Package 'pipeflow'

Title: Lightweight, General-Purpose Data Analysis Pipelines
Description: A lightweight yet powerful framework for building robust data analysis pipelines. With 'pipeflow', you initialize a pipeline with your dataset and construct workflows step by step by adding R functions. You can modify, remove, or insert steps and parameters at any stage, while 'pipeflow' ensures the pipeline's integrity. Overall, this package offers a beginner-friendly framework that simplifies and streamlines the development of data analysis pipelines by making them modular, intuitive, and adaptable.
Authors: Roman Pahl [aut, cre]
Maintainer: Roman Pahl <[email protected]>
License: GPL-3
Version: 0.2.2
Built: 2024-12-23 13:41:45 UTC
Source: CRAN

Help Index


Add pipeline step

Description

A pipeline consists of a series of steps, which usually are added one by one. Each step is made up of a function computing something once the pipeline is run. This function can be an existing R function (e.g. mean()) or an anonymous/lambda function specifically defined for the pipeline. One useful feature is that function parameters can refer to results of earlier pipeline steps using the syntax x = ~earlier_step_name - see the Examples for more details.

Usage

pipe_add(
  pip,
  step,
  fun,
  params = list(),
  description = "",
  group = step,
  keepOut = FALSE
)

Arguments

pip

Pipeline object

step

string the name of the step. Each step name must be unique.

fun

function or name of the function to be applied at the step. Both existing and anonymous/lambda functions can be used. All function parameters must have default values. If a parameter is missing a default value in the function signature, alternatively, it can be set via the params argument (see Examples section with mean() function).

params

list list of parameters to set or overwrite parameters of the passed function.

description

string optional description of the step

group

string output collected after pipeline execution (see pipe_collect_out() is grouped by the defined group names. By default, this is the name of the step, which comes in handy when the pipeline is copy-appended multiple times to keep the results of the same function/step grouped at one place.

keepOut

logical if FALSE (default) the output of the step is not collected when calling pipe_collect_out() after the pipeline run. This option is used to only keep the results that matter and skip intermediate results that are not needed. See also function pipe_collect_out() for more details.

Value

returns the Pipeline object invisibly

Examples

# Add steps with lambda functions
p <- pipe_new("myPipe", data = 1)
pipe_add(p, "s1", \(x = ~data) 2*x)  # use input data
pipe_add(p, "s2", \(x = ~data, y = ~s1) x * y)
try(pipe_add(p, "s2", \(z = 3) 3)) # error: step 's2' exists already
try(pipe_add(p, "s3", \(z = ~foo) 3)) # dependency 'foo' not found
p

# Add step with existing function
p <- pipe_new("myPipe", data = c(1, 2, NA, 3, 4))
try(pipe_add(p, "calc_mean", mean))  # default value for x is missing
pipe_add(p, "calc_mean", mean, params = list(x = ~data, na.rm = TRUE))
p |> pipe_run() |> pipe_get_out("calc_mean")

# Step description
p <- pipe_new("myPipe", data = 1:10)
pipe_add(p, "s1", \(x = ~data) 2*x, description = "multiply by 2")
print(p, verbose = TRUE) # print all columns including description


# Group output
p <- pipe_new("myPipe", data = data.frame(x = 1:2, y = 3:4))
pipe_add(p, "prep_x", \(data = ~data) data$x, group = "prep")
pipe_add(p, "prep_y", \(data = ~data) (data$y)^2, group = "prep")
pipe_add(p, "sum", \(x = ~prep_x, y = ~prep_y) x + y)
p |> pipe_run() |> pipe_collect_out(all = TRUE)

Append two pipelines

Description

When appending, pipeflow takes care of potential name clashes with respect to step names and dependencies, that is, if needed, it will automatically adapt step names and dependencies to make sure they are unique in the merged pipeline.

Usage

pipe_append(pip, p, outAsIn = FALSE, tryAutofixNames = TRUE, sep = ".")

Arguments

pip

Pipeline object to be appended to.

p

Pipeline object to be appended.

outAsIn

logical if TRUE, output of first pipeline is used as input for the second pipeline.

tryAutofixNames

logical if TRUE, name clashes are tried to be automatically resolved by appending the 2nd pipeline's name. Only set to FALSE, if you know what you are doing.

sep

string separator used when auto-resolving step names

Value

returns new combined Pipeline object.

Examples

# Append pipeline
p1 <- pipe_new("pipe1")
pipe_add(p1, "step1", \(x = 1) x)
p2 <- pipe_new("pipe2")
pipe_add(p2, "step2", \(y = 1) y)
p1 |> pipe_append(p2)

# Append pipeline with potential name clashes
p3 <- pipe_new("pipe3")
pipe_add(p3, "step1", \(z = 1) z)
p1 |> pipe_append(p2) |> pipe_append(p3)

# Use output of first pipeline as input for second pipeline
p1 <- pipe_new("pipe1", data = 8)
p2 <- pipe_new("pipe2")
pipe_add(p1, "square", \(x = ~data) x^2)
pipe_add(p2, "log2", \(x = ~data) log2(x))

p12 <- p1 |> pipe_append(p2, outAsIn = TRUE)
p12 |> pipe_run() |> pipe_get_out("log2")
p12

# Custom name separator for adapted step names
p1 |> pipe_append(p2, sep = "___")

Append string to all step names

Description

Appends string to all step names and takes care of updating step dependencies accordingly.

Usage

pipe_append_to_step_names(pip, postfix, sep = ".")

Arguments

pip

Pipeline object

postfix

string to be appended to each step name.

sep

string separator between step name and postfix.

Value

returns the Pipeline object invisibly

Examples

p <- pipe_new("pipe")
pipe_add(p, "step1", \(x = 1) x)
pipe_add(p, "step2", \(y = 1) y)
pipe_append_to_step_names(p, "new")
p
pipe_append_to_step_names(p, "foo", sep = "__")
p

Clone pipeline

Description

Creates a copy of a pipeline object.

Usage

pipe_clone(pip, deep = FALSE)

Arguments

pip

Pipeline object

deep

logical whether to perform a deep copy

Value

returns the copied Pipeline object

Examples

p1 <- pipe_new("pipe")
pipe_add(p1, "step1", \(x = 1) x)
p2 <- pipe_clone(p1)
pipe_add(p2, "step2", \(y = 1) y)
p1
p2

Collect output from entire pipeline

Description

Collects output afer pipeline run, by default, from all steps for which keepOut was set to TRUE when steps were added (see pipe_add()). The output is grouped by the group names (see group parameter in pipe_add()), which by default are set identical to the step names.

Usage

pipe_collect_out(pip, groupBy = "group", all = FALSE)

Arguments

pip

Pipeline object

groupBy

string column of pipeline by which to group the output.

all

logical if TRUE all output is collected regardless of the keepOut flag. This can be useful for debugging.

Value

list containing the output, named after the groups, which, by default, are the steps.

Examples

p <- pipe_new("pipe", data = 1:2)
pipe_add(p, "step1", \(x = ~data) x + 2)
pipe_add(p, "step2", \(x = ~step1) x + 2, keepOut = TRUE)
pipe_run(p)
pipe_collect_out(p)
pipe_collect_out(p, all = TRUE) |> str()

# Grouped output
p <- pipe_new("pipe", data = 1:2)
pipe_add(p, "step1", \(x = ~data) x + 2, group = "add")
pipe_add(p, "step2", \(x = ~step1, y = 2) x + y, group = "add")
pipe_add(p, "step3", \(x = ~data) x * 3, group = "mult")
pipe_add(p, "step4", \(x = ~data, y = 2) x * y, group = "mult")
p

pipe_run(p)
pipe_collect_out(p, all = TRUE) |> str()

# Grouped by state
pipe_set_params(p, list(y = 5))
p

pipe_collect_out(p, groupBy = "state", all = TRUE) |> str()

Discard steps from the pipeline

Description

Discard all steps that match a given pattern.

Usage

pipe_discard_steps(pip, pattern, recursive = FALSE, fixed = TRUE, ...)

Arguments

pip

Pipeline object

pattern

string containing a regular expression (or character string for fixed = TRUE) to be matched.

recursive

logical if TRUE the step is removed together with all its downstream dependencies.

fixed

logical If TRUE, pattern is a string to be matched as is. Overrides all conflicting arguments.

...

further arguments passed to grep().

Value

the Pipeline object invisibly

Examples

p <- pipe_new("pipe", data = 1:2)
pipe_add(p, "add1", \(x = ~data) x + 1)
pipe_add(p, "add2", \(x = ~add1) x + 2)
pipe_add(p, "mult3", \(x = ~add1) x * 3)
pipe_add(p, "mult4", \(x = ~add2) x * 4)
p

pipe_discard_steps(p, "mult")
p

# Re-add steps
pipe_add(p, "mult3", \(x = ~add1) x * 3)
pipe_add(p, "mult4", \(x = ~add2) x * 4)
p

# Discarding 'add1' does not work ...
try(pipe_discard_steps(p, "add1"))

# ... unless we enforce to remove its downstream dependencies as well
pipe_discard_steps(p, "add1", recursive = TRUE)
p

# Trying to discard non-existent steps is just ignored
pipe_discard_steps(p, "non-existent")

Get data

Description

Get the data set for the pipeline

Usage

pipe_get_data(pip)

Arguments

pip

Pipeline object

Value

the output defined in the data step, which by default is the first step of the pipeline

Examples

p <- pipe_new("pipe", data = 1:2)
pipe_get_data(p)
pipe_set_data(p, 3:4)
pipe_get_data(p)

Get step dependencies

Description

Get step dependencies

Usage

pipe_get_depends(pip)

pipe_get_depends_down(pip, step, recursive = TRUE)

pipe_get_depends_up(pip, step, recursive = TRUE)

Arguments

pip

Pipeline object

step

string name of step

recursive

logical if TRUE, dependencies of dependencies are also returned.

Value

  • pipe_get_depends: named list of dependencies for each step

  • pipe_get_depends_down: list of downstream dependencies

  • pipe_get_depends_up: list of downstream dependencies

Methods

  • pipe_get_depends: get all dependencies for all steps defined in the pipeline

  • pipe_get_depends_down: get all downstream dependencies of a given step, by default descending recursively.

  • pipe_get_depends_up: get all upstream dependencies of a given step, by default descending recursively.

Examples

# pipe_get_depends
p <- pipe_new("pipe", data = 1:2)
pipe_add(p, "add1", \(x = ~data) x + 1)
pipe_add(p, "add2", \(x = ~data, y = ~add1) x + y)
pipe_get_depends(p)

# pipe_get_depends_down
p <- pipe_new("pipe", data = 1:2)
pipe_add(p, "add1", \(x = ~data) x + 1)
pipe_add(p, "add2", \(x = ~data, y = ~add1) x + y)
pipe_add(p, "mult3", \(x = ~add1) x * 3)
pipe_add(p, "mult4", \(x = ~add2) x * 4)
pipe_get_depends_down(p, "add1")
pipe_get_depends_down(p, "add1", recursive = FALSE)

# pipe_get_depends_up
p <- pipe_new("pipe", data = 1:2)
pipe_add(p, "add1", \(x = ~data) x + 1)
pipe_add(p, "add2", \(x = ~data, y = ~add1) x + y)
pipe_add(p, "mult3", \(x = ~add1) x * 3)
pipe_add(p, "mult4", \(x = ~add2) x * 4)
pipe_get_depends_up(p, "mult4")
pipe_get_depends_up(p, "mult4", recursive = FALSE)

Pipeline graph

Description

Get the pipeline as a graph with nodes and edges.

