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addBgKnowledge Add background knowledge to a CPDAG or PDAG

Description

Add background knowledge x -> y to an adjacency matrix and complete the orientation rules from
Meek (1995).

Usage

addBgKnowledge(gInput, x = c(), y = c(), verbose = FALSE, checkInput = TRUE)

Arguments

gInput graphNEL object or adjacency matrix of type amat.cpdag (see amatType)

x, y node labels of x or y in the adjacency matrix. x and y can be vectors representing
several nodes (see details below).

verbose If TRUE, detailed output is provided.

checkInput If TRUE, the input adjacency matrix is carefully checked to see if it is a valid
graph using function isValidGraph

Details

If the input is a graphNEL object, it will be converted into an adjacency matrix of type amat.cpdag.
If x and y are given and if amat[y,x] != 0, this function adds orientation x -> y to the adjacency
matrix amat and completes the orientation rules from Meek (1995). If x and y are not specified (or
empty vectors) this function simply completes the orientation rules from Meek (1995). If x and y
are vectors of length k, k>1, this function tries to add x[i] -> y[i] to the adjacency matrix amat
and complete the orientation rules from Meek (1995) for every i ∈ {1, . . . , k} (see Algorithm 1 in
Perkovic et. al, 2017).

Value

An adjacency matrix of type amat.cpdag of the maximally oriented pdag with added background
knowledge x -> y or NULL, if the backgound knowledge is not consistent with any DAG represented
by the PDAG with the adjacency matrix amat.

Author(s)

Emilija Perkovic and Markus Kalisch
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References

C. Meek (1995). Causal inference and causal explanation with background knowledge, In Proceed-
ings of UAI 1995, 403-410.

E. Perkovic, M. Kalisch and M.H. Maathuis (2017). Interpreting and using CPDAGs with back-
ground knowledge. In Proceedings of UAI 2017.

Examples

## a -- b -- c
amat <- matrix(c(0,1,0, 1,0,1, 0,1,0), 3,3)
colnames(amat) <- rownames(amat) <- letters[1:3]
## plot(as(t(amat), "graphNEL"))
addBgKnowledge(gInput = amat) ## amat is a valid CPDAG
## b -> c is directed; a -- b is not directed by applying
## Meek's orientation rules
bg1 <- addBgKnowledge(gInput = amat, x = "b", y = "c")
## plot(as(t(bg1), "graphNEL"))
## b -> c and b -> a are directed
bg2 <- addBgKnowledge(gInput = amat, x = c("b","b"), y = c("c","a"))
## plot(as(t(bg2), "graphNEL"))

## c -> b is directed; as a consequence of Meek's orientation rules,
## b -> a is directed as well
bg3 <- addBgKnowledge(gInput = amat, x = "c", y = "b")
## plot(as(t(bg3), "graphNEL"))

amat2 <- matrix(c(0,1,0, 1,0,1, 0,1,0), 3,3)
colnames(amat2) <- rownames(amat2) <- letters[1:3]
## new collider is inconsistent with original CPDAG; thus, NULL is returned
addBgKnowledge(gInput = amat2, x = c("c", "a"), y = c("b", "b"))

adjustment Compute adjustment sets for covariate adjustment.

Description

This function is a wrapper for convenience to the function adjustmentSet from package dagitty.

Usage

adjustment(amat, amat.type, x, y, set.type)

Arguments

amat adjacency matrix of type amat.cpdag or amat.pag.
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amat.type string specifying the type of graph of the adjacency matrix amat. It can be a
DAG (type="dag"), a CPDAG (type="cpdag") or a maximally oriented PDAG
(type="pdag") from Meek (1995); then the type of adjacency matrix is assumed
to be amat.cpdag. It can also be a MAG (type = "mag") or a PAG (type="pag");
then the type of the adjacency matrix is assumed to be amat.pag.

x (integer) position of variable x in the adjacency matrix.

y (integer) position of variable y in the adjacency matrix.

set.type string specifying the type of adjustment set that should be computed. It can be
"minimal" ,"all" and "canonical". See Details explanations.

Details

If set.type is "minimal", then only minimal sufficient adjustment sets are returned. If set.type
is "all", all valid adjustment sets are returned. If set.type is "canonical", a single adjustment set is
returned that consists of all (possible) ancestors of x and y, minus (possible) descendants of nodes
on proper causal paths. This canonical adjustment set is always valid if any valid set exists at all.

Value

If adjustment sets exist, list of length at least one (list elements might be empty vectors, if the empty
set is an adjustment set). If no adjustment set exists, an empty list is returned.

Author(s)

Emilija Perkovic and Markus Kalisch (<kalisch@stat.math.ethz.ch>)

References

E. Perkovic, J. Textor, M. Kalisch and M.H. Maathuis (2015). A Complete Generalized Adjustment
Criterion. In Proceedings of UAI 2015.

E. Perkovic, J. Textor, M. Kalisch and M.H. Maathuis (2017). Complete graphical characterization
and construction of adjustment sets in Markov equivalence classes of ancestral graphs. To appear
in Journal of Machine Learning Research.

B. van der Zander, M. Liskiewicz and J. Textor (2014). Constructing separators and adjustment sets
in ancestral graphs. In Proceedings of UAI 2014.

See Also

gac for testing if a set satisfies the Generalized Adjustment Criterion.

Examples

## Example 4.1 in Perkovic et. al (2015), Example 2 in Perkovic et. al (2017)
mFig1 <- matrix(c(0,1,1,0,0,0, 1,0,1,1,1,0, 0,0,0,0,0,1,

0,1,1,0,1,1, 0,1,0,1,0,1, 0,0,0,0,0,0), 6,6)
type <- "cpdag"
x <- 3; y <- 6
## plot(as(t(mFig1), "graphNEL"))
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## all
if(requireNamespace("dagitty", quietly = TRUE)) {
adjustment(amat = mFig1, amat.type = type, x = x, y = y, set.type =
"all")
}
## finds adjustment sets: (2,4), (1,2,4), (4,5), (1,4,5), (2,4,5), (1,2,4,5)

## minimal
if(requireNamespace("dagitty", quietly = TRUE)) {
adjustment(amat = mFig1, amat.type = type, x = x, y = y, set.type =
"minimal")
}
## finds adjustment sets: (2,4), (4,5), i.e., the valid sets with the fewest elements

## canonical
if(requireNamespace("dagitty", quietly = TRUE)) {
adjustment(amat = mFig1, amat.type = type, x = x, y = y, set.type =
"canonical")
}
## finds adjustment set: (1,2,4,5)

ages Estimate an APDAG within the Markov equivalence class of a DAG
using AGES

Description

Estimate an APDAG (a particular PDAG) using the aggregative greedy equivalence search (AGES)
algorithm, which uses the solution path of the greedy equivalence search (GES) algorithm of Chick-
ering (2002).

Usage

ages(data, lambda_min = 0.5 * log(nrow(data)), labels = NULL,
fixedGaps = NULL, adaptive = c("none", "vstructures", "triples"),
maxDegree = integer(0), verbose = FALSE, ...)

Arguments

data A n ∗ p matrix (or data frame) containing the observational data.

lambda_min The smallest penalty parameter value used when computing the solution path of
GES.

labels Node labels; if NULL the names of the columns of the data matrix (or the names
in the data frame) are used. If these are not specified the sequence 1 to p is used.

fixedGaps logical symmetric matrix of dimension p*p. If entry [i, j] is TRUE, the result is
guaranteed to have no edge between nodes i and j.

adaptive indicating whether constraints should be adapted to newly detected v-structures
or unshielded triples (cf. details).
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maxDegree Parameter used to limit the vertex degree of the estimated graph. Valid argu-
ments:

1. Vector of length 0 (default): vertex degree is not limited.
2. Real number r, 0 < r < 1: degree of vertex v is limited to r · nv , where nv

denotes the number of data points where v was not intervened.
3. Single integer: uniform bound of vertex degree for all vertices of the graph.
4. Integer vector of length p: vector of individual bounds for the vertex de-

grees.
verbose If TRUE, detailed output is provided.
... Additional arguments for debugging purposes and fine tuning.

Details

This function tries to add orientations to the essential graph (CPDAG) found by ges (ran with
lambda=lambda_min). It does it aggregating several CPDAGs present in the solution path of GES.
Conceptually, AGES starts with the essential graph found by GES ran with lambda = lambda_min.
Then, it checks for further (compatible) orientation information in other essential graphs present
in the solution path of GES, i.e., in essential graphs outputted by GES for larger penalty parame-
ters. With compatible we mean that the aggregation process is done such that the final APDAG is
still within the Markov equivalence graph represented by the essential graph found by GES in the
following sense: an APDAG can always be extended to a DAG without creating new v-structures.
This DAG lies in the Markov equivalence class represented by the essential graph found by GES.
The algorithm is explained in detail in Eigenmann, Nandy, and Maathuis (2017).

