed to or from other methods |
No return value, prints details about x
For printing an S3 object of type 'cvFilt'
## S3 method for class 'cvFilt' print(x, ...)
## S3 method for class 'cvFilt' print(x, ...)
x |
An object of type 'cvFilt' |
... |
further arguments passed to or from other methods |
No return value, prints details about x
Print method for summary of CV filter
## S3 method for class 'cvFilterSummary' print(x, ...)
## S3 method for class 'cvFilterSummary' print(x, ...)
x |
the CV filter summary to print |
... |
further arguments passed to or from other methods |
No return value, prints details about x
For printing an S3 object of class 'dataRes'
## S3 method for class 'dataRes' print(x, ...)
## S3 method for class 'dataRes' print(x, ...)
x |
An object of class 'dataRes' |
... |
further arguments passed to or from other methods |
No return value, prints details about x.
For printing an S3 object of type 'imdanovaFilt'
## S3 method for class 'imdanovaFilt' print(x, ...)
## S3 method for class 'imdanovaFilt' print(x, ...)
x |
An object of type 'imdanovaFilt' |
... |
further arguments passed to or from other methods |
No return value, prints details about x
Print method for summary of imdanova filter
## S3 method for class 'imdanovaFilterSummary' print(x, ...)
## S3 method for class 'imdanovaFilterSummary' print(x, ...)
x |
the imdanova filter summary to print |
... |
further arguments passed to or from other methods |
No return value, prints details about x
For printing an S3 object of type 'lipidData'
## S3 method for class 'lipidData' print(x, ...)
## S3 method for class 'lipidData' print(x, ...)
x |
An object of type 'lipidData' |
... |
further arguments passed to or from other methods |
No return value, prints details about x
For printing an S3 object of type 'metabData'
## S3 method for class 'metabData' print(x, ...)
## S3 method for class 'metabData' print(x, ...)
x |
An object of type 'metabData' |
... |
further arguments passed to or from other methods |
No return value, prints details about x
For printing an S3 object of type 'moleculeFilt'
## S3 method for class 'moleculeFilt' print(x, ...)
## S3 method for class 'moleculeFilt' print(x, ...)
x |
An object of type 'moleculeFilt' |
... |
further arguments passed to or from other methods |
No return value, prints details about x
Print method for moleculeFilt S3 object
## S3 method for class 'moleculeFilterSummary' print(x, ...)
## S3 method for class 'moleculeFilterSummary' print(x, ...)
x |
the moleculeFilt summary to print |
... |
further arguments passed to or from other methods |
No return value, prints details about x
For printing an S3 object of type 'normRes'
## S3 method for class 'normRes' print(x, ...)
## S3 method for class 'normRes' print(x, ...)
x |
An object of type 'normRes' |
... |
further arguments passed to or from other methods |
No return value, prints details about x
For printing an S3 object of type 'pepData'
## S3 method for class 'pepData' print(x, ...)
## S3 method for class 'pepData' print(x, ...)
x |
An object of type 'pepData' |
... |
further arguments passed to or from other methods |
No return value, prints details about x
For printing an S3 object of type 'proData'
## S3 method for class 'proData' print(x, ...)
## S3 method for class 'proData' print(x, ...)
x |
An object of type 'proData' |
... |
further arguments passed to or from other methods |
No return value, prints details about x
For printing an S3 object of type 'proteomicsFilt'
## S3 method for class 'proteomicsFilt' print(x, ...)
## S3 method for class 'proteomicsFilt' print(x, ...)
x |
An object of type 'proteomicsFilt' |
... |
further arguments passed to or from other methods |
No return value, prints details about x
Print method for summary of proteomics filter
## S3 method for class 'proteomicsFilterSummary' print(x, ...)
## S3 method for class 'proteomicsFilterSummary' print(x, ...)
x |
the proteomics filter summary to print |
... |
further arguments passed to or from other methods |
No return value, prints details about x
For printing an S3 object of type 'rmdFilt'
## S3 method for class 'rmdFilt' print(x, ...)
## S3 method for class 'rmdFilt' print(x, ...)
x |
An object of type 'rmdFilt' |
... |
further arguments passed to or from other methods |
No return value, prints details about x
Print method for summary of RMD filter
## S3 method for class 'rmdFilterSummary' print(x, ...)
## S3 method for class 'rmdFilterSummary' print(x, ...)
x |
the RMD filter summary to print |
... |
further arguments passed to or from other methods |
No return value, prints details about x
For printing an S3 object of type 'RNAFilt'
## S3 method for class 'RNAFilt' print(x, ...)
## S3 method for class 'RNAFilt' print(x, ...)
x |
An object of type 'RNAFilt' |
... |
further arguments passed to or from other methods |
No return value, prints details about x
Print method for summary of RNAFilt
## S3 method for class 'RNAFiltSummary' print(x, ...)
## S3 method for class 'RNAFiltSummary' print(x, ...)
x |
the RNAFilt summary to print |
... |
further arguments passed to or from other methods |
No return value, prints details about x
For printing an S3 object of type 'seqData'
## S3 method for class 'seqData' print(x, ...)
## S3 method for class 'seqData' print(x, ...)
x |
An object of type 'seqData' |
... |
further arguments passed to or from other methods |
No return value, prints details about x
For printing an S3 object of type 'totalCountFilt'
## S3 method for class 'totalCountFilt' print(x, ...)
## S3 method for class 'totalCountFilt' print(x, ...)
x |
An object of type 'totalCountFilt' |
... |
further arguments passed to or from other methods |
No return value, prints details about x
Print method for summary of Total Count filter
## S3 method for class 'totalCountFiltSummary' print(x, ...)
## S3 method for class 'totalCountFiltSummary' print(x, ...)
x |
the Total Count filter summary to print |
... |
further arguments passed to or from other methods |
No return value, prints details about x
This function takes in a pepData object, method (quantification method, mean, median or rrollup), and the optional argument isoformRes (defaults to NULL). An object of the class 'proData' is returned.
protein_quant( pepData, method, isoformRes = NULL, qrollup_thresh = NULL, single_pep = FALSE, single_observation = FALSE, combine_fn = "median", parallel = TRUE, emeta_cols = NULL, emeta_cols_sep = ";" )
protein_quant( pepData, method, isoformRes = NULL, qrollup_thresh = NULL, single_pep = FALSE, single_observation = FALSE, combine_fn = "median", parallel = TRUE, emeta_cols = NULL, emeta_cols_sep = ";" )
pepData |
an omicsData object of the class 'pepData' |
method |
character string specifying one of four protein quantification methods, 'rollup', 'rrollup', 'qrollup' and 'zrollup' |
isoformRes |
list of data frames, the result of applying the 'bpquant' function to original pepData object. Defaults to NULL. |
qrollup_thresh |
numeric value; is the peptide abundance cutoff value. Is an argument to qrollup function. |
single_pep |
logical indicating whether or not to remove proteins that have just a single peptide mapping to them, defaults to FALSE. |
single_observation |
logical indicating whether or not to remove peptides that have just a single observation, defaults to FALSE. |
combine_fn |
character string specifying either be 'mean' or 'median' |
parallel |
logical indicating whether or not to use "doParallel" loop in applying rollup functions. Defaults to TRUE. Is an argument of rrollup, qrollup and zrollup functions. |
emeta_cols |
character vector indicating additional columns of e_meta that should be kept after rolling up to the protein level. The default, NULL, only keeps the column containing the mapping variable along with the new columns created (peps_per_pro and n_peps_used). |
emeta_cols_sep |
character specifying the string that will separate the elements for emeta_cols when they are collapsed into a single row when aggregating rows belonging to the same protein. Defaults to ";" |
If isoformRes is provided then, a temporary pepData object is formed using the isoformRes information as the e_meta component and the original pepData object will be used for e_data and f_data components. The emeta_cname for the temporary pepData object will be the 'protein_isoform' column of isoformRes. Then one of the three 'method' functions can be applied to the temporary pepData object to return a proData object. If isofromRes is left NULL, then depending on the input for 'method', the correct 'method' function is applied directly to the input pepData object and a proData object is returned.
omicsData object of the class 'proData'
Webb-Robertson, B.-J. M., Matzke, M. M., Datta, S., Payne, S. H., Kang, J., Bramer, L. M., ... Waters, K. M. (2014). Bayesian Proteoform Modeling Improves Protein Quantification of Global Proteomic Measurements. Molecular & Cellular Proteomics.: MCP, 13(12), 3639-3646.
library(pmartRdata) mypepData <- group_designation(omicsData = pep_object, main_effects = c("Phenotype")) mypepData = edata_transform(omicsData = mypepData, "log2") imdanova_Filt <- imdanova_filter(omicsData = mypepData) mypepData <- applyFilt(filter_object = imdanova_Filt, omicsData = mypepData, min_nonmiss_anova = 2) imd_anova_res <- imd_anova(omicsData = mypepData, test_method = 'comb', pval_adjust_a_multcomp = 'bon', pval_adjust_g_multcomp = 'bon') isoformRes = bpquant(statRes = imd_anova_res, pepData = mypepData) # case where isoformRes is NULL: results <- protein_quant(pepData = mypepData, method = 'rollup', combine_fn = 'median', isoformRes = NULL) # case where isoformRes is provided: # results2 = protein_quant(pepData = mypepData, method = 'rollup', # combine_fn = 'mean', isoformRes = isoformRes)
library(pmartRdata) mypepData <- group_designation(omicsData = pep_object, main_effects = c("Phenotype")) mypepData = edata_transform(omicsData = mypepData, "log2") imdanova_Filt <- imdanova_filter(omicsData = mypepData) mypepData <- applyFilt(filter_object = imdanova_Filt, omicsData = mypepData, min_nonmiss_anova = 2) imd_anova_res <- imd_anova(omicsData = mypepData, test_method = 'comb', pval_adjust_a_multcomp = 'bon', pval_adjust_g_multcomp = 'bon') isoformRes = bpquant(statRes = imd_anova_res, pepData = mypepData) # case where isoformRes is NULL: results <- protein_quant(pepData = mypepData, method = 'rollup', combine_fn = 'median', isoformRes = NULL) # case where isoformRes is provided: # results2 = protein_quant(pepData = mypepData, method = 'rollup', # combine_fn = 'mean', isoformRes = isoformRes)
This function counts the number of peptides that map to each protein and/or the number of proteins to which each individual peptide maps.
proteomics_filter(omicsData)
proteomics_filter(omicsData)
omicsData |
an object of class "pepData", the a result of
|
An S3 object of class proteomicsFilt, which is a list with two elements. The first element is a data frame of counts for each unique peptide. The second element is a data frame with the counts for the number of peptides that map to each unique protein.
Lisa Bramer, Kelly Stratton
library(pmartRdata) my_filter <- proteomics_filter(omicsData = pep_object) summary(my_filter, min_num_peps = 3)
library(pmartRdata) my_filter <- proteomics_filter(omicsData = pep_object) summary(my_filter, min_num_peps = 3)
This function applies the qrollup method to a pepData object for each unique protein and returns a proData object.
qrollup(pepData, qrollup_thresh, combine_fn, parallel = TRUE)
qrollup(pepData, qrollup_thresh, combine_fn, parallel = TRUE)
pepData |
an omicsData object of class 'pepData' |
qrollup_thresh |
numeric value between 0 and 1 inclusive. Peptides above this threshold are used to roll up to the protein level |
combine_fn |
logical indicating what combine_fn to use, defaults to median, other option is mean |
parallel |
logical indicating whether or not to use "doParallel" loop in applying qrollup function. Defaults to TRUE. |
In the qrollup method, peptides are selected according to a user selected abundance cutoff value (qrollup_thresh), and protein abundance is set as the mean of these selected peptides.
an omicsData object of class 'proData'
Polpitiya, A. D., Qian, W.-J., Jaitly, N., Petyuk, V. A., Adkins, J. N., Camp, D. G., ... Smith, R. D. (2008). DAnTE: a statistical tool for quantitative analysis of -omics data. Bioinformatics (Oxford, England), 24(13), 1556-1558.
This function finds all instances of NA in e_data and replaces them with 0.
replace_nas(edata, edata_cname)
replace_nas(edata, edata_cname)
edata |
A |
edata_cname |
A character string specifying the name of the ID column in the e_data data frame. |
This function is used in the as.seqData functions to replace any NA values with 0s.
An updated e_data data frame where all instances of NA have been replaced with 0.
This function finds all instances of 0 in e_data and replaces them with NA.
replace_zeros(e_data, edata_cname)
replace_zeros(e_data, edata_cname)
e_data |
A |
edata_cname |
A character string specifying the name of the ID column in the e_data data frame. |
This function is used in the as.pepData, as.proData, as.lipidData, as.metabData, as.isobaricpepData, and as.nmrData functions to replace any 0 values with NAs.
An updated e_data data frame where all instances of 0 have been replaced with NA.
This function takes in an object of class 'dataRes' and returns a data frame displaying a combination of metrics. The six summarizing metrics include, mean, standard deviation, median, percent observed, minimum, and maximum.
report_dataRes(dataRes, minmax = FALSE, digits = 2)
report_dataRes(dataRes, minmax = FALSE, digits = 2)
dataRes |
an object of the class 'dataRes', created by
|
minmax |
logical specifying whether or not to include minimum and maximum data in the returned data frame. Defaults to FALSE. |
digits |
integer indicating the number of decimal places to round |
When creating the 'dataRes' object via edata_summary
,
if the 'by' argument is set to 'sample', then the 'groupvar' argument must
be NULL
prints a data frame
library(pmartRdata) mylipid <- edata_transform(omicsData = lipid_neg_object, data_scale = "log2") dataRes_sample <- edata_summary(omicsData = mylipid, groupvar = NULL, by = "sample") my_output <- report_dataRes(dataRes_sample)
library(pmartRdata) mylipid <- edata_transform(omicsData = lipid_neg_object, data_scale = "log2") dataRes_sample <- edata_summary(omicsData = mylipid, groupvar = NULL, by = "sample") my_output <- report_dataRes(dataRes_sample)
Selects biomolecules for normalization via the method of rank-invariant biomolcules (RIP)
rip(e_data, edata_id, fdata_id, groupDF, alpha = 0.2)
rip(e_data, edata_id, fdata_id, groupDF, alpha = 0.2)
e_data |
a |
edata_id |
character string indicating the name of the peptide, protein,
lipid, or metabolite identifier. Usually obtained by calling
|
fdata_id |
character string indicating the name of the sample column name in f_data. |
groupDF |
data.frame created by |
alpha |
numeric p-value threshold, above which the biomolecules are retained as rank invariant (default value 0.25) |
Biomolecules with complete data are subjected to a Kruskal-Wallis
test (non-parametric one-way ANOVA) on group membership, and those
biomolecules with p-value greater than a defined threshold alpha
(common values include 0.1 or 0.25) are retained as rank-invariant
biomolecules.
Character vector containing the biomolecules belonging to the RIP subset.
Kelly Stratton
This function provides a conversion between the log base 2 robust Mahalanobis
distance value and p-value for output from the rmd_runs
function
rmd_conversion(log2rmd = NULL, pval = NULL, df)
rmd_conversion(log2rmd = NULL, pval = NULL, df)
log2rmd |
numeric log base 2 transformed robust Mahalanobis distance value |
pval |
numeric p-value associated with rmd_runs algorithm |
df |
integer value specifying the degrees of freedom associated with the test, which should be equal to the number of metrics used in rmd_runs |
Only one of log2rmd
and pval
should be provided. The
input not provided will be solved for based on the provided input.
The function returns the corresponding p-value or log base 2 robust Mahalanobis when the other parameter is specified.
Lisa Bramer
library(pmartRdata) mymetab <- edata_transform( omicsData = metab_object, data_scale = "log2" ) mymetab <- group_designation( omicsData = mymetab, main_effects = "Phenotype" ) rmd_results <- rmd_filter( omicsData = mymetab, metrics = c("MAD", "Skewness", "Correlation") ) rmd_conversion(log2rmd = rmd_results$Log2.md, df = 3) rmd_conversion(pval = .0001, df = 3) rmd_conversion(log2rmd = 4.5, df = 3)
library(pmartRdata) mymetab <- edata_transform( omicsData = metab_object, data_scale = "log2" ) mymetab <- group_designation( omicsData = mymetab, main_effects = "Phenotype" ) rmd_results <- rmd_filter( omicsData = mymetab, metrics = c("MAD", "Skewness", "Correlation") ) rmd_conversion(log2rmd = rmd_results$Log2.md, df = 3) rmd_conversion(pval = .0001, df = 3) rmd_conversion(log2rmd = 4.5, df = 3)
The method computes a robust Mahalanobis distance that can be mapped to a p-value and used to identify outlying samples
rmd_filter(omicsData, ignore_singleton_groups = TRUE, metrics = NULL)
rmd_filter(omicsData, ignore_singleton_groups = TRUE, metrics = NULL)
omicsData |
an object of the class 'pepData', 'proData', 'metabData',
'lipidData', or 'nmrData' created by |
ignore_singleton_groups |
logical indicator of whether to remove singleton groups or not; defaults to TRUE. A singleton group is a group consisting of just a single sample. If TRUE, rmd_filter results are returned only for samples in groups of size greater than 1. This is used when calculating the correlation. |
metrics |
A character vector indicating which metrics should be used when calculating the robust Mahalanobis distance. This vector must contain between two and five of the following options: "MAD" (Median Absolute Deviation), "Kurtosis", "Skewness", "Correlation", and "Proportion_Missing". The default is NULL. When NULL a combination of metrics will be chosen depending on the class of omicsData. |
The metrics on which the log2 robust Mahalanobis distance is based
can be specified using the metrics
argument.
pepData, proData | For pepData and proData objects, all five of the metrics "MAD", "Kurtosis", "Skewness", "Correlation", "Proportion_Missing" may be used (this is the default). |
metabData, lipidData, nmrData | The use of "Proportion_Missing" is discouraged due to the general lack of missing data in these datasets (the default behavior omits "Proportion_Missing" from the metrics). |
An S3 object of class 'rmdFilt' containing columns for the sample identifier, log2 robust Mahalanobis distance, p-values, and robust Mahalanobis distance
Lisa Bramer, Kelly Stratton
Matzke, M., Waters, K., Metz, T., Jacobs, J., Sims, A., Baric, R., Pounds, J., and Webb-Robertson, B.J. (2011), Improved quality control processing of peptide-centric LC-MS proteomics data. Bioinformatics. 27(20): 2866-2872.
library(pmartRdata) mymetab <- edata_transform(omicsData = metab_object, data_scale = "log2") mymetab <- group_designation(omicsData = mymetab, main_effects = "Phenotype") rmd_results <- rmd_filter(omicsData = mymetab, metrics = c("MAD", "Skewness", "Correlation")) rmd_results <- rmd_filter(omicsData = mymetab) mypep <- edata_transform(omicsData = pep_object, data_scale = "log2") mypep <- group_designation(omicsData = mypep, main_effects = "Phenotype") rmd_results <- rmd_filter(omicsData = mypep)
library(pmartRdata) mymetab <- edata_transform(omicsData = metab_object, data_scale = "log2") mymetab <- group_designation(omicsData = mymetab, main_effects = "Phenotype") rmd_results <- rmd_filter(omicsData = mymetab, metrics = c("MAD", "Skewness", "Correlation")) rmd_results <- rmd_filter(omicsData = mymetab) mypep <- edata_transform(omicsData = pep_object, data_scale = "log2") mypep <- group_designation(omicsData = mypep, main_effects = "Phenotype") rmd_results <- rmd_filter(omicsData = mypep)
This function returns a RNAFilt object for use with
applyFilt
RNA_filter(omicsData)
RNA_filter(omicsData)
omicsData |
an object of the class 'seqData', created by
|
Filter omicsData samples by library size (number of reads) or number of unique non-zero biomolecules per sample. Useful for visualizing if a sample contains lower than expected number of reads.