Usage

pipe_get_graph(pip, groups = NULL)

Arguments

pip

Pipeline object

groups

character if not NULL, only steps belonging to the given groups are considered.

Value

list with two data frames, one for nodes and one for edges ready to be used with the visNetwork::visNetwork() function of the visNetwork package.

Examples

p <- pipe_new("pipe", data = 1:2)
pipe_add(p, "add1", \(data = ~data, x = 1) x + data)
pipe_add(p, "add2", \(x = 1, y = ~add1) x + y)
pipe_add(p, "mult1", \(x = ~add1, y = ~add2) x * y)
graph <- pipe_get_graph(p)
graph

if (require("visNetwork", quietly = TRUE)) {
    do.call(visNetwork, args = graph)
}

Get output of given step

Description

Get output of given step

Usage

pipe_get_out(pip, step)

Arguments

pip

Pipeline object

step

string name of step

Value

the output at the given step.

See Also

pipe_collect_out() to collect output of multiple steps.

Examples

p <- pipe_new("pipe", data = 1:2)
pipe_add(p, "add1", \(x = ~data) x + 1)
pipe_add(p, "add2", \(x = ~data, y = ~add1) x + y)
pipe_run(p)
pipe_get_out(p, "add1")
pipe_get_out(p, "add2")

Get pipeline parameters

Description

Retrieves unbound function parameters defined in the pipeline where 'unbound' means parameters that are not linked to other steps.

Usage

pipe_get_params(pip, ignoreHidden = TRUE)

pipe_get_params_at_step(pip, step, ignoreHidden = TRUE)

pipe_get_params_unique(pip, ignoreHidden = TRUE)

pipe_get_params_unique_json(pip, ignoreHidden = TRUE)

Arguments

pip

Pipeline object

ignoreHidden

logical if TRUE, hidden parameters (i.e. all paramater names starting with a dot) are ignored and thus not returned.

step

string name of step

Value

  • pipe_get_params: list of parameters, sorted and named by step - steps with no parameters are filtered out

  • pipe_get_params_at_step: list of parameters at given step

  • pipe_get_params_unique: list of parameters where each parameter is only listed once. The values of the parameters will be the values of the first step where the parameters were defined, respectively.

  • get_params_unique_json: flat unnamed json list of unique parameters

Examples

# pipe_get_params
p <- pipe_new("pipe", data = 1:2)
pipe_add(p, "add1", \(data = ~data, x = 1) x + data)
pipe_add(p, "add2", \(x = 1, y = 2, .z = 3) x + y + .z)
pipe_add(p, "add3", \() 1 + 2)
pipe_get_params(p, ) |> str()
pipe_get_params(p, ignoreHidden = FALSE) |> str()

# pipe_get_params_at_step
pipe_get_params_at_step(p, "add2")
pipe_get_params_at_step(p, "add2", ignoreHidden = FALSE)
pipe_get_params_at_step(p, "add3")

# pipe_get_params_unique
p <- pipe_new("pipe", data = 1:2)
pipe_add(p, "add1", \(data = ~data, x = 1) x + data)
pipe_add(p, "add2", \(x = 1, y = 2, .z = 3) x + y + .z)
pipe_add(p, "mult1", \(x = 4, y = 5, .z = 6, b = ~add2) x * y * b)
pipe_get_params_unique(p)
pipe_get_params_unique(p, ignoreHidden = FALSE)

# get_params_unique_json
pipe_get_params_unique_json(p)
pipe_get_params_unique_json(p, ignoreHidden = FALSE)

Get step information

Description

Get step information

Usage

pipe_get_step(pip, step)

pipe_get_step_names(pip)

pipe_get_step_number(pip, step)

pipe_has_step(pip, step)

Arguments

pip

Pipeline object

step

string name of step

Value

  • pipe_get_step: data.table row containing the step

  • pipe_get_step_names: character vector of step names

  • pipe_get_step_number: the step number in the pipeline

  • pipe_get_step_number: whether step exists

Examples

p <- pipe_new("pipe", data = 1:2)
pipe_add(p, "add1", \(data = ~data, x = 1) x + data)
pipe_add(p, "add2", \(x = 1, y = 2, z = ~add1) x + y + z)
pipe_run(p)

# pipe_get_step_names
pipe_get_step_names(p)

# get_step_number
pipe_get_step_number(p, "add1")
pipe_get_step_number(p, "add2")

# pipe_has_step
pipe_has_step(p, "add1")
pipe_has_step(p, "foo")

# pipe_get_step
add1 <- pipe_get_step(p, "add1")
add1

add1[["params"]]

add1[["fun"]]

try(p$get_step("foo")) # error: step 'foo' does not exist

Insert step

Description

Insert step

Usage

pipe_insert_after(pip, afterStep, step, ...)

pipe_insert_before(pip, beforeStep, step, ...)

Arguments

pip

Pipeline object

afterStep

string name of step after which to insert

step

string name of step to insert

...

further arguments passed to pipe_add()

beforeStep

string name of step before which to insert

Value

returns the Pipeline object invisibly

Methods

  • pipe_insert_after: insert step after a certain step of the pipeline

  • pipe_insert_before: insert step before a certain step of the pipeline

Examples

# pipe_insert_after
p <- pipe_new("pipe", data = 1)
pipe_add(p, "f1", \(x = 1) x)
pipe_add(p, "f2", \(x = ~f1) x)
pipe_insert_after(p, "f1", step = "after_f1", \(x = ~f1) x)
p

# insert_before
pipe_insert_before(p, "f2", step = "before_f2", \(x = ~f1) 2 * x)
p

Length of the pipeline

Description

Length of the pipeline

Usage

pipe_length(pip)

Arguments

pip

Pipeline object

Value

numeric length of pipeline, that is, the total number of steps

Examples

p <- pipe_new("pipe", data = 1:2)
pipe_add(p, "f1", \(x = 1) x)
pipe_add(p, "f2", \(y = 1) y)
p
pipe_length(p)

Lock steps

Description

Locking a step means that both its parameters and its output (given it has output) are locked such that neither setting new pipeline parameters nor future pipeline runs can change the current parameter and output content. To unlock a locked step, use pipe_unlock_step().

Usage

pipe_lock_step(pip, step)

pipe_unlock_step(pip, step)

Arguments

pip

Pipeline object

step

string name of step to lock or unlock

Value

the Pipeline object invisibly

Examples

# pipe_lock_step
p <- pipe_new("pipe", data = 1)
pipe_add(p, "add1", \(x = 1, data = ~data) x + data)
pipe_add(p, "add2", \(x = 1, data = ~data) x + data)
pipe_run(p)
pipe_get_out(p, "add1")
pipe_get_out(p, "add2")
pipe_lock_step(p, "add1")

pipe_set_data(p, 3)
pipe_set_params(p, list(x = 3))
pipe_run(p)
pipe_get_out(p, "add1")
pipe_get_out(p, "add2")

# pipe_unlock_step
pipe_unlock_step(p, "add1")
pipe_set_params(p, list(x = 3))
pipe_run(p)
pipe_get_out(p, "add1")

Create new pipeline

Description

A new pipeline is always initialized with one 'data' step, which basically is a function returning the data.

Usage

pipe_new(name, data = NULL, logger = NULL)

Arguments

name

the name of the Pipeline

data

optional data used at the start of the pipeline. The data also can be set later using the pipe_set_data() function.

logger

custom logger to be used for logging. If no logger is provided, the default logger is used, which should be sufficient for most use cases. If you do want to use your own custom log function, you need to provide a function that obeys the following form:

⁠function(level, msg, ...) { your custom logging code here }⁠

The level argument is a string and will be one of info, warn, or error. The msg argument is a string containing the message to be logged. The ... argument is a list of named parameters, which can be used to add additional information to the log message. Currently, this is only used to add the context in case of a step giving a warning or error.

Note that with the default logger, the log layout can be altered any time via set_log_layout().

Value

returns the Pipeline object invisibly

Examples

data <- data.frame(x = 1:2, y = 3:4)
p <- pipe_new("myPipe", data = data)
p |> pipe_run() |> pipe_get_out("data")

# Setting data later
p <- pipe_new("myPipe")
pipe_get_data(p)

p <- pipe_set_data(p, data)
pipe_get_data(p)
p |> pipe_run() |> pipe_get_out("data")

# Initialize with custom logger
my_logger <- function(level, msg, ...) {
   cat(level, msg, "\n")
}
p <- pipe_new("myPipe", data = data, logger = my_logger)
p |> pipe_run() |> pipe_get_out("data")

Pop steps from the pipeline

Description

Use this function to drop steps from the end of the pipeline.

Usage

pipe_pop_step(pip)

pipe_pop_steps_after(pip, step)

pipe_pop_steps_from(pip, step)

Arguments

pip

Pipeline object

step

string name of step

Value

string the name of the step that was removed

Methods

  • pipe_pop_step: drop last step from the pipeline

  • pipe_pop_steps_after: drop all steps after given steps

  • pipe_pop_steps_from: drop all steps from and including given steps

Examples

# pipe_pop_step
p <- pipe_new("pipe", data = 1:2)
pipe_add(p, "f1", \(x = 1) x)
pipe_add(p, "f2", \(y = 1) y)
p
pipe_pop_step(p)
p

# pipe_pop_steps_after
pipe_add(p, "f2", \(y = 1) y)
pipe_add(p, "f3", \(z = 1) z)
p
pipe_pop_steps_after(p, "f1")
p

# pipe_pop_steps_from
pipe_add(p, "f2", \(y = 1) y)
pipe_add(p, "f3", \(z = 1) z)
p
pipe_pop_steps_from(p, "f1")
p

Print the pipeline as a table

Description

Print the pipeline as a table

Usage

pipe_print(pip, verbose = FALSE)

Arguments

pip

Pipeline object

verbose

logical if TRUE, print all columns of the pipeline, otherwise only the most relevant columns are displayed.

Value

the Pipeline object invisibly

Examples

p <- pipe_new("pipe", data = 1:2)
p$add("f1", \(x = 1) x)
p$add("f2", \(y = 1) y)
pipe_print(p)
pipe_print(p, verbose = TRUE)

# Also works with standard print function
print(p)
print(p, verbose = TRUE)

Remove certain step from the pipeline.

Description

Can be used to remove any given step. If other steps depend on the step to be removed, an error is given and the removal is blocked, unless recursive was set to TRUE.

Usage

pipe_remove_step(pip, step, recursive = FALSE)

Arguments

pip

Pipeline object

step

string the name of the step to be removed

recursive

logical if TRUE the step is removed together with all its downstream dependencies.