The arguments fixedgaps and adaptive work also with AGES. However, they have not been
studied in Eigenmann, Nandy, and Maathuis (2017). Using the argument fixedGaps, one can make
sure that certain edges will not be present in the resulting essential graph: if the entry [i, j] of the
matrix passed to fixedGaps is TRUE, there will be no edge between nodes i and j. The argument
adaptive can be used to relax the constraints encoded by fixedGaps according to a modification
of GES called ARGES (adaptively restricted greedy equivalence search) which has been presented
in Nandy, Hauser and Maathuis (2018):

• When adaptive = "vstructures" and the algorithm introduces a new v-structure a −→
b ←− c in the forward phase, then the edge a − c is removed from the list of fixed gaps,
meaning that the insertion of an edge between a and c becomes possible even if it was forbid-
den by the initial matrix passed to fixedGaps.

• When adaptive = "triples" and the algorithm introduces a new unshielded triple in the
forward phase (i.e., a subgraph of three nodes a, b and c where a and b as well as b and c are
adjacent, but a and c are not), then the edge a− c is removed from the list of fixed gaps.

With one of the adaptive modifications, the successive application of a skeleton estimation method
and GES restricted to an estimated skeleton still gives a consistent estimator of the DAG, which is
not the case without the adaptive modification.

For a detailed explanation of the GES function as well as its related object like essential graphs, we
refer to the ges function.

Differences in the arguments with respect to GES: AGES uses data to initialize several scores
taken as argument by GES. AGES modifies the forward and backward phases of GES performing
single steps in either directions. For this reason, phase, iterate, and turning are not available
arguments.
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Value

ages returns a list with the following four components:

essgraph An object of class EssGraph containing an estimate of the equivalence class of
the underlying DAG.

repr An object of a class derived from ParDAG containing a (random) representative
of the estimated equivalence class.

CPDAGsList A list of p*p matrices containing all CPDAGs considered by AGES in the ag-
gregation processes

lambda A vector containing the penalty parameter used to obtain the list of CPDAGs
mentioned above. GES returns the list of CPDAGs when used with this vector
of penalty parameters if used with phases = c("forward", "backward") and iterate
= FALSE.

Author(s)

Marco Eigenmann (<eigenmann@stat.math.ethz.ch>)

References

D.M. Chickering (2002). Optimal structure identification with greedy search. Journal of Machine
Learning Research 3, 507–554

M.F. Eigenmann, P. Nandy, and M.H. Maathuis (2017). Structure learning of linear Gaussian struc-
tural equation models with weak edges. In Proceedings of UAI 2017

P. Nandy, A. Hauser and M.H. Maathuis (2018). High-dimensional consistency in score-based and
hybrid structure learning. Annals of Statistics, to appear.

See Also

ges, EssGraph

Examples

## Example 1: ages adds correct orientations: Bar --> V6 and Bar --> V8

set.seed(77)

p <- 8
n <- 5000
## true DAG:
vars <- c("Author", "Bar", "Ctrl", "Goal", paste0("V",5:8))
gGtrue <- randomDAG(p, prob = 0.3, V = vars)
data = rmvDAG(n, gGtrue)

## Estimate the aggregated PDAG with ages
ages.fit <- ages(data = data)
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## Estimate the essential graph with ges
## We specify the phases in order to have a fair comparison of the algorithms
## Without the phases specified it would be easy to find examples
## where each algorithm outperforms the other
score <- new("GaussL0penObsScore", data)
ges.fit <- ges(score, phase = c("forward","backward"), iterate = FALSE)

## Plots
if (require(Rgraphviz)) {
par(mfrow=c(1,3))
plot(ges.fit$essgraph, main="Estimated CPDAG with GES")
plot(ages.fit$essgraph, main="Estimated APDAG with AGES")
plot(gGtrue, main="TrueDAG")
}

## Example 2: ages adds correct orientations: Author --> Goal and Author --> V5

set.seed(50)

p <- 9
n <- 5000
## true DAG:
vars <- c("Author", "Bar", "Ctrl", "Goal", paste0("V",5:9))
gGtrue <- randomDAG(p, prob = 0.5, V = vars)
data = rmvDAG(n, gGtrue)

## Estimate the aggregated PDAG with ages
ages.fit <- ages(data = data)

## Estimate the essential graph with ges
## We specify the phases in order to have a fair comparison of the algorithms
## Without the phases specified it would be easy to find examples
## where each algorithm outperforms the other
score <- new("GaussL0penObsScore", data)
ges.fit <- ges(score, phase = c("forward","backward"), iterate = FALSE)

## Plots
if (require(Rgraphviz)) {
par(mfrow=c(1,3))
plot(ges.fit$essgraph, main="Estimated CPDAG with GES")
plot(ages.fit$essgraph, main="Estimated APDAG with AGES")
plot(gGtrue, main="TrueDAG")
}

## Example 3: ges and ages return the same graph

data(gmG)

data <- gmG8$x
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## Estimate the aggregated PDAG with ages
ages.fit <- ages(data = data)

## Estimate the essential graph with ges
score <- new("GaussL0penObsScore", data)
ges.fit <- ges(score)

## Plots
if (require(Rgraphviz)) {
par(mfrow=c(1,3))
plot(ges.fit$essgraph, main="Estimated CPDAG with GES")
plot(ages.fit$essgraph, main="Estimated APDAG with AGES")
plot(gmG8$g, main="TrueDAG")
}

amatType Types and Display of Adjacency Matrices in Package ’pcalg’

Description

Two types of adjacency matrices are used in package pcalg: Type amat.cpdag for DAGs and
CPDAGs and type amat.pag for MAGs and PAGs. The required type of adjacency matrix is doc-
umented in the help files of the respective functions or classes. If in some functions more detailed
information on the graph type is needed (i.e. DAG or CPDAG; MAG or PAG) this information will
be passed in a separate argument (see e.g. gac and the examples below).

Note that you get (‘extract’) such adjacency matrices as (S3) objects of class "amat" via the usual
as(., "<class>") coercion,

as(from, "amat")

Arguments

from an R object of
class pcAlgo, as returned from skeleton() or pc() or an object of
class fciAlgo, as from fci() (or rfci, fciPlus, and dag2pag), or an object of
class "LINGAM" as returned from lingam().

Details

Adjacency matrices are integer valued square matrices with zeros on the diagonal. They can have
row- and columnnames; however, most functions will work on the (integer) column positions in the
adjacency matrix.

Coding for type amat.cpdag:

0: No edge or tail
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1: Arrowhead

Note that the edgemark-code refers to the row index (as opposed adjacency matrices of type mag or
pag). E.g.:

amat[a,b] = 0 and amat[b,a] = 1 implies a --> b.
amat[a,b] = 1 and amat[b,a] = 0 implies a <-- b.
amat[a,b] = 0 and amat[b,a] = 0 implies a b.
amat[a,b] = 1 and amat[b,a] = 1 implies a --- b.

Coding for type amat.pag:

0: No edge

1: Circle

2: Arrowhead

3: Tail

Note that the edgemark-code refers to the column index (as opposed adjacency matrices of type dag
or cpdag). E.g.:

amat[a,b] = 2 and amat[b,a] = 3 implies a --> b.
amat[a,b] = 3 and amat[b,a] = 2 implies a <-- b.
amat[a,b] = 2 and amat[b,a] = 2 implies a <-> b.
amat[a,b] = 1 and amat[b,a] = 3 implies a --o b.
amat[a,b] = 0 and amat[b,a] = 0 implies a b.

See Also

E.g. gac for a function which takes an adjacency matrix as input; fciAlgo for a class which has an
adjacency matrix in one slot.

getGraph(x) extracts the graph-class object from x, whereas as(*, "amat") gets the corre-
sponding adjacency matrix.

Examples

##################################################
## Function gac() takes an adjecency matrix of
## any kind as input. In addition to that, the
## precise type of graph (DAG/CPDAG/MAG/PAG) needs
## to be passed as a different argument
##################################################
## Adjacency matrix of type 'amat.cpdag'
m1 <- matrix(c(0,1,0,1,0,0, 0,0,1,0,1,0, 0,0,0,0,0,1,

0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0), 6,6)
## more detailed information on the graph type needed by gac()
gac(m1, x=1,y=3, z=NULL, type = "dag")

## Adjacency matrix of type 'amat.cpdag'
m2 <- matrix(c(0,1,1,0,0,0, 1,0,1,1,1,0, 0,0,0,0,0,1,

0,1,1,0,1,1, 0,1,0,1,0,1, 0,0,0,0,0,0), 6,6)
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## more detailed information on the graph type needed by gac()
gac(m2, x=3, y=6, z=c(2,4), type = "cpdag")

## Adjacency matrix of type 'amat.pag'
m3 <- matrix(c(0,2,0,0, 3,0,3,3, 0,2,0,3, 0,2,2,0), 4,4)
## more detailed information on the graph type needed by gac()
mg3 <- gac(m3, x=2, y=4, z=NULL, type = "mag")
pg3 <- gac(m3, x=2, y=4, z=NULL, type = "pag")

############################################################
## as(*, "amat") returns an adjacency matrix incl. its type
############################################################
## Load predefined data
data(gmG)
n <- nrow (gmG8$x)
V <- colnames(gmG8$x)

