Package 'phenoCDM'

Title: Continuous Development Models for Incremental Time-Series Analysis
Description: Using the Bayesian state-space approach, we developed a continuous development model to quantify dynamic incremental changes in the response variable. While the model was originally developed for daily changes in forest green-up, the model can be used to predict any similar process. The CDM can capture both timing and rate of nonlinear processes. Unlike statics methods, which aggregate variations into a single metric, our dynamic model tracks the changing impacts over time. The CDM accommodates nonlinear responses to variation in predictors, which changes throughout development.
Authors: Bijan Seyednasrollah, Jennifer J. Swenson, Jean-Christophe Domec, James S. Clark
Maintainer: Bijan Seyednasrollah <[email protected]>
License: MIT + file LICENSE
Version: 0.1.3
Built: 2024-12-04 07:33:52 UTC
Source: CRAN

Help Index


Fit a CDM Model

Description

This function fits a CDM model on the input data as it is described by the phenoSim function.

Usage

fitCDM(x, z, connect = NULL, nGibbs = 1000, nBurnin = 1, n.adapt = 100,
  n.chains = 4, quiet = FALSE, calcLatentGibbs = FALSE, trend = +1)

Arguments

x

Matrix of predictors [N x p].

z

Vector of response values [N x 1].

connect

The connectivity matrix for the z vector [n x 2]. Each row contains the last and next elements of the time-series. NA values indicate not connected.

nGibbs

Number of MCMC itterations

nBurnin

Number of burn-in itterations.

n.adapt

Number of itterations for adaptive sampling

n.chains

Number of MCMC chains

quiet

logical value indicating whether to report the progress

calcLatentGibbs

logical value indicating whether to calculate the latent states

trend

time-series expected trend as -1:decreasing, +1:increasing, 0: not constrained

Examples

#Summarize CDM Model Ouput

ssSim <- phenoSim(nSites = 2, #number of sites
                  nTSet = 30, #number of Time steps
                  beta = c(1, 2), #beta coefficients
                  sig = .01, #process error
                  tau = .1, #observation error
                  plotFlag = TRUE, #whether plot the data or not
                  miss = 0.05, #fraction of missing data
                  ymax = c(6, 3) #maximum of saturation trajectory
)

ssOut <- fitCDM(x = ssSim$x, #predictors
                nGibbs = 200,
                nBurnin = 100,
                z = ssSim$z,#response
                connect = ssSim$connect, #connectivity of time data
                quiet=TRUE)

summ <- getGibbsSummary(ssOut, burnin = 100, sigmaPerSeason = FALSE)

colMeans(summ$ymax)
colMeans(summ$betas)
colMeans(summ$tau)
colMeans(summ$sigma)

Summarize Output of the CDM Model

Description

This function return a summary of the output from the Gibbs-Sampling of the CDM model.

Usage

getGibbsSummary(ssOut, burnin = NULL, colNames = NULL,
  sigmaPerSeason = TRUE)

Arguments

ssOut

CDM output list.

burnin

Number of burnin itterations .

colNames

vector of charachters includes names of each variable in the output.

sigmaPerSeason

logical value indicating whether each site/season has a separate process error

Examples

#Summarize CDM Model Ouput

ssSim <- phenoSim(nSites = 2, #number of sites
                  nTSet = 30, #number of Time steps
                  beta = c(1, 2), #beta coefficients
                  sig = .01, #process error
                  tau = .1, #observation error
                  plotFlag = TRUE, #whether plot the data or not
                  miss = 0.05, #fraction of missing data
                  ymax = c(6, 3) #maximum of saturation trajectory
)

ssOut <- fitCDM(x = ssSim$x, #predictors
                nGibbs = 200,
                nBurnin = 100,
                z = ssSim$z,#response
                connect = ssSim$connect, #connectivity of time data
                quiet=TRUE)

summ <- getGibbsSummary(ssOut, burnin = 100, sigmaPerSeason = FALSE)

colMeans(summ$ymax)
colMeans(summ$betas)
colMeans(summ$tau)
colMeans(summ$sigma)

Simulate Green-up Phenology Data

Description

This function return a set of simulated data for multiple green-up phenology time-series.