An S3 object of class 'RNAFilt' (data.frame) that contains the sample identifiers, library size, the number of unique biomolecules with non-zero observations per sample, and the proportion of non-zero observations over the total number of biomolecules.
Rachel Richardson
library(pmartRdata) to_filter <- RNA_filter(omicsData = rnaseq_object) summary(to_filter, size_library = 10000) summary(to_filter, min_nonzero = 5000) summary(to_filter, min_nonzero = .2)
library(pmartRdata) to_filter <- RNA_filter(omicsData = rnaseq_object) summary(to_filter, size_library = 10000) summary(to_filter, min_nonzero = 5000) summary(to_filter, min_nonzero = .2)
This function applies the rrollup method to a pepData object for each unique protein and returns a proData object.
rrollup(pepData, combine_fn, parallel = TRUE)
rrollup(pepData, combine_fn, parallel = TRUE)
pepData |
an omicsData object of class 'pepData' |
combine_fn |
logical indicating what combine_fn to use, defaults to median, other option is mean |
parallel |
logical indicating whether or not to use "doParallel" loop in applying rrollup function. Defaults to TRUE. |
In the rrollup method, peptides are scaled based on a reference peptide and protein abundance is set as the mean of these scaled peptides.
an omicsData object of class 'proData'
Matzke, M. M., Brown, J. N., Gritsenko, M. A., Metz, T. O., Pounds, J. G., Rodland, K. D., ... Webb-Robertson, B.-J. (2013). A comparative analysis of computational approaches to relative protein quantification using peptide peak intensities in label-free LC-MS proteomics experiments. Proteomics, 13(0), 493-503.
Polpitiya, A. D., Qian, W.-J., Jaitly, N., Petyuk, V. A., Adkins, J. N., Camp, D. G., ... Smith, R. D. (2008). DAnTE: a statistical tool for quantitative analysis of -omics data. Bioinformatics (Oxford, England), 24(13), 1556-1558.
This function calculates the mean correlation of a sample with all other samples that have the same group membership
run_group_meancor(omicsData, mintR_groupDF, ignore_singleton_groups = TRUE)
run_group_meancor(omicsData, mintR_groupDF, ignore_singleton_groups = TRUE)
omicsData |
an object of the class 'pepData', 'proData', 'metabData', or
'lipidData' usually created
by |
mintR_groupDF |
data.frame created by |
ignore_singleton_groups |
logical indicator of whether to remove singleton groups or not; defaults to TRUE. A singleton group is a group consisting of just a single sample. If TRUE, rmd_filter results are returned only for samples in groups of size greater than 1. This is used when calculating the correlation. |
Correlation calculations use only complete pairwise observations.
data.frame with two elements: Sample.ID, a character vector giving the sample names; and Mean_Correlation, a numeric vector giving the mean correlation values
Lisa Bramer
This function calculates the kurtosis across data for each sample run.
run_kurtosis(data_only)
run_kurtosis(data_only)
data_only |
a |
Kurtosis is calculated by method 2 in the e1071
package,
which is unbiased under normality. Within a sample NA values are ignorned
in the kurtosis calculation. If all peptide abundance values are missing
within a sample, the kurtosis is replaced by the overall mean of nonmissing
kurtosis values for the data.
data.frame with two elements: Sample, a character vector giving the sample names; and Kurtosis, a numeric vector giving the kurtosis
Lisa Bramer
This function calculates the median absolute deviance across data for each sample run.
run_mad(data_only)
run_mad(data_only)
data_only |
a |
When calculating the MAD within a sample NA values are ignored. If all peptide abundance values are missing within a sample, the MAD is replaced by the overall mean MAD values for the data.
data.frame with two elements: Sample, a character vector giving the sample names; and MAD, a numeric vector giving the MAD values
Lisa Bramer
This function calculates the fraction of missing data for each sample run.
run_prop_missing(data_only)
run_prop_missing(data_only)
data_only |
a |
data.frame with two elements: Sample, a character vector giving the sample names; and Prop_missing, a numeric vector giving the fraction of missing values per run
Lisa Bramer
This function calculates the skewness across data for each sample run.
run_skewness(data_only)
run_skewness(data_only)
data_only |
a |
Skewness is calculated as a bias-corrected calculation given by
method 2 in the e1071
package. Within a sample NA values are
ignorned in the skewness calculation. If all peptide abundance values are
missing within a sample, the skewness is replaced by the overall mean of
nonmissing skewness values for the data.
data.frame with two elements: Sample, a character vector giving the sample names; and Skewness, a numeric vector giving the skewness values
Lisa Bramer
This function sets the check.names attribute of an omicsData object. This function has been deprecated in favor of handling checking names externally and will return an unmodified omicsData.
set_check_names(omicsData, set_to = TRUE)
set_check_names(omicsData, set_to = TRUE)
omicsData |
an object of the class 'pepData', 'proData', 'metabData',
'lipidData', or 'nmrData', usually created by |
set_to |
logical indicating what to set check.names attribute to. Defaults to TRUE. |
omicsData object with updated check.names attribute
Creates the list of median p-values used to make the background distribution used to compute the SPANS score in step 2.
spans_make_distribution( omicsData, group_vector, norm_fn, sig_inds, nonsig_inds, select_n )
spans_make_distribution( omicsData, group_vector, norm_fn, sig_inds, nonsig_inds, select_n )
omicsData |
an object of the class 'pepData' or 'proData' created by
|
group_vector |
A character vector from the group_DF attribute specifying the order of the samples. This order is the same as the order of the samples (columns) in e_data. |
norm_fn |
a character vector of normalization methods to choose from. Current options are 'mean', 'median', 'zscore', and 'mad'. |
sig_inds |
significant peptide indices (row indices) based on a Kruskal-Wallis test on the un-normalized data |
nonsig_inds |
non-significant peptide indices (row indices) based on a Kruskal-Wallis test on the un-normalized data |
select_n |
number of peptide by sample indices in the data to randomly select to determine normalization parameters |
a list with 2 elements. The median of highly significant p-values, and the median of nonsignificant p-values. These are obtained from a SINGLE Kruskal-Wallis test on data normalized by scale/location factors determined from a randomly selected subset of peptides and normalization method
Ranks different combinations of subset and normalization methods based on a score that captures how much bias a particular normalization procedure introduces into the data. Higher score implies less bias.
spans_procedure( omicsData, norm_fn = c("median", "mean", "zscore", "mad"), subset_fn = c("all", "los", "ppp", "rip", "ppp_rip"), params = NULL, group = NULL, n_iter = 1000, sig_thresh = 1e-04, nonsig_thresh = 0.5, min_nonsig = 20, min_sig = 20, max_nonsig = NULL, max_sig = NULL, ... )
spans_procedure( omicsData, norm_fn = c("median", "mean", "zscore", "mad"), subset_fn = c("all", "los", "ppp", "rip", "ppp_rip"), params = NULL, group = NULL, n_iter = 1000, sig_thresh = 1e-04, nonsig_thresh = 0.5, min_nonsig = 20, min_sig = 20, max_nonsig = NULL, max_sig = NULL, ... )
omicsData |
aobject of the class 'pepData' or 'proData' created by
|
|||
norm_fn |
character vector indicating the normalization functions to test. See details for the current offerings. |
|||
subset_fn |
character vector indicating which subset functions to test. See details for the current offerings. |
|||
params |
list of additional arguments passed to the chosen subset functions. See details for parameter specification and default values. |
|||
group |
character specifying a column name in f_data that gives the
group assignment of the samples. Defaults to NULL, in which case the
grouping structure given in |
|||
n_iter |
number of iterations used in calculating the background distribution in step 0 of SPANS. Defaults to 1000. |
|||
sig_thresh |
numeric value that specifies the maximum p-value for which a biomolecule can be considered highly significant based on a Kruskal-Wallis test. Defaults to 0.0001. |
|||
nonsig_thresh |
numeric value that specifies the minimum p-value for which a biomolecule can be considered non-significant based on a Kruskal-Wallis test. Defaults to 0.5. |
|||
min_nonsig |
integer value specifying the minimum number of non-significant biomolecules identified in step 0 of SPANS in order to proceed. nonsig_thresh will be adjusted to the maximum value that gives this many biomolecules. |
|||
min_sig |
integer value specifying the minimum number of highly significant biomolecules identified in step 0 of SPANS in order to proceed. sig_thresh will be adjusted to the minimum value that gives this many biomolecules. |
|||
max_nonsig |
integer value specifying the maximum number of non-significant biomolecules identified in step 0 if SPANS in order to proceed. Excesses of non-significant biomolecules will be randomly sampled down to these values. |
|||
max_sig |
integer value specifying the maximum number of highly significant biomolecules identified in step 0 if SPANS in order to proceed. Excesses of highly significant biomolecules will be randomly sampled down to these values. |
|||
... |
Additional arguments
|
Below are details for specifying function and parameter options.
An object of class 'SPANSRes', which is a dataframe containing
columns for the subset method and normalization used, the parameters used
in the subset method, and the corresponding SPANS score.
The column 'mols_used_in_norm' contains the number of molecules that were
selected by the subset method and subsequently used to determine the
location/scale parameters for normalization. The column 'passed selection'
is TRUE
if the subset+normalization procedure was selected for
scoring.
The attribute 'method_selection_pvals' is a dataframe containing information on the p values used to determine if a method was selected for scoring (location_p_value, scale_p_value) as well as the probabilities (F_log_HSmPV, F_log_NSmPV) given by the empirical cdfs generated in the first step of SPANS.
Specifying a subset function indicates the subset
of features (rows of e_data
) that should be used for computing
normalization factors. The following are valid options: "all", "los",
"ppp", "rip", and "ppp_rip".
"all" is the subset that includes all features (i.e. no subsetting is done). | |
"los"
identifies the subset of the features associated with the top L ,
where L is a proportion between 0 and 1, order statistics.
Specifically, the features with the top L proportion of highest
absolute abundance are retained for each sample, and the union of these
features is taken as the subset identified (Wang et al., 2006). |
|
"ppp" (orignally stands for percentage of peptides present) identifies the
subset of features that are present/non-missing for a minimum
proportion of samples (Karpievitch et al., 2009; Kultima et al.,
2009). |
|
"complete" subset of features that have no missing data across all samples. Equivalent to "ppp" with proportion = 1. | |
"rip" identifies features with complete data that have a p-value greater
than a defined threshold alpha (common values include 0.1 or 0.25)
when subjected to a Kruskal-Wallis test based (non-parametric one-way
ANOVA) on group membership (Webb-Robertson et al., 2011). |
|
"ppp_rip" is equivalent to "rip" however rather than requiring features
with complete data, features with at least a proportion of
non-missing values are subject to the Kruskal-Wallis test. |
|
Specifying a normalization function indicates how normalization scale and location parameters should be calculated. The following are valid options: "median", "mean", "zscore", and "mad". Parameters for median centering are calculated if "median" is specified. The location estimates are the sample-wise medians of the subset data. There are no scale estimates for median centering. Parameters for mean centering are calculated if "mean" is specified. The location estimates are the sample-wise means of the subset data. There are no scale estimates for median centering. Parameters for z-score transformation are calculated if "zscore" is specified. The location estimates are the subset means for each sample. The scale estimates are the subset standard deviations for each sample. Parameters for median absolute deviation (MAD) transformation are calculated if "mad" is specified.
params
argumentParameters for the chosen subset function should be specified in a list. The list elements should have names corresponding to the subset function inputs and contain a list of numeric values. The elements of ppp_rip will be length 2 numeric vectors, corresponding to the parameters for ppp and rip. See examples.
The following subset functions have parameters that can be specified:
los | list of values between 0 and 1 indicating the top proportion of order statistics. Defaults to list(0.05,0.1,0.2,0.3) if unspecified. |
ppp | list of values between 0 and 1 specifying the proportion of samples that must have non-missing values for a feature to be retained. Defaults to list(0.1,0.25,0.50,0.75) if unspecified. |
rip | list of values between 0 and 1 specifying the p-value threshold for determining rank invariance. Defaults to list(0.1,0.15,0.2,0.25) if unspecified. |
ppp_rip | list of length 2 numeric vectors corresponding to the RIP and PPP parameters above. Defaults list(c(0.1,0.1), c(0.25, 0.15), c(0.5, 0.2), c(0.75,0.25)) if unspecified. |
Daniel Claborne
Webb-Robertson BJ, Matzke MM, Jacobs JM, Pounds JG, Waters KM. A statistical selection strategy for normalization procedures in LC-MS proteomics experiments through dataset-dependent ranking of normalization scaling factors. Proteomics. 2011;11(24):4736-41.
library(pmartRdata) pep_object <- edata_transform(omicsData = pep_object, data_scale = "log2") pep_object <- group_designation(omicsData = pep_object, main_effects = "Phenotype") ## default parameters spans_res <- spans_procedure(omicsData = pep_object) ## specify only certain subset and normalization functions spans_res <- spans_procedure(omicsData = pep_object, norm_fn = c("median", "zscore"), subset_fn = c("all", "los", "ppp")) ## specify parameters for supplied subset functions, ## notice ppp_rip takes a vector of two numeric arguments. spans_res <- spans_procedure(omicsData = pep_object, subset_fn = c("all", "los", "ppp"), params = list(los = list(0.25, 0.5), ppp = list(0.15, 0.25))) spans_res <- spans_procedure(omicsData = pep_object, subset_fn = c("all", "rip", "ppp_rip"), params = list(rip = list(0.3, 0.4), ppp_rip = list(c(0.15, 0.5), c(0.25, 0.5))))
library(pmartRdata) pep_object <- edata_transform(omicsData = pep_object, data_scale = "log2") pep_object <- group_designation(omicsData = pep_object, main_effects = "Phenotype") ## default parameters spans_res <- spans_procedure(omicsData = pep_object) ## specify only certain subset and normalization functions spans_res <- spans_procedure(omicsData = pep_object, norm_fn = c("median", "zscore"), subset_fn = c("all", "los", "ppp")) ## specify parameters for supplied subset functions, ## notice ppp_rip takes a vector of two numeric arguments. spans_res <- spans_procedure(omicsData = pep_object, subset_fn = c("all", "los", "ppp"), params = list(los = list(0.25, 0.5), ppp = list(0.15, 0.25))) spans_res <- spans_procedure(omicsData = pep_object, subset_fn = c("all", "rip", "ppp_rip"), params = list(rip = list(0.3, 0.4), ppp_rip = list(c(0.15, 0.5), c(0.25, 0.5))))
Function to take raw output of 'imd_anova' and create output for 'statRes' object
statRes_output( imd_anova_out, omicsData, comparisons, test_method, pval_adjust_a_multcomp, pval_adjust_g_multcomp, pval_adjust_a_fdr, pval_adjust_g_fdr, pval_thresh )
statRes_output( imd_anova_out, omicsData, comparisons, test_method, pval_adjust_a_multcomp, pval_adjust_g_multcomp, pval_adjust_a_fdr, pval_adjust_g_fdr, pval_thresh )
imd_anova_out |
data frame containing the results of the
|
omicsData |
pmartR data object of any class, which has a 'group_df' attribute that is usually created by the 'group_designation()' function |
comparisons |
character vector of comparison names, e.g. c("A_vs_B", "B_vs_C", ...) |
test_method |
test method used ("anova", "gtest", or "combined") |
pval_adjust_a_multcomp |
character string specifying which type of multiple comparison adjustment was implemented for ANOVA tests. Valid options include: "bonferroni", "holm", "tukey", and "dunnett". |
pval_adjust_g_multcomp |
character string specifying which type of multiple comparison adjustment was implemented for G-tests. Valid options include: "bonferroni" and "holm". |
pval_adjust_a_fdr |
character string specifying which type of FDR adjustment was implemented for ANOVA tests. Valid options include: "bonferroni", "BH", "BY", and "fdr". |
pval_adjust_g_fdr |
character string specifying which type of FDR adjustment was implemented for G-tests. Valid options include: "bonferroni", "BH", "BY", and "fdr". |
pval_thresh |
numeric p-value threshold value |
object of class statRes
Provide summary information about statRes objects
No return value, prints details about the statres object.