## define sufficient statistics
suffStat <- list(C = cor(gmG8$x), n = n)
## estimate CPDAG
skel.fit <- skeleton(suffStat, indepTest = gaussCItest,

alpha = 0.01, labels = V)
## Extract the "amat" [and show nicely via 'print()' method]:
as(skel.fit, "amat")

##################################################
## Function fci() returns an adjacency matrix
## of type amat.pag as one slot.
##################################################
set.seed(42)
p <- 7
## generate and draw random DAG :
myDAG <- randomDAG(p, prob = 0.4)

## find skeleton and PAG using the FCI algorithm
suffStat <- list(C = cov2cor(trueCov(myDAG)), n = 10^9)
res <- fci(suffStat, indepTest=gaussCItest,

alpha = 0.9999, p=p, doPdsep = FALSE)
str(res)
## get the a(djacency) mat(rix) and nicely print() it:
as(res, "amat")

##################################################
## pcAlgo object
##################################################
## Load predefined data
data(gmG)
n <- nrow (gmG8$x)
V <- colnames(gmG8$x)

## define sufficient statistics
suffStat <- list(C = cor(gmG8$x), n = n)
## estimate CPDAG
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skel.fit <- skeleton(suffStat, indepTest = gaussCItest,
alpha = 0.01, labels = V)

## Extract Adjacency Matrix - and print (via method 'print.amat'):
as(skel.fit, "amat")

pc.fit <- pc(suffStat, indepTest = gaussCItest,
alpha = 0.01, labels = V)

pc.fit # (using its own print() method 'print.pcAlgo')

as(pc.fit, "amat")

backdoor Find Set Satisfying the Generalized Backdoor Criterion (GBC)

Description

This function first checks if the total causal effect of one variable (x) onto another variable (y) is
identifiable via the GBC, and if this is the case it explicitly gives a set of variables that satisfies the
GBC with respect to x and y in the given graph.

Usage

backdoor(amat, x, y, type = "pag", max.chordal = 10, verbose=FALSE)

Arguments

amat adjacency matrix of type amat.cpdag or amat.pag.

x, y (integer) position of variable X and Y , respectively, in the adjacency matrix.

type string specifying the type of graph of the adjacency matrix amat. It can be a
DAG (type="dag"), a CPDAG (type="cpdag"); then the type of the adjacency
matrix is assumed to be amat.cpdag. It can also be a MAG (type="mag"), or
a PAG (type="pag"); then the type of the adjacency matrix is assumed to be
amat.pag.

max.chordal only if type = "mag", is used in pag2magAM to determine paths too large to be
checked for chordality.

verbose logical; if true, some output is produced during computation.

Details

This function is a generalization of Pearl’s backdoor criterion, see Pearl (1993), defined for directed
acyclic graphs (DAGs), for single interventions and single outcome variable to more general types
of graphs (CPDAGs, MAGs, and PAGs) that describe Markov equivalence classes of DAGs with
and without latent variables but without selection variables. For more details see Maathuis and
Colombo (2015).

The motivation to find a set W that satisfies the GBC with respect to x and y in the given graph
relies on the result of the generalized backdoor adjustment:
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If a set of variables W satisfies the GBC relative to x and y in the given graph, then the causal effect
of x on y is identifiable and is given by

P (Y |do(X = x)) =
∑
W

P (Y |X,W ) · P (W ).

This result allows to write post-intervention densities (the one written using Pearl’s do-calculus)
using only observational densities estimated from the data.

If the input graph is a DAG (type="dag"), this function reduces to Pearl’s backdoor criterion for
single interventions and single outcome variable, and the parents of x in the DAG satisfy the back-
door criterion unless y is a parent of x.

If the input graph is a CPDAG C (type="cpdag"), a MAG M (type="mag"), or a PAG P (type="pag")
(with both M and P not allowing selection variables), this function first checks if the total causal
effect of x on y is identifiable via the GBC (see Maathuis and Colombo, 2015). If the effect is not
identifiable in this way, the output is NA. Otherwise, an explicit set W that satisfies the GBC with
respect to x and y in the given graph is found.

At this moment this function is not able to work with an RFCI-PAG.

It is important to note that there can be pair of nodes x and y for which there is no set W that satisfies
the GBC, but the total causal effect might be identifiable via some other technique.

For the coding of the adjacency matrix see amatType.

Value

Either NA if the total causal effect is not identifiable via the GBC, or a set if the effect is identifiable
via the GBC. Note that if the set W is equal to the empty set, the output is NULL.

Author(s)

Diego Colombo and Markus Kalisch (<kalisch@stat.math.ethz.ch>)

References

M.H. Maathuis and D. Colombo (2015). A generalized backdoor criterion. Annals of Statistics 43
1060-1088.

J. Pearl (1993). Comment: Graphical models, causality and intervention. Statistical Science 8,
266–269.

See Also

gac for the Generalized Adjustment Criterion (GAC), which is a generalization of GBC; pc for
estimating a CPDAG, dag2pag and fci for estimating a PAG, and pag2magAM for estimating a
MAG.

Examples

#####################################################################
##DAG
#####################################################################



16 backdoor

## Simulate the true DAG
suppressWarnings(RNGversion("3.5.0"))
set.seed(123)
p <- 7
myDAG <- randomDAG(p, prob = 0.2) ## true DAG

## Extract the adjacency matrix of the true DAG
true.amat <- (amat <- as(myDAG, "matrix")) != 0 # TRUE/FALSE <==> 1/0
print.table(1*true.amat, zero.=".") # "visualization"

## Compute set satisfying the GBC:
backdoor(true.amat, 5, 7, type="dag")

#####################################################################
##CPDAG
#####################################################################
##################################################
## Example not identifiable
## Maathuis and Colombo (2015), Fig. 3a, p.1072
##################################################
## create the graph
p <- 5
. <- 0
amat <- rbind(c(.,.,1,1,1),

c(.,.,1,1,1),
c(.,.,.,1,.),
c(.,.,.,.,1),
c(.,.,.,.,.))

colnames(amat) <- rownames(amat) <- as.character(1:5)
V <- as.character(1:5)
edL <- vector("list",length=5)
names(edL) <- V
edL[[1]] <- list(edges=c(3,4,5),weights=c(1,1,1))
edL[[2]] <- list(edges=c(3,4,5),weights=c(1,1,1))
edL[[3]] <- list(edges=4,weights=c(1))
edL[[4]] <- list(edges=5,weights=c(1))
g <- new("graphNEL", nodes=V, edgeL=edL, edgemode="directed")

## estimate the true CPDAG
myCPDAG <- dag2cpdag(g)
## Extract the adjacency matrix of the true CPDAG
true.amat <- (as(myCPDAG, "matrix") != 0) # 1/0 <==> TRUE/FALSE

## The effect is not identifiable, in fact:
backdoor(true.amat, 3, 5, type="cpdag")

##################################################
## Example identifiable
## Maathuis and Colombo (2015), Fig. 3b, p.1072
##################################################

## create the graph
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p <- 6
amat <- rbind(c(0,0,1,1,0,1), c(0,0,1,1,0,1), c(0,0,0,0,1,0),

c(0,0,0,0,1,1), c(0,0,0,0,0,0), c(0,0,0,0,0,0))
colnames(amat) <- rownames(amat) <- as.character(1:6)
V <- as.character(1:6)
edL <- vector("list",length=6)
names(edL) <- V
edL[[1]] <- list(edges=c(3,4,6),weights=c(1,1,1))
edL[[2]] <- list(edges=c(3,4,6),weights=c(1,1,1))
edL[[3]] <- list(edges=5,weights=c(1))
edL[[4]] <- list(edges=c(5,6),weights=c(1,1))
g <- new("graphNEL", nodes=V, edgeL=edL, edgemode="directed")

## estimate the true CPDAG
myCPDAG <- dag2cpdag(g)
## Extract the adjacency matrix of the true CPDAG
true.amat <- as(myCPDAG, "matrix") != 0

## The effect is identifiable and the set satisfying GBC is:
backdoor(true.amat, 6, 3, type="cpdag")

##################################################################
##PAG
##################################################################
##################################################
## Example identifiable
## Maathuis and Colombo (2015), Fig. 5a, p.1075
##################################################

## create the graph
p <- 7
amat <- t(matrix(c(0,0,1,1,0,0,0, 0,0,1,1,0,0,0, 0,0,0,1,0,1,0,

0,0,0,0,0,0,1, 0,0,0,0,0,1,1, 0,0,0,0,0,0,0,
0,0,0,0,0,0,0), 7, 7))

colnames(amat) <- rownames(amat) <- as.character(1:7)
V <- as.character(1:7)
edL <- vector("list",length=7)
names(edL) <- V
edL[[1]] <- list(edges=c(3,4),weights=c(1,1))
edL[[2]] <- list(edges=c(3,4),weights=c(1,1))
edL[[3]] <- list(edges=c(4,6),weights=c(1,1))
edL[[4]] <- list(edges=7,weights=c(1))
edL[[5]] <- list(edges=c(6,7),weights=c(1,1))
g <- new("graphNEL", nodes=V, edgeL=edL, edgemode="directed")
L <- 5

## compute the true covariance matrix of g
cov.mat <- trueCov(g)

## transform covariance matrix into a correlation matrix
true.corr <- cov2cor(cov.mat)
suffStat <- list(C=true.corr, n=10^9)



18 beta.special

indepTest <- gaussCItest

## estimate the true PAG
true.pag <- dag2pag(suffStat, indepTest, g, L, alpha = 0.9999)@amat

## The effect is identifiable and the backdoor set is:
backdoor(true.pag, 3, 5, type="pag")

beta.special Compute set of intervention effects

Description

This function is DEPRECATED! Use ida instead.