Value

the Pipeline object invisibly

Examples

p <- pipe_new("pipe", data = 1:2)
pipe_add(p, "add1", \(data = ~data, x = 1) x + data)
pipe_add(p, "add2", \(x = 1, y = ~add1) x + y)
pipe_add(p, "mult1", \(x = 1, y = ~add2) x * y)
p

pipe_remove_step(p, "mult1")
p

try(pipe_remove_step(p, "add1"))
pipe_remove_step(p, "add1", recursive = TRUE)
p

Rename step

Description

Safely rename a step in the pipeline. If new step name would result in a name clash, an error is given.

Usage

pipe_rename_step(pip, from, to)

Arguments

pip

Pipeline object

from

string the name of the step to be renamed.

to

string the new name of the step.

Value

the Pipeline object invisibly

Examples

p <- pipe_new("pipe", data = 1:2)
pipe_add(p, "add1", \(data = ~data, x = 1) x + data)
pipe_add(p, "add2", \(x = 1, y = ~add1) x + y)
p

try(pipe_rename_step(p, from = "add1", to = "add2"))

pipe_rename_step(p, from = "add1", to = "first_add")
p

Replace pipeline step

Description

Replaces an existing pipeline step.

Usage

pipe_replace_step(
  pip,
  step,
  fun,
  params = list(),
  description = "",
  group = step,
  keepOut = FALSE
)

Arguments

pip

Pipeline object

step

string the name of the step. Each step name must be unique.

fun

function or name of the function to be applied at the step. Both existing and anonymous/lambda functions can be used. All function parameters must have default values. If a parameter is missing a default value in the function signature, alternatively, it can be set via the params argument (see Examples section with mean() function).

params

list list of parameters to set or overwrite parameters of the passed function.

description

string optional description of the step

group

string output collected after pipeline execution (see function pipe_collect_out()) is grouped by the defined group names. By default, this is the name of the step, which comes in handy when the pipeline is copy-appended multiple times to keep the results of the same function/step grouped at one place.

keepOut

logical if FALSE (default) the output of the step is not collected when calling pipe_collect_out() after the pipeline run. This option is used to only keep the results that matter and skip intermediate results that are not needed. See also function pipe_collect_out() for more details.

Value

returns the Pipeline object invisibly

See Also

pipe_add()

Examples

p <- pipe_new("pipe", data = 1)
pipe_add(p, "add1", \(x = ~data, y = 1) x + y)
pipe_add(p, "add2", \(x = ~data, y = 2) x + y)
pipe_add(p, "mult", \(x = 1, y = 2) x * y, keepOut = TRUE)
pipe_run(p) |> pipe_collect_out()
pipe_replace_step(p, "mult", \(x = ~add1, y = ~add2) x * y, keepOut = TRUE)
pipe_run(p) |> pipe_collect_out()
try(pipe_replace_step(p, "foo", \(x = 1) x))   # step 'foo' does not exist

Reset pipeline

Description

Resets the pipeline to the state before it was run. This means that all output is removed and the state of all steps is reset to 'New'.

Usage

pipe_reset(pip)

Arguments

pip

Pipeline object

Value

returns the Pipeline object invisibly

Examples

p <- pipe_new("pipe", data = 1:2)
pipe_add(p, "f1", \(x = 1) x)
pipe_add(p, "f2", \(y = 1) y)
pipe_run(p, )
p

pipe_reset(p)
p

Run pipeline

Description

Runs all new and/or outdated pipeline steps.

Usage

pipe_run(
  pip,
  force = FALSE,
  recursive = TRUE,
  cleanUnkept = FALSE,
  progress = NULL,
  showLog = TRUE
)

Arguments

pip

Pipeline object

force

logical if TRUE all steps are run regardless of whether they are outdated or not.

recursive

logical if TRUE and a step returns a new pipeline, the run of the current pipeline is aborted and the new pipeline is run recursively.

cleanUnkept

logical if TRUE all output that was not marked to be kept is removed after the pipeline run. This option can be useful if temporary results require a lot of memory.

progress

function this parameter can be used to provide a custom progress function of the form ⁠function(value, detail)⁠, which will show the progress of the pipeline run for each step, where value is the current step number and detail is the name of the step.

showLog

logical should the steps be logged during the pipeline run?

Value

returns the Pipeline object invisibly

Examples

# Simple pipeline
p <- pipe_new("pipe", data = 1)
pipe_add(p, "add1", \(x = ~data, y = 1) x + y)
pipe_add(p, "add2", \(x = ~add1, z = 2) x + z)
pipe_add(p, "final", \(x = ~add1, y = ~add2) x * y, keepOut = TRUE)
p |> pipe_run() |> pipe_collect_out()
pipe_set_params(p, list(z = 4))  # outdates steps add2 and final
p

p |> pipe_run() |> pipe_collect_out()

pipe_run(p, cleanUnkept = TRUE)
p

# Recursive pipeline (for advanced users)
p <- pipe_new("pipe", data = 1)
pipe_add(p, "add1", \(x = ~data, y = 1) x + y)
pipe_add(p, "new_pipe", \(x = ~add1) {
    p2 <- pipe_new("new_pipe", data = x)
    pipe_add(p2, "add1", \(x = ~data) x + 1)
    pipe_add(p2, "add2", \(x = ~add1) x + 2, keepOut = TRUE)
  }
)
p |> pipe_run() |> pipe_collect_out()

# Run pipeline with progress bar
p <- pipe_new("pipe", data = 1)
pipe_add(p, "first step", \() Sys.sleep(0.5))
pipe_add(p, "second step", \() Sys.sleep(0.5))
pipe_add(p, "last step", \() Sys.sleep(0.5))
pb <- txtProgressBar(min = 1, max = pipe_length(p), style = 3)
fprogress <- function(value, detail) {
   setTxtProgressBar(pb, value)
}
pipe_run(p, progress = fprogress, showLog = FALSE)

Run specific step

Description

Run given pipeline step possibly together with upstream and/or downstream dependencies.

Usage

pipe_run_step(
  pip,
  step,
  upstream = TRUE,
  downstream = FALSE,
  cleanUnkept = FALSE
)

Arguments

pip

Pipeline object

step

string name of step

upstream

logical if TRUE, run all dependent upstream steps first.

downstream

logical if TRUE, run all depdendent downstream afterwards.

cleanUnkept

logical if TRUE all output that was not marked to be kept is removed after the pipeline run. This option can be useful if temporary results require a lot of memory.

Value

returns the Pipeline object invisibly

Examples

p <- pipe_new("pipe", data = 1)
pipe_add(p, "add1", \(x = ~data, y = 1) x + y)
pipe_add(p, "add2", \(x = ~add1, z = 2) x + z)
pipe_add(p, "mult", \(x = ~add1, y = ~add2) x * y)
pipe_run_step(p, "add2")

pipe_run_step(p, "add2", downstream = TRUE)

pipe_run_step(p, "mult", upstream = TRUE)

Set data

Description

Set data in first step of pipeline.

Usage

pipe_set_data(pip, data)

Arguments

pip

Pipeline object

data

initial data set.

Value

returns the Pipeline object invisibly

Examples

p <- pipe_new("pipe", data = 1)
pipe_add(p, "add1", \(x = ~data, y = 1) x + y, keepOut = TRUE)
p |> pipe_run() |> pipe_collect_out()

pipe_set_data(p, 3)
p |> pipe_run() |> pipe_collect_out()

Split-multiply pipeline by list of data sets

Description

This function can be used to apply the pipeline repeatedly to various data sets. For this, the pipeline split-copies itself by the list of given data sets. Each sub-pipeline will have one of the data sets set as input data. The step names of the sub-pipelines will be the original step names plus the name of the data set.

Usage

pipe_set_data_split(
  pip,
  dataList,
  toStep = character(),
  groupBySplit = TRUE,
  sep = "."
)

Arguments

pip

Pipeline object

dataList

list of data sets

toStep

string step name marking optional subset of the pipeline, to which the data split should be applied to.

groupBySplit

logical whether to set step groups according to data split.

sep

string separator to be used between step name and data set name when creating the new step names.

Value

new combined Pipeline with each sub-pipeline having set one of the data sets.

Examples

# Split by three data sets
dataList <- list(a = 1, b = 2, c = 3)
p <- pipe_new("pipe")
pipe_add(p, "add1", \(x = ~data) x + 1, keepOut = TRUE)
pipe_add(p, "mult", \(x = ~data, y = ~add1) x * y, keepOut = TRUE)
pipe_set_data_split(p, dataList)
p

p |> pipe_run() |> pipe_collect_out() |> str()

# Don't group output by split
p <- pipe_new("pipe")
pipe_add(p, "add1", \(x = ~data) x + 1, keepOut = TRUE)
pipe_add(p, "mult", \(x = ~data, y = ~add1) x * y, keepOut = TRUE)
pipe_set_data_split(p, dataList, groupBySplit = FALSE)
p

p |> pipe_run() |> pipe_collect_out() |> str()

# Split up to certain step
p <- pipe_new("pipe")
pipe_add(p, "add1", \(x = ~data) x + 1)
pipe_add(p, "mult", \(x = ~data, y = ~add1) x * y)
pipe_add(p, "average_result", \(x = ~mult) mean(unlist(x)), keepOut = TRUE)
p
pipe_get_depends(p)[["average_result"]]

pipe_set_data_split(p, dataList, toStep = "mult")
p
pipe_get_depends(p)[["average_result"]]

p |> pipe_run() |> pipe_collect_out() |> str()

Change output flag

Description

Change the keepOut flag at a given pipeline step, which determines whether the output of that step is collected when calling pipe_collect_out()⁠after the pipeline was run. See column⁠keepOut' when printing a pipeline to view the status.

Usage

pipe_set_keep_out(pip, step, keepOut = TRUE)

Arguments

pip

Pipeline object

step

string name of step

keepOut

logical whether to keep output of step

Value

the Pipeline object invisibly

Examples

p <- pipe_new("pipe", data = 1)
pipe_add(p, "add1", \(x = ~data, y = 1) x + y, keepOut = TRUE)
pipe_add(p, "add2", \(x = ~data, y = 2) x + y)
pipe_add(p, "mult", \(x = ~add1, y = ~add2) x * y)
p |> pipe_run() |> pipe_collect_out()

pipe_set_keep_out(p, "add1", keepOut = FALSE)
pipe_set_keep_out(p, "mult", keepOut = TRUE)
p |> pipe_run() |> pipe_collect_out()

Set pipeline parameters

Description

Set unbound function parameters defined in the pipeline where 'unbound' means parameters that are not linked to other steps. Trying to set parameters that don't exist in the pipeline is ignored, by default, with a warning.

Usage

pipe_set_params(pip, params, warnUndefined = TRUE)

Arguments

pip

Pipeline object

params

list of parameters to be set

warnUndefined

logical whether to give a warning when trying to set a parameter that is not defined in the pipeline.