See imd_anova
Implements overall survival analysis or progression-free survival analysis, depending upon the datatypes supplied to surv_designation, and gives a summary of the results.
summary_km(omicsData, percent = NULL, ...)
summary_km(omicsData, percent = NULL, ...)
omicsData |
A pmartR data object of any class, which has a 'group_df' attribute that is usually created by the 'group_designation()' function |
percent |
The percentile |
... |
extra arguments passed to regexpr if pattern is specified |
if 'percent' is provided then the time at which that probability of death is returned; else, the summary of the 'survival' object is returned
## Not run: library(OvarianPepdataBP) attr(tcga_ovarian_pepdata_bp, "survDF") <- list(t_death = "survival_time", ind_death = "vital_status") # No percent is provided so the entire object is returned summary_km(tcga_ovarian_pepdata_bp) # Percent is provided so corresponding time point is returned summary_km(tcga_ovarian_pepdata_bp, .4) ## End(Not run)
## Not run: library(OvarianPepdataBP) attr(tcga_ovarian_pepdata_bp, "survDF") <- list(t_death = "survival_time", ind_death = "vital_status") # No percent is provided so the entire object is returned summary_km(tcga_ovarian_pepdata_bp) # Percent is provided so corresponding time point is returned summary_km(tcga_ovarian_pepdata_bp, .4) ## End(Not run)
For creating a summary of an S3 object of type 'isobaricnormRes'
## S3 method for class 'isobaricnormRes' summary(object, ...)
## S3 method for class 'isobaricnormRes' summary(object, ...)
object |
object of type isobaricnormRes, created by
|
... |
further arguments passed to or from other methods. |
data frame object
library(pmartRdata) myiso <- edata_transform(omicsData = isobaric_object, data_scale = "log2") myiso_norm <- normalize_isobaric( omicsData = myiso, exp_cname = "Plex", apply_norm = FALSE, refpool_cname = "Virus", refpool_notation = "Pool" ) mysummary <- summary(myiso_norm)
library(pmartRdata) myiso <- edata_transform(omicsData = isobaric_object, data_scale = "log2") myiso_norm <- normalize_isobaric( omicsData = myiso, exp_cname = "Plex", apply_norm = FALSE, refpool_cname = "Virus", refpool_notation = "Pool" ) mysummary <- summary(myiso_norm)
For creating a summary of an S3 object of type 'nmrnormRes'
## S3 method for class 'nmrnormRes' summary(object, ...)
## S3 method for class 'nmrnormRes' summary(object, ...)
object |
object of type nmrnormRes, created by
|
... |
further arguments passed to or from other methods. |
data frame object
library(pmartRdata) mynmr <- edata_transform( omicsData = nmr_identified_object, data_scale = "log2" ) nmr_norm <- normalize_nmr( omicsData = mynmr, apply_norm = FALSE, sample_property_cname = "Concentration" ) mysummary <- summary(nmr_norm)
library(pmartRdata) mynmr <- edata_transform( omicsData = nmr_identified_object, data_scale = "log2" ) nmr_norm <- normalize_nmr( omicsData = mynmr, apply_norm = FALSE, sample_property_cname = "Concentration" ) mysummary <- summary(nmr_norm)
This function will provide basic summary statistics for omicsData objects from the pmartR package.
## S3 method for class 'pepData' summary(object, ...) ## S3 method for class 'proData' summary(object, ...) ## S3 method for class 'lipidData' summary(object, ...) ## S3 method for class 'metabData' summary(object, ...) ## S3 method for class 'nmrData' summary(object, ...) ## S3 method for class 'seqData' summary(object, ...)
## S3 method for class 'pepData' summary(object, ...) ## S3 method for class 'proData' summary(object, ...) ## S3 method for class 'lipidData' summary(object, ...) ## S3 method for class 'metabData' summary(object, ...) ## S3 method for class 'nmrData' summary(object, ...) ## S3 method for class 'seqData' summary(object, ...)
object |
an object of the class 'lipidData', 'metabData', 'pepData',
'proData', nmrData', or 'seqData' usually created by |
... |
further arguments passed to or from other methods. |
a summary table for the pmartR omicsData object. If assigned to a variable, the elements of the summary table are saved in a list format.
Lisa Bramer, Kelly Stratton, Thomas Johansen
library(pmartRdata) pep_summary <- summary(pep_object) iso_summary <- summary(isobaric_object) pro_summary <- summary(pro_object) metab_summary <- summary(metab_object) lipid_summary <- summary(lipid_neg_object) nmr_summary <- summary(nmr_identified_object) rnaseq_summary <- summary(rnaseq_object)
library(pmartRdata) pep_summary <- summary(pep_object) iso_summary <- summary(isobaric_object) pro_summary <- summary(pro_object) metab_summary <- summary(metab_object) lipid_summary <- summary(lipid_neg_object) nmr_summary <- summary(nmr_identified_object) rnaseq_summary <- summary(rnaseq_object)
Provide basic summaries for results objects from the pmartR package.
## S3 method for class 'normRes' summary(object, ...) ## S3 method for class 'SPANSRes' summary(object, ...) ## S3 method for class 'dimRes' summary(object, ...) ## S3 method for class 'corRes' summary(object, ...)
## S3 method for class 'normRes' summary(object, ...) ## S3 method for class 'SPANSRes' summary(object, ...) ## S3 method for class 'dimRes' summary(object, ...) ## S3 method for class 'corRes' summary(object, ...)
object |
object of class corRes |
... |
further arguments passed to or from other methods. |
a summary table or list for the pmartR results object
Lisa Bramer, Kelly Stratton, Thomas Johansen
library(pmartRdata) mypep <- group_designation(omicsData = pep_object, main_effects = "Phenotype") mypep <- edata_transform(omicsData = mypep, data_scale = "log2") norm_result <- normalize_global(omicsData = mypep, norm_fn = "median", subset_fn = "all") summary(norm_result) spans_results <- spans_procedure(omicsData = mypep) summary(spans_results) dim_results <- dim_reduction(omicsData = mypep) summary(dim_results) cor_results <- cor_result(omicsData = mypep) summary(cor_results)
library(pmartRdata) mypep <- group_designation(omicsData = pep_object, main_effects = "Phenotype") mypep <- edata_transform(omicsData = mypep, data_scale = "log2") norm_result <- normalize_global(omicsData = mypep, norm_fn = "median", subset_fn = "all") summary(norm_result) spans_results <- spans_procedure(omicsData = mypep) summary(spans_results) dim_results <- dim_reduction(omicsData = mypep) summary(dim_results) cor_results <- cor_result(omicsData = mypep) summary(cor_results)
Summarizes potential plotting options for a trelliData object
## S3 method for class 'trelliData' summary(object, ...)
## S3 method for class 'trelliData' summary(object, ...)
object |
An object from the as.trelliData.edata or as.trelliData functions |
... |
further arguments passed to or from other methods. |
A data.frame containing panel plot options for this trelliData object.
library(dplyr) library(pmartRdata) trelliData <- as.trelliData.edata(e_data = pep_edata, edata_cname = "Peptide", omics_type = "pepData") # Use an edata example. Build with as.trelliData.edata. summary(trelliData) summary(trelliData %>% trelli_panel_by("Peptide")) summary(trelliData %>% trelli_panel_by("Sample"))
library(dplyr) library(pmartRdata) trelliData <- as.trelliData.edata(e_data = pep_edata, edata_cname = "Peptide", omics_type = "pepData") # Use an edata example. Build with as.trelliData.edata. summary(trelliData) summary(trelliData %>% trelli_panel_by("Peptide")) summary(trelliData %>% trelli_panel_by("Sample"))
Provide summary of a customFilt S3 object
## S3 method for class 'customFilt' summary(object, ...)
## S3 method for class 'customFilt' summary(object, ...)
object |
S3 object of class 'customFilt' created by
|
... |
further arguments passed to or from other methods |
a summary of the items in e_data, f_data, and e_meta that will be removed as a result of applying the custom filter.
Lisa Bramer
library(pmartRdata) to_filter <- custom_filter(omicsData = metab_object, e_data_remove = "fumaric acid", f_data_remove = "Sample_1_Phenotype2_B") summary(to_filter) to_filter2 <- custom_filter(omicsData = metab_object, f_data_keep = metab_object$f_data$SampleID[1:10]) summary(to_filter2)
library(pmartRdata) to_filter <- custom_filter(omicsData = metab_object, e_data_remove = "fumaric acid", f_data_remove = "Sample_1_Phenotype2_B") summary(to_filter) to_filter2 <- custom_filter(omicsData = metab_object, f_data_keep = metab_object$f_data$SampleID[1:10]) summary(to_filter2)
Provide summary of a cvFilt S3 object
## S3 method for class 'cvFilt' summary(object, cv_threshold = NULL, ...)
## S3 method for class 'cvFilt' summary(object, cv_threshold = NULL, ...)
object |
S3 object of class 'cvFilt' created by
|
cv_threshold |
numeric value greater than 1 and less than the value given by filter_object$CV. CV values above cv_threshold are filtered out. Default value is NULL. |
... |
further arguments passed to or from other methods |
a summary of the CV values, number of NA values, and non-NA values. If a CV threshold is provided, the biomolecules that would be filtered based on this threshold are reported.
Lisa Bramer
library(pmartRdata) mypep <- group_designation(omicsData = pep_object, main_effects = "Phenotype") to_filter <- cv_filter(omicsData = mypep, use_groups = TRUE) summary(to_filter, cv_threshold = 30)
library(pmartRdata) mypep <- group_designation(omicsData = pep_object, main_effects = "Phenotype") to_filter <- cv_filter(omicsData = mypep, use_groups = TRUE) summary(to_filter, cv_threshold = 30)
Provide summary of a imdanovaFilt S3 object
## S3 method for class 'imdanovaFilt' summary( object, min_nonmiss_anova = NULL, min_nonmiss_gtest = NULL, comparisons = NULL, ... )
## S3 method for class 'imdanovaFilt' summary( object, min_nonmiss_anova = NULL, min_nonmiss_gtest = NULL, comparisons = NULL, ... )
object |
S3 object of class 'imdanovaFilt' created by
|
min_nonmiss_anova |
integer value specifying the minimum number of
non-missing feature values allowed per group for |
min_nonmiss_gtest |
integer value specifying the minimum number of
non-missing feature values allowed per group for |
comparisons |
data frame with columns for "Control" and "Test" containing the different comparisons of interest. Comparisons will be made between the Test and the corresponding Control (e.g. Control is the reference group). |
... |
further arguments passed to or from other methods |
If min_nonmiss_gtest or min_nonmiss_anova is specified, the number of biomolecules to be filtered with the specified threshold are reported.
Lisa Bramer
library(pmartRdata) mypep <- group_designation(omicsData = pep_object, main_effects = "Phenotype") myfilt <- imdanova_filter(omicsData = mypep) summary(myfilt, min_nonmiss_anova = 2, min_nonmiss_gtest = 3)
library(pmartRdata) mypep <- group_designation(omicsData = pep_object, main_effects = "Phenotype") myfilt <- imdanova_filter(omicsData = mypep) summary(myfilt, min_nonmiss_anova = 2, min_nonmiss_gtest = 3)
Provide summary of a moleculeFilt S3 object
## S3 method for class 'moleculeFilt' summary(object, min_num = NULL, ...)
## S3 method for class 'moleculeFilt' summary(object, min_num = NULL, ...)
object |
S3 object of class 'moleculeFilt' created by
|
min_num |
integer value specifying the minimum number of times each feature must be observed across all samples. Default value is NULL. |
... |
further arguments passed to or from other methods |
a summary table giving the number of biomolecules by number of
observed values across all samples. If min_num is specified, the numbers of
biomolecules to be filtered and to be retained based on the specified
threshold are reported. If, upon creation of moleculeFilt object,
use_groups = TRUE
or use_batches = TRUE
were specified, the
numbers reported by the summary are based on groups and/or batches.
Lisa Bramer, Kelly Stratton
library(pmartRdata) myfilter <- molecule_filter(omicsData = pep_object) summary(myfilter) summary(myfilter, min_num = 2)
library(pmartRdata) myfilter <- molecule_filter(omicsData = pep_object) summary(myfilter) summary(myfilter, min_num = 2)
Provide summary of a proteomicsFilt S3 object
## S3 method for class 'proteomicsFilt' summary(object, min_num_peps = NULL, degen_peps = FALSE, ...)
## S3 method for class 'proteomicsFilt' summary(object, min_num_peps = NULL, degen_peps = FALSE, ...)
object |
S3 object of class 'proteomicsFilt' created by
|
min_num_peps |
optional integer value between 1 and the maximum
number of peptides that map to a protein in the data. The value specifies
the minimum number of peptides that must map to a protein. Any protein with
less than |
degen_peps |
logical indicator of whether to filter out 'degenerate' or 'redundant' peptides (i.e. peptides mapping to multiple proteins) (TRUE) or not (FALSE). Default value is FALSE. |
... |
further arguments passed to or from other methods |
a summary table giving the number of Observed Proteins per Peptide and number of Observed Peptides per Protein. If min_num_peps is specified and/or degen_peps is TRUE, the number of biomolecules to be filtered with the specified threshold(s) are reported.
Lisa Bramer
library(pmartRdata) myfilt <- proteomics_filter(omicsData = pep_object) summary(myfilt, degen_peps = TRUE) # there are no degenerate peptides to filter out summary(myfilt, min_num_peps = 2)
library(pmartRdata) myfilt <- proteomics_filter(omicsData = pep_object) summary(myfilt, degen_peps = TRUE) # there are no degenerate peptides to filter out summary(myfilt, min_num_peps = 2)
Provide summary of a rmdFilt S3 object
## S3 method for class 'rmdFilt' summary(object, pvalue_threshold = NULL, ...)
## S3 method for class 'rmdFilt' summary(object, pvalue_threshold = NULL, ...)
object |
S3 object of class 'rmdFilt' created by
|
pvalue_threshold |
A threshold for the Robust Mahalanobis Distance (RMD) p-value. All samples with p-values below the threshold will be filtered out. Default value is NULL. Suggested value is 0.0001 |
... |
further arguments passed to or from other methods |
a summary of the p-values associated with running RMD-PAV across all samples. If a p-value threshold is provided the samples that would be filtered at this threshold are reported.
Lisa Bramer, Kelly Stratton
library(pmartRdata) mymetab <- group_designation(omicsData = metab_object, main_effects = "Phenotype") mymetab <- edata_transform(omicsData = mymetab, data_scale = "log2") myfilt <- rmd_filter(omicsData = mymetab) summary(myfilt, pvalue_threshold = 0.001)
library(pmartRdata) mymetab <- group_designation(omicsData = metab_object, main_effects = "Phenotype") mymetab <- edata_transform(omicsData = mymetab, data_scale = "log2") myfilt <- rmd_filter(omicsData = mymetab) summary(myfilt, pvalue_threshold = 0.001)
Provide summary of a RNAFilt S3 object
## S3 method for class 'RNAFilt' summary(object, size_library = NULL, min_nonzero = NULL, ...)
## S3 method for class 'RNAFilt' summary(object, size_library = NULL, min_nonzero = NULL, ...)
object |
S3 object of class 'RNAFilt' created by
|
size_library |
integer cut-off for sample library size (i.e. number of reads). Defaults to NULL. |
min_nonzero |
integer or float between 0 and 1. Cut-off for number of unique biomolecules with non-zero counts or as a proportion of total biomolecules. Defaults to NULL. |
... |
further arguments passed to or from other methods |
a summary table giving the minimum, maximum, 1st and 3rd quartiles, mean and standard deviation for library size (the number of unique biomolecules with non-zero observations per sample), and the proportion of non-zero observations over the total number of biomolecules.
Rachel Richardson
library(pmartRdata) myfilter <- RNA_filter(omicsData = rnaseq_object) summary(myfilter) summary(myfilter, min_nonzero = 2)
library(pmartRdata) myfilter <- RNA_filter(omicsData = rnaseq_object) summary(myfilter) summary(myfilter, min_nonzero = 2)
Provide summary of a totalCountFilt S3 object
## S3 method for class 'totalCountFilt' summary(object, min_count = NULL, ...)
## S3 method for class 'totalCountFilt' summary(object, min_count = NULL, ...)
object |
S3 object of class 'totalCountFilt' created by
|
min_count |
numeric value greater than 1 and less than the value given by filter_object$Total_Count. Values below min_count are filtered out. Default value is NULL. |
... |
further arguments passed to or from other methods |
a summary of the Total Count values, number of zero values, and non-zero values. If a min_count is provided the biomolecules that would be filtered at this threshold are reported.
Rachel Richardson
library(pmartRdata) myfilt <- total_count_filter(omicsData = rnaseq_object) summary(myfilt, min_count = 15)
library(pmartRdata) myfilt <- total_count_filter(omicsData = rnaseq_object) summary(myfilt, min_count = 15)
This function will add the necessary information to omicsData such that survival analysis can be applied to it.
surv_designation( omicsData, t_death, t_progress = NULL, ind_death, ind_progress = NULL, covariates = NULL )
surv_designation( omicsData, t_death, t_progress = NULL, ind_death, ind_progress = NULL, covariates = NULL )
omicsData |
an object of the class 'lipidData', 'metabData', 'pepData',
or 'proData' usually created by |
t_death |
the column in 'f_data' that corresponds to the subjects' time of death |
t_progress |
the column in 'f_data' that corresponds to the subjects' time of progression |
ind_death |
the column in 'f_data' that corresponds to the subjects' status, e.g. alive/dead |
ind_progress |
the column in 'f_data' that corresponds to the subjects' progression status |
covariates |
the column(s) in 'f_data' that correspond to covariates to be included in the survivial analysis |
omicsData is returned with the additional attribute
Bryan Stanfill
Computes the differences for paired data according to the information in the pairing column of f_data. This variable name is also an attribute of the group_DF attribute.
take_diff(omicsData)
take_diff(omicsData)
omicsData |
Any one of the omicsData objects (pepData, metabData, ...). |
A data.frame containing the differences between paired samples.
Evan A Martin
This function returns a totalcountFilt object for use with
applyFilt
total_count_filter(omicsData)
total_count_filter(omicsData)
omicsData |
an object of the class 'seqData', created by
|
Filter is based off of recommendations in edgeR processing, where the low-observed biomolecules are removed from processing. Default recommendation in edgeR is at least 15 total counts observed across samples (i.e., if the sum of counts in a row of e_data is < 15, default edgeR filtering would remove this biomolecule).
An S3 object of class 'totalcountFilt' (data.frame) that contains the molecule identifier and the total count of observed reads for that molecule across all samples.