Usage

beta.special(dat=NA, x.pos, y.pos, verbose=0, a=0.01, myDAG=NA,
myplot=FALSE, perfect=FALSE, method="local", collTest=TRUE,
pcObj=NA, all.dags=NA, u2pd="rand")

Arguments

dat Data matrix

x.pos, y.pos integer column positions of x and y in dat.

verbose 0=no comments, 2=detail on estimates

a Significance level of tests for finding CPDAG

myDAG Needed if true correlation matrix shall be computed

myplot Plot estimated graph

perfect True cor matrix is calculated from myDAG

method "local" - local (all combinations of parents in regr.); "global" - all DAGs

collTest True - Exclude orientations of undirected edges that introduce a new collider

pcObj Fit of PC Algorithm (CPDAG); if this is available, no new fit is done

all.dags All DAGs in the format of function allDags; if this is available, no new function
call allDags is done

u2pd function for converting a UDAG to a PDAG; "rand": udag2pdag; "relaxed":
udag2pdagRelaxed; "retry": udag2pdagSpecial.

Value

estimates of intervention effects

Author(s)

Markus Kalisch (<kalisch@stat.math.ethz.ch>)
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See Also

pcAlgo, dag2cpdag; beta.special.pcObj for a fast version of beta.special(), using a precom-
puted pc-object.

beta.special.pcObj Compute set of intervention effects in a fast way

Description

This function is DEPRECATED! Use ida or idaFast instead.

Usage

beta.special.pcObj(x.pos, y.pos, pcObj, mcov=NA, amat=NA, amatSkel=NA, t.amat=NA)

Arguments

x.pos Column of x in dat

y.pos Column of y in dat

pcObj Precomputed pc-object

mcov Covariance that was used in the pc-object fit

amat, amatSkel, t.amat
Matrices that can be precomputed, if needed (see code for details on how to
precompute)

Value

estimates of intervention effects

Author(s)

Markus Kalisch (<kalisch@stat.math.ethz.ch>)

See Also

pcAlgo, dag2cpdag, beta.special
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binCItest G square Test for (Conditional) Independence of Binary Variables

Description

G2 test for (conditional) independence of binary variables X and Y given the (possibly empty) set
of binary variables S.

binCItest() is a wrapper of gSquareBin(), to be easily used in skeleton, pc and fci.

Usage

gSquareBin(x, y, S, dm, adaptDF = FALSE, n.min = 10*df, verbose = FALSE)
binCItest (x, y, S, suffStat)

Arguments

x, y (integer) position of variable X and Y , respectively, in the adjacency matrix.

S (integer) positions of zero or more conditioning variables in the adjacency ma-
trix.

dm data matrix (with {0, 1} entries).

adaptDF logical specifying if the degrees of freedom should be lowered by one for each
zero count. The value for the degrees of freedom cannot go below 1.

n.min the smallest n (number of observations, nrow(dm)) for which the G^2 test is
computed; for smaller n, independence is assumed (G2 := 1) with a warning.
The default is 10m, where m is the degrees of freedom assuming no structural
zeros, 2|S|.

verbose logical or integer indicating that increased diagnostic output is to be provided.

suffStat a list with two elements, "dm", and "adaptDF" corresponding to the above two
arguments of gSquareBin().

Details

The G2 statistic is used to test for (conditional) independence of X and Y given a set S (can be
NULL). This function is a specialized version of gSquareDis which is for discrete variables with
more than two levels.

Value

The p-value of the test.

Author(s)

Nicoletta Andri and Markus Kalisch (<kalisch@stat.math.ethz.ch>)
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References

R.E. Neapolitan (2004). Learning Bayesian Networks. Prentice Hall Series in Artificial Intelli-
gence. Chapter 10.3.1

See Also

gSquareDis for a (conditional) independence test for discrete variables with more than two levels.

dsepTest, gaussCItest and disCItest for similar functions for a d-separation oracle, a condi-
tional independence test for Gaussian variables and a conditional independence test for discrete
variables, respectively.

skeleton, pc or fci which need a testing function such as binCItest.

Examples

n <- 100
set.seed(123)
## Simulate *independent data of {0,1}-variables:
x <- rbinom(n, 1, pr=1/2)
y <- rbinom(n, 1, pr=1/2)
z <- rbinom(n, 1, pr=1/2)
dat <- cbind(x,y,z)

binCItest(1,3,2, list(dm = dat, adaptDF = FALSE)) # 0.36, not signif.
binCItest(1,3,2, list(dm = dat, adaptDF = TRUE )) # the same, here

## Simulate data from a chain of 3 variables: x1 -> x2 -> x3
set.seed(12)
b0 <- 0
b1 <- 1
b2 <- 1
n <- 10000
x1 <- rbinom(n, size=1, prob=1/2) ## = sample(c(0,1), n, replace=TRUE)

## NB: plogis(u) := "expit(u)" := exp(u) / (1 + exp(u))
p2 <- plogis(b0 + b1*x1) ; x2 <- rbinom(n, 1, prob = p2) # {0,1}
p3 <- plogis(b0 + b2*x2) ; x3 <- rbinom(n, 1, prob = p2) # {0,1}

ftable(xtabs(~ x1+x2+x3))
dat <- cbind(x1,x2,x3)

## Test marginal and conditional independencies
gSquareBin(3,1,NULL,dat, verbose=TRUE)
gSquareBin(3,1, 2, dat)
gSquareBin(1,3, 2, dat) # the same
gSquareBin(1,3, 2, dat, adaptDF=TRUE, verbose = 2)



22 checkTriple

checkTriple Check Consistency of Conditional Independence for a Triple of Nodes

Description

For each subset of nbrsA and nbrsC where a and c are conditionally independent, it is checked if b
is in the conditioning set.

Usage

checkTriple(a, b, c, nbrsA, nbrsC,
sepsetA, sepsetC,
suffStat, indepTest, alpha, version.unf = c(NA, NA),
maj.rule = FALSE, verbose = FALSE)

Arguments

a, b, c (integer) positions in adjacency matrix for nodes a, b, and c, respectively.

nbrsA, nbrsC (integer) position in adjacency matrix for neighbors of a and c, respectively.

sepsetA vector containing Sepset(a, c).

sepsetC vector containing Sepset(c, a).

suffStat a list of sufficient statistics for independent tests; see, e.g., pc.

indepTest a function for the independence test, see, e.g., pc.

alpha significance level of test.

version.unf (integer) vector of length two:

version.unf[1]: 1 - check for all separating subsets of nbrsA and nbrsC if b
is in that set,
2 - it also checks if there at all exists any sepset which is a subset of the
neighbours (there might be none, although b is in the sepset, which indicates
an ambiguous situation);

version.unf[2]: 1 - do not consider the initial sepsets sepsetA and sepsetC
(same as Tetrad),
2 - consider if b is in sepsetA or sepsetC.

maj.rule logical indicating that the following majority rule is applied: if b is in less than
50% of the checked sepsets, we say that b is in no sepset. If b is in more than
50% of the checked sepsets, we say that b is in all sepsets. If b is in exactly 50%
of the checked sepsets, the triple is considered ‘ambiguous’.

verbose Logical asking for detailed output of intermediate steps.

Details

This function is used in the conservative versions of structure learning algorithms.
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Value

decision Decision on possibly ambiguous triple, an integer code,

1 b is in NO sepset (make v-structure);
2 b is in ALL sepsets (make no v-structure);
3 b is in SOME but not all sepsets (ambiguous triple)

vers Version (1 or 2) of the ambiguous triple (1=normal ambiguous triple that is b is
in some sepsets; 2=triple coming from version.unf[1]==2, that is, a and c are
indep given the initial sepset but there doesn’t exist a subset of the neighbours
that d-separates them.)

sepsetA Updated version of sepsetA

sepsetC Updated version of sepsetC

Author(s)

Markus Kalisch (<kalisch@stat.math.ethz.ch>) and Diego Colombo.

References

D. Colombo and M.H. Maathuis (2014).Order-independent constraint-based causal structure learn-
ing. Journal of Machine Learning Research 15 3741-3782.