Value

returns the Pipeline object invisibly

Examples

p <- pipe_new("pipe", data = 1)
pipe_add(p, "add1", \(x = ~data, y = 2) x + y)
pipe_add(p, "add2", \(x = ~data, y = 3) x + y)
pipe_add(p, "mult", \(x = 4, z = 5) x * z)
pipe_get_params(p)
pipe_set_params(p, params = list(x = 3, y = 3))
pipe_get_params(p)
pipe_set_params(p, params = list(x = 5, z = 3))
pipe_get_params(p)

suppressWarnings(
  pipe_set_params(p, list(foo = 3)) # gives warning as 'foo' is undefined
)
pipe_set_params(p, list(foo = 3), warnUndefined = FALSE)

Set parameters at step

Description

Set unbound function parameters defined at given pipeline step where 'unbound' means parameters that are not linked to other steps. If one or more parameters don't exist, an error is given.

Usage

pipe_set_params_at_step(pip, step, params)

Arguments

pip

Pipeline object

step

string the name of the step

params

list of parameters to be set

Value

returns the Pipeline object invisibly

Examples

p <- pipe_new("pipe", data = 1)
pipe_add(p, "add1", \(x = ~data, y = 2, z = 3) x + y)
pipe_set_params_at_step(p, step = "add1", params = list(y = 5, z = 6))
pipe_get_params(p)

try(
  pipe_set_params_at_step(p, step = "add1", params = list(foo = 3))
)

Split-up pipeline

Description

Splits pipeline into its independent parts. This can be useful, for example, to split-up the pipeline in order to run each part in parallel.

Usage

pipe_split(pip)

Arguments

pip

Pipeline object

Value

list of Pipeline objects

Examples

# Example for two independent calculation paths
p <- pipe_new("pipe", data = 1)
pipe_add(p, "f1", \(x = ~data) x)
pipe_add(p, "f2", \(x = 1) x)
pipe_add(p, "f3", \(x = ~f1) x)
pipe_add(p, "f4", \(x = ~f2) x)
pipe_split(p)

# Example of split by three data sets
dataList <- list(a = 1, b = 2, c = 3)
p <- pipe_new("pipe")
pipe_add(p, "add1", \(x = ~data) x + 1, keepOut = TRUE)
pipe_add(p, "mult", \(x = ~data, y = ~add1) x * y, keepOut = TRUE)
pipes <- pipe_set_data_split(p, dataList) |> pipe_split()
pipes

Pipeline Class

Description

This class implements an analysis pipeline. A pipeline consists of a sequence of analysis steps, which can be added one by one. Each added step may or may not depend on one or more previous steps. The pipeline keeps track of the dependencies among these steps and will ensure that all dependencies are met on creation of the pipeline, that is, before the the pipeline is run. Once the pipeline is run, the output is stored in the pipeline along with each step and can be accessed later. Different pipelines can be bound together while preserving all dependencies within each pipeline.

Public fields

name

string name of the pipeline

pipeline

data.table the pipeline where each row represents one step.

Methods

Public methods


Method new()

constructor

Usage
Pipeline$new(name, data = NULL, logger = NULL)
Arguments
name

the name of the Pipeline

data

optional data used at the start of the pipeline. The data also can be set later using the set_data function.

logger

custom logger to be used for logging. If no logger is provided, the default logger is used, which should be sufficient for most use cases. If you do want to use your own custom log function, you need to provide a function that obeys the following form:

⁠function(level, msg, ...) { your custom logging code here }⁠

The level argument is a string and will be one of info, warn, or error. The msg argument is a string containing the message to be logged. The ... argument is a list of named parameters, which can be used to add additional information to the log message. Currently, this is only used to add the context in case of a step giving a warning or error.

Note that with the default logger, the log layout can be altered any time via set_log_layout().

Returns

returns the Pipeline object invisibly

Examples
p <- Pipeline$new("myPipe", data = data.frame(x = 1:8))
p

# Passing custom logger
my_logger <- function(level, msg, ...) {
   cat(level, msg, "\n")
}
p <- Pipeline$new("myPipe", logger = my_logger)

Method add()

Add pipeline step

Usage
Pipeline$add(
  step,
  fun,
  params = list(),
  description = "",
  group = step,
  keepOut = FALSE
)
Arguments
step

string the name of the step. Each step name must be unique.

fun

function or name of the function to be applied at the step. Both existing and anonymous/lambda functions can be used. All function parameters must have default values. If a parameter is missing a default value in the function signature, alternatively, it can be set via the params argument (see Examples section with mean() function).

params

list list of parameters to set or overwrite parameters of the passed function.

description

string optional description of the step

group

string output collected after pipeline execution (see function collect_out) is grouped by the defined group names. By default, this is the name of the step, which comes in handy when the pipeline is copy-appended multiple times to keep the results of the same function/step grouped at one place.

keepOut

logical if FALSE (default) the output of the step is not collected when calling collect_out after the pipeline run. This option is used to only keep the results that matter and skip intermediate results that are not needed. See also function collect_out for more details.

Returns

returns the Pipeline object invisibly

Examples
# Add steps with lambda functions
p <- Pipeline$new("myPipe", data = 1)
p$add("s1", \(x = ~data) 2*x)  # use input data
p$add("s2", \(x = ~data, y = ~s1) x * y)
try(p$add("s2", \(z = 3) 3)) # error: step 's2' exists already
try(p$add("s3", \(z = ~foo) 3)) # dependency 'foo' not found
p

# Add step with existing function
p <- Pipeline$new("myPipe", data = c(1, 2, NA, 3, 4))
p$add("calc_mean", mean, params = list(x = ~data, na.rm = TRUE))
p$run()$get_out("calc_mean")

# Step description
p <- Pipeline$new("myPipe", data = 1:10)
p$add("s1", \(x = ~data) 2*x, description = "multiply by 2")
print(p)
print(p, verbose = TRUE) # print all columns

# Group output
p <- Pipeline$new("myPipe", data = data.frame(x = 1:5, y = 1:5))
p$add("prep_x", \(data = ~data) data$x, group = "prep")
p$add("prep_y", \(data = ~data) (data$y)^2, group = "prep")
p$add("sum", \(x = ~prep_x, y = ~prep_y) x + y)
p$run()$collect_out(all = TRUE)

Method append()

Append another pipeline When appending, pipeflow takes care of potential name clashes with respect to step names and dependencies, that is, if needed, it will automatically adapt step names and dependencies to make sure they are unique in the merged pipeline.

Usage
Pipeline$append(p, outAsIn = FALSE, tryAutofixNames = TRUE, sep = ".")
Arguments
p

Pipeline object to be appended.

outAsIn

logical if TRUE, output of first pipeline is used as input for the second pipeline.

tryAutofixNames

logical if TRUE, name clashes are tried to be automatically resolved by appending the 2nd pipeline's name. Only set to FALSE, if you know what you are doing.

sep

string separator used when auto-resolving step names

Returns

returns new combined Pipeline.

Examples
# Append pipeline
p1 <- Pipeline$new("pipe1")
p1$add("step1", \(x = 1) x)
p2 <- Pipeline$new("pipe2")
p2$add("step2", \(y = 1) y)
p1$append(p2)

# Append pipeline with potential name clashes
p3 <- Pipeline$new("pipe3")
p3$add("step1", \(z = 1) z)
p1$append(p2)$append(p3)

# Use output of first pipeline as input for second pipeline
p1 <- Pipeline$new("pipe1", data = 8)
p2 <- Pipeline$new("pipe2")
p1$add("square", \(x = ~data) x^2)
p2$add("log2", \(x = ~data) log2(x))

p12 <- p1$append(p2, outAsIn = TRUE)
p12$run()$get_out("log2")
p12

# Custom name separator
p1$append(p2, sep = "___")

Method append_to_step_names()

Appends string to all step names and takes care of updating step dependencies accordingly.

Usage
Pipeline$append_to_step_names(postfix, sep = ".")
Arguments
postfix

string to be appended to each step name.

sep

string separator between step name and postfix.

Returns

returns the Pipeline object invisibly

Examples
p <- Pipeline$new("pipe")
p$add("step1", \(x = 1) x)
p$add("step2", \(y = 1) y)
p$append_to_step_names("new")
p
p$append_to_step_names("foo", sep = "__")
p

Method collect_out()

Collect output afer pipeline run, by default, from all steps for which keepOut was set to TRUE. The output is grouped by the group names (see group parameter in function add), which by default are set identical to the step names.

Usage
Pipeline$collect_out(groupBy = "group", all = FALSE)
Arguments
groupBy

string column of pipeline by which to group the output.

all

logical if TRUE all output is collected regardless of the keepOut flag. This can be useful for debugging.

Returns

list containing the output, named after the groups, which, by default, are the steps.

Examples
p <- Pipeline$new("pipe", data = 1:2)
p$add("step1", \(x = ~data) x + 2)
p$add("step2", \(x = ~step1) x + 2, keepOut = TRUE)
p$run()
p$collect_out()
p$collect_out(all = TRUE) |> str()

# Grouped output
p <- Pipeline$new("pipe", data = 1:2)
p$add("step1", \(x = ~data) x + 2, group = "add")
p$add("step2", \(x = ~step1, y = 2) x + y, group = "add")
p$add("step3", \(x = ~data) x * 3, group = "mult")
p$add("step4", \(x = ~data, y = 2) x * y, group = "mult")
p
p$run()
p$collect_out(all = TRUE) |> str()

# Grouped by state
p$set_params(list(y = 5))
p
p$collect_out(groupBy = "state", all = TRUE) |> str()

Method discard_steps()

Discard all steps that match a given pattern.

Usage
Pipeline$discard_steps(pattern, recursive = FALSE, fixed = TRUE, ...)
Arguments
pattern

string containing a regular expression (or character string for fixed = TRUE) to be matched.

recursive

logical if TRUE the step is removed together with all its downstream dependencies.

fixed

logical If TRUE, pattern is a string to be matched as is. Overrides all conflicting arguments.

...

further arguments passed to grep().

Returns

the Pipeline object invisibly

Examples
p <- Pipeline$new("pipe", data = 1:2)
p$add("add1", \(x = ~data) x + 1)
p$add("add2", \(x = ~add1) x + 2)
p$add("mult3", \(x = ~add1) x * 3)
p$add("mult4", \(x = ~add2) x * 4)
p

p$discard_steps("mult")
p

# Re-add steps
p$add("mult3", \(x = ~add1) x * 3)
p$add("mult4", \(x = ~add2) x * 4)
p
# Discarding 'add1' does not work ...
try(p$discard_steps("add1"))

# ... unless we enforce to remove its downstream dependencies as well
p$discard_steps("add1", recursive = TRUE)   # this works
p

# Trying to discard non-existent steps is just ignored
p$discard_steps("non-existent")

Method get_data()

Get data

Usage
Pipeline$get_data()
Returns

the output defined in the data step, which by default is the first step of the pipeline

Examples
p <- Pipeline$new("pipe", data = 1:2)
p$get_data()
p$set_data(3:4)
p$get_data()

Method get_depends()

Get all dependencies defined in the pipeline

Usage
Pipeline$get_depends()
Returns

named list of dependencies for each step

Examples
p <- Pipeline$new("pipe", data = 1:2)
p$add("add1", \(x = ~data) x + 1)
p$add("add2", \(x = ~data, y = ~add1) x + y)
p$get_depends()

Method get_depends_down()

Get all downstream dependencies of given step, by default descending recursively.