Usage

phenoSim(nSites = 1000, nTSet = c(3:6), p = 2, beta = NULL, sig = 0.1,
  tau = 0.01, miss = 0, plotFlag = FALSE, ymax = 1, trend = +1)

Arguments

nSites

Number of sites/seasons

nTSet

A vector of integer values. Length of each time-series will be randomly sampled from this vector.

p

Number of predictors in the model.

beta

Beta coefficients

sig

Process error.

tau

Observation error.

miss

Fraction of missing data.

plotFlag

logical value indicating whether to plot the resulted time-series.

ymax

Asymptotic maximum values.

trend

time-series expected trend as -1:decreasing, +1:increasing, 0: not constrained

Examples

#Simulate Phenology Data
ssSim <- phenoSim(nSites = 2, #number of sites
                  nTSet = 30, #number of time steps
                  beta = c(1, 2), #beta coefficients
                  sig = .01, #process error
                  tau = .1, #observation error
                  plotFlag = TRUE, #whether plot the data or not
                  miss = 0.05, #fraction of missing data
                  ymax = c(6, 3) #maximum of saturation trajectory
)

Plot Simulated Phenology Data

Description

This function plots the time-series data described with a connectivity matrix.

Usage

phenoSimPlot(z, connect, add = FALSE, col = "blue", ylim = range(z, na.rm
  = TRUE), pch = 1, lwd = 1)

Arguments

z

A vector of time-series data [n x 1]

connect

The connectivity matrix for the z vector [n x 2]. Each row contains the last and next elements of the time-series. NA values means not connected.

add

logical value indicating whether the plot should be overlaid on the current panel.

col

The color variable as charachter

ylim

Range of the y axis

pch

pch value for the symbols

lwd

lwd value for line tickness

Examples

#Simulate Phenology Data
ssSim <- phenoSim(nSites = 2, #number of sites
                  nTSet = 30, #number of time steps
                  beta = c(1, 2), #beta coefficients
                  sig = .01, #process error
                  tau = .1, #observation error
                  plotFlag = TRUE, #whether plot the data or not
                  miss = 0.05, #fraction of missing data
                  ymax = c(6, 3) #maximum of saturation trajectory
)

#Plot Simulated Data
phenoSimPlot(ssSim$z, ssSim$connect)

Plot Observed vs Predicted

Description

This function plot posterior distributions of the parameters.

Usage

plotPOGibbs(o, p, nburnin = NULL, xlim = range(o, na.rm = TRUE),
  ylim = range(p, na.rm = TRUE), xlab = "Observed", ylab = "Predicted",
  colSet = c("#fb8072", "#80b1d3", "black"), cex = 1, lwd = 2, pch = 19)

Arguments

o

Observed vector

p

Predicted Gibbs samples

nburnin

numbe of burn-in itterations

xlim

x-axis range

ylim

y-axis range

xlab

x-axis label

ylab

y-axis label

colSet

vector of colors for points, bars and the 1:1 line

cex

cex value for size

lwd

line width

pch

pch value for symbols

Examples

ssSim <- phenoSim(nSites = 2, #number of sites
                  nTSet = 30, #number of Time steps
                  beta = c(1, 2), #beta coefficients
                  sig = .01, #process error
                  tau = .1, #observation error
                  plotFlag = TRUE, #whether plot the data or not
                  miss = 0.05, #fraction of missing data
                  ymax = c(6, 3) #maximum of saturation trajectory
)

ssOut <- fitCDM(x = ssSim$x, #predictors
                nGibbs = 200,
                nBurnin = 100,
                z = ssSim$z,#response
                connect = ssSim$connect, #connectivity of time data
                quiet=TRUE)