Rachel Richardson
Chen Y, Lun ATL, and Smyth, GK (2016). From reads to genes to pathways: differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline. F1000Research 5, 1438. http://f1000research.com/articles/5-1438
library(pmartRdata) to_filter <- total_count_filter(omicsData = rnaseq_object) summary(to_filter, min_count = 15)
library(pmartRdata) to_filter <- total_count_filter(omicsData = rnaseq_object) summary(to_filter, min_count = 15)
Specify a boxplot design and cognostics for the abundance boxplot trelliscope. Each boxplot will have its own groups as specified by the first main effect in group_designation. Use "trelli_rnaseq_boxplot" for RNA-Seq data.
trelli_abundance_boxplot( trelliData, cognostics = c("count", "mean abundance"), ggplot_params = NULL, interactive = FALSE, include_points = TRUE, path = .getDownloadsFolder(), name = "Trelliscope", test_mode = FALSE, test_example = 1, single_plot = FALSE, ... )
trelli_abundance_boxplot( trelliData, cognostics = c("count", "mean abundance"), ggplot_params = NULL, interactive = FALSE, include_points = TRUE, path = .getDownloadsFolder(), name = "Trelliscope", test_mode = FALSE, test_example = 1, single_plot = FALSE, ... )
trelliData |
A trelliscope data object made by as.trelliData or as.trelliData.edata, and grouped by trelli_panel_by. Required. |
cognostics |
A vector of cognostic options for each plot. Valid entries are "count", "mean abundance", "median abundance", and "cv abundance". If data are paneled by a biomolecule, the count will be "sample count". If data are paneled by a sample or a biomolecule class, the count will be "biomolecule count". If statRes data is included, "anova p-value" and "fold change" data per comparisons may be added. If grouping information is included, only "sample count" and "mean abundance" will be calculated, along with "anova p-value" and "fold change" if specified. "anova p-value" will not be included if paneling a trelliscope display by a biomolecule class. Default is "sample count" and "mean abundance". |
ggplot_params |
An optional vector of strings of ggplot parameters to the backend ggplot function. For example, c("ylab(”)", "ylim(c(2,20))"). Default is NULL. |
interactive |
A logical argument indicating whether the plots should be interactive or not. Interactive plots are ggplots piped to ggplotly (for now). Default is FALSE. |
include_points |
Add points as a geom_jitter. Default is TRUE. |
path |
The base directory of the trelliscope application. Default is Downloads. |
name |
The name of the display. Default is Trelliscope. |
test_mode |
A logical to return a smaller trelliscope to confirm plot and design. Default is FALSE. |
test_example |
A vector of plot indices to return for test_mode. Default is 1. |
single_plot |
A TRUE/FALSE to indicate whether 1 plot (not a trelliscope) should be returned. Default is FALSE. |
... |
Additional arguments to be passed on to the trelli builder |
No return value, builds a trelliscope display of boxplots that is stored in 'path'
David Degnan, Lisa Bramer
if (interactive()) { library(pmartRdata) trelliData1 <- as.trelliData.edata(e_data = pep_edata, edata_cname = "Peptide", omics_type = "pepData") # Transform the data omicsData <- edata_transform(omicsData = pep_object, data_scale = "log2") # Group the data by condition omicsData <- group_designation(omicsData = omicsData, main_effects = c("Phenotype")) # Apply the IMD ANOVA filter imdanova_Filt <- imdanova_filter(omicsData = omicsData) omicsData <- applyFilt(filter_object = imdanova_Filt, omicsData = omicsData, min_nonmiss_anova = 2) # Normalize my pepData omicsData <- normalize_global(omicsData, "subset_fn" = "all", "norm_fn" = "median", "apply_norm" = TRUE, "backtransform" = TRUE) # Implement the IMD ANOVA method and compute all pairwise comparisons # (i.e. leave the `comparisons` argument NULL) statRes <- imd_anova(omicsData = omicsData, test_method = 'combined') # Generate the trelliData object trelliData2 <- as.trelliData(omicsData = omicsData) trelliData4 <- as.trelliData(omicsData = omicsData, statRes = statRes) # Build the abundance boxplot with an edata file where each panel is a biomolecule. trelli_panel_by(trelliData = trelliData1, panel = "Peptide") %>% trelli_abundance_boxplot(test_mode = TRUE, test_example = 1:10, path = tempdir()) # Build the abundance boxplot wher each panel is a sample. # Include all applicable cognostics. Remove points. trelli_panel_by(trelliData = trelliData1, panel = "Sample") %>% trelli_abundance_boxplot(test_mode = TRUE, test_example = 1:10, include_points = FALSE, cognostics = c("count", "mean abundance", "median abundance", "cv abundance"), path = tempdir() ) # Build the abundance boxplot with an omicsData object. # Let the panels be biomolecules. Here, grouping information is included. trelli_panel_by(trelliData = trelliData2, panel = "Peptide") %>% trelli_abundance_boxplot(test_mode = TRUE, test_example = 1:10, path = tempdir()) # Build the abundance boxplot with an omicsData object. The panel is a biomolecule class, # which is proteins in this case. trelli_panel_by(trelliData = trelliData2, panel = "RazorProtein") %>% trelli_abundance_boxplot(test_mode = TRUE, test_example = 1:10, path = tempdir()) # Build the abundance boxplot with an omicsData and statRes object. # Panel by a biomolecule, and add statistics data to the cognostics trelli_panel_by(trelliData = trelliData4, panel = "Peptide") %>% trelli_abundance_boxplot(test_mode = TRUE, test_example = 1:10, path = tempdir(), cognostics = c("mean abundance", "anova p-value", "fold change")) # Other options include modifying the ggplot trelli_panel_by(trelliData = trelliData1, panel = "Peptide") %>% trelli_abundance_boxplot(test_mode = TRUE, test_example = 1:10, path = tempdir(), ggplot_params = c("ylab('')", "ylim(c(20,30))")) # Or making the plot interactive trelli_panel_by(trelliData = trelliData4, panel = "RazorProtein") %>% trelli_abundance_boxplot( interactive = TRUE, test_mode = TRUE, test_example = 1:10, path = tempdir()) }
if (interactive()) { library(pmartRdata) trelliData1 <- as.trelliData.edata(e_data = pep_edata, edata_cname = "Peptide", omics_type = "pepData") # Transform the data omicsData <- edata_transform(omicsData = pep_object, data_scale = "log2") # Group the data by condition omicsData <- group_designation(omicsData = omicsData, main_effects = c("Phenotype")) # Apply the IMD ANOVA filter imdanova_Filt <- imdanova_filter(omicsData = omicsData) omicsData <- applyFilt(filter_object = imdanova_Filt, omicsData = omicsData, min_nonmiss_anova = 2) # Normalize my pepData omicsData <- normalize_global(omicsData, "subset_fn" = "all", "norm_fn" = "median", "apply_norm" = TRUE, "backtransform" = TRUE) # Implement the IMD ANOVA method and compute all pairwise comparisons # (i.e. leave the `comparisons` argument NULL) statRes <- imd_anova(omicsData = omicsData, test_method = 'combined') # Generate the trelliData object trelliData2 <- as.trelliData(omicsData = omicsData) trelliData4 <- as.trelliData(omicsData = omicsData, statRes = statRes) # Build the abundance boxplot with an edata file where each panel is a biomolecule. trelli_panel_by(trelliData = trelliData1, panel = "Peptide") %>% trelli_abundance_boxplot(test_mode = TRUE, test_example = 1:10, path = tempdir()) # Build the abundance boxplot wher each panel is a sample. # Include all applicable cognostics. Remove points. trelli_panel_by(trelliData = trelliData1, panel = "Sample") %>% trelli_abundance_boxplot(test_mode = TRUE, test_example = 1:10, include_points = FALSE, cognostics = c("count", "mean abundance", "median abundance", "cv abundance"), path = tempdir() ) # Build the abundance boxplot with an omicsData object. # Let the panels be biomolecules. Here, grouping information is included. trelli_panel_by(trelliData = trelliData2, panel = "Peptide") %>% trelli_abundance_boxplot(test_mode = TRUE, test_example = 1:10, path = tempdir()) # Build the abundance boxplot with an omicsData object. The panel is a biomolecule class, # which is proteins in this case. trelli_panel_by(trelliData = trelliData2, panel = "RazorProtein") %>% trelli_abundance_boxplot(test_mode = TRUE, test_example = 1:10, path = tempdir()) # Build the abundance boxplot with an omicsData and statRes object. # Panel by a biomolecule, and add statistics data to the cognostics trelli_panel_by(trelliData = trelliData4, panel = "Peptide") %>% trelli_abundance_boxplot(test_mode = TRUE, test_example = 1:10, path = tempdir(), cognostics = c("mean abundance", "anova p-value", "fold change")) # Other options include modifying the ggplot trelli_panel_by(trelliData = trelliData1, panel = "Peptide") %>% trelli_abundance_boxplot(test_mode = TRUE, test_example = 1:10, path = tempdir(), ggplot_params = c("ylab('')", "ylim(c(20,30))")) # Or making the plot interactive trelli_panel_by(trelliData = trelliData4, panel = "RazorProtein") %>% trelli_abundance_boxplot( interactive = TRUE, test_mode = TRUE, test_example = 1:10, path = tempdir()) }
Specify a plot design and cognostics for the abundance heatmap trelliscope. Data must be grouped by an e_meta column. Main_effects order the y-variables. All statRes data is ignored. For RNA-Seq data, use "trelli_rnaseq_heatmap".
trelli_abundance_heatmap( trelliData, cognostics = c("sample count", "mean abundance", "biomolecule count"), ggplot_params = NULL, interactive = FALSE, path = .getDownloadsFolder(), name = "Trelliscope", test_mode = FALSE, test_example = 1, single_plot = FALSE, ... )
trelli_abundance_heatmap( trelliData, cognostics = c("sample count", "mean abundance", "biomolecule count"), ggplot_params = NULL, interactive = FALSE, path = .getDownloadsFolder(), name = "Trelliscope", test_mode = FALSE, test_example = 1, single_plot = FALSE, ... )
trelliData |
A trelliscope data object made by as.trelliData, and grouped by an emeta variable. Required. |
cognostics |
A vector of cognostic options. Defaults are "sample count", "mean abundance" and "biomolecule count". "sample count" and "mean abundance" are reported per group, and "biomolecule count" is the total number of biomolecules in the biomolecule class (e_meta column). |
ggplot_params |
An optional vector of strings of ggplot parameters to the backend ggplot function. For example, c("ylab(”)", "xlab(”)"). Default is NULL. |
interactive |
A logical argument indicating whether the plots should be interactive or not. Interactive plots are ggplots piped to ggplotly (for now). Default is FALSE. |
path |
The base directory of the trelliscope application. Default is Downloads. |
name |
The name of the display. Default is Trelliscope |
test_mode |
A logical to return a smaller trelliscope to confirm plot and design. Default is FALSE. |
test_example |
A vector of plot indices to return for test_mode. Default is 1. |
single_plot |
A TRUE/FALSE to indicate whether 1 plot (not a trelliscope) should be returned. Default is FALSE. |
... |
Additional arguments to be passed on to the trelli builder |
No return value, builds a trelliscope display of heatmaps that is stored in 'path'
David Degnan, Lisa Bramer
if (interactive()) { library(pmartRdata) # Transform the data omicsData <- edata_transform(omicsData = pep_object, data_scale = "log2") # Group the data by condition omicsData <- group_designation(omicsData = omicsData, main_effects = c("Phenotype")) # Apply the IMD ANOVA filter imdanova_Filt <- imdanova_filter(omicsData = omicsData) omicsData <- applyFilt(filter_object = imdanova_Filt, omicsData = omicsData, min_nonmiss_anova = 2) # Normalize my pepData omicsData <- normalize_global(omicsData, "subset_fn" = "all", "norm_fn" = "median", "apply_norm" = TRUE, "backtransform" = TRUE) # Implement the IMD ANOVA method and compute all pairwise comparisons # (i.e. leave the `comparisons` argument NULL) statRes <- imd_anova(omicsData = omicsData, test_method = 'combined') # Generate the trelliData object trelliData2 <- as.trelliData(omicsData = omicsData) trelliData4 <- as.trelliData(omicsData = omicsData, statRes = statRes) # Build the abundance heatmap with an omicsData object with emeta variables. # Generate trelliData in as.trelliData. trelli_panel_by(trelliData = trelliData2, panel = "RazorProtein") %>% trelli_abundance_heatmap(test_mode = TRUE, test_example = 1:3, path = tempdir()) # Users can modify the plotting function with ggplot parameters and interactivity, # and can also select certain cognostics. trelli_panel_by(trelliData = trelliData4, panel = "RazorProtein") %>% trelli_abundance_heatmap( test_mode = TRUE, test_example = 1:5, ggplot_params = c("ylab('')", "xlab('')"), interactive = TRUE, cognostics = c("biomolecule count"), path = tempdir() ) }
if (interactive()) { library(pmartRdata) # Transform the data omicsData <- edata_transform(omicsData = pep_object, data_scale = "log2") # Group the data by condition omicsData <- group_designation(omicsData = omicsData, main_effects = c("Phenotype")) # Apply the IMD ANOVA filter imdanova_Filt <- imdanova_filter(omicsData = omicsData) omicsData <- applyFilt(filter_object = imdanova_Filt, omicsData = omicsData, min_nonmiss_anova = 2) # Normalize my pepData omicsData <- normalize_global(omicsData, "subset_fn" = "all", "norm_fn" = "median", "apply_norm" = TRUE, "backtransform" = TRUE) # Implement the IMD ANOVA method and compute all pairwise comparisons # (i.e. leave the `comparisons` argument NULL) statRes <- imd_anova(omicsData = omicsData, test_method = 'combined') # Generate the trelliData object trelliData2 <- as.trelliData(omicsData = omicsData) trelliData4 <- as.trelliData(omicsData = omicsData, statRes = statRes) # Build the abundance heatmap with an omicsData object with emeta variables. # Generate trelliData in as.trelliData. trelli_panel_by(trelliData = trelliData2, panel = "RazorProtein") %>% trelli_abundance_heatmap(test_mode = TRUE, test_example = 1:3, path = tempdir()) # Users can modify the plotting function with ggplot parameters and interactivity, # and can also select certain cognostics. trelli_panel_by(trelliData = trelliData4, panel = "RazorProtein") %>% trelli_abundance_heatmap( test_mode = TRUE, test_example = 1:5, ggplot_params = c("ylab('')", "xlab('')"), interactive = TRUE, cognostics = c("biomolecule count"), path = tempdir() ) }
Specify a plot design and cognostics for the abundance histogram trelliscope. Main_effects grouping are ignored. Data must be grouped by edata_cname. For RNA-Seq data, use "trelli_rnaseq_histogram".
trelli_abundance_histogram( trelliData, cognostics = c("sample count", "mean abundance", "median abundance", "cv abundance", "skew abundance"), ggplot_params = NULL, interactive = FALSE, path = .getDownloadsFolder(), name = "Trelliscope", test_mode = FALSE, test_example = 1, single_plot = FALSE, ... )
trelli_abundance_histogram( trelliData, cognostics = c("sample count", "mean abundance", "median abundance", "cv abundance", "skew abundance"), ggplot_params = NULL, interactive = FALSE, path = .getDownloadsFolder(), name = "Trelliscope", test_mode = FALSE, test_example = 1, single_plot = FALSE, ... )
trelliData |
A trelliscope data object made by as.trelliData or as.trelliData.edata, and grouped by edata_cname in trelli_panel_by. Required. |
cognostics |
A vector of cognostic options for each plot. Valid entries are "sample count", "mean abundance", "median abundance", "cv abundance", and "skew abundance". All are included by default. |
ggplot_params |
An optional vector of strings of ggplot parameters to the backend ggplot function. For example, c("ylab(”)", "ylim(c(1,2))"). Default is NULL. |
interactive |
A logical argument indicating whether the plots should be interactive or not. Interactive plots are ggplots piped to ggplotly (for now). Default is FALSE. |
path |
The base directory of the trelliscope application. Default is Downloads. |
name |
The name of the display. Default is Trelliscope. |
test_mode |
A logical to return a smaller trelliscope to confirm plot and design. Default is FALSE. |
test_example |
A vector of plot indices to return for test_mode. Default is 1. |
single_plot |
A TRUE/FALSE to indicate whether 1 plot (not a trelliscope) should be returned. Default is FALSE. |
... |
Additional arguments to be passed on to the trelli builder |
No return value, builds a trelliscope display of histograms that is stored in 'path'
David Degnan, Lisa Bramer
if (interactive()) { library(pmartRdata) trelliData1 <- as.trelliData.edata(e_data = pep_edata, edata_cname = "Peptide", omics_type = "pepData") # Transform the data omicsData <- edata_transform(omicsData = pep_object, data_scale = "log2") # Group the data by condition omicsData <- group_designation(omicsData = omicsData, main_effects = c("Phenotype")) # Apply the IMD ANOVA filter imdanova_Filt <- imdanova_filter(omicsData = omicsData) omicsData <- applyFilt(filter_object = imdanova_Filt, omicsData = omicsData, min_nonmiss_anova = 2) # Normalize my pepData omicsData <- normalize_global(omicsData, "subset_fn" = "all", "norm_fn" = "median", "apply_norm" = TRUE, "backtransform" = TRUE) # Implement the IMD ANOVA method and compute all pairwise comparisons # (i.e. leave the `comparisons` argument NULL) statRes <- imd_anova(omicsData = omicsData, test_method = 'combined') # Generate the trelliData object trelliData2 <- as.trelliData(omicsData = omicsData) trelliData4 <- as.trelliData(omicsData = omicsData, statRes = statRes) # Build the abundance histogram with an edata file. # Generate trelliData in as.trelliData.edata trelli_panel_by(trelliData = trelliData1, panel = "Peptide") %>% trelli_abundance_histogram(test_mode = TRUE, test_example = 1:10, path = tempdir()) # Build the abundance histogram with an omicsData object. # Generate trelliData in as.trelliData trelli_panel_by(trelliData = trelliData2, panel = "Peptide") %>% trelli_abundance_histogram(test_mode = TRUE, test_example = 1:10, path = tempdir()) # Build the abundance histogram with an omicsData and statRes object. # Generate trelliData in as.trelliData. trelli_panel_by(trelliData = trelliData4, panel = "Peptide") %>% trelli_abundance_histogram( test_mode = TRUE, test_example = 1:10, cognostics = "sample count", path = tempdir()) # Users can modify the plotting function with ggplot parameters and interactivity, # and can also select certain cognostics. trelli_panel_by(trelliData = trelliData1, panel = "Peptide") %>% trelli_abundance_histogram(test_mode = TRUE, test_example = 1:10, ggplot_params = c("ylab('')", "xlab('Abundance')"), interactive = TRUE, cognostics = c("mean abundance", "median abundance"), path = tempdir()) }
if (interactive()) { library(pmartRdata) trelliData1 <- as.trelliData.edata(e_data = pep_edata, edata_cname = "Peptide", omics_type = "pepData") # Transform the data omicsData <- edata_transform(omicsData = pep_object, data_scale = "log2") # Group the data by condition omicsData <- group_designation(omicsData = omicsData, main_effects = c("Phenotype")) # Apply the IMD ANOVA filter imdanova_Filt <- imdanova_filter(omicsData = omicsData) omicsData <- applyFilt(filter_object = imdanova_Filt, omicsData = omicsData, min_nonmiss_anova = 2) # Normalize my pepData omicsData <- normalize_global(omicsData, "subset_fn" = "all", "norm_fn" = "median", "apply_norm" = TRUE, "backtransform" = TRUE) # Implement the IMD ANOVA method and compute all pairwise comparisons # (i.e. leave the `comparisons` argument NULL) statRes <- imd_anova(omicsData = omicsData, test_method = 'combined') # Generate the trelliData object trelliData2 <- as.trelliData(omicsData = omicsData) trelliData4 <- as.trelliData(omicsData = omicsData, statRes = statRes) # Build the abundance histogram with an edata file. # Generate trelliData in as.trelliData.edata trelli_panel_by(trelliData = trelliData1, panel = "Peptide") %>% trelli_abundance_histogram(test_mode = TRUE, test_example = 1:10, path = tempdir()) # Build the abundance histogram with an omicsData object. # Generate trelliData in as.trelliData trelli_panel_by(trelliData = trelliData2, panel = "Peptide") %>% trelli_abundance_histogram(test_mode = TRUE, test_example = 1:10, path = tempdir()) # Build the abundance histogram with an omicsData and statRes object. # Generate trelliData in as.trelliData. trelli_panel_by(trelliData = trelliData4, panel = "Peptide") %>% trelli_abundance_histogram( test_mode = TRUE, test_example = 1:10, cognostics = "sample count", path = tempdir()) # Users can modify the plotting function with ggplot parameters and interactivity, # and can also select certain cognostics. trelli_panel_by(trelliData = trelliData1, panel = "Peptide") %>% trelli_abundance_histogram(test_mode = TRUE, test_example = 1:10, ggplot_params = c("ylab('')", "xlab('Abundance')"), interactive = TRUE, cognostics = c("mean abundance", "median abundance"), path = tempdir()) }
Specify a plot design and cognostics for the fold_change barchart trelliscope. Fold change must be grouped by edata_cname.