Usage
Pipeline$get_depends_down(step, recursive = TRUE)
Arguments
step

string name of step

recursive

logical if TRUE, dependencies of dependencies are also returned.

Returns

list of downstream dependencies

Examples
p <- Pipeline$new("pipe", data = 1:2)
p$add("add1", \(x = ~data) x + 1)
p$add("add2", \(x = ~data, y = ~add1) x + y)
p$add("mult3", \(x = ~add1) x * 3)
p$add("mult4", \(x = ~add2) x * 4)
p$get_depends_down("add1")
p$get_depends_down("add1", recursive = FALSE)

Method get_depends_up()

Get all upstream dependencies of given step, by default descending recursively.

Usage
Pipeline$get_depends_up(step, recursive = TRUE)
Arguments
step

string name of step

recursive

logical if TRUE, dependencies of dependencies are also returned.

Returns

list of upstream dependencies

Examples
p <- Pipeline$new("pipe", data = 1:2)
p$add("add1", \(x = ~data) x + 1)
p$add("add2", \(x = ~data, y = ~add1) x + y)
p$add("mult3", \(x = ~add1) x * 3)
p$add("mult4", \(x = ~add2) x * 4)
p$get_depends_up("mult4")
p$get_depends_up("mult4", recursive = FALSE)

Method get_graph()

Visualize the pipeline as a graph.

Usage
Pipeline$get_graph(groups = NULL)
Arguments
groups

character if not NULL, only steps belonging to the given groups are considered.

Returns

two data frames, one for nodes and one for edges ready to be used with the visNetwork package.

Examples
p <- Pipeline$new("pipe", data = 1:2)
p$add("add1", \(data = ~data, x = 1) x + data)
p$add("add2", \(x = 1, y = ~add1) x + y)
p$add("mult1", \(x = ~add1, y = ~add2) x * y)
graph <- pipe_get_graph(p)
graph

if (require("visNetwork", quietly = TRUE)) {
    do.call(visNetwork, args = p$get_graph())
}

Method get_out()

Get output of given step

Usage
Pipeline$get_out(step)
Arguments
step

string name of step

Returns

the output at the given step.

Examples
p <- Pipeline$new("pipe", data = 1:2)
p$add("add1", \(x = ~data) x + 1)
p$add("add2", \(x = ~data, y = ~add1) x + y)
p$run()
p$get_out("add1")
p$get_out("add2")

Method get_params()

Set unbound function parameters defined in the pipeline where 'unbound' means parameters that are not linked to other steps. Trying #' to set parameters that don't exist in the pipeline is ignored, by default, with a warning.

Usage
Pipeline$get_params(ignoreHidden = TRUE)
Arguments
ignoreHidden

logical if TRUE, hidden parameters (i.e. all names starting with a dot) are ignored and thus not returned.

Returns

list of parameters, sorted and named by step. Steps with no parameters are filtered out.

Examples
p <- Pipeline$new("pipe", data = 1:2)
p$add("add1", \(data = ~data, x = 1) x + data)
p$add("add2", \(x = 1, y = 2, .z = 3) x + y + .z)
p$add("add3", \() 1 + 2)
p$get_params() |> str()
p$get_params(ignoreHidden = FALSE) |> str()

Method get_params_at_step()

Get all unbound (i.e. not referring to other steps) at given step name.

Usage
Pipeline$get_params_at_step(step, ignoreHidden = TRUE)
Arguments
step

string name of step

ignoreHidden

logical if TRUE, hidden parameters (i.e. all names starting with a dot) are ignored and thus not returned.

Returns

list of parameters defined at given step.

Examples
p <- Pipeline$new("pipe", data = 1:2)
p$add("add1", \(data = ~data, x = 1) x + data)
p$add("add2", \(x = 1, y = 2, .z = 3) x + y + .z)
p$add("add3", \() 1 + 2)
p$get_params_at_step("add2")
p$get_params_at_step("add2", ignoreHidden = FALSE)
p$get_params_at_step("add3")

Method get_params_unique()

Get all unbound (i.e. not referring to other steps) parameters defined in the pipeline, but only list each parameter once. The values of the parameters, will be the values of the first step where the parameter was defined. This is particularly useful after the parameters where set using the set_params function, which will set the same value for all steps.

Usage
Pipeline$get_params_unique(ignoreHidden = TRUE)
Arguments
ignoreHidden

logical if TRUE, hidden parameters (i.e. all names starting with a dot) are ignored and thus not returned.

Returns

list of unique parameters

Examples
p <- Pipeline$new("pipe", data = 1:2)
p$add("add1", \(data = ~data, x = 1) x + data)
p$add("add2", \(x = 1, y = 2, .z = 3) x + y + .z)
p$add("mult1", \(x = 1, y = 2, .z = 3, b = ~add2) x * y * b)
p$get_params_unique()
p$get_params_unique(ignoreHidden = FALSE)

Method get_params_unique_json()

Get all unique function parameters in json format.

Usage
Pipeline$get_params_unique_json(ignoreHidden = TRUE)
Arguments
ignoreHidden

logical if TRUE, hidden parameters (i.e. all names starting with a dot) are ignored and thus not returned.

Returns

list flat unnamed json list of unique function parameters

Examples
p <- Pipeline$new("pipe", data = 1:2)
p$add("add1", \(data = ~data, x = 1) x + data)
p$add("add2", \(x = 1, y = 2, .z = 3) x + y + .z)
p$add("mult1", \(x = 1, y = 2, .z = 3, b = ~add2) x * y * b)
p$get_params_unique_json()
p$get_params_unique_json(ignoreHidden = FALSE)

Method get_step()

Get step of pipeline

Usage
Pipeline$get_step(step)
Arguments
step

string name of step

Returns

data.table row containing the step.

Examples
p <- Pipeline$new("pipe", data = 1:2)
p$add("add1", \(data = ~data, x = 1) x + data)
p$add("add2", \(x = 1, y = 2, z = ~add1) x + y + z)
p$run()
add1 <- p$get_step("add1")
print(add1)
add1[["params"]]
add1[["fun"]]
try()
try(p$get_step("foo")) # error: step 'foo' does not exist

Method get_step_names()

Get step names of pipeline

Usage
Pipeline$get_step_names()
Returns

character vector of step names

Examples
p <- Pipeline$new("pipe", data = 1:2)
p$add("f1", \(x = 1) x)
p$add("f2", \(y = 1) y)
p$get_step_names()

Method get_step_number()

Get step number

Usage
Pipeline$get_step_number(step)
Arguments
step

string name of step

Returns

the step number in the pipeline

Examples
p <- Pipeline$new("pipe", data = 1:2)
p$add("f1", \(x = 1) x)
p$add("f2", \(y = 1) y)
p$get_step_number("f2")

Method has_step()

Check if pipeline has given step

Usage
Pipeline$has_step(step)
Arguments
step

string name of step

Returns

logical whether step exists

Examples
p <- Pipeline$new("pipe", data = 1:2)
p$add("f1", \(x = 1) x)
p$add("f2", \(y = 1) y)
p$has_step("f2")
p$has_step("foo")

Method insert_after()

Insert step after a certain step

Usage
Pipeline$insert_after(afterStep, step, ...)
Arguments
afterStep

string name of step after which to insert

step

string name of step to insert

...

further arguments passed to add method of the pipeline

Returns

returns the Pipeline object invisibly

Examples
p <- Pipeline$new("pipe", data = 1)
p$add("f1", \(x = 1) x)
p$add("f2", \(x = ~f1) x)
p$insert_after("f1", "f3", \(x = ~f1) x)
p

Method insert_before()

Insert step before a certain step

Usage
Pipeline$insert_before(beforeStep, step, ...)
Arguments
beforeStep

string name of step before which to insert

step

string name of step to insert

...

further arguments passed to add method of the pipeline

Returns

returns the Pipeline object invisibly

Examples
p <- Pipeline$new("pipe", data = 1)
p$add("f1", \(x = 1) x)
p$add("f2", \(x = ~f1) x)
p$insert_before("f2", "f3", \(x = ~f1) x)
p

Method length()

Length of the pipeline aka number of pipeline steps.

Usage
Pipeline$length()
Returns

numeric length of pipeline.

Examples
p <- Pipeline$new("pipe", data = 1:2)
p$add("f1", \(x = 1) x)
p$add("f2", \(y = 1) y)
p$length()

Method lock_step()

Locking a step means that both its parameters and its output (given it has output) are locked such that neither setting new pipeline parameters nor future pipeline runs can change the current parameter and output content.

Usage
Pipeline$lock_step(step)
Arguments
step

string name of step

Returns

the Pipeline object invisibly

Examples
p <- Pipeline$new("pipe", data = 1)
p$add("add1", \(x = 1, data = ~data) x + data)
p$add("add2", \(x = 1, data = ~data) x + data)
p$run()
p$get_out("add1")
p$get_out("add2")
p$lock_step("add1")

p$set_data(3)
p$set_params(list(x = 3))
p$run()
p$get_out("add1")
p$get_out("add2")

Method pop_step()

Drop last step from the pipeline.

Usage
Pipeline$pop_step()
Returns

string the name of the step that was removed

Examples
p <- Pipeline$new("pipe", data = 1:2)
p$add("f1", \(x = 1) x)
p$add("f2", \(y = 1) y)
p
p$pop_step() # "f2"
p

Method pop_steps_after()

Drop all steps after the given step.

Usage
Pipeline$pop_steps_after(step)
Arguments
step

string name of step

Returns

character vector of steps that were removed.

Examples
p <- Pipeline$new("pipe", data = 1:2)
p$add("f1", \(x = 1) x)
p$add("f2", \(y = 1) y)
p$add("f3", \(z = 1) z)
p$pop_steps_after("f1")  # "f2", "f3"
p

Method pop_steps_from()

Drop all steps from and including the given step.

Usage
Pipeline$pop_steps_from(step)
Arguments
step

string name of step

Returns

character vector of steps that were removed.

Examples
p <- Pipeline$new("pipe", data = 1:2)
p$add("f1", \(x = 1) x)
p$add("f2", \(y = 1) y)
p$add("f3", \(z = 1) z)
p$pop_steps_from("f2")  # "f2", "f3"
p

Method print()

Print the pipeline as a table.

Usage
Pipeline$print(verbose = FALSE)
Arguments
verbose

logical if TRUE, print all columns of the pipeline, otherwise only the most relevant columns are displayed.

Returns

the Pipeline object invisibly

Examples
p <- Pipeline$new("pipe", data = 1:2)
p$add("f1", \(x = 1) x)
p$add("f2", \(y = 1) y)
p$print()

Method remove_step()

Remove certain step from the pipeline. If other steps depend on the step to be removed, an error is given and the removal is blocked, unless recursive was set to TRUE.

Usage
Pipeline$remove_step(step, recursive = FALSE)
Arguments
step

string the name of the step to be removed.

recursive

logical if TRUE the step is removed together with all its downstream dependencies.