summ <- getGibbsSummary(ssOut, burnin = 100, sigmaPerSeason = FALSE)

colMeans(summ$ymax)
colMeans(summ$betas)
colMeans(summ$tau)
colMeans(summ$sigma)

par(mfrow = c(1,3), oma = c(1,1,3,1), mar=c(2,2,0,1), font.axis=2)

plotPost(chains = ssOut$chains[,c("beta.1", "beta.2")], trueValues = ssSim$beta)
plotPost(chains = ssOut$chains[,c("ymax.1", "ymax.2")], trueValues = ssSim$ymax)
plotPost(chains = ssOut$chains[,c("sigma", "tau")], trueValues = c(ssSim$sig, ssSim$tau))

mtext('Posterior distributions of the parameters', side = 3, outer = TRUE, line = 1, font = 2)
legend('topleft', legend = c('posterior', 'true value'),
     col = c('black', 'red'), lty = 1, bty = 'n', cex=1.5, lwd =2)


yGibbs <- ssOut$latentGibbs
zGibbs <- ssOut$zpred
o <- ssOut$data$z
p <- apply(ssOut$rawsamples$y, 1, mean)
R2 <- cor(na.omit(cbind(o, p)))[1,2]^2
#Plot Observed vs Predicted
par( mar=c(4,4,1,1), font.axis=2)
plotPOGibbs(o = o , p = zGibbs,
            xlim = c(0,10), ylim=c(0,10),
            cex = .7, nburnin = 1000)
            points(o, p, pch = 3)

mtext(paste0('R² = ', signif(R2, 3)), line = -1, cex = 2, font = 2, side = 1, adj = .9)
legend('topleft', legend = c('mean', '95th percentile', '1:1 line', 'latent states'),
      col = c('#fb8072','#80b1d3','black', 'black'),
      bty = 'n', cex=1.5,
      lty = c(NA, 1, 2, NA), lwd =c(NA, 2, 2, 2), pch = c(16, NA, NA, 3))

Plot Posterior Distributions

Description

This function plot posterior distributions of the parameters.

Usage

plotPost(chains, trueValues = NULL, outline = FALSE)

Arguments

chains

Gibbs sampling chains

trueValues

numeric vector of true values

outline

logical value whether showing outliers

Examples

ssSim <- phenoSim(nSites = 2, #number of sites
                  nTSet = 30, #number of Time steps
                  beta = c(1, 2), #beta coefficients
                  sig = .01, #process error
                  tau = .1, #observation error
                  plotFlag = TRUE, #whether plot the data or not
                  miss = 0.05, #fraction of missing data
                  ymax = c(6, 3) #maximum of saturation trajectory
)

ssOut <- fitCDM(x = ssSim$x, #predictors
                nGibbs = 200,
                nBurnin = 100,
                z = ssSim$z,#response
                connect = ssSim$connect, #connectivity of time data
                quiet=TRUE)

summ <- getGibbsSummary(ssOut, burnin = 100, sigmaPerSeason = FALSE)

colMeans(summ$ymax)
colMeans(summ$betas)
colMeans(summ$tau)
colMeans(summ$sigma)

par(mfrow = c(1,3), oma = c(1,1,3,1), mar=c(2,2,0,1), font.axis=2)

plotPost(chains = ssOut$chains[,c("beta.1", "beta.2")], trueValues = ssSim$beta)
plotPost(chains = ssOut$chains[,c("ymax.1", "ymax.2")], trueValues = ssSim$ymax)
plotPost(chains = ssOut$chains[,c("sigma", "tau")], trueValues = c(ssSim$sig, ssSim$tau))

mtext('Posterior distributions of the parameters', side = 3, outer = TRUE, line = 1, font = 2)
legend('topleft', legend = c('posterior', 'true value'), col = c('black', 'red'),
         lty = 1, bty = 'n', cex=1.5, lwd =2)