trelli_foldchange_bar( trelliData, cognostics = c("fold change", "p-value"), p_value_thresh = 0.05, ggplot_params = NULL, interactive = FALSE, path = .getDownloadsFolder(), name = "Trelliscope", test_mode = FALSE, test_example = 1, single_plot = FALSE, ... )
trelli_foldchange_bar( trelliData, cognostics = c("fold change", "p-value"), p_value_thresh = 0.05, ggplot_params = NULL, interactive = FALSE, path = .getDownloadsFolder(), name = "Trelliscope", test_mode = FALSE, test_example = 1, single_plot = FALSE, ... )
trelliData |
A trelliscope data object with statRes results. Required. |
cognostics |
A vector of cognostic options for each plot. Valid entries and the defaults are "fold change" and "p-value". If the omics data is MS/NMR, p-value will be the results from the ANOVA test. If the omics data is sedData, the p-value will be the results from the function "diffexp_seq". |
p_value_thresh |
A value between 0 and 1 to indicate significant biomolecules for p_value_test. Default is 0.05. |
ggplot_params |
An optional vector of strings of ggplot parameters to the backend ggplot function. For example, c("ylab(”)", "xlab(”)"). Default is NULL. |
interactive |
A logical argument indicating whether the plots should be interactive or not. Interactive plots are ggplots piped to ggplotly (for now). Default is FALSE. |
path |
The base directory of the trelliscope application. Default is Downloads. |
name |
The name of the display. Default is Trelliscope. |
test_mode |
A logical to return a smaller trelliscope to confirm plot and design. Default is FALSE. |
test_example |
A vector of plot indices to return for test_mode. Default is 1. |
single_plot |
A TRUE/FALSE to indicate whether 1 plot (not a trelliscope) should be returned. Default is FALSE. |
... |
Additional arguments to be passed on to the trelli builder |
No return value, builds a trelliscope display of fold_change bar plots that is stored in 'path'
David Degnan, Lisa Bramer
if (interactive()) { library(pmartRdata) # Transform the data omicsData <- edata_transform(omicsData = pep_object, data_scale = "log2") # Group the data by condition omicsData <- group_designation(omicsData = omicsData, main_effects = c("Phenotype")) # Apply the IMD ANOVA filter imdanova_Filt <- imdanova_filter(omicsData = omicsData) omicsData <- applyFilt(filter_object = imdanova_Filt, omicsData = omicsData, min_nonmiss_anova = 2) # Normalize my pepData omicsData <- normalize_global(omicsData, "subset_fn" = "all", "norm_fn" = "median", "apply_norm" = TRUE, "backtransform" = TRUE) # Implement the IMD ANOVA method and compute all pairwise comparisons # (i.e. leave the `comparisons` argument NULL) statRes <- imd_anova(omicsData = omicsData, test_method = 'combined') # Generate the trelliData object trelliData3 <- as.trelliData(statRes = statRes) trelliData4 <- as.trelliData(omicsData = omicsData, statRes = statRes) # Build fold_change bar plot with statRes data grouped by edata_colname. trelli_panel_by(trelliData = trelliData3, panel = "Peptide") %>% trelli_foldchange_bar(test_mode = TRUE, test_example = 1:10, path = tempdir()) }
if (interactive()) { library(pmartRdata) # Transform the data omicsData <- edata_transform(omicsData = pep_object, data_scale = "log2") # Group the data by condition omicsData <- group_designation(omicsData = omicsData, main_effects = c("Phenotype")) # Apply the IMD ANOVA filter imdanova_Filt <- imdanova_filter(omicsData = omicsData) omicsData <- applyFilt(filter_object = imdanova_Filt, omicsData = omicsData, min_nonmiss_anova = 2) # Normalize my pepData omicsData <- normalize_global(omicsData, "subset_fn" = "all", "norm_fn" = "median", "apply_norm" = TRUE, "backtransform" = TRUE) # Implement the IMD ANOVA method and compute all pairwise comparisons # (i.e. leave the `comparisons` argument NULL) statRes <- imd_anova(omicsData = omicsData, test_method = 'combined') # Generate the trelliData object trelliData3 <- as.trelliData(statRes = statRes) trelliData4 <- as.trelliData(omicsData = omicsData, statRes = statRes) # Build fold_change bar plot with statRes data grouped by edata_colname. trelli_panel_by(trelliData = trelliData3, panel = "Peptide") %>% trelli_foldchange_bar(test_mode = TRUE, test_example = 1:10, path = tempdir()) }
Specify a plot design and cognostics for the fold_change boxplot trelliscope. Fold change must be grouped by an emeta column, which means both an omicsData object and statRes are required to make this plot.
trelli_foldchange_boxplot( trelliData, cognostics = "biomolecule count", p_value_thresh = 0.05, include_points = TRUE, ggplot_params = NULL, interactive = FALSE, path = .getDownloadsFolder(), name = "Trelliscope", test_mode = FALSE, test_example = 1, single_plot = FALSE, ... )
trelli_foldchange_boxplot( trelliData, cognostics = "biomolecule count", p_value_thresh = 0.05, include_points = TRUE, ggplot_params = NULL, interactive = FALSE, path = .getDownloadsFolder(), name = "Trelliscope", test_mode = FALSE, test_example = 1, single_plot = FALSE, ... )
trelliData |
A trelliscope data object with omicsData and statRes results. Required. |
cognostics |
A vector of cognostic options for each plot. Valid entries are "biomolecule count", "proportion significant", "mean fold change", and "sd fold change". Default is "biomolecule count". |
p_value_thresh |
A value between 0 and 1 to indicate significant biomolecules for the anova (MS/NMR) or diffexp_seq (RNA-seq) test. Default is 0.05. |
include_points |
Add points. Default is TRUE. |
ggplot_params |
An optional vector of strings of ggplot parameters to the backend ggplot function. For example, c("ylab(”)", "xlab(”)"). Default is NULL. |
interactive |
A logical argument indicating whether the plots should be interactive or not. Interactive plots are ggplots piped to ggplotly (for now). Default is FALSE. |
path |
The base directory of the trelliscope application. Default is Downloads. |
name |
The name of the display. Default is Trelliscope. |
test_mode |
A logical to return a smaller trelliscope to confirm plot and design. Default is FALSE. |
test_example |
A vector of plot indices to return for test_mode. Default is 1. |
single_plot |
A TRUE/FALSE to indicate whether 1 plot (not a trelliscope) should be returned. Default is FALSE. |
... |
Additional arguments to be passed on to the trelli builder |
No return value, builds a trelliscope display of fold_change boxplots that is stored in 'path'
David Degnan, Lisa Bramer
if (interactive()) { library(pmartRdata) # Transform the data omicsData <- edata_transform(omicsData = pep_object, data_scale = "log2") # Group the data by condition omicsData <- group_designation(omicsData = omicsData, main_effects = c("Phenotype")) # Apply the IMD ANOVA filter imdanova_Filt <- imdanova_filter(omicsData = omicsData) omicsData <- applyFilt(filter_object = imdanova_Filt, omicsData = omicsData, min_nonmiss_anova = 2) # Normalize my pepData omicsData <- normalize_global(omicsData, "subset_fn" = "all", "norm_fn" = "median", "apply_norm" = TRUE, "backtransform" = TRUE) # Implement the IMD ANOVA method and compute all pairwise comparisons # (i.e. leave the `comparisons` argument NULL) statRes <- imd_anova(omicsData = omicsData, test_method = 'combined') # Generate the trelliData object trelliData4 <- as.trelliData(omicsData = omicsData, statRes = statRes) # Build fold_change box plot with statRes data grouped by edata_colname. trelli_panel_by(trelliData = trelliData4, panel = "RazorProtein") %>% trelli_foldchange_boxplot(test_mode = TRUE, test_example = 1:10, cognostics = c("biomolecule count", "proportion significant", "mean fold change", "sd fold change"), path = tempdir() ) ##################### ## RNA-SEQ EXAMPLE ## ##################### # Build fold_change box plot with statRes data grouped by edata_colname. trelli_panel_by(trelliData = trelliData_seq4, panel = "Gene") %>% trelli_foldchange_boxplot(test_mode = TRUE, test_example = c(16823, 16890, 17680, 17976, 17981, 19281), cognostics = c("biomolecule count", "proportion significant", "mean fold change", "sd fold change"), path = tempdir() ) }
if (interactive()) { library(pmartRdata) # Transform the data omicsData <- edata_transform(omicsData = pep_object, data_scale = "log2") # Group the data by condition omicsData <- group_designation(omicsData = omicsData, main_effects = c("Phenotype")) # Apply the IMD ANOVA filter imdanova_Filt <- imdanova_filter(omicsData = omicsData) omicsData <- applyFilt(filter_object = imdanova_Filt, omicsData = omicsData, min_nonmiss_anova = 2) # Normalize my pepData omicsData <- normalize_global(omicsData, "subset_fn" = "all", "norm_fn" = "median", "apply_norm" = TRUE, "backtransform" = TRUE) # Implement the IMD ANOVA method and compute all pairwise comparisons # (i.e. leave the `comparisons` argument NULL) statRes <- imd_anova(omicsData = omicsData, test_method = 'combined') # Generate the trelliData object trelliData4 <- as.trelliData(omicsData = omicsData, statRes = statRes) # Build fold_change box plot with statRes data grouped by edata_colname. trelli_panel_by(trelliData = trelliData4, panel = "RazorProtein") %>% trelli_foldchange_boxplot(test_mode = TRUE, test_example = 1:10, cognostics = c("biomolecule count", "proportion significant", "mean fold change", "sd fold change"), path = tempdir() ) ##################### ## RNA-SEQ EXAMPLE ## ##################### # Build fold_change box plot with statRes data grouped by edata_colname. trelli_panel_by(trelliData = trelliData_seq4, panel = "Gene") %>% trelli_foldchange_boxplot(test_mode = TRUE, test_example = c(16823, 16890, 17680, 17976, 17981, 19281), cognostics = c("biomolecule count", "proportion significant", "mean fold change", "sd fold change"), path = tempdir() ) }
Specify a plot design and cognostics for the fold_change heatmap trelliscope. Fold change must be grouped by an emeta column, which means both an omicsData object and statRes are required to make this plot.
trelli_foldchange_heatmap( trelliData, cognostics = "biomolecule count", p_value_thresh = 0.05, ggplot_params = NULL, interactive = FALSE, path = .getDownloadsFolder(), name = "Trelliscope", test_mode = FALSE, test_example = 1, single_plot = FALSE, ... )
trelli_foldchange_heatmap( trelliData, cognostics = "biomolecule count", p_value_thresh = 0.05, ggplot_params = NULL, interactive = FALSE, path = .getDownloadsFolder(), name = "Trelliscope", test_mode = FALSE, test_example = 1, single_plot = FALSE, ... )
trelliData |
A trelliscope data object with omicsData and statRes results. Required. |
cognostics |
A vector of cognostic options for each plot. Valid entries are "biomolecule count", "proportion significant", "mean fold change", and "sd fold change". Default is "biomolecule count". |
p_value_thresh |
A value between 0 and 1 to indicate significant biomolecules for the anova (MS/NMR) or diffexp_seq (RNA-seq) test. Default is 0.05. |
ggplot_params |
An optional vector of strings of ggplot parameters to the backend ggplot function. For example, c("ylab(”)", "xlab(”)"). Default is NULL. |
interactive |
A logical argument indicating whether the plots should be interactive or not. Interactive plots are ggplots piped to ggplotly (for now). Default is FALSE. |
path |
The base directory of the trelliscope application. Default is Downloads. |
name |
The name of the display. Default is Trelliscope. |
test_mode |
A logical to return a smaller trelliscope to confirm plot and design. Default is FALSE. |
test_example |
A vector of plot indices to return for test_mode. Default is 1. |
single_plot |
A TRUE/FALSE to indicate whether 1 plot (not a trelliscope) should be returned. Default is FALSE. |
... |
Additional arguments to be passed on to the trelli builder |
No return value, builds a trelliscope display of fold-change heatmaps that is stored in 'path'
David Degnan, Lisa Bramer
if (interactive()) { library(pmartRdata) # Transform the data omicsData <- edata_transform(omicsData = pep_object, data_scale = "log2") # Group the data by condition omicsData <- group_designation(omicsData = omicsData, main_effects = c("Phenotype")) # Apply the IMD ANOVA filter imdanova_Filt <- imdanova_filter(omicsData = omicsData) omicsData <- applyFilt(filter_object = imdanova_Filt, omicsData = omicsData, min_nonmiss_anova = 2) # Normalize my pepData omicsData <- normalize_global(omicsData, "subset_fn" = "all", "norm_fn" = "median", "apply_norm" = TRUE, "backtransform" = TRUE) # Implement the IMD ANOVA method and compute all pairwise comparisons # (i.e. leave the `comparisons` argument NULL) statRes <- imd_anova(omicsData = omicsData, test_method = 'combined') # Generate the trelliData object trelliData4 <- as.trelliData(omicsData = omicsData, statRes = statRes) ########################## ## MS/NMR OMICS EXAMPLE ## ########################## # Build fold_change bar plot with statRes data grouped by edata_colname. trelli_panel_by(trelliData = trelliData4, panel = "RazorProtein") %>% trelli_foldchange_heatmap(test_mode = TRUE, test_example = 1:10, path = tempdir()) }
if (interactive()) { library(pmartRdata) # Transform the data omicsData <- edata_transform(omicsData = pep_object, data_scale = "log2") # Group the data by condition omicsData <- group_designation(omicsData = omicsData, main_effects = c("Phenotype")) # Apply the IMD ANOVA filter imdanova_Filt <- imdanova_filter(omicsData = omicsData) omicsData <- applyFilt(filter_object = imdanova_Filt, omicsData = omicsData, min_nonmiss_anova = 2) # Normalize my pepData omicsData <- normalize_global(omicsData, "subset_fn" = "all", "norm_fn" = "median", "apply_norm" = TRUE, "backtransform" = TRUE) # Implement the IMD ANOVA method and compute all pairwise comparisons # (i.e. leave the `comparisons` argument NULL) statRes <- imd_anova(omicsData = omicsData, test_method = 'combined') # Generate the trelliData object trelliData4 <- as.trelliData(omicsData = omicsData, statRes = statRes) ########################## ## MS/NMR OMICS EXAMPLE ## ########################## # Build fold_change bar plot with statRes data grouped by edata_colname. trelli_panel_by(trelliData = trelliData4, panel = "RazorProtein") %>% trelli_foldchange_heatmap(test_mode = TRUE, test_example = 1:10, path = tempdir()) }
Specify a plot design and cognostics for the fold_change volcano trelliscope. Fold change must be grouped by an emeta column, which means both an omicsData object and statRes are required to make this plot.
trelli_foldchange_volcano( trelliData, comparison = "all", cognostics = "biomolecule count", p_value_thresh = 0.05, ggplot_params = NULL, interactive = FALSE, path = .getDownloadsFolder(), name = "Trelliscope", test_mode = FALSE, test_example = 1, single_plot = FALSE, ... )
trelli_foldchange_volcano( trelliData, comparison = "all", cognostics = "biomolecule count", p_value_thresh = 0.05, ggplot_params = NULL, interactive = FALSE, path = .getDownloadsFolder(), name = "Trelliscope", test_mode = FALSE, test_example = 1, single_plot = FALSE, ... )
trelliData |
A trelliscope data object with omicsData and statRes results. Required. |
comparison |
The specific comparison to visualize in the fold_change volcano. See attr(statRes, "comparisons") for the available options. If all comparisons are desired, the word "all" can be used, which is the default. Required. |
cognostics |
A vector of cognostic options for each plot. Valid entries are "biomolecule count", "proportion significant", "proportion significant up", and "proportion significant down". Default is "biomolecule count". |
p_value_thresh |
A value between 0 and 1 to indicate significant biomolecules for p_value_test. Default is 0.05. |
ggplot_params |
An optional vector of strings of ggplot parameters to the backend ggplot function. For example, c("ylab(”)", "xlab(”)"). Default is NULL. |
interactive |
A logical argument indicating whether the plots should be interactive or not. Interactive plots are ggplots piped to ggplotly (for now). Default is FALSE. |
path |
The base directory of the trelliscope application. Default is Downloads. |
name |
The name of the display. Default is Trelliscope. |
test_mode |
A logical to return a smaller trelliscope to confirm plot and design. Default is FALSE. |
test_example |
A vector of plot indices to return for test_mode. Default is 1. |
single_plot |
A TRUE/FALSE to indicate whether 1 plot (not a trelliscope) should be returned. Default is FALSE. |
... |
Additional arguments to be passed on to the trelli builder |
No return value, builds a trelliscope display of fold-change volcano plots that is stored in 'path'
David Degnan, Lisa Bramer
if (interactive()) { library(pmartRdata) # Transform the data omicsData <- edata_transform(omicsData = pep_object, data_scale = "log2") # Group the data by condition omicsData <- group_designation(omicsData = omicsData, main_effects = c("Phenotype")) # Apply the IMD ANOVA filter imdanova_Filt <- imdanova_filter(omicsData = omicsData) omicsData <- applyFilt(filter_object = imdanova_Filt, omicsData = omicsData, min_nonmiss_anova = 2) # Normalize my pepData omicsData <- normalize_global(omicsData, "subset_fn" = "all", "norm_fn" = "median", "apply_norm" = TRUE, "backtransform" = TRUE) # Implement the IMD ANOVA method and compute all pairwise comparisons # (i.e. leave the `comparisons` argument NULL) statRes <- imd_anova(omicsData = omicsData, test_method = 'combined') # Generate the trelliData object trelliData4 <- as.trelliData(omicsData = omicsData, statRes = statRes) ## Build fold_change bar plot with statRes data grouped by edata_colname. trelli_panel_by(trelliData = trelliData4, panel = "RazorProtein") %>% trelli_foldchange_volcano(comparison = "all", test_mode = TRUE, test_example = 1:10, cognostics = c("biomolecule count", "proportion significant"), path = tempdir()) }
if (interactive()) { library(pmartRdata) # Transform the data omicsData <- edata_transform(omicsData = pep_object, data_scale = "log2") # Group the data by condition omicsData <- group_designation(omicsData = omicsData, main_effects = c("Phenotype")) # Apply the IMD ANOVA filter imdanova_Filt <- imdanova_filter(omicsData = omicsData) omicsData <- applyFilt(filter_object = imdanova_Filt, omicsData = omicsData, min_nonmiss_anova = 2) # Normalize my pepData omicsData <- normalize_global(omicsData, "subset_fn" = "all", "norm_fn" = "median", "apply_norm" = TRUE, "backtransform" = TRUE) # Implement the IMD ANOVA method and compute all pairwise comparisons # (i.e. leave the `comparisons` argument NULL) statRes <- imd_anova(omicsData = omicsData, test_method = 'combined') # Generate the trelliData object trelliData4 <- as.trelliData(omicsData = omicsData, statRes = statRes) ## Build fold_change bar plot with statRes data grouped by edata_colname. trelli_panel_by(trelliData = trelliData4, panel = "RazorProtein") %>% trelli_foldchange_volcano(comparison = "all", test_mode = TRUE, test_example = 1:10, cognostics = c("biomolecule count", "proportion significant"), path = tempdir()) }
Specify a plot design and cognostics for the missing barchart trelliscope. Missingness is displayed per panel_by variable. Main_effects data is used to split samples when applicable. For RNA-Seq data, use "trelli rnaseq nonzero bar".