Returns

the Pipeline object invisibly

Examples
p <- Pipeline$new("pipe", data = 1:2)
p$add("add1", \(data = ~data, x = 1) x + data)
p$add("add2", \(x = 1, y = ~add1) x + y)
p$add("mult1", \(x = 1, y = ~add2) x * y)
p$remove_step("mult1")
p
try(p$remove_step("add1"))  # fails because "add2" depends on "add1"
p$remove_step("add1", recursive = TRUE)  # removes "add1" and "add2"
p

Method rename_step()

Safely rename a step in the pipeline. If new step name would result in a name clash, an error is given.

Usage
Pipeline$rename_step(from, to)
Arguments
from

string the name of the step to be renamed.

to

string the new name of the step.

Returns

the Pipeline object invisibly

Examples
p <- Pipeline$new("pipe", data = 1:2)
p$add("add1", \(data = ~data, x = 1) x + data)
p$add("add2", \(x = 1, y = ~add1) x + y)
p
try(p$rename_step("add1", "add2"))  # fails because "add2" exists
p$rename_step("add1", "first_add")  # Ok
p

Method replace_step()

Replaces an existing pipeline step.

Usage
Pipeline$replace_step(
  step,
  fun,
  params = list(),
  description = "",
  group = step,
  keepOut = FALSE
)
Arguments
step

string the name of the step to be replaced. Step must exist.

fun

string or function operation to be applied at the step. Both existing and lambda/anonymous functions can be used.

params

list list of parameters to overwrite default parameters of existing functions.

description

string optional description of the step

group

string grouping information (by default the same as the name of the step. Any output collected later (see function collect_out by default is put together by these group names. This, for example, comes in handy when the pipeline is copy-appended multiple times to keep the results of the same function/step at one place.

keepOut

logical if FALSE the output of the function will be cleaned at the end of the whole pipeline execution. This option is used to only keep the results that matter.

Returns

the Pipeline object invisibly

Examples
p <- Pipeline$new("pipe", data = 1)
p$add("add1", \(x = ~data, y = 1) x + y)
p$add("add2", \(x = ~data, y = 2) x + y)
p$add("mult", \(x = 1, y = 2) x * y, keepOut = TRUE)
p$run()$collect_out()
p$replace_step("mult", \(x = ~add1, y = ~add2) x * y, keepOut = TRUE)
p$run()$collect_out()
try(p$replace_step("foo", \(x = 1) x))   # step 'foo' does not exist

Method reset()

Resets the pipeline to the state before it was run. This means that all output is removed and the state of all steps is reset to 'New'.

Usage
Pipeline$reset()
Returns

returns the Pipeline object invisibly

Examples
p <- Pipeline$new("pipe", data = 1:2)
p$add("f1", \(x = 1) x)
p$add("f2", \(y = 1) y)
p$run()
p
p$reset()
p

Method run()

Run all new and/or outdated pipeline steps.

Usage
Pipeline$run(
  force = FALSE,
  recursive = TRUE,
  cleanUnkept = FALSE,
  progress = NULL,
  showLog = TRUE
)
Arguments
force

logical if TRUE all steps are run regardless of whether they are outdated or not.

recursive

logical if TRUE and a step returns a new pipeline, the run of the current pipeline is aborted and the new pipeline is run recursively.

cleanUnkept

logical if TRUE all output that was not marked to be kept is removed after the pipeline run. This option can be useful if temporary results require a lot of memory.

progress

function this parameter can be used to provide a custom progress function of the form ⁠function(value, detail)⁠, which will show the progress of the pipeline run for each step, where value is the current step number and detail is the name of the step.

showLog

logical should the steps be logged during the pipeline run?

Returns

returns the Pipeline object invisibly

Examples
# Simple pipeline
p <- Pipeline$new("pipe", data = 1)
p$add("add1", \(x = ~data, y = 1) x + y)
p$add("add2", \(x = ~add1, z = 2) x + z)
p$add("final", \(x = ~add1, y = ~add2) x * y, keepOut = TRUE)
p$run()$collect_out()
p$set_params(list(z = 4))  # outdates steps add2 and final
p
p$run()$collect_out()
p$run(cleanUnkept = TRUE)  # clean up temporary results
p

# Recursive pipeline
p <- Pipeline$new("pipe", data = 1)
p$add("add1", \(x = ~data, y = 1) x + y)
p$add("new_pipe", \(x = ~add1) {
    pp <- Pipeline$new("new_pipe", data = x)
    pp$add("add1", \(x = ~data) x + 1)
    pp$add("add2", \(x = ~add1) x + 2, keepOut = TRUE)
    }
)
p$run(recursive = TRUE)$collect_out()

# Run pipeline with progress bar
p <- Pipeline$new("pipe", data = 1)
p$add("first step", \() Sys.sleep(1))
p$add("second step", \() Sys.sleep(1))
p$add("last step", \() Sys.sleep(1))
pb <- txtProgressBar(min = 1, max = p$length(), style = 3)
fprogress <- function(value, detail) {
   setTxtProgressBar(pb, value)
}
p$run(progress = fprogress, showLog = FALSE)

Method run_step()

Run given pipeline step possibly together with upstream and downstream dependencies.

Usage
Pipeline$run_step(
  step,
  upstream = TRUE,
  downstream = FALSE,
  cleanUnkept = FALSE
)
Arguments
step

string name of step

upstream

logical if TRUE, run all dependent upstream steps first.

downstream

logical if TRUE, run all depdendent downstream afterwards.

cleanUnkept

logical if TRUE all output that was not marked to be kept is removed after the pipeline run. This option can be useful if temporary results require a lot of memory.

Returns

returns the Pipeline object invisibly

Examples
p <- Pipeline$new("pipe", data = 1)
p$add("add1", \(x = ~data, y = 1) x + y)
p$add("add2", \(x = ~add1, z = 2) x + z)
p$add("mult", \(x = ~add1, y = ~add2) x * y)
p$run_step("add2")
p$run_step("add2", downstream = TRUE)
p$run_step("mult", upstream = TRUE)

Method set_data()

Set data in first step of pipeline.

Usage
Pipeline$set_data(data)
Arguments
data

initial data set

Returns

returns the Pipeline object invisibly

Examples
p <- Pipeline$new("pipe", data = 1)
p$add("add1", \(x = ~data, y = 1) x + y, keepOut = TRUE)
p$run()$collect_out()
p$set_data(3)
p$run()$collect_out()

Method set_data_split()

This function can be used to apply the pipeline repeatedly to various data sets. For this, the pipeline split-copies itself by the list of given data sets. Each sub-pipeline will have one of the data sets set as input data. The step names of the sub-pipelines will be the original step names plus the name of the data set.

Usage
Pipeline$set_data_split(
  dataList,
  toStep = character(),
  groupBySplit = TRUE,
  sep = "."
)
Arguments
dataList

list of data sets

toStep

string step name marking optional subset of the pipeline, at which the data split should be applied to.

groupBySplit

logical whether to set step groups according to data split.

sep

string separator to be used between step name and data set name when creating the new step names.

Returns

new combined Pipeline with each sub-pipeline having set one of the data sets.

Examples
# Split by three data sets
dataList <- list(a = 1, b = 2, c = 3)
p <- Pipeline$new("pipe")
p$add("add1", \(x = ~data) x + 1, keepOut = TRUE)
p$add("mult", \(x = ~data, y = ~add1) x * y, keepOut = TRUE)
p$set_data_split(dataList)
p
p$run()$collect_out() |> str()

# Don't group output by split
p <- Pipeline$new("pipe")
p$add("add1", \(x = ~data) x + 1, keepOut = TRUE)
p$add("mult", \(x = ~data, y = ~add1) x * y, keepOut = TRUE)
p$set_data_split(dataList, groupBySplit = FALSE)
p
p$run()$collect_out() |> str()

# Split up to certain step
p <- Pipeline$new("pipe")
p$add("add1", \(x = ~data) x + 1)
p$add("mult", \(x = ~data, y = ~add1) x * y)
p$add("average_result", \(x = ~mult) mean(unlist(x)), keepOut = TRUE)
p
p$get_depends()[["average_result"]]

p$set_data_split(dataList, toStep = "mult")
p
p$get_depends()[["average_result"]]

p$run()$collect_out()

Method set_keep_out()

Change the keepOut flag at a given pipeline step, which determines whether the output of that step is collected when calling collect_out() after the pipeline was run.

Usage
Pipeline$set_keep_out(step, keepOut = TRUE)
Arguments
step

string name of step

keepOut

logical whether to keep output of step

Returns

the Pipeline object invisibly

Examples
p <- Pipeline$new("pipe", data = 1)
p$add("add1", \(x = ~data, y = 1) x + y, keepOut = TRUE)
p$add("add2", \(x = ~data, y = 2) x + y)
p$add("mult", \(x = ~add1, y = ~add2) x * y)
p$run()$collect_out()
p$set_keep_out("add1", keepOut = FALSE)
p$set_keep_out("mult", keepOut = TRUE)
p$collect_out()

Method set_params()

Set parameters in the pipeline. If a parameter occurs in several steps, the parameter is set commonly in all steps. Trying to set parameters that don't exist in the pipeline is ignored, by default, with a warning.

Usage
Pipeline$set_params(params, warnUndefined = TRUE)
Arguments
params

list of parameters to be set

warnUndefined

logical whether to give a warning when trying to set a parameter that is not defined in the pipeline.

Returns

returns the Pipeline object invisibly

Examples
p <- Pipeline$new("pipe", data = 1)
p$add("add1", \(x = ~data, y = 2) x + y)
p$add("add2", \(x = ~data, y = 3) x + y)
p$add("mult", \(x = 4, z = 5) x * z)
p$get_params()
p$set_params(list(x = 3, y = 3))
p$get_params()
p$set_params(list(x = 5, z = 3))
p$get_params()
suppressWarnings(
    p$set_params(list(foo = 3)) # gives warning as 'foo' is undefined
)
p$set_params(list(foo = 3), warnUndefined = FALSE)

Method set_params_at_step()

Set unbound function parameters defined at given pipeline step where 'unbound' means parameters that are not linked to other steps.

Usage
Pipeline$set_params_at_step(step, params)
Arguments
step

string the name of the step

params

list of parameters to be set

Returns

returns the Pipeline object invisibly

Examples
p <- Pipeline$new("pipe", data = 1)
p$add("add1", \(x = ~data, y = 2, z = 3) x + y)
p$set_params_at_step("add1", list(y = 5, z = 6))
p$get_params()
try(p$set_params_at_step("add1", list(foo = 3))) # foo not defined

Method split()

Splits pipeline into its independent parts.