Examples

##################################################
## Using Gaussian Data
##################################################
## Load predefined data
data(gmG)
n <- nrow (gmG8$x)
V <- colnames(gmG8$x)

## define independence test (partial correlations), and test level
indepTest <- gaussCItest
alpha <- 0.01
## define sufficient statistics
suffStat <- list(C = cor(gmG8$x), n = n)

## estimate CPDAG
pc.fit <- pc(suffStat, indepTest, alpha=alpha, labels = V, verbose = TRUE)

if (require(Rgraphviz)) {
## show estimated CPDAG
par(mfrow=c(1,2))
plot(pc.fit, main = "Estimated CPDAG")
plot(gmG8$g, main = "True DAG")

}

a <- 6
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b <- 1
c <- 8
checkTriple(a, b, c,

nbrsA = c(1,5,7),
nbrsC = c(1,5),
sepsetA = pc.fit@sepset[[a]][[c]],
sepsetC = pc.fit@sepset[[c]][[a]],
suffStat=suffStat, indepTest=indepTest, alpha=alpha,
version.unf = c(2,2),
verbose = TRUE) -> ct

str(ct)
## List of 4
## $ decision: int 2
## $ version : int 1
## $ SepsetA : int [1:2] 1 5
## $ SepsetC : int 1

checkTriple(a, b, c,
nbrsA = c(1,5,7),
nbrsC = c(1,5),
sepsetA = pc.fit@sepset[[a]][[c]],
sepsetC = pc.fit@sepset[[c]][[a]],
version.unf = c(1,1),
suffStat=suffStat, indepTest=indepTest, alpha=alpha) -> c2

stopifnot(identical(ct, c2)) ## in this case, 'version.unf' had no effect

compareGraphs Compare two graphs in terms of TPR, FPR and TDR

Description

Compares the true undirected graph with an estimated undirected graph in terms of True Positive
Rate (TPR), False Positive Rate (FPR) and True Discovery Rate (TDR).

Usage

compareGraphs(gl, gt)

Arguments

gl Estimated graph (graph object)
gt True graph (graph object)

Details

If the input graph is directed, the directions are omitted. Special cases:

• If the true graph contains no edges, the tpr is defined to be zero.
• Similarly, if the true graph contains no gaps, the fpr is defined to be one.
• If there are no edges in the true graph and there are none in the estimated graph, tdr is one. If

there are none in the true graph but there are some in the estimated graph, tdr is zero.
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Value

A named numeric vector with three numbers:

tpr True Positive Rate: Number of correctly found edges (in estimated graph) di-
vided by number of true edges (in true graph)

fpr False Positive Rate: Number of incorrectly found edges divided by number of
true gaps (in true graph)

tdr True Discovery Rate: Number of correctly found edges divided by number of
found edges (both in estimated graph)

Author(s)

Markus Kalisch (<kalisch@stat.math.ethz.ch>) and Martin Maechler

See Also

randomDAG for generating a random DAG.

Examples

## generate a graph with 4 nodes
V <- LETTERS[1:4]
edL2 <- vector("list", length=4)
names(edL2) <- V
edL2[[1]] <- list(edges= 2)
edL2[[2]] <- list(edges= c(1,3,4))
edL2[[3]] <- list(edges= c(2,4))
edL2[[4]] <- list(edges= c(2,3))
gt <- new("graphNEL", nodes=V, edgeL=edL2, edgemode="undirected")

## change graph
gl <- graph::addEdge("A","C", gt,1)

## compare the two graphs
if (require(Rgraphviz)) {
par(mfrow=c(2,1))
plot(gt) ; title("True graph")
plot(gl) ; title("Estimated graph")
(cg <- compareGraphs(gl,gt))

}
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condIndFisherZ Test Conditional Independence of Gaussians via Fisher’s Z

Description

Using Fisher’s z-transformation of the partial correlation, test for zero partial correlation of sets of
normally / Gaussian distributed random variables.

The gaussCItest() function, using zStat() to test for (conditional) independence between gaus-
sian random variables, with an interface that can easily be used in skeleton, pc and fci.

Usage

condIndFisherZ(x, y, S, C, n, cutoff, verbose= )
zStat (x, y, S, C, n)
gaussCItest (x, y, S, suffStat)

Arguments

x, y, S (integer) position of variable X , Y and set of variables S, respectively, in the
adjacency matrix. It is tested, whether X and Y are conditionally independent
given the subset S of the remaining nodes.

C Correlation matrix of nodes

n Integer specifying the number of observations (“samples”) used to estimate the
correlation matrix C.

cutoff Numeric cutoff for significance level of individual partial correlation tests. Must
be set to qnorm(1 - alpha/2) for a test significance level of alpha.

verbose Logical indicating whether some intermediate output should be shown; currently
not used.

suffStat A list with two elements, "C" and "n", corresponding to the above arguments
with the same name.

Details

For gaussian random variables and after performing Fisher’s z-transformation of the partial correla-
tion, the test statistic zStat() is (asymptotically for large enough n) standard normally distributed.

Partial correlation is tested in a two-sided hypothesis test, i.e., basically, condIndFisherZ(*) ==
abs(zStat(*)) > qnorm(1 - alpha/2). In a multivariate normal distribution, zero partial correla-
tion is equivalent to conditional independence.

Value

zStat() gives a number

Z =
√
n− |S| − 3 · log((1 + r)/(1− r))/2

which is asymptotically normally distributed under the null hypothesis of correlation 0.
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condIndFisherZ() returns a logical L indicating whether the “partial correlation of x and y
given S is zero” could not be rejected on the given significance level. More intuitively and for
multivariate normal data, this means: If TRUE then it seems plausible, that x and y are condition-
ally independent given S. If FALSE then there was strong evidence found against this conditional
independence statement.

gaussCItest() returns the p-value of the test.

Author(s)

Markus Kalisch (<kalisch@stat.math.ethz.ch>) and Martin Maechler

References

M. Kalisch and P. Buehlmann (2007). Estimating high-dimensional directed acyclic graphs with
the PC-algorithm. JMLR 8 613-636.

See Also

pcorOrder for computing a partial correlation given the correlation matrix in a recursive way.

dsepTest, disCItest and binCItest for similar functions for a d-separation oracle, a conditional
independence test for discrete variables and a conditional independence test for binary variables,
respectively.

Examples

set.seed(42)
## Generate four independent normal random variables
n <- 20
data <- matrix(rnorm(n*4),n,4)
## Compute corresponding correlation matrix
corMatrix <- cor(data)
## Test, whether variable 1 (col 1) and variable 2 (col 2) are
## independent given variable 3 (col 3) and variable 4 (col 4) on 0.05
## significance level
x <- 1
y <- 2
S <- c(3,4)
n <- 20
alpha <- 0.05
cutoff <- qnorm(1-alpha/2)
(b1 <- condIndFisherZ(x,y,S,corMatrix,n,cutoff))

# -> 1 and 2 seem to be conditionally independent given 3,4

## Now an example with conditional dependence
data <- matrix(rnorm(n*3),n,3)
data[,3] <- 2*data[,1]
corMatrix <- cor(data)
(b2 <- condIndFisherZ(1,3,2,corMatrix,n,cutoff))

# -> 1 and 3 seem to be conditionally dependent given 2

## simulate another dep.case: x -> y -> z
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set.seed(29)
x <- rnorm(100)
y <- 3*x + rnorm(100)
z <- 2*y + rnorm(100)
dat <- cbind(x,y,z)

## analyze data
suffStat <- list(C = cor(dat), n = nrow(dat))
gaussCItest(1,3,NULL, suffStat) ## dependent [highly signif.]
gaussCItest(1,3, 2, suffStat) ## independent | S

corGraph Computing the correlation graph

Description

Computes the correlation graph. This is the graph in which an edge is drawn between node i and
node j, if the null hypothesis “Correlation between Xi and Xj is zero” can be rejected at the given
significance level α(alpha).

Usage

corGraph(dm, alpha=0.05, Cmethod="pearson")

Arguments

dm numeric matrix with rows as samples and columns as variables.

alpha significance level for correlation test (numeric)

Cmethod a character string indicating which correlation coefficient is to be used for the
test. One of "pearson", "kendall", or "spearman", can be abbreviated.

Value

Undirected correlation graph, a graph-class object (package graph); getGraph for the “fitted”
graph.

Author(s)

Markus Kalisch (<kalisch@stat.math.ethz.ch>) and Martin Maechler

Examples

## create correlated samples
x1 <- rnorm(100)
x2 <- rnorm(100)
mat <- cbind(x1,x2, x3 = x1+x2)

if (require(Rgraphviz)) {
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## ``analyze the data''
(g <- corGraph(mat)) # a 'graphNEL' graph, undirected
plot(g) # ==> (1) and (2) are each linked to (3)

## use different significance level and different method
(g2 <- corGraph(mat, alpha=0.01, Cmethod="kendall"))
plot(g2) ## same edges as 'g'
}

dag2cpdag Convert a DAG to a CPDAG

Description

Convert a DAG (Directed Acyclic Graph) to a Completed Partially Directed Acyclic Graph (CPDAG).

Usage

dag2cpdag(g)

Arguments

g an R object of class "graph" (package graph), representing a DAG.

Details

This function converts a DAG into its corresponding (unique) CPDAG as follows. Because every
DAG in the Markov equivalence class described by a CPDAG shares the same skeleton and the same
v-structures, this function takes the skeleton and the v-structures of the given DAG g. Afterwards
it simply uses the 3 orientation rules of the PC algorithm (see references) to orient as many of the
remaining undirected edges as possible.