trelli_missingness_bar( trelliData, cognostics = c("total count", "observed count", "observed proportion"), proportion = TRUE, ggplot_params = NULL, interactive = FALSE, path = .getDownloadsFolder(), name = "Trelliscope", test_mode = FALSE, test_example = 1, single_plot = FALSE, ... )
trelli_missingness_bar( trelliData, cognostics = c("total count", "observed count", "observed proportion"), proportion = TRUE, ggplot_params = NULL, interactive = FALSE, path = .getDownloadsFolder(), name = "Trelliscope", test_mode = FALSE, test_example = 1, single_plot = FALSE, ... )
trelliData |
A trelliscope data object made by as.trelliData.edata or as.trelliData. Required. |
cognostics |
A vector of cognostic options for each plot. Defaults are "total count", "observed count", and "observed proportion". If grouping data is included, all cognostics will be reported per group. If the trelliData is paneled by a biomolecule, the counts and proportion we be samples. If paneled by a sample or biomolecule class, the counts and proportions will be biomolecules. If statRes data is included, "g-test p-value" may be included. |
proportion |
A logical to determine whether plots should display counts or proportions. Default is TRUE. |
ggplot_params |
An optional vector of strings of ggplot parameters to the backend ggplot function. For example, c("ylab(”)", "xlab(”)"). Default is NULL. |
interactive |
A logical argument indicating whether the plots should be interactive or not. Interactive plots are ggplots piped to ggplotly (for now). Default is FALSE. |
path |
The base directory of the trelliscope application. Default is Downloads. |
name |
The name of the display. Default is Trelliscope. |
test_mode |
A logical to return a smaller trelliscope to confirm plot and design. Default is FALSE. |
test_example |
A vector of plot indices to return for test_mode. Default is 1. |
single_plot |
A TRUE/FALSE to indicate whether 1 plot (not a trelliscope) should be returned. Default is FALSE. |
... |
Additional arguments to be passed on to the trelli builder |
No return value, builds a trelliscope display of missingness bar charts that is stored in 'path'
David Degnan, Lisa Bramer
if (interactive()) { library(pmartRdata) trelliData1 <- as.trelliData.edata(e_data = pep_edata, edata_cname = "Peptide", omics_type = "pepData") # Transform the data omicsData <- edata_transform(omicsData = pep_object, data_scale = "log2") # Group the data by condition omicsData <- group_designation(omicsData = omicsData, main_effects = c("Phenotype")) # Apply the IMD ANOVA filter imdanova_Filt <- imdanova_filter(omicsData = omicsData) omicsData <- applyFilt(filter_object = imdanova_Filt, omicsData = omicsData, min_nonmiss_anova = 2) # Normalize my pepData omicsData <- normalize_global(omicsData, "subset_fn" = "all", "norm_fn" = "median", "apply_norm" = TRUE, "backtransform" = TRUE) # Implement the IMD ANOVA method and compute all pairwise comparisons # (i.e. leave the `comparisons` argument NULL) statRes <- imd_anova(omicsData = omicsData, test_method = 'combined') # Generate the trelliData object trelliData2 <- as.trelliData(omicsData = omicsData) trelliData3 <- as.trelliData(statRes = statRes) trelliData4 <- as.trelliData(omicsData = omicsData, statRes = statRes) # Build the missingness bar plot with an edata file. Generate trelliData in as.trelliData.edata trelli_panel_by(trelliData = trelliData1, panel = "Peptide") %>% trelli_missingness_bar(test_mode = TRUE, test_example = 1:10, path = tempdir()) trelli_panel_by(trelliData = trelliData1, panel = "Sample") %>% trelli_missingness_bar(test_mode = TRUE, test_example = 1:10, cognostics = "observed proportion", path = tempdir()) # Build the missingness bar plot with an omicsData object. Generate trelliData in as.trelliData trelli_panel_by(trelliData = trelliData2, panel = "Peptide") %>% trelli_missingness_bar(test_mode = TRUE, test_example = 1:10, path = tempdir()) # Build the missingness bar plot with a statRes object. Generate trelliData in as.trelliData trelli_panel_by(trelliData = trelliData3, panel = "Peptide") %>% trelli_missingness_bar(test_mode = TRUE, test_example = 1:10, path = tempdir(), cognostics = c("observed proportion", "g-test p-value")) # Build the missingness bar plot with an omicsData and statRes object. # Generate trelliData in as.trelliData. trelli_panel_by(trelliData = trelliData4, panel = "RazorProtein") %>% trelli_missingness_bar(test_mode = TRUE, test_example = 1:10, path = tempdir()) # Or making the plot interactive trelli_panel_by(trelliData = trelliData2, panel = "Peptide") %>% trelli_missingness_bar( test_mode = TRUE, test_example = 1:5, interactive = TRUE, path = tempdir()) # Or visualize only count data trelli_panel_by(trelliData = trelliData2, panel = "Peptide") %>% trelli_missingness_bar( test_mode = TRUE, test_example = 1:5, cognostics = "observed count", proportion = FALSE, path = tempdir() ) }
if (interactive()) { library(pmartRdata) trelliData1 <- as.trelliData.edata(e_data = pep_edata, edata_cname = "Peptide", omics_type = "pepData") # Transform the data omicsData <- edata_transform(omicsData = pep_object, data_scale = "log2") # Group the data by condition omicsData <- group_designation(omicsData = omicsData, main_effects = c("Phenotype")) # Apply the IMD ANOVA filter imdanova_Filt <- imdanova_filter(omicsData = omicsData) omicsData <- applyFilt(filter_object = imdanova_Filt, omicsData = omicsData, min_nonmiss_anova = 2) # Normalize my pepData omicsData <- normalize_global(omicsData, "subset_fn" = "all", "norm_fn" = "median", "apply_norm" = TRUE, "backtransform" = TRUE) # Implement the IMD ANOVA method and compute all pairwise comparisons # (i.e. leave the `comparisons` argument NULL) statRes <- imd_anova(omicsData = omicsData, test_method = 'combined') # Generate the trelliData object trelliData2 <- as.trelliData(omicsData = omicsData) trelliData3 <- as.trelliData(statRes = statRes) trelliData4 <- as.trelliData(omicsData = omicsData, statRes = statRes) # Build the missingness bar plot with an edata file. Generate trelliData in as.trelliData.edata trelli_panel_by(trelliData = trelliData1, panel = "Peptide") %>% trelli_missingness_bar(test_mode = TRUE, test_example = 1:10, path = tempdir()) trelli_panel_by(trelliData = trelliData1, panel = "Sample") %>% trelli_missingness_bar(test_mode = TRUE, test_example = 1:10, cognostics = "observed proportion", path = tempdir()) # Build the missingness bar plot with an omicsData object. Generate trelliData in as.trelliData trelli_panel_by(trelliData = trelliData2, panel = "Peptide") %>% trelli_missingness_bar(test_mode = TRUE, test_example = 1:10, path = tempdir()) # Build the missingness bar plot with a statRes object. Generate trelliData in as.trelliData trelli_panel_by(trelliData = trelliData3, panel = "Peptide") %>% trelli_missingness_bar(test_mode = TRUE, test_example = 1:10, path = tempdir(), cognostics = c("observed proportion", "g-test p-value")) # Build the missingness bar plot with an omicsData and statRes object. # Generate trelliData in as.trelliData. trelli_panel_by(trelliData = trelliData4, panel = "RazorProtein") %>% trelli_missingness_bar(test_mode = TRUE, test_example = 1:10, path = tempdir()) # Or making the plot interactive trelli_panel_by(trelliData = trelliData2, panel = "Peptide") %>% trelli_missingness_bar( test_mode = TRUE, test_example = 1:5, interactive = TRUE, path = tempdir()) # Or visualize only count data trelli_panel_by(trelliData = trelliData2, panel = "Peptide") %>% trelli_missingness_bar( test_mode = TRUE, test_example = 1:5, cognostics = "observed count", proportion = FALSE, path = tempdir() ) }
Allows for grouping omics or stats data for downstream plotting and cognostic functions
trelli_panel_by(trelliData, panel)
trelli_panel_by(trelliData, panel)
trelliData |
A trelliscope data object made by as.trelliData or as.trelliData.edata. Required. |
panel |
The name of a column in trelliData to panel the data by. Required. |
A trelliData object with attributes "panel_by_omics" or "panel_by_stat" to determine which columns to divide the data by.
David Degnan, Lisa Bramer
library(pmartRdata) trelliData1 <- as.trelliData.edata(e_data = pep_edata, edata_cname = "Peptide", omics_type = "pepData") # Transform the data omicsData <- edata_transform(omicsData = pep_object, data_scale = "log2") # Group the data by condition omicsData <- group_designation(omicsData = omicsData, main_effects = c("Phenotype")) # Apply the IMD ANOVA filter imdanova_Filt <- imdanova_filter(omicsData = omicsData) omicsData <- applyFilt(filter_object = imdanova_Filt, omicsData = omicsData, min_nonmiss_anova = 2) # Normalize my pepData omicsData <- normalize_global(omicsData, "subset_fn" = "all", "norm_fn" = "median", "apply_norm" = TRUE, "backtransform" = TRUE) # Implement the IMD ANOVA method and compute all pairwise comparisons # (i.e. leave the `comparisons` argument NULL) statRes <- imd_anova(omicsData = omicsData, test_method = 'combined') # Generate the trelliData object trelliData2 <- as.trelliData(omicsData = omicsData) trelliData3 <- as.trelliData(statRes = statRes) trelliData4 <- as.trelliData(omicsData = omicsData, statRes = statRes) ## "panel_by" with an edata file. trelli_panel_by(trelliData = trelliData1, panel = "Peptide") trelli_panel_by(trelliData = trelliData1, panel = "Sample") ## "panel_by" with trelliData containing omicsData. ## Generate trelliData2 using the example code for as.trelliData trelli_panel_by(trelliData = trelliData2, panel = "Peptide") trelli_panel_by(trelliData = trelliData2, panel = "RazorProtein") ## "panel_by" with trelliData containing statRes. ## Generate trelliData3 using the example code for as.trelliData trelli_panel_by(trelliData = trelliData3, panel = "Peptide") ## "panel_by" with trelliData containing both omicsData and statRes. ## Generate trelliData4 using the example code for as.trelliData trelli_panel_by(trelliData = trelliData4, panel = "Peptide") trelli_panel_by(trelliData = trelliData4, panel = "RazorProtein") trelli_panel_by(trelliData = trelliData4, panel = "SampleID")
library(pmartRdata) trelliData1 <- as.trelliData.edata(e_data = pep_edata, edata_cname = "Peptide", omics_type = "pepData") # Transform the data omicsData <- edata_transform(omicsData = pep_object, data_scale = "log2") # Group the data by condition omicsData <- group_designation(omicsData = omicsData, main_effects = c("Phenotype")) # Apply the IMD ANOVA filter imdanova_Filt <- imdanova_filter(omicsData = omicsData) omicsData <- applyFilt(filter_object = imdanova_Filt, omicsData = omicsData, min_nonmiss_anova = 2) # Normalize my pepData omicsData <- normalize_global(omicsData, "subset_fn" = "all", "norm_fn" = "median", "apply_norm" = TRUE, "backtransform" = TRUE) # Implement the IMD ANOVA method and compute all pairwise comparisons # (i.e. leave the `comparisons` argument NULL) statRes <- imd_anova(omicsData = omicsData, test_method = 'combined') # Generate the trelliData object trelliData2 <- as.trelliData(omicsData = omicsData) trelliData3 <- as.trelliData(statRes = statRes) trelliData4 <- as.trelliData(omicsData = omicsData, statRes = statRes) ## "panel_by" with an edata file. trelli_panel_by(trelliData = trelliData1, panel = "Peptide") trelli_panel_by(trelliData = trelliData1, panel = "Sample") ## "panel_by" with trelliData containing omicsData. ## Generate trelliData2 using the example code for as.trelliData trelli_panel_by(trelliData = trelliData2, panel = "Peptide") trelli_panel_by(trelliData = trelliData2, panel = "RazorProtein") ## "panel_by" with trelliData containing statRes. ## Generate trelliData3 using the example code for as.trelliData trelli_panel_by(trelliData = trelliData3, panel = "Peptide") ## "panel_by" with trelliData containing both omicsData and statRes. ## Generate trelliData4 using the example code for as.trelliData trelli_panel_by(trelliData = trelliData4, panel = "Peptide") trelli_panel_by(trelliData = trelliData4, panel = "RazorProtein") trelli_panel_by(trelliData = trelliData4, panel = "SampleID")
This function runs necessary checks for pmartR trelliscope plotting functions. It cleans any parameters (rounding numerics to integers, etc.), and returns them.
trelli_precheck( trelliData, trelliCheck, cognostics, acceptable_cognostics, ggplot_params, interactive, test_mode, test_example, single_plot, seqDataCheck, seqText = NULL, p_value_skip = FALSE, p_value_thresh = NULL )
trelli_precheck( trelliData, trelliCheck, cognostics, acceptable_cognostics, ggplot_params, interactive, test_mode, test_example, single_plot, seqDataCheck, seqText = NULL, p_value_skip = FALSE, p_value_thresh = NULL )
trelliData |
trelliData object the user passed to a plotting function |
trelliCheck |
Check if the object type is supposed to be "omics", "statRes" or put a vector of both |
cognostics |
A vector of the user provided cognstics |
acceptable_cognostics |
The acceptable cognostics for this plot |
ggplot_params |
The vector of user provided ggplots |
interactive |
The user provided logical for whether the plot should be interactive |
test_mode |
The user provided logical for whether a smaller trelliscope should be returned |
test_example |
The user provided vector of plot indices |
single_plot |
The user provided logical for whether a single plot should be returned |
seqDataCheck |
Whether seqData is permitted for this plot. "no" means that seqData cannot be used at all, "permissible" means that seqData can be used, and "required" means that seqData is required for the plotting function. |
seqText |
Text that should appear when seqDataCheck is violated. |
p_value_skip |
Whether to skip specific p_value checks. |
p_value_thresh |
The user provided threshold for plotting significant p-values. |
No return value, validates a trelliData object before passing it to builder functions.
This use-case-specific function allows users to filter down their plots to a specified p-value IF statistics data has been included. This function is mostly relevant to the MODE application.
trelli_pvalue_filter( trelliData, p_value_test = "anova", p_value_thresh = 0.05, comparison = NULL )
trelli_pvalue_filter( trelliData, p_value_test = "anova", p_value_thresh = 0.05, comparison = NULL )
trelliData |
A trelliData object with statistics results (statRes). Required. |
p_value_test |
A string to indicate which p_values to plot. Acceptable entries are "anova" or "gtest". Default is "anova". Unlike the plotting functions, here p_value_test cannot be null. Required unless the data is seqData, when this parameter will be ignored. |
p_value_thresh |
A value between 0 and 1 to indicate the p-value threshold at which to keep plots. Default is 0.05. Required. |
comparison |
The specific comparison to filter significant values to. Can be null. See attr(statRes, "comparisons") for the available options. Optional. |
A paneled trelliData object with only plots corresponding to significant p-values from a statistical test.