Usage
Pipeline$split()
Returns

list of Pipeline objects

Examples
# Example for two independent calculation paths
p <- Pipeline$new("pipe", data = 1)
p$add("f1", \(x = ~data) x)
p$add("f2", \(x = 1) x)
p$add("f3", \(x = ~f1) x)
p$add("f4", \(x = ~f2) x)
p$split()

# Example of split by three data sets
dataList <- list(a = 1, b = 2, c = 3)
p <- Pipeline$new("pipe")
p$add("add1", \(x = ~data) x + 1, keepOut = TRUE)
p$add("mult", \(x = ~data, y = ~add1) x * y, keepOut = TRUE)
pipes <- p$set_data_split(dataList)$split()
pipes

Method unlock_step()

Unlock previously locked step. If step was not locked, the command is ignored.

Usage
Pipeline$unlock_step(step)
Arguments
step

string name of step

Returns

the Pipeline object invisibly

Examples
p <- Pipeline$new("pipe", data = 1)
p$add("add1", \(x = 1, data = ~data) x + data)
p$add("add2", \(x = 1, data = ~data) x + data)
p$lock_step("add1")
p$set_params(list(x = 3))
p$get_params()
p$unlock_step("add1")
p$set_params(list(x = 3))
p$get_params()

Method clone()

The objects of this class are cloneable with this method.

Usage
Pipeline$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

Roman Pahl

Examples

## ------------------------------------------------
## Method `Pipeline$new`
## ------------------------------------------------

p <- Pipeline$new("myPipe", data = data.frame(x = 1:8))
p

# Passing custom logger
my_logger <- function(level, msg, ...) {
   cat(level, msg, "\n")
}
p <- Pipeline$new("myPipe", logger = my_logger)

## ------------------------------------------------
## Method `Pipeline$add`
## ------------------------------------------------

# Add steps with lambda functions
p <- Pipeline$new("myPipe", data = 1)
p$add("s1", \(x = ~data) 2*x)  # use input data
p$add("s2", \(x = ~data, y = ~s1) x * y)
try(p$add("s2", \(z = 3) 3)) # error: step 's2' exists already
try(p$add("s3", \(z = ~foo) 3)) # dependency 'foo' not found
p

# Add step with existing function
p <- Pipeline$new("myPipe", data = c(1, 2, NA, 3, 4))
p$add("calc_mean", mean, params = list(x = ~data, na.rm = TRUE))
p$run()$get_out("calc_mean")

# Step description
p <- Pipeline$new("myPipe", data = 1:10)
p$add("s1", \(x = ~data) 2*x, description = "multiply by 2")
print(p)
print(p, verbose = TRUE) # print all columns

# Group output
p <- Pipeline$new("myPipe", data = data.frame(x = 1:5, y = 1:5))
p$add("prep_x", \(data = ~data) data$x, group = "prep")
p$add("prep_y", \(data = ~data) (data$y)^2, group = "prep")
p$add("sum", \(x = ~prep_x, y = ~prep_y) x + y)
p$run()$collect_out(all = TRUE)

## ------------------------------------------------
## Method `Pipeline$append`
## ------------------------------------------------

# Append pipeline
p1 <- Pipeline$new("pipe1")
p1$add("step1", \(x = 1) x)
p2 <- Pipeline$new("pipe2")
p2$add("step2", \(y = 1) y)
p1$append(p2)

# Append pipeline with potential name clashes
p3 <- Pipeline$new("pipe3")
p3$add("step1", \(z = 1) z)
p1$append(p2)$append(p3)

# Use output of first pipeline as input for second pipeline
p1 <- Pipeline$new("pipe1", data = 8)
p2 <- Pipeline$new("pipe2")
p1$add("square", \(x = ~data) x^2)
p2$add("log2", \(x = ~data) log2(x))

p12 <- p1$append(p2, outAsIn = TRUE)
p12$run()$get_out("log2")
p12

# Custom name separator
p1$append(p2, sep = "___")

## ------------------------------------------------
## Method `Pipeline$append_to_step_names`
## ------------------------------------------------

p <- Pipeline$new("pipe")
p$add("step1", \(x = 1) x)
p$add("step2", \(y = 1) y)
p$append_to_step_names("new")
p
p$append_to_step_names("foo", sep = "__")
p

## ------------------------------------------------
## Method `Pipeline$collect_out`
## ------------------------------------------------

p <- Pipeline$new("pipe", data = 1:2)
p$add("step1", \(x = ~data) x + 2)
p$add("step2", \(x = ~step1) x + 2, keepOut = TRUE)
p$run()
p$collect_out()
p$collect_out(all = TRUE) |> str()

# Grouped output
p <- Pipeline$new("pipe", data = 1:2)
p$add("step1", \(x = ~data) x + 2, group = "add")
p$add("step2", \(x = ~step1, y = 2) x + y, group = "add")
p$add("step3", \(x = ~data) x * 3, group = "mult")
p$add("step4", \(x = ~data, y = 2) x * y, group = "mult")
p
p$run()
p$collect_out(all = TRUE) |> str()

# Grouped by state
p$set_params(list(y = 5))
p
p$collect_out(groupBy = "state", all = TRUE) |> str()

## ------------------------------------------------
## Method `Pipeline$discard_steps`
## ------------------------------------------------

p <- Pipeline$new("pipe", data = 1:2)
p$add("add1", \(x = ~data) x + 1)
p$add("add2", \(x = ~add1) x + 2)
p$add("mult3", \(x = ~add1) x * 3)
p$add("mult4", \(x = ~add2) x * 4)
p

p$discard_steps("mult")
p

# Re-add steps
p$add("mult3", \(x = ~add1) x * 3)
p$add("mult4", \(x = ~add2) x * 4)
p
# Discarding 'add1' does not work ...
try(p$discard_steps("add1"))

# ... unless we enforce to remove its downstream dependencies as well
p$discard_steps("add1", recursive = TRUE)   # this works
p

# Trying to discard non-existent steps is just ignored
p$discard_steps("non-existent")

## ------------------------------------------------
## Method `Pipeline$get_data`
## ------------------------------------------------

p <- Pipeline$new("pipe", data = 1:2)
p$get_data()
p$set_data(3:4)
p$get_data()

## ------------------------------------------------
## Method `Pipeline$get_depends`
## ------------------------------------------------

p <- Pipeline$new("pipe", data = 1:2)
p$add("add1", \(x = ~data) x + 1)
p$add("add2", \(x = ~data, y = ~add1) x + y)
p$get_depends()

## ------------------------------------------------
## Method `Pipeline$get_depends_down`
## ------------------------------------------------

p <- Pipeline$new("pipe", data = 1:2)
p$add("add1", \(x = ~data) x + 1)
p$add("add2", \(x = ~data, y = ~add1) x + y)
p$add("mult3", \(x = ~add1) x * 3)
p$add("mult4", \(x = ~add2) x * 4)
p$get_depends_down("add1")
p$get_depends_down("add1", recursive = FALSE)

## ------------------------------------------------
## Method `Pipeline$get_depends_up`
## ------------------------------------------------

p <- Pipeline$new("pipe", data = 1:2)
p$add("add1", \(x = ~data) x + 1)
p$add("add2", \(x = ~data, y = ~add1) x + y)
p$add("mult3", \(x = ~add1) x * 3)
p$add("mult4", \(x = ~add2) x * 4)
p$get_depends_up("mult4")
p$get_depends_up("mult4", recursive = FALSE)

## ------------------------------------------------
## Method `Pipeline$get_graph`
## ------------------------------------------------

p <- Pipeline$new("pipe", data = 1:2)
p$add("add1", \(data = ~data, x = 1) x + data)
p$add("add2", \(x = 1, y = ~add1) x + y)
p$add("mult1", \(x = ~add1, y = ~add2) x * y)
graph <- pipe_get_graph(p)
graph

if (require("visNetwork", quietly = TRUE)) {
    do.call(visNetwork, args = p$get_graph())
}

## ------------------------------------------------
## Method `Pipeline$get_out`
## ------------------------------------------------

p <- Pipeline$new("pipe", data = 1:2)
p$add("add1", \(x = ~data) x + 1)
p$add("add2", \(x = ~data, y = ~add1) x + y)
p$run()
p$get_out("add1")
p$get_out("add2")

## ------------------------------------------------
## Method `Pipeline$get_params`
## ------------------------------------------------

p <- Pipeline$new("pipe", data = 1:2)
p$add("add1", \(data = ~data, x = 1) x + data)
p$add("add2", \(x = 1, y = 2, .z = 3) x + y + .z)
p$add("add3", \() 1 + 2)
p$get_params() |> str()
p$get_params(ignoreHidden = FALSE) |> str()

## ------------------------------------------------
## Method `Pipeline$get_params_at_step`
## ------------------------------------------------

p <- Pipeline$new("pipe", data = 1:2)
p$add("add1", \(data = ~data, x = 1) x + data)
p$add("add2", \(x = 1, y = 2, .z = 3) x + y + .z)
p$add("add3", \() 1 + 2)
p$get_params_at_step("add2")
p$get_params_at_step("add2", ignoreHidden = FALSE)
p$get_params_at_step("add3")

## ------------------------------------------------
## Method `Pipeline$get_params_unique`
## ------------------------------------------------

p <- Pipeline$new("pipe", data = 1:2)
p$add("add1", \(data = ~data, x = 1) x + data)
p$add("add2", \(x = 1, y = 2, .z = 3) x + y + .z)
p$add("mult1", \(x = 1, y = 2, .z = 3, b = ~add2) x * y * b)
p$get_params_unique()
p$get_params_unique(ignoreHidden = FALSE)

## ------------------------------------------------
## Method `Pipeline$get_params_unique_json`
## ------------------------------------------------

p <- Pipeline$new("pipe", data = 1:2)
p$add("add1", \(data = ~data, x = 1) x + data)
p$add("add2", \(x = 1, y = 2, .z = 3) x + y + .z)
p$add("mult1", \(x = 1, y = 2, .z = 3, b = ~add2) x * y * b)
p$get_params_unique_json()
p$get_params_unique_json(ignoreHidden = FALSE)

## ------------------------------------------------
## Method `Pipeline$get_step`
## ------------------------------------------------

p <- Pipeline$new("pipe", data = 1:2)
p$add("add1", \(data = ~data, x = 1) x + data)
p$add("add2", \(x = 1, y = 2, z = ~add1) x + y + z)
p$run()
add1 <- p$get_step("add1")
print(add1)
add1[["params"]]
add1[["fun"]]
try()
try(p$get_step("foo")) # error: step 'foo' does not exist

## ------------------------------------------------
## Method `Pipeline$get_step_names`
## ------------------------------------------------

p <- Pipeline$new("pipe", data = 1:2)
p$add("f1", \(x = 1) x)
p$add("f2", \(y = 1) y)
p$get_step_names()

## ------------------------------------------------
## Method `Pipeline$get_step_number`
## ------------------------------------------------

p <- Pipeline$new("pipe", data = 1:2)
p$add("f1", \(x = 1) x)
p$add("f2", \(y = 1) y)
p$get_step_number("f2")

## ------------------------------------------------
## Method `Pipeline$has_step`
## ------------------------------------------------

p <- Pipeline$new("pipe", data = 1:2)
p$add("f1", \(x = 1) x)
p$add("f2", \(y = 1) y)
p$has_step("f2")
p$has_step("foo")