The function is a simple wrapper function for dag2essgraph which is more powerfull since it also
allows the calculation of the Markov equivalence class in the presence of interventional data.

The output of this function is exactly the same as the one using

pc(suffStat, indepTest, alpha, labels)

using the true correlation matrix in the function gaussCItest with a large virtual sample size and
a large alpha, but it is much faster.

Value

A graph object containing the CPDAG.

Author(s)

Markus Kalisch (<kalisch@stat.math.ethz.ch>) and Alain Hauser(<alain.hauser@bfh.ch>)
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References

C. Meek (1995). Causal inference and causal explanation with background knowledge. In Proceed-
ings of the Eleventh Conference on Uncertainty in Artificial Intelligence (UAI-95), pp. 403-411.
Morgan Kaufmann Publishers, Inc.

P. Spirtes, C. Glymour and R. Scheines (2000) Causation, Prediction, and Search, 2nd edition, The
MIT Press.

See Also

dag2essgraph, randomDAG, pc

Examples

## A -> B <- C
am1 <- matrix(c(0,1,0, 0,0,0, 0,1,0), 3,3)
colnames(am1) <- rownames(am1) <- LETTERS[1:3]
g1 <- as(t(am1), "graphNEL") ## convert to graph
cpdag1 <- dag2cpdag(g1)

if(requireNamespace("Rgraphviz")) {
par(mfrow = c(1,2))
plot(g1)
plot(cpdag1)

}

## A -> B -> C
am2 <- matrix(c(0,1,0, 0,0,1, 0,0,0), 3,3)
colnames(am2) <- rownames(am2) <- LETTERS[1:3]
g2 <- as(t(am2), "graphNEL") ## convert to graph
cpdag2 <- dag2cpdag(g2)

if(requireNamespace("Rgraphviz")) {
par(mfrow = c(1,2))
plot(g2)
plot(cpdag2)

}

dag2essgraph Convert a DAG to an Essential Graph

Description

Convert a DAG to an (interventional or observational) essential graph.

Usage

dag2essgraph(dag, targets = list(integer(0)))
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Arguments

dag The DAG whose essential graph has to be calculated. Different representations
are possible: dag can be an object of graphNEL (package graph) or an instance
of a class derived from ParDAG.

targets List of intervention targets with respect to which the essential graph has to be
calculated. An observational setting is represented by one single empty target
(list(integer(0))).

Details

This function converts a DAG to its corresponding (interventional or observational) essential graph,
using the algorithm of Hauser and Bühlmann (2012).

The essential graph is a partially directed graph that represents the (interventional or observational)
Markov equivalence class of a DAG. It has the same has the same skeleton as the DAG; a directed
edge represents an arrow that has a common orientation in all representatives of the (interventional
or observational) Markov equivalence class, whereas an undirected edge represents an arrow that
has different orientations in different representatives of the equivalence class. In the observational
case, the essential graph is also known as “CPDAG” (Spirtes et al., 2000).

In a purely observational setting (i.e., if targets = list(integer(0))), the function yields the
same graph as dag2cpdag.

Value

Depending on the class of dag, the essential graph is returned as

• an instance of graphNEL, if dag is an instance of graphNEL,

• an instance of EssGraph, if dag is an instance of a class derived from ParDAG.

Author(s)

Alain Hauser (<alain.hauser@bfh.ch>)

References

A. Hauser and P. Bühlmann (2012). Characterization and greedy learning of interventional Markov
equivalence classes of directed acyclic graphs. Journal of Machine Learning Research 13, 2409–
2464.

P. Spirtes, C.N. Glymour, and R. Scheines (2000). Causation, Prediction, and Search, MIT Press,
Cambridge (MA).

See Also

dag2cpdag, Score, EssGraph
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Examples

p <- 10 # Number of random variables
s <- 0.4 # Sparseness of the DAG

## Generate a random DAG
set.seed(42)
require(graph)
dag <- randomDAG(p, s)
nodes(dag) <- sprintf("V%d", 1:p)

## Calculate observational essential graph
res.obs <- dag2essgraph(dag)

## Different argument classes
res2 <- dag2essgraph(as(dag, "GaussParDAG"))
str(res2)

## Calculate interventional essential graph for intervention targets
## {1} and {3}
res.int <- dag2essgraph(dag, as.list(c(1, 3)))

dag2pag Convert a DAG with latent variables into a PAG

Description

Convert a DAG with latent variables into its corresponding (unique) Partial Ancestral Graph (PAG).

Usage

dag2pag(suffStat, indepTest, graph, L, alpha, rules = rep(TRUE,10),
verbose = FALSE)

Arguments

suffStat the sufficient statistics, a list containing all necessary elements for the condi-
tional independence decisions in the function indepTest.

indepTest a function for testing conditional independence. The function is internally
called as indepTest(x,y,S,suffStat), and tests conditional independence of
x and y given S. Here, x and y are variables, and S is a (possibly empty) vector
of variables (all variables are denoted by their column numbers in the adjacency
matrix). suffStat is a list containing all relevant elements for the conditional
independence decisions. The return value of indepTest() is the p-value of the
test for conditional independence.

graph a DAG with p nodes, a graph object. The graph must be topological sorted (for
example produced using randomDAG).

L array containing the labels of the nodes in the graph corresponding to the latent
variables.
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alpha significance level in (0, 1) for the individual conditional independence tests.

rules logical vector of length 10 indicating which rules should be used when directing
edges. The order of the rules is taken from Zhang (2009).

verbose logical; if TRUE, detailed output is provided.

Details

This function converts a DAG (graph object) with latent variables into its corresponding (unique)
PAG, an fciAlgo class object, using the ancestor information and conditional independence tests
entailed in the true DAG. The output of this function is exactly the same as the one using

fci(suffStat, gaussCItest, p, alpha, rules = rep(TRUE, 10))

using the true correlation matrix in gaussCItest() with a large “virtual sample size” and a large
alpha, but it is much faster, see the example.

Value

An object of class fciAlgo, containing the estimated graph (in the form of an adjacency matrix
with various possible edge marks), the conditioning sets that lead to edge removals (sepset) and
several other parameters.

Author(s)

Diego Colombo and Markus Kalisch <kalisch@stat.math.ethz.ch>.

References

Richardson, T. and Spirtes, P. (2002). Ancestral graph Markov models. Ann. Statist. 30, 962–1030;
Theorem 4.2., page 983.

See Also

fci, pc

Examples

## create the graph
set.seed(78)
g <- randomDAG(10, prob = 0.25)
graph::nodes(g) # "1" "2" ... "10" % FIXME: should be kept in result!

## define nodes 2 and 6 to be latent variables
L <- c(2,6)

## compute the true covariance matrix of g
cov.mat <- trueCov(g)
## transform covariance matrix into a correlation matrix
true.corr <- cov2cor(cov.mat)
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## Find PAG
## as dependence "oracle", we use the true correlation matrix in
## gaussCItest() with a large "virtual sample size" and a large alpha:
system.time(
true.pag <- dag2pag(suffStat = list(C = true.corr, n = 10^9),

indepTest = gaussCItest,
graph=g, L=L, alpha = 0.9999) )

### ---- Find PAG using fci-function --------------------------

## From trueCov(g), delete rows and columns belonging to latent variable L
true.cov1 <- cov.mat[-L,-L]
## transform covariance matrix into a correlation matrix
true.corr1 <- cov2cor(true.cov1)

## Find PAG with FCI algorithm
## as dependence "oracle", we use the true correlation matrix in
## gaussCItest() with a large "virtual sample size" and a large alpha:
system.time(
true.pag1 <- fci(suffStat = list(C = true.corr1, n = 10^9),

indepTest = gaussCItest,
p = ncol(true.corr1), alpha = 0.9999) )

## confirm that the outputs are equal
stopifnot(true.pag@amat == true.pag1@amat)

disCItest G square Test for (Conditional) Independence of Discrete Variables

Description

G2 test for (conditional) independence of discrete (each with a finite number of “levels”) variables
X and Y given the (possibly empty) set of discrete variables S.

disCItest() is a wrapper of gSquareDis(), to be easily used in skeleton, pc and fci.

Usage

gSquareDis(x, y, S, dm, nlev, adaptDF = FALSE, n.min = 10*df, verbose = FALSE)
disCItest (x, y, S, suffStat)

Arguments

x, y (integer) position of variable X and Y , respectively, in the adjacency matrix.

S (integer) positions of zero or more conditioning variables in the adjacency ma-
trix.

dm data matrix (rows: samples, columns: variables) with integer entries; the k levels
for a given column must be coded by the integers 0,1,...,k-1. (see example)

nlev optional vector with numbers of levels for each variable in dm.
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adaptDF logical specifying if the degrees of freedom should be lowered by one for each
zero count. The value for the degrees of freedom cannot go below 1.

n.min the smallest n (number of observations, nrow(dm)) for which the G^2 test is
computed; for smaller n, independence is assumed (G2 := 1) with a warning.
The default is 10m, where m is the degrees of freedom assuming no structural
zeros, here, the product of all the number of levels (nlev[x]-1) * (nlev[y]-1)
* prod(nlev[S]).

verbose logical or integer indicating that increased diagnostic output is to be provided.

suffStat a list with three elements, "dm", "nlev", "adaptDF"; each corresponding to
the above arguments of gSquareDis().