David Degnan, Lisa Bramer
library(pmartRdata) # Transform the data omicsData <- edata_transform(omicsData = pep_object, data_scale = "log2") # Group the data by condition omicsData <- group_designation(omicsData = omicsData, main_effects = c("Phenotype")) # Apply the IMD ANOVA filter imdanova_Filt <- imdanova_filter(omicsData = omicsData) omicsData <- applyFilt(filter_object = imdanova_Filt, omicsData = omicsData, min_nonmiss_anova = 2) # Normalize my pepData omicsData <- normalize_global(omicsData, "subset_fn" = "all", "norm_fn" = "median", "apply_norm" = TRUE, "backtransform" = TRUE) # Implement the IMD ANOVA method and compute all pairwise comparisons # (i.e. leave the `comparisons` argument NULL) statRes <- imd_anova(omicsData = omicsData, test_method = 'combined') # Generate the trelliData object trelliData3 <- as.trelliData(statRes = statRes) trelliData4 <- as.trelliData(omicsData = omicsData, statRes = statRes) ########################### ## MS/NMR OMICS EXAMPLES ## ########################### # Filter a trelliData object with only statistics results, while not caring about a comparison trelli_pvalue_filter(trelliData3, p_value_test = "anova", p_value_thresh = 0.1) # Filter a trelliData object with only statistics results, while caring about a specific comparison trelli_pvalue_filter( trelliData3, p_value_test = "anova", p_value_thresh = 0.1, comparison = "Phenotype3_vs_Phenotype2") # Filter both a omicsData and statRes object, while not caring about a specific comparison trelli_pvalue_filter(trelliData4, p_value_test = "anova", p_value_thresh = 0.001) # Filter both a omicsData and statRes object, while caring about a specific comparison trelli_pvalue_filter( trelliData4, p_value_test = "gtest", p_value_thresh = 0.25, comparison = "Phenotype3_vs_Phenotype2" ) ###################### ## RNA-SEQ EXAMPLES ## ###################### #' # Group data by condition omicsData_seq <- group_designation(omicsData = rnaseq_object, main_effects = c("Virus")) # Filter low transcript counts omicsData_seq <- applyFilt( filter_object = total_count_filter(omicsData = omicsData_seq), omicsData = omicsData_seq, min_count = 15 ) # Select a normalization and statistics method (options are 'edgeR', 'DESeq2', and 'voom'). # See ?difexp_seq for more details statRes_seq <- diffexp_seq(omicsData = omicsData_seq, method = "voom") # Generate the trelliData object trelliData_seq3 <- as.trelliData(statRes = statRes_seq) trelliData_seq4 <- as.trelliData(omicsData = omicsData_seq, statRes = statRes_seq) # Filter a trelliData seqData object with only statistics results, while not # caring about a comparison trelliData_seq3_filt <- trelli_pvalue_filter(trelliData_seq3, p_value_thresh = 0.05) # Filter both a omicsData and statRes object, while caring about a specific comparison trelliData_seq4_filt <- trelli_pvalue_filter(trelliData_seq4, p_value_thresh = 0.05, comparison = "StrainA_vs_StrainB")
library(pmartRdata) # Transform the data omicsData <- edata_transform(omicsData = pep_object, data_scale = "log2") # Group the data by condition omicsData <- group_designation(omicsData = omicsData, main_effects = c("Phenotype")) # Apply the IMD ANOVA filter imdanova_Filt <- imdanova_filter(omicsData = omicsData) omicsData <- applyFilt(filter_object = imdanova_Filt, omicsData = omicsData, min_nonmiss_anova = 2) # Normalize my pepData omicsData <- normalize_global(omicsData, "subset_fn" = "all", "norm_fn" = "median", "apply_norm" = TRUE, "backtransform" = TRUE) # Implement the IMD ANOVA method and compute all pairwise comparisons # (i.e. leave the `comparisons` argument NULL) statRes <- imd_anova(omicsData = omicsData, test_method = 'combined') # Generate the trelliData object trelliData3 <- as.trelliData(statRes = statRes) trelliData4 <- as.trelliData(omicsData = omicsData, statRes = statRes) ########################### ## MS/NMR OMICS EXAMPLES ## ########################### # Filter a trelliData object with only statistics results, while not caring about a comparison trelli_pvalue_filter(trelliData3, p_value_test = "anova", p_value_thresh = 0.1) # Filter a trelliData object with only statistics results, while caring about a specific comparison trelli_pvalue_filter( trelliData3, p_value_test = "anova", p_value_thresh = 0.1, comparison = "Phenotype3_vs_Phenotype2") # Filter both a omicsData and statRes object, while not caring about a specific comparison trelli_pvalue_filter(trelliData4, p_value_test = "anova", p_value_thresh = 0.001) # Filter both a omicsData and statRes object, while caring about a specific comparison trelli_pvalue_filter( trelliData4, p_value_test = "gtest", p_value_thresh = 0.25, comparison = "Phenotype3_vs_Phenotype2" ) ###################### ## RNA-SEQ EXAMPLES ## ###################### #' # Group data by condition omicsData_seq <- group_designation(omicsData = rnaseq_object, main_effects = c("Virus")) # Filter low transcript counts omicsData_seq <- applyFilt( filter_object = total_count_filter(omicsData = omicsData_seq), omicsData = omicsData_seq, min_count = 15 ) # Select a normalization and statistics method (options are 'edgeR', 'DESeq2', and 'voom'). # See ?difexp_seq for more details statRes_seq <- diffexp_seq(omicsData = omicsData_seq, method = "voom") # Generate the trelliData object trelliData_seq3 <- as.trelliData(statRes = statRes_seq) trelliData_seq4 <- as.trelliData(omicsData = omicsData_seq, statRes = statRes_seq) # Filter a trelliData seqData object with only statistics results, while not # caring about a comparison trelliData_seq3_filt <- trelli_pvalue_filter(trelliData_seq3, p_value_thresh = 0.05) # Filter both a omicsData and statRes object, while caring about a specific comparison trelliData_seq4_filt <- trelli_pvalue_filter(trelliData_seq4, p_value_thresh = 0.05, comparison = "StrainA_vs_StrainB")
Specify a boxplot design and cognostics for the RNA-Seq boxplot trelliscope. Each boxplot will have its own groups as specified by the first main effect in group_designation. Use "trelli_abundance_boxplot" for MS/NMR-based omics.
trelli_rnaseq_boxplot( trelliData, cognostics = c("count", "mean lcpm"), ggplot_params = NULL, interactive = FALSE, include_points = TRUE, path = .getDownloadsFolder(), name = "Trelliscope", test_mode = FALSE, test_example = 1, single_plot = FALSE, ... )
trelli_rnaseq_boxplot( trelliData, cognostics = c("count", "mean lcpm"), ggplot_params = NULL, interactive = FALSE, include_points = TRUE, path = .getDownloadsFolder(), name = "Trelliscope", test_mode = FALSE, test_example = 1, single_plot = FALSE, ... )
trelliData |
A trelliscope data object made by as.trelliData or as.trelliData.edata, and grouped by trelli_panel_by. Must be built using seqData. Required. |
cognostics |
A vector of cognostic options for each plot. Valid entries are "count", "mean lcpm", "median lcpm", and "cv lcpm". If data are paneled by a biomolecule, the count will be "sample count". If data are paneled by a sample or a biomolecule class, the count will be "biomolecule count". If statRes data is included, "p-value" and "fold change" data per comparisons may be added. If grouping information is included, only "sample count" and "mean lcpm" will be calculated, along with "p-value" and "fold change" if specified. "p-value" will not be included if paneling a trelliscope display by a biomolecule class. Default is "sample count" and "mean lcpm". |
ggplot_params |
An optional vector of strings of ggplot parameters to the backend ggplot function. For example, c("ylab(”)", "ylim(c(2,20))"). Default is NULL. |
interactive |
A logical argument indicating whether the plots should be interactive or not. Interactive plots are ggplots piped to ggplotly (for now). Default is FALSE. |
include_points |
Add points as a geom_jitter. Default is TRUE. |
path |
The base directory of the trelliscope application. Default is Downloads. |
name |
The name of the display. Default is Trelliscope. |
test_mode |
A logical to return a smaller trelliscope to confirm plot and design. Default is FALSE. |
test_example |
A vector of plot indices to return for test_mode. Default is 1. |
single_plot |
A TRUE/FALSE to indicate whether 1 plot (not a trelliscope) should be returned. Default is FALSE. |
... |
Additional arguments to be passed on to the trelli builder |
No return value, builds a trelliscope display of boxplots that is stored in 'path'
David Degnan, Lisa Bramer
## Not run: library(pmartRdata) trelliData_seq1 <- as.trelliData.edata(e_data = rnaseq_edata, edata_cname = "Transcript", omics_type = "seqData") omicsData_seq <- group_designation(omicsData = rnaseq_object, main_effects = c("Virus")) # Filter low transcript counts omicsData_seq <- applyFilt(filter_object = total_count_filter(omicsData = omicsData_seq), omicsData = omicsData_seq, min_count = 15) # Select a normalization and statistics method (options are 'edgeR', 'DESeq2', and 'voom'). # See ?difexp_seq for more details statRes_seq <- diffexp_seq(omicsData = omicsData_seq, method = "voom") # Generate the trelliData object trelliData_seq2 <- as.trelliData(omicsData = omicsData_seq) trelliData_seq3 <- as.trelliData(statRes = statRes_seq) trelliData_seq4 <- as.trelliData(omicsData = omicsData_seq, statRes = statRes_seq) ## Generate trelliData objects using the as.trelliData.edata example code. # Build the RNA-seq boxplot with an edata file where each panel is a biomolecule. trelli_panel_by(trelliData = trelliData_seq1, panel = "Transcript") %>% trelli_rnaseq_boxplot(test_mode = TRUE, test_example = 1:10, path = tempdir()) # Build the RNA-seq boxplot where each panel is a sample. # Include all applicable cognostics. Remove points. trelli_panel_by(trelliData = trelliData_seq1, panel = "Sample") %>% trelli_rnaseq_boxplot(test_mode = TRUE, test_example = 1:10, include_points = FALSE, cognostics = c("count", "mean lcpm", "median lcpm", "cv lcpm"), path = tempdir() ) # Build the RNA-seq boxplot with an omicsData object. # Let the panels be biomolecules. Here, grouping information is included. trelli_panel_by(trelliData = trelliData_seq2, panel = "Transcript") %>% trelli_rnaseq_boxplot(test_mode = TRUE, test_example = 1:10, path = tempdir()) # Build the RNA-seq boxplot with an omicsData object. The panel is a biomolecule class, # which is proteins in this case. trelli_panel_by(trelliData = trelliData_seq2, panel = "Gene") %>% trelli_rnaseq_boxplot(test_mode = TRUE, test_example = 1:10, path = tempdir()) # Build the RNA-seq boxplot with an omicsData and statRes object. # Panel by a biomolecule, and add statistics data to the cognostics trelli_panel_by(trelliData = trelliData_seq4, panel = "Transcript") %>% trelli_rnaseq_boxplot(test_mode = TRUE, test_example = 1:10, cognostics = c("mean lcpm", "p-value", "fold change"), path = tempdir()) # Other options include modifying the ggplot trelli_panel_by(trelliData = trelliData_seq1, panel = "Transcript") %>% trelli_rnaseq_boxplot(test_mode = TRUE, test_example = 1:10, ggplot_params = c("ylab('')", "xlab('')"), path = tempdir()) # Or making the plot interactive trelli_panel_by(trelliData = trelliData_seq4, panel = "Gene") %>% trelli_rnaseq_boxplot(interactive = TRUE, test_mode = TRUE, test_example = 1:10, path = tempdir()) \dontshow{closeAllConnections()} ## End(Not run)
## Not run: library(pmartRdata) trelliData_seq1 <- as.trelliData.edata(e_data = rnaseq_edata, edata_cname = "Transcript", omics_type = "seqData") omicsData_seq <- group_designation(omicsData = rnaseq_object, main_effects = c("Virus")) # Filter low transcript counts omicsData_seq <- applyFilt(filter_object = total_count_filter(omicsData = omicsData_seq), omicsData = omicsData_seq, min_count = 15) # Select a normalization and statistics method (options are 'edgeR', 'DESeq2', and 'voom'). # See ?difexp_seq for more details statRes_seq <- diffexp_seq(omicsData = omicsData_seq, method = "voom") # Generate the trelliData object trelliData_seq2 <- as.trelliData(omicsData = omicsData_seq) trelliData_seq3 <- as.trelliData(statRes = statRes_seq) trelliData_seq4 <- as.trelliData(omicsData = omicsData_seq, statRes = statRes_seq) ## Generate trelliData objects using the as.trelliData.edata example code. # Build the RNA-seq boxplot with an edata file where each panel is a biomolecule. trelli_panel_by(trelliData = trelliData_seq1, panel = "Transcript") %>% trelli_rnaseq_boxplot(test_mode = TRUE, test_example = 1:10, path = tempdir()) # Build the RNA-seq boxplot where each panel is a sample. # Include all applicable cognostics. Remove points. trelli_panel_by(trelliData = trelliData_seq1, panel = "Sample") %>% trelli_rnaseq_boxplot(test_mode = TRUE, test_example = 1:10, include_points = FALSE, cognostics = c("count", "mean lcpm", "median lcpm", "cv lcpm"), path = tempdir() ) # Build the RNA-seq boxplot with an omicsData object. # Let the panels be biomolecules. Here, grouping information is included. trelli_panel_by(trelliData = trelliData_seq2, panel = "Transcript") %>% trelli_rnaseq_boxplot(test_mode = TRUE, test_example = 1:10, path = tempdir()) # Build the RNA-seq boxplot with an omicsData object. The panel is a biomolecule class, # which is proteins in this case. trelli_panel_by(trelliData = trelliData_seq2, panel = "Gene") %>% trelli_rnaseq_boxplot(test_mode = TRUE, test_example = 1:10, path = tempdir()) # Build the RNA-seq boxplot with an omicsData and statRes object. # Panel by a biomolecule, and add statistics data to the cognostics trelli_panel_by(trelliData = trelliData_seq4, panel = "Transcript") %>% trelli_rnaseq_boxplot(test_mode = TRUE, test_example = 1:10, cognostics = c("mean lcpm", "p-value", "fold change"), path = tempdir()) # Other options include modifying the ggplot trelli_panel_by(trelliData = trelliData_seq1, panel = "Transcript") %>% trelli_rnaseq_boxplot(test_mode = TRUE, test_example = 1:10, ggplot_params = c("ylab('')", "xlab('')"), path = tempdir()) # Or making the plot interactive trelli_panel_by(trelliData = trelliData_seq4, panel = "Gene") %>% trelli_rnaseq_boxplot(interactive = TRUE, test_mode = TRUE, test_example = 1:10, path = tempdir()) \dontshow{closeAllConnections()} ## End(Not run)
Specify a plot design and cognostics for the RNA-seq heatmap trelliscope. Data must be grouped by an e_meta column. Main_effects order the y-variables. All statRes data is ignored. For MS/NMR data, use "trelli_abundance_heatmap".
trelli_rnaseq_heatmap( trelliData, cognostics = c("sample count", "mean LCPM", "biomolecule count"), ggplot_params = NULL, interactive = FALSE, path = .getDownloadsFolder(), name = "Trelliscope", test_mode = FALSE, test_example = 1, single_plot = FALSE, ... )
trelli_rnaseq_heatmap( trelliData, cognostics = c("sample count", "mean LCPM", "biomolecule count"), ggplot_params = NULL, interactive = FALSE, path = .getDownloadsFolder(), name = "Trelliscope", test_mode = FALSE, test_example = 1, single_plot = FALSE, ... )
trelliData |
A trelliscope data object made by as.trelliData, and grouped by an emeta variable. Must be built using seqData. Required. |
cognostics |
A vector of cognostic options. Defaults are "sample count", "mean LCPM" and "biomolecule count". "sample count" and "mean LCPM" are reported per group, and "biomolecule count" is the total number of biomolecules in the biomolecule class (e_meta column). |
ggplot_params |
An optional vector of strings of ggplot parameters to the backend ggplot function. For example, c("ylab(”)", "xlab(”)"). Default is NULL. |
interactive |
A logical argument indicating whether the plots should be interactive or not. Interactive plots are ggplots piped to ggplotly. Default is FALSE. |
path |
The base directory of the trelliscope application. Default is Downloads. |
name |
The name of the display. Default is Trelliscope |
test_mode |
A logical to return a smaller trelliscope to confirm plot and design. Default is FALSE. |
test_example |
A vector of plot indices to return for test_mode. Default is 1. |
single_plot |
A TRUE/FALSE to indicate whether 1 plot (not a trelliscope) should be returned. Default is FALSE. |
... |
Additional arguments to be passed on to the trelli builder |
No return value, builds a trelliscope display of heatmaps that is stored in 'path'
David Degnan, Lisa Bramer
## Not run: library(pmartRdata) omicsData_seq <- group_designation(omicsData = rnaseq_object, main_effects = c("Virus")) # Filter low transcript counts omicsData_seq <- applyFilt(filter_object = total_count_filter(omicsData = omicsData_seq), omicsData = omicsData_seq, min_count = 15) # Select a normalization and statistics method (options are 'edgeR', 'DESeq2', and 'voom'). # See ?difexp_seq for more details statRes_seq <- diffexp_seq(omicsData = omicsData_seq, method = "voom") # Generate the trelliData object trelliData_seq2 <- as.trelliData(omicsData = omicsData_seq) trelliData_seq4 <- as.trelliData(omicsData = omicsData_seq, statRes = statRes_seq) # Build the RNA-seq heatmap with an omicsData object with emeta variables. # Generate trelliData in as.trelliData. trelli_panel_by(trelliData = trelliData_seq2, panel = "Gene") %>% trelli_rnaseq_heatmap(test_mode = TRUE, test_example = c(1532, 1905, 6134), path = tempdir()) # Users can modify the plotting function with ggplot parameters and interactivity, # and can also select certain cognostics. trelli_panel_by(trelliData = trelliData_seq4, panel = "Gene") %>% trelli_rnaseq_heatmap(test_mode = TRUE, test_example = c(1532, 1905, 6134), ggplot_params = c("ylab('')", "xlab('')"), interactive = TRUE, cognostics = c("biomolecule count"), path = tempdir()) \dontshow{closeAllConnections()} ## End(Not run)
## Not run: library(pmartRdata) omicsData_seq <- group_designation(omicsData = rnaseq_object, main_effects = c("Virus")) # Filter low transcript counts omicsData_seq <- applyFilt(filter_object = total_count_filter(omicsData = omicsData_seq), omicsData = omicsData_seq, min_count = 15) # Select a normalization and statistics method (options are 'edgeR', 'DESeq2', and 'voom'). # See ?difexp_seq for more details statRes_seq <- diffexp_seq(omicsData = omicsData_seq, method = "voom") # Generate the trelliData object trelliData_seq2 <- as.trelliData(omicsData = omicsData_seq) trelliData_seq4 <- as.trelliData(omicsData = omicsData_seq, statRes = statRes_seq) # Build the RNA-seq heatmap with an omicsData object with emeta variables. # Generate trelliData in as.trelliData. trelli_panel_by(trelliData = trelliData_seq2, panel = "Gene") %>% trelli_rnaseq_heatmap(test_mode = TRUE, test_example = c(1532, 1905, 6134), path = tempdir()) # Users can modify the plotting function with ggplot parameters and interactivity, # and can also select certain cognostics. trelli_panel_by(trelliData = trelliData_seq4, panel = "Gene") %>% trelli_rnaseq_heatmap(test_mode = TRUE, test_example = c(1532, 1905, 6134), ggplot_params = c("ylab('')", "xlab('')"), interactive = TRUE, cognostics = c("biomolecule count"), path = tempdir()) \dontshow{closeAllConnections()} ## End(Not run)
Specify a plot design and cognostics for the abundance histogram trelliscope. Main_effects grouping are ignored. Data must be grouped by edata_cname. For MS/NMR data, use "trelli_abundance_histogram".