## ------------------------------------------------
## Method `Pipeline$insert_after`
## ------------------------------------------------

p <- Pipeline$new("pipe", data = 1)
p$add("f1", \(x = 1) x)
p$add("f2", \(x = ~f1) x)
p$insert_after("f1", "f3", \(x = ~f1) x)
p

## ------------------------------------------------
## Method `Pipeline$insert_before`
## ------------------------------------------------

p <- Pipeline$new("pipe", data = 1)
p$add("f1", \(x = 1) x)
p$add("f2", \(x = ~f1) x)
p$insert_before("f2", "f3", \(x = ~f1) x)
p

## ------------------------------------------------
## Method `Pipeline$length`
## ------------------------------------------------

p <- Pipeline$new("pipe", data = 1:2)
p$add("f1", \(x = 1) x)
p$add("f2", \(y = 1) y)
p$length()

## ------------------------------------------------
## Method `Pipeline$lock_step`
## ------------------------------------------------

p <- Pipeline$new("pipe", data = 1)
p$add("add1", \(x = 1, data = ~data) x + data)
p$add("add2", \(x = 1, data = ~data) x + data)
p$run()
p$get_out("add1")
p$get_out("add2")
p$lock_step("add1")

p$set_data(3)
p$set_params(list(x = 3))
p$run()
p$get_out("add1")
p$get_out("add2")

## ------------------------------------------------
## Method `Pipeline$pop_step`
## ------------------------------------------------

p <- Pipeline$new("pipe", data = 1:2)
p$add("f1", \(x = 1) x)
p$add("f2", \(y = 1) y)
p
p$pop_step() # "f2"
p

## ------------------------------------------------
## Method `Pipeline$pop_steps_after`
## ------------------------------------------------

p <- Pipeline$new("pipe", data = 1:2)
p$add("f1", \(x = 1) x)
p$add("f2", \(y = 1) y)
p$add("f3", \(z = 1) z)
p$pop_steps_after("f1")  # "f2", "f3"
p

## ------------------------------------------------
## Method `Pipeline$pop_steps_from`
## ------------------------------------------------

p <- Pipeline$new("pipe", data = 1:2)
p$add("f1", \(x = 1) x)
p$add("f2", \(y = 1) y)
p$add("f3", \(z = 1) z)
p$pop_steps_from("f2")  # "f2", "f3"
p

## ------------------------------------------------
## Method `Pipeline$print`
## ------------------------------------------------

p <- Pipeline$new("pipe", data = 1:2)
p$add("f1", \(x = 1) x)
p$add("f2", \(y = 1) y)
p$print()

## ------------------------------------------------
## Method `Pipeline$remove_step`
## ------------------------------------------------

p <- Pipeline$new("pipe", data = 1:2)
p$add("add1", \(data = ~data, x = 1) x + data)
p$add("add2", \(x = 1, y = ~add1) x + y)
p$add("mult1", \(x = 1, y = ~add2) x * y)
p$remove_step("mult1")
p
try(p$remove_step("add1"))  # fails because "add2" depends on "add1"
p$remove_step("add1", recursive = TRUE)  # removes "add1" and "add2"
p

## ------------------------------------------------
## Method `Pipeline$rename_step`
## ------------------------------------------------

p <- Pipeline$new("pipe", data = 1:2)
p$add("add1", \(data = ~data, x = 1) x + data)
p$add("add2", \(x = 1, y = ~add1) x + y)
p
try(p$rename_step("add1", "add2"))  # fails because "add2" exists
p$rename_step("add1", "first_add")  # Ok
p

## ------------------------------------------------
## Method `Pipeline$replace_step`
## ------------------------------------------------

p <- Pipeline$new("pipe", data = 1)
p$add("add1", \(x = ~data, y = 1) x + y)
p$add("add2", \(x = ~data, y = 2) x + y)
p$add("mult", \(x = 1, y = 2) x * y, keepOut = TRUE)
p$run()$collect_out()
p$replace_step("mult", \(x = ~add1, y = ~add2) x * y, keepOut = TRUE)
p$run()$collect_out()
try(p$replace_step("foo", \(x = 1) x))   # step 'foo' does not exist

## ------------------------------------------------
## Method `Pipeline$reset`
## ------------------------------------------------

p <- Pipeline$new("pipe", data = 1:2)
p$add("f1", \(x = 1) x)
p$add("f2", \(y = 1) y)
p$run()
p
p$reset()
p

## ------------------------------------------------
## Method `Pipeline$run`
## ------------------------------------------------

# Simple pipeline
p <- Pipeline$new("pipe", data = 1)
p$add("add1", \(x = ~data, y = 1) x + y)
p$add("add2", \(x = ~add1, z = 2) x + z)
p$add("final", \(x = ~add1, y = ~add2) x * y, keepOut = TRUE)
p$run()$collect_out()
p$set_params(list(z = 4))  # outdates steps add2 and final
p
p$run()$collect_out()
p$run(cleanUnkept = TRUE)  # clean up temporary results
p

# Recursive pipeline
p <- Pipeline$new("pipe", data = 1)
p$add("add1", \(x = ~data, y = 1) x + y)
p$add("new_pipe", \(x = ~add1) {
    pp <- Pipeline$new("new_pipe", data = x)
    pp$add("add1", \(x = ~data) x + 1)
    pp$add("add2", \(x = ~add1) x + 2, keepOut = TRUE)
    }
)
p$run(recursive = TRUE)$collect_out()

# Run pipeline with progress bar
p <- Pipeline$new("pipe", data = 1)
p$add("first step", \() Sys.sleep(1))
p$add("second step", \() Sys.sleep(1))
p$add("last step", \() Sys.sleep(1))
pb <- txtProgressBar(min = 1, max = p$length(), style = 3)
fprogress <- function(value, detail) {
   setTxtProgressBar(pb, value)
}
p$run(progress = fprogress, showLog = FALSE)

## ------------------------------------------------
## Method `Pipeline$run_step`
## ------------------------------------------------

p <- Pipeline$new("pipe", data = 1)
p$add("add1", \(x = ~data, y = 1) x + y)
p$add("add2", \(x = ~add1, z = 2) x + z)
p$add("mult", \(x = ~add1, y = ~add2) x * y)
p$run_step("add2")
p$run_step("add2", downstream = TRUE)
p$run_step("mult", upstream = TRUE)

## ------------------------------------------------
## Method `Pipeline$set_data`
## ------------------------------------------------

p <- Pipeline$new("pipe", data = 1)
p$add("add1", \(x = ~data, y = 1) x + y, keepOut = TRUE)
p$run()$collect_out()
p$set_data(3)
p$run()$collect_out()

## ------------------------------------------------
## Method `Pipeline$set_data_split`
## ------------------------------------------------

# Split by three data sets
dataList <- list(a = 1, b = 2, c = 3)
p <- Pipeline$new("pipe")
p$add("add1", \(x = ~data) x + 1, keepOut = TRUE)
p$add("mult", \(x = ~data, y = ~add1) x * y, keepOut = TRUE)
p$set_data_split(dataList)
p
p$run()$collect_out() |> str()

# Don't group output by split
p <- Pipeline$new("pipe")
p$add("add1", \(x = ~data) x + 1, keepOut = TRUE)
p$add("mult", \(x = ~data, y = ~add1) x * y, keepOut = TRUE)
p$set_data_split(dataList, groupBySplit = FALSE)
p
p$run()$collect_out() |> str()

# Split up to certain step
p <- Pipeline$new("pipe")
p$add("add1", \(x = ~data) x + 1)
p$add("mult", \(x = ~data, y = ~add1) x * y)
p$add("average_result", \(x = ~mult) mean(unlist(x)), keepOut = TRUE)
p
p$get_depends()[["average_result"]]

p$set_data_split(dataList, toStep = "mult")
p
p$get_depends()[["average_result"]]

p$run()$collect_out()

## ------------------------------------------------
## Method `Pipeline$set_keep_out`
## ------------------------------------------------

p <- Pipeline$new("pipe", data = 1)
p$add("add1", \(x = ~data, y = 1) x + y, keepOut = TRUE)
p$add("add2", \(x = ~data, y = 2) x + y)
p$add("mult", \(x = ~add1, y = ~add2) x * y)
p$run()$collect_out()
p$set_keep_out("add1", keepOut = FALSE)
p$set_keep_out("mult", keepOut = TRUE)
p$collect_out()

## ------------------------------------------------
## Method `Pipeline$set_params`
## ------------------------------------------------

p <- Pipeline$new("pipe", data = 1)
p$add("add1", \(x = ~data, y = 2) x + y)
p$add("add2", \(x = ~data, y = 3) x + y)
p$add("mult", \(x = 4, z = 5) x * z)
p$get_params()
p$set_params(list(x = 3, y = 3))
p$get_params()
p$set_params(list(x = 5, z = 3))
p$get_params()
suppressWarnings(
    p$set_params(list(foo = 3)) # gives warning as 'foo' is undefined
)
p$set_params(list(foo = 3), warnUndefined = FALSE)

## ------------------------------------------------
## Method `Pipeline$set_params_at_step`
## ------------------------------------------------

p <- Pipeline$new("pipe", data = 1)
p$add("add1", \(x = ~data, y = 2, z = 3) x + y)
p$set_params_at_step("add1", list(y = 5, z = 6))
p$get_params()
try(p$set_params_at_step("add1", list(foo = 3))) # foo not defined

## ------------------------------------------------
## Method `Pipeline$split`
## ------------------------------------------------

# Example for two independent calculation paths
p <- Pipeline$new("pipe", data = 1)
p$add("f1", \(x = ~data) x)
p$add("f2", \(x = 1) x)
p$add("f3", \(x = ~f1) x)
p$add("f4", \(x = ~f2) x)
p$split()

# Example of split by three data sets
dataList <- list(a = 1, b = 2, c = 3)
p <- Pipeline$new("pipe")
p$add("add1", \(x = ~data) x + 1, keepOut = TRUE)
p$add("mult", \(x = ~data, y = ~add1) x * y, keepOut = TRUE)
pipes <- p$set_data_split(dataList)$split()
pipes

## ------------------------------------------------
## Method `Pipeline$unlock_step`
## ------------------------------------------------

p <- Pipeline$new("pipe", data = 1)
p$add("add1", \(x = 1, data = ~data) x + data)
p$add("add2", \(x = 1, data = ~data) x + data)
p$lock_step("add1")
p$set_params(list(x = 3))
p$get_params()
p$unlock_step("add1")
p$set_params(list(x = 3))
p$get_params()

Set pipeflow log layout

Description

This function provides an easy way to set the basic log layout of the pipeline logging. For a fine-grained control of the logger, which you can retrieve via lgr::get_logger("pipeflow"), see e.g. the logger_config function from the lgr package.

Usage

set_log_layout(layout = c("text", "json"))

Arguments

layout

Layout name, which at this point can be either 'text' or 'json'.

Value

invisibly returns a Logger object

Examples

p <- Pipeline$new("pipe", data = 1:2)
p$add("add1", \(data = ~data, x = 1) x + data)
p$run()

lg <- set_log_layout("json")
print(lg)

p$run()

set_log_layout("text")
p$run()