Details

The G2 statistic is used to test for (conditional) independence of X and Y given a set S (can be NULL).
If only binary variables are involved, gSquareBin is a specialized (a bit more efficient) alternative
to gSquareDis().

Value

The p-value of the test.

Author(s)

Nicoletta Andri and Markus Kalisch (<kalisch@stat.math.ethz.ch>).

References

R.E. Neapolitan (2004). Learning Bayesian Networks. Prentice Hall Series in Artificial Intelli-
gence. Chapter 10.3.1

See Also

gSquareBin for a (conditional) independence test for binary variables.

dsepTest, gaussCItest and binCItest for similar functions for a d-separation oracle, a con-
ditional independence test for gaussian variables and a conditional independence test for binary
variables, respectively.

Examples

## Simulate data
n <- 100
set.seed(123)
x <- sample(0:2, n, TRUE) ## three levels
y <- sample(0:3, n, TRUE) ## four levels
z <- sample(0:1, n, TRUE) ## two levels
dat <- cbind(x,y,z)

## Analyze data
gSquareDis(1,3, S=2, dat, nlev = c(3,4,2)) # but nlev is optional:
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gSquareDis(1,3, S=2, dat, verbose=TRUE, adaptDF=TRUE)
## with too little data, gives a warning (and p-value 1):
gSquareDis(1,3, S=2, dat[1:60,], nlev = c(3,4,2))

suffStat <- list(dm = dat, nlev = c(3,4,2), adaptDF = FALSE)
disCItest(1,3,2,suffStat)

dreach Compute D-SEP(x,y,G)

Description

Let x and y be two distinct vertices in a mixed graph G. This function computes D-SEP(x,y,G),
which is defined as follows:

A node v is in D-SEP(x,y,G) iff v is not equal to x and there is a collider path between x and v in G
such that every vertex on this path is an ancestor of x or y in G.

See p.136 of Sprirtes et al (2000) or Definition 4.1 of Maathuis and Colombo (2015).

Usage

dreach(x, y, amat, verbose = FALSE)

Arguments

x First argument of D-SEP, given as the column number of the node in the adja-
cency matrix.

y Second argument of D-SEP, given as the column number of the node in the
adjacency matrix (y must be different from x).

amat Adjacency matrix of type amat.pag.

verbose Logical specifying details should be on output

Value

Vector of column positions indicating the nodes in D-SEP(x,y,G).

Author(s)

Diego Colombo and Markus Kalisch (<kalisch@stat.math.ethz.ch>)

References

P. Spirtes, C. Glymour and R. Scheines (2000) Causation, Prediction, and Search, 2nd edition, The
MIT Press.

M.H. Maathuis and D. Colombo (2015). A generalized back-door criterion. Annals of Statistics 43
1060-1088.
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See Also

backdoor uses this function; pag2magAM.

dsep Test for d-separation in a DAG

Description

This function tests for d-separation of nodes in a DAG.

Usage

dsep(a, b, S=NULL, g, john.pairs = NULL)

Arguments

a Label (sic!) of node A

b Label (sic!) of node B

S Labels (sic!) of set of nodes on which it is conditioned, maybe empty

g The Directed Acyclic Graph (object of class "graph", see graph-class from
the package graph)

john.pairs The shortest path distance matrix for all pairs of nodes as computed (also by
default) in johnson.all.pairs.sp from package RBGL.

Details

This function checks separation in the moralized graph as explained in Lauritzen (2004).

Value

TRUE if a and b are d-separated by S in G, otherwise FALSE.

Author(s)

Markus Kalisch (<kalisch@stat.math.ethz.ch>)

References

S.L. Lauritzen (2004), Graphical Models, Oxford University Press, Chapter 3.2.2

See Also

dsepTest for a wrapper of this function that can easily be included into skeleton, pc, fci or
fciPlus. dsepAM for a similar function for MAGs.
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Examples

## generate random DAG
p <- 8
set.seed(45)
myDAG <- randomDAG(p, prob = 0.3)
if (require(Rgraphviz)) {
plot(myDAG)
}

## Examples for d-separation
dsep("1","7",NULL,myDAG)
dsep("4","5",NULL,myDAG)
dsep("4","5","2",myDAG)
dsep("4","5",c("2","3"),myDAG)

## Examples for d-connection
dsep("1","3",NULL,myDAG)
dsep("1","6","3",myDAG)
dsep("4","5","8",myDAG)

dsepAM Test for d-separation in a MAG

Description

This function tests for d-separation (also known as m-separation) of nodes X and nodes Y given
nodes S in a MAG.

Usage

dsepAM(X, Y, S = NULL, amat, verbose=FALSE)

Arguments

X Vector of column numbers of nodes X in the adjacency matrix

Y Vector of column numbers of nodes Y in the adjacency matrix

S Vector of column numbers of nodes S in the adjacency matrix (may be empty)

amat The Maximal Ancestral Graph encoded as adjacency matrix of type amatType

verbose If true, more detailed output is provided.

Details

This function checks separation in the moralized graph as explained in Richardson and Spirtes
(2002).

Value

TRUE if X and Y are d-separated by S in the MAG encoded by amat, otherwise FALSE.
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Author(s)

Markus Kalisch (<kalisch@stat.math.ethz.ch>), Joris Mooij

References

T.S. Richardson and P. Spirtes (2002). Ancestral graph Markov models. Annals of Statistics 30
962-1030.

See Also

dsepAMTest for a wrapper of this function that can easily be included into skeleton, fci or
fciPlus. dsep for a similar function for DAGs.

Examples

# Y-structure MAG
# Encode as adjacency matrix
p <- 4 # total number of variables
V <- c("X1","X2","X3","X4") # variable labels
# amat[i,j] = 0 iff no edge btw i,j
# amat[i,j] = 1 iff i *-o j
# amat[i,j] = 2 iff i *-> j
# amat[i,j] = 3 iff i *-- j
amat <- rbind(c(0,0,2,0),

c(0,0,2,0),
c(3,3,0,2),
c(0,0,3,0))

rownames(amat)<-V
colnames(amat)<-V

## d-separated
cat('X1 d-separated from X2? ', dsepAM(1,2,S=NULL,amat),'\n')
## not d-separated given node 3
cat('X1 d-separated from X2 given X4? ', dsepAM(1,2,S=4,amat),'\n')
## not d-separated by node 3 and 4
cat('X1 d-separated from X2 given X3 and X4? ', dsepAM(1,2,S=c(3,4),amat),'\n')

dsepAMTest Test for d-separation in a MAG

Description

This function tests for d-separation (also known as m-separation) of node x and node y given nodes
S in a MAG. dsepAMTest() is written to be easily used in skeleton, fci, fciPlus.

Usage

dsepAMTest(x, y, S = NULL, suffStat)
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Arguments

x Column number of node x in the adjacency matrix

y Column number of node y in the adjacency matrix

S Vector of column numbers of nodes S in the adjacency matrix, may be empty

suffStat a list with two elements,

amat The Maximal Ancestral Graph encoded as adjacency matrix of type am-
atType

verbose If true, more detailed output is provided.

Details

The function is a wrapper for dsepAM, which checks separation in the moralized graph as explained
in Richardson and Spirtes (2002).

Value

Returns 1 if x and y are d-separated by S in the MAG encoded by amat, otherwise 0.

This is analogous to the p-value of an ideal (without sampling error) conditional independence test
on any distribution that is faithful to the MAG.

Author(s)

Markus Kalisch (<kalisch@stat.math.ethz.ch>), Joris Mooij

References

T.S. Richardson and P. Spirtes (2002). Ancestral graph Markov models. Annals of Statistics 30
962-1030.

See Also

dsepTest for a similar function for DAGs. gaussCItest, disCItest and binCItest for similar
functions for a conditional independence test for gaussian, discrete and binary variables, respec-
tively.

Examples

# Y-structure MAG
# Encode as adjacency matrix
p <- 4 # total number of variables
V <- c("X1","X2","X3","X4") # variable labels
# amat[i,j] = 0 iff no edge btw i,j
# amat[i,j] = 1 iff i *-o j
# amat[i,j] = 2 iff i *-> j
# amat[i,j] = 3 iff i *-- j
amat <- rbind(c(0,0,2,0),

c(0,0,2,0),
c(3,3,0,2),
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c(0,0,3,0))
rownames(amat)<-V
colnames(amat)<-V

suffStat<-list(g=amat,verbose=FALSE)
## d-separated
cat('X1 d-separated from X2? ', dsepAMTest(1,2,S=NULL,suffStat),'\n')
## not d-separated given node 3
cat('X1 d-separated from X2 given X4? ',
dsepAMTest(1,2,S=4,suffStat),'\n')
## not d-separated by node 3 and 4
cat('X1 d-separated from X2 given X3 and X4? ', dsepAMTest(1,2,S=c(3,4),
suffStat),'\n')

# Derive PAG that represents the Markov equivalence class of the MAG with the FCI algorithm
# Make use of d-separation oracle as "independence test"
indepTest <- dsepAMTest
fci.pag <- fci(suffStat,indepTest,alpha = 0.5,labels = V,verbose=FALSE)
cat('True MAG:\n')
print(amat)
cat('PAG output by FCI:\n')
print(fci.pag@amat)

dsepTest Test for d-separation in a DAG

Description

Tests for d-separation of nodes in a DAG. dsepTest() is written to be easily used in skeleton, pc,
fci.