trelli_rnaseq_histogram( trelliData, cognostics = c("sample count", "mean lcpm", "median lcpm", "cv lcpm", "skew lcpm"), ggplot_params = NULL, interactive = FALSE, path = .getDownloadsFolder(), name = "Trelliscope", test_mode = FALSE, test_example = 1, single_plot = FALSE, ... )
trelli_rnaseq_histogram( trelliData, cognostics = c("sample count", "mean lcpm", "median lcpm", "cv lcpm", "skew lcpm"), ggplot_params = NULL, interactive = FALSE, path = .getDownloadsFolder(), name = "Trelliscope", test_mode = FALSE, test_example = 1, single_plot = FALSE, ... )
trelliData |
A trelliscope data object made by as.trelliData or as.trelliData.edata, and grouped by edata_cname in trelli_panel_by. Must be built using seqData. Required. |
cognostics |
A vector of cognostic options for each plot. Valid entries are "sample count", "mean lcpm", "median lcpm", "cv lcpm", and "skew lcpm". All are included by default. |
ggplot_params |
An optional vector of strings of ggplot parameters to the backend ggplot function. For example, c("ylab(”)", "ylim(c(1,2))"). Default is NULL. |
interactive |
A logical argument indicating whether the plots should be interactive or not. Interactive plots are ggplots piped to ggplotly (for now). Default is FALSE. |
path |
The base directory of the trelliscope application. Default is Downloads. |
name |
The name of the display. Default is Trelliscope. |
test_mode |
A logical to return a smaller trelliscope to confirm plot and design. Default is FALSE. |
test_example |
A vector of plot indices to return for test_mode. Default is 1. |
single_plot |
A TRUE/FALSE to indicate whether 1 plot (not a trelliscope) should be returned. Default is FALSE. |
... |
Additional arguments to be passed on to the trelli builder |
No return value, builds a trelliscope display of histograms that is stored in 'path'
David Degnan, Lisa Bramer
## Not run: library(pmartRdata) trelliData_seq1 <- as.trelliData.edata(e_data = rnaseq_edata, edata_cname = "Transcript", omics_type = "seqData") omicsData_seq <- group_designation(omicsData = rnaseq_object, main_effects = c("Virus")) # Filter low transcript counts omicsData_seq <- applyFilt(filter_object = total_count_filter(omicsData = omicsData_seq), omicsData = omicsData_seq, min_count = 15) # Select a normalization and statistics method (options are 'edgeR', 'DESeq2', and 'voom'). # See ?difexp_seq for more details statRes_seq <- diffexp_seq(omicsData = omicsData_seq, method = "voom") # Generate the trelliData object trelliData_seq2 <- as.trelliData(omicsData = omicsData_seq) trelliData_seq3 <- as.trelliData(statRes = statRes_seq) trelliData_seq4 <- as.trelliData(omicsData = omicsData_seq, statRes = statRes_seq) # Build the RNA-seq histogram with an edata file. # Generate trelliData in as.trelliData.edata trelli_panel_by(trelliData = trelliData_seq1, panel = "Transcript") %>% trelli_rnaseq_histogram(test_mode = TRUE, test_example = 1:10, path = tempdir()) # Build the RNA-seq histogram with an omicsData object. # Generate trelliData in as.trelliData trelli_panel_by(trelliData = trelliData_seq2, panel = "Transcript") %>% trelli_rnaseq_histogram(test_mode = TRUE, test_example = 1:10, path = tempdir()) # Build the RNA-seq histogram with an omicsData and statRes object. # Generate trelliData in as.trelliData. trelli_panel_by(trelliData = trelliData_seq4, panel = "Transcript") %>% trelli_rnaseq_histogram(test_mode = TRUE, test_example = 1:10, cognostics = "sample count", path = tempdir()) # Users can modify the plotting function with ggplot parameters and interactivity, # and can also select certain cognostics. trelli_panel_by(trelliData = trelliData_seq1, panel = "Transcript") %>% trelli_rnaseq_histogram(test_mode = TRUE, test_example = 1:10, ggplot_params = c("ylab('')", "xlab('')"), interactive = TRUE, cognostics = c("mean lcpm", "median lcpm"), path = tempdir()) \dontshow{closeAllConnections()} ## End(Not run)
## Not run: library(pmartRdata) trelliData_seq1 <- as.trelliData.edata(e_data = rnaseq_edata, edata_cname = "Transcript", omics_type = "seqData") omicsData_seq <- group_designation(omicsData = rnaseq_object, main_effects = c("Virus")) # Filter low transcript counts omicsData_seq <- applyFilt(filter_object = total_count_filter(omicsData = omicsData_seq), omicsData = omicsData_seq, min_count = 15) # Select a normalization and statistics method (options are 'edgeR', 'DESeq2', and 'voom'). # See ?difexp_seq for more details statRes_seq <- diffexp_seq(omicsData = omicsData_seq, method = "voom") # Generate the trelliData object trelliData_seq2 <- as.trelliData(omicsData = omicsData_seq) trelliData_seq3 <- as.trelliData(statRes = statRes_seq) trelliData_seq4 <- as.trelliData(omicsData = omicsData_seq, statRes = statRes_seq) # Build the RNA-seq histogram with an edata file. # Generate trelliData in as.trelliData.edata trelli_panel_by(trelliData = trelliData_seq1, panel = "Transcript") %>% trelli_rnaseq_histogram(test_mode = TRUE, test_example = 1:10, path = tempdir()) # Build the RNA-seq histogram with an omicsData object. # Generate trelliData in as.trelliData trelli_panel_by(trelliData = trelliData_seq2, panel = "Transcript") %>% trelli_rnaseq_histogram(test_mode = TRUE, test_example = 1:10, path = tempdir()) # Build the RNA-seq histogram with an omicsData and statRes object. # Generate trelliData in as.trelliData. trelli_panel_by(trelliData = trelliData_seq4, panel = "Transcript") %>% trelli_rnaseq_histogram(test_mode = TRUE, test_example = 1:10, cognostics = "sample count", path = tempdir()) # Users can modify the plotting function with ggplot parameters and interactivity, # and can also select certain cognostics. trelli_panel_by(trelliData = trelliData_seq1, panel = "Transcript") %>% trelli_rnaseq_histogram(test_mode = TRUE, test_example = 1:10, ggplot_params = c("ylab('')", "xlab('')"), interactive = TRUE, cognostics = c("mean lcpm", "median lcpm"), path = tempdir()) \dontshow{closeAllConnections()} ## End(Not run)
Specify a plot design and cognostics for the Non-Zero barchart trelliscope. Non-Zeroes are displayed per panel_by variable. Main_effects data is used to split samples when applicable. For MS/NMR data, use "trelli missingness bar".
trelli_rnaseq_nonzero_bar( trelliData, cognostics = c("total count", "non-zero count", "non-zero proportion"), proportion = TRUE, ggplot_params = NULL, interactive = FALSE, path = .getDownloadsFolder(), name = "Trelliscope", test_mode = FALSE, test_example = 1, single_plot = FALSE, ... )
trelli_rnaseq_nonzero_bar( trelliData, cognostics = c("total count", "non-zero count", "non-zero proportion"), proportion = TRUE, ggplot_params = NULL, interactive = FALSE, path = .getDownloadsFolder(), name = "Trelliscope", test_mode = FALSE, test_example = 1, single_plot = FALSE, ... )
trelliData |
A trelliscope data object made by as.trelliData.edata or as.trelliData. Must be built using seqData. Required. |
cognostics |
A vector of cognostic options for each plot. Defaults are "total count", "non-zero count", and "non-zero proportion". If grouping data is included, all cognostics will be reported per group. If the trelliData is paneled by a biomolecule, the counts and proportion we be samples. If paneled by a sample or biomolecule class, the counts and proportions will be biomolecules. |
proportion |
A logical to determine whether plots should display counts or proportions. Default is TRUE. |
ggplot_params |
An optional vector of strings of ggplot parameters to the backend ggplot function. For example, c("ylab(”)", "xlab(”)"). Default is NULL. |
interactive |
A logical argument indicating whether the plots should be interactive or not. Interactive plots are ggplots piped to ggplotly (for now). Default is FALSE. |
path |
The base directory of the trelliscope application. Default is Downloads. |
name |
The name of the display. Default is Trelliscope. |
test_mode |
A logical to return a smaller trelliscope to confirm plot and design. Default is FALSE. |
test_example |
A vector of plot indices to return for test_mode. Default is 1. |
single_plot |
A TRUE/FALSE to indicate whether 1 plot (not a trelliscope) should be returned. Default is FALSE. |
... |
Additional arguments to be passed on to the trelli builder |
No return value, builds a trelliscope display of bar charts that is stored in 'path'
David Degnan, Lisa Bramer
## Not run: library(pmartRdata) trelliData_seq1 <- as.trelliData.edata(e_data = rnaseq_edata, edata_cname = "Transcript", omics_type = "seqData") omicsData_seq <- group_designation(omicsData = rnaseq_object, main_effects = c("Virus")) # Filter low transcript counts omicsData_seq <- applyFilt(filter_object = total_count_filter(omicsData = omicsData_seq), omicsData = omicsData_seq, min_count = 15) # Select a normalization and statistics method (options are 'edgeR', 'DESeq2', and 'voom'). # See ?difexp_seq for more details statRes_seq <- diffexp_seq(omicsData = omicsData_seq, method = "voom") # Generate the trelliData object trelliData_seq2 <- as.trelliData(omicsData = omicsData_seq) trelliData_seq3 <- as.trelliData(statRes = statRes_seq) trelliData_seq4 <- as.trelliData(omicsData = omicsData_seq, statRes = statRes_seq) # Build the non-zero bar plot with an edata file. Generate trelliData in as.trelliData.edata trelli_panel_by(trelliData = trelliData_seq1, panel = "Transcript") %>% trelli_rnaseq_nonzero_bar(test_mode = TRUE, test_example = 1:10, path = tempdir()) trelli_panel_by(trelliData = trelliData_seq1, panel = "Sample") %>% trelli_rnaseq_nonzero_bar(test_mode = TRUE, test_example = 1:10, cognostics = "non-zero proportion", path = tempdir()) # Build the non-zero bar plot with an omicsData object. Generate trelliData in as.trelliData trelli_panel_by(trelliData = trelliData_seq2, panel = "Transcript") %>% trelli_rnaseq_nonzero_bar(test_mode = TRUE, test_example = 1:10, path = tempdir()) # Build the non-zero bar plot with a statRes object. Generate trelliData in as.trelliData trelli_panel_by(trelliData = trelliData_seq3, panel = "Transcript") %>% trelli_rnaseq_nonzero_bar(test_mode = TRUE, test_example = 1:10, cognostics = c("non-zero proportion"), path = tempdir()) # Build the non-zero bar plot with an omicsData and statRes object. # Generate trelliData in as.trelliData. trelli_panel_by(trelliData = trelliData_seq4, panel = "Gene") %>% trelli_rnaseq_nonzero_bar(test_mode = TRUE, test_example = 1:10, path = tempdir()) # Or making the plot interactive trelli_panel_by(trelliData = trelliData_seq2, panel = "Transcript") %>% trelli_rnaseq_nonzero_bar(test_mode = TRUE, test_example = 1:5, interactive = TRUE, path = tempdir()) # Or visualize only count data trelli_panel_by(trelliData = trelliData_seq2, panel = "Transcript") %>% trelli_rnaseq_nonzero_bar(test_mode = TRUE, test_example = 1:5, cognostics = "non-zero count", proportion = FALSE, path = tempdir()) \dontshow{closeAllConnections()} ## End(Not run)
## Not run: library(pmartRdata) trelliData_seq1 <- as.trelliData.edata(e_data = rnaseq_edata, edata_cname = "Transcript", omics_type = "seqData") omicsData_seq <- group_designation(omicsData = rnaseq_object, main_effects = c("Virus")) # Filter low transcript counts omicsData_seq <- applyFilt(filter_object = total_count_filter(omicsData = omicsData_seq), omicsData = omicsData_seq, min_count = 15) # Select a normalization and statistics method (options are 'edgeR', 'DESeq2', and 'voom'). # See ?difexp_seq for more details statRes_seq <- diffexp_seq(omicsData = omicsData_seq, method = "voom") # Generate the trelliData object trelliData_seq2 <- as.trelliData(omicsData = omicsData_seq) trelliData_seq3 <- as.trelliData(statRes = statRes_seq) trelliData_seq4 <- as.trelliData(omicsData = omicsData_seq, statRes = statRes_seq) # Build the non-zero bar plot with an edata file. Generate trelliData in as.trelliData.edata trelli_panel_by(trelliData = trelliData_seq1, panel = "Transcript") %>% trelli_rnaseq_nonzero_bar(test_mode = TRUE, test_example = 1:10, path = tempdir()) trelli_panel_by(trelliData = trelliData_seq1, panel = "Sample") %>% trelli_rnaseq_nonzero_bar(test_mode = TRUE, test_example = 1:10, cognostics = "non-zero proportion", path = tempdir()) # Build the non-zero bar plot with an omicsData object. Generate trelliData in as.trelliData trelli_panel_by(trelliData = trelliData_seq2, panel = "Transcript") %>% trelli_rnaseq_nonzero_bar(test_mode = TRUE, test_example = 1:10, path = tempdir()) # Build the non-zero bar plot with a statRes object. Generate trelliData in as.trelliData trelli_panel_by(trelliData = trelliData_seq3, panel = "Transcript") %>% trelli_rnaseq_nonzero_bar(test_mode = TRUE, test_example = 1:10, cognostics = c("non-zero proportion"), path = tempdir()) # Build the non-zero bar plot with an omicsData and statRes object. # Generate trelliData in as.trelliData. trelli_panel_by(trelliData = trelliData_seq4, panel = "Gene") %>% trelli_rnaseq_nonzero_bar(test_mode = TRUE, test_example = 1:10, path = tempdir()) # Or making the plot interactive trelli_panel_by(trelliData = trelliData_seq2, panel = "Transcript") %>% trelli_rnaseq_nonzero_bar(test_mode = TRUE, test_example = 1:5, interactive = TRUE, path = tempdir()) # Or visualize only count data trelli_panel_by(trelliData = trelliData_seq2, panel = "Transcript") %>% trelli_rnaseq_nonzero_bar(test_mode = TRUE, test_example = 1:5, cognostics = "non-zero count", proportion = FALSE, path = tempdir()) \dontshow{closeAllConnections()} ## End(Not run)
Replace x with y for a single vector
vector_replace(one_vector, x, y)
vector_replace(one_vector, x, y)
one_vector |
numeric vector |
x |
value to be replaced |
y |
replacement value |
numeric vector
Kelly Stratton
For generating statistics for 'seqData' objects
voom_wrapper( omicsData, p_adjust = "BH", comparisons = NULL, p_cutoff = 0.05, ... )
voom_wrapper( omicsData, p_adjust = "BH", comparisons = NULL, p_cutoff = 0.05, ... )
omicsData |
an object of type 'seqData', created by
|
p_adjust |
Character string for p-value correction method, refer to ?p.adjust() for valid options |
comparisons |
'data.frame' with columns for "Control" and "Test" containing the different comparisons of interest. Comparisons will be made between the Test and the corresponding Control If left NULL, then all pairwise comparisons are executed. |
p_cutoff |
Numeric value between 0 and 1 for setting p-value significance threshold |
... |
additional arguments passed to methods functions. Note, formatting option changes will interfere with wrapping functionality. |
Runs default limma-voom workflow using empirical Bayes moderated t-statistics. Additional arguments can be passed for use in the function, refer to calcNormFactors() in edgeR package.
statRes object
Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., and Smyth, G.K. (2015). limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research 43(7), e47.
Re-scales the data to be between 0 and 1
zero_one_scale(e_data, edata_id)
zero_one_scale(e_data, edata_id)
e_data |
e_data a |
edata_id |
character string indicating the name of the peptide, protein,
lipid, or metabolite identifier. Usually obtained by calling
|
The sample-wise minimum of the features is subtracted from each feature in e_data, then divided by the difference between the sample-wise minimum and maximum of the features to get the normalized data. The location estimates are not applicable for this data and the function returns a NULL list element as a placeholder. The scale estimates are the sample-wise feature ranges. All NA values are replcaed with zero.
List containing two elements: norm_params
is list with two
elements:
scale | Range of each sample used in scaling |
location | NULL |
backtransform_params
is a list with two elements:
scale | NULL |
location | NULL |
The transformed data is returned as a third list item.
Lisa Bramer, Kelly Stratton, Rachel Richardson
This function applies the zrollup method to a pepData object for each unique protein and returns a proData object.
zrollup(pepData, combine_fn, parallel = TRUE)
zrollup(pepData, combine_fn, parallel = TRUE)
pepData |
an omicsData object of class 'pepData' |
combine_fn |
logical indicating what combine_fn to use, defaults to median, other option is mean |
parallel |
logical indicating whether or not to use "doParallel" loop in applying zrollup function. Defaults to TRUE. |
In the zrollup method, peptides are scaled as, pep_scaled = (pep - median)/sd, and protein abundance is set as the mean of these scaled peptides.
an omicsData object of class 'proData'
Polpitiya, A. D., Qian, W.-J., Jaitly, N., Petyuk, V. A., Adkins, J. N., Camp, D. G., ... Smith, R. D. (2008). DAnTE: a statistical tool for quantitative analysis of -omics data. Bioinformatics (Oxford, England), 24(13), 1556-1558.
Calculate normalization parameters for the data via via z-score transformation.
zscore_transform( e_data, edata_id, subset_fn, feature_subset, backtransform = FALSE, apply_norm = FALSE, check.names = NULL )
zscore_transform( e_data, edata_id, subset_fn, feature_subset, backtransform = FALSE, apply_norm = FALSE, check.names = NULL )
e_data |
a |
edata_id |
character string indicating the name of the peptide, protein,
lipid, or metabolite identifier. Usually obtained by calling
|
subset_fn |
character string indicating the subset function to use for normalization |
feature_subset |
character vector containing the feature names in the subset to be used for normalization |
backtransform |
logical argument. If TRUE, the data will be back transformed after normalization so that the values are on a scale similar to their raw values. See details for more information. Defaults to FALSE. |
apply_norm |
logical argument. If TRUE, the normalization will be applied to the data. Defaults to FALSE. |
check.names |
deprecated |
Each feature is scaled by subtracting the mean of the feature subset specified for normalization and then dividing the result by the standard deviation (SD) of the feature subset specified for normalization to get the normalized data. The location estimates are the subset means for each sample. The scale estimates are the subset SDs for each sample. If backtransform is TRUE, the normalized feature values are multiplied by a pooled standard deviation (estimated across all samples) and a global mean of the subset data (across all samples) is added back to the normalized values. Means are taken ignoring any NA values.
List containing two elements: norm_params
is list with two
elements:
scale | numeric vector of length n standard deviations for each sample |
location | numeric vector of length n means for each sample
|
backtransform_params
is a list with two elements:
scale | numeric value giving the pooled standard deviation across all samples |
location | numeric value giving global mean across all samples |
If backtransform
is set to TRUE then each list item under
backtransform_params
will be NULL.
If apply_norm
is TRUE, the transformed data is returned as a third
list item.
Lisa Bramer, Kelly Stratton, Bryan Stanfill