Usage

dsepTest(x, y, S=NULL, suffStat)

Arguments

x, y (integer) position of variable X and Y , respectively, in the adjacency matrix.

S (integer) positions of zero or more conditioning variables in the adjacency ma-
trix.

suffStat a list with two elements,

"g" Containing the Directed Acyclic Graph (object of class "graph", see
graph-class from the package graph), and

"jp" Containing the shortest path distance matrix for all pairs of nodes as com-
puted by johnson.all.pairs.sp from package RBGL.

Details

The function is based on dsep. For details on d-separation see the reference Lauritzen (2004).
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Value

If x and y are d-separated by S in DAG G the result is 1, otherwise it is 0. This is analogous to the
p-value of an ideal (without sampling error) conditional independence test on any distribution that
is faithful to the DAG G.

Author(s)

Markus Kalisch (<kalisch@stat.math.ethz.ch>)

References

S.L. Lauritzen (2004), Graphical Models, Oxford University Press.

See Also

dsepAMTest for a similar function for MAGs. gaussCItest, disCItest and binCItest for simi-
lar functions for a conditional independence test for gaussian, discrete and binary variables, respec-
tively.

Examples

p <- 8
set.seed(45)
myDAG <- randomDAG(p, prob = 0.3)

if (require(Rgraphviz)) {
## plot the DAG
plot(myDAG, main = "randomDAG(10, prob = 0.2)")
}

## define sufficient statistics (d-separation oracle)
suffStat <- list(g = myDAG, jp = RBGL::johnson.all.pairs.sp(myDAG))

dsepTest(1,6, S= NULL, suffStat) ## not d-separated
dsepTest(1,6, S= 3, suffStat) ## not d-separated by node 3
dsepTest(1,6, S= c(3,4),suffStat) ## d-separated by node 3 and 4

EssGraph-class Class "EssGraph"

Description

This class represents an (observentional or interventional) essential graph.
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Details

An observational or interventional Markov equivalence class of DAGs can be uniquely represented
by a partially directed graph, the essential graph. Its edges have the following interpretation:

1. a directed edge a −→ b stands for an arrow that has the same orientation in all representatives
of the Markov equivalence class;

2. an undirected edge a−b stands for an arrow that is oriented in one way in some representatives
of the equivalence class and in the other way in other representatives of the equivalence class.

Extends

All reference classes extend and inherit methods from "envRefClass".

Constructor

new("EssGraph", nodes, in.edges, ...)

nodes Vector of node names; cf. also field .nodes.

in.edges A list of length p consisting of index vectors indicating the edges pointing into the nodes
of the DAG.

Fields

.nodes: Vector of node names; defaults to as.character(1:p), where p denotes the number of
nodes (variables) of the model.

.in.edges: A list of length p consisting of index vectors indicating the edges pointing into the
nodes of the DAG.

targets List of mutually exclusive intervention targets with respect to which Markov equivalence
is defined.

score: Object of class Score; used internally for score-based causal inference.

Class-Based Methods

Most class-based methods are only for internal use. Methods of interest for the user are:

repr(): Yields a representative causal model of the equivalence class, an object of a class derived
from Score. Since the representative is not only characterized by the DAG, but also by ap-
propriate parameters, the field score must be assigned for this method to work. The DAG is
drawn at random; note that all representatives are statistically indistinguishable under a given
set of intervention targets.

node.count(): Yields the number of nodes of the essential graph.

edge.count(): Yields the number of edges of the essential graph. Note that unoriented edges
count as 2, whereas oriented edges count as 1 due to the internal representation.

Methods

plot signature(x = "EssGraph", y = "ANY"): plots the essential graph. In the plot, undirected
and bidirected edges are equivalent.
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Author(s)

Alain Hauser (<alain.hauser@bfh.ch>)

See Also

ParDAG

Examples

showClass("EssGraph")

fci Estimate a PAG with the FCI Algorithm

Description

Estimate a Partial Ancestral Graph (PAG) from observational data, using the FCI (Fast Causal In-
ference) algorithm, or from a combination of data from different (e.g., observational and interven-
tional) contexts, using the FCI-JCI (Joint Causal Inference) extension.

Usage

fci(suffStat, indepTest, alpha, labels, p,
skel.method = c("stable", "original", "stable.fast"),
type = c("normal", "anytime", "adaptive"),
fixedGaps = NULL, fixedEdges = NULL,
NAdelete = TRUE, m.max = Inf, pdsep.max = Inf,
rules = rep(TRUE, 10), doPdsep = TRUE, biCC = FALSE,
conservative = FALSE, maj.rule = FALSE,
numCores = 1, selectionBias = TRUE,
jci = c("0","1","12","123"), contextVars = NULL,
verbose = FALSE)

Arguments

suffStat sufficient statistics: A named list containing all necessary elements for the
conditional independence decisions in the function indepTest.

indepTest a function for testing conditional independence. The function is internally
called as indepTest(x,y, S, suffStat), and tests conditional independence
of x and y given S. Here, x and y are variables, and S is a (possibly empty) vector
of variables (all variables are denoted by their column numbers in the adjacency
matrix). suffStat is a list with all relevant information, see above. The return
value of indepTest() is the p-value of the test for conditional independence.

alpha numeric significance level (in (0, 1)) for the individual conditional independence
tests.

labels (optional) character vector of variable (or “node”) names. Typically preferred
to specifying p.
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p (optional) number of variables (or nodes). May be specified if labels are not,
in which case labels is set to 1:p.

skel.method character string specifying method; the default, "stable" provides an order-
independent skeleton, see skeleton.

type character string specifying the version of the FCI algorithm to be used. By
default, it is "normal", and so the normal FCI algorithm is called. If set to
"anytime", the ‘Anytime FCI’ is called and m.max needs to be specified. If set
to "adaptive", the ‘Adaptive Anytime FCI’ is called and m.max is not used. For
more information, see Details.

fixedGaps logical matrix of dimension p*p. If entry [i,j] or [j,i] (or both) are TRUE,
the edge i-j is removed before starting the algorithm. Therefore, this edge is
guaranteed to be absent in the resulting graph.

fixedEdges logical matrix of dimension p*p. If entry [i,j] or [j,i] (or both) are TRUE,
the edge i-j is never considered for removal. Therefore, this edge is guaranteed
to be present in the resulting graph.

NAdelete If indepTest returns NA and this option is TRUE, the corresponding edge is deleted.
If this option is FALSE, the edge is not deleted.

m.max Maximum size of the conditioning sets that are considered in the conditional
independence tests.

pdsep.max Maximum size of Possible-D-SEP for which subsets are considered as condi-
tioning sets in the conditional independence tests. If the nodes x and y are
adjacent in the graph and the size of Possible-D-SEP(x) \ {x, y} is bigger than
pdsep.max, the edge is simply left in the graph. Note that if pdsep.max is less
than Inf, the final PAG may be a supergraph of the one computed with pdsep.max
= Inf, because fewer tests may have been performed in the former.

rules Logical vector of length 10 indicating which rules should be used when directing
edges. The order of the rules is taken from Zhang (2008).

doPdsep If TRUE, Possible-D-SEP is computed for all nodes, and all subsets of Possible-
D-SEP are considered as conditioning sets in the conditional independence tests,
if not defined otherwise in pdsep.max. If FALSE, Possible-D-SEP is not com-
puted, so that the algorithm simplifies to the Modified PC algorithm of Spirtes,
Glymour and Scheines (2000, p.84).

biCC If TRUE, only nodes on paths between nodes x and y are considered to be in
Possible-D-SEP(x) when testing independence between x and y. Uses bicon-
nected components, biConnComp from RBGL.

conservative Logical indicating if the unshielded triples should be checked for ambiguity
the second time when v-structures are determined. For more information, see
details.

maj.rule Logical indicating if the unshielded triples should be checked for ambiguity the
second time when v-structures are determined using a majority rule idea, which
is less strict than the standard conservative. For more information, see details.

numCores Specifies the number of cores to be used for parallel estimation of skeleton.

selectionBias If TRUE, allow for selection bias. If FALSE, selection bias is excluded by assump-
tion and hence rules R5-R7, as in Zhang (2008), are disabled.
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jci String specifying the JCI assumptions that are used. It can be one of:

"0" No JCI assumption is made (default),
"1" JCI assumption 1 (no system variable causes any context variable),
"12" JCI assumptions 1 and 2 (no system variable causes any context variable,

and no system variable is confounded with any context variable),
"123" JCI assumptions 1, 2 and 3 (no system variable causes any context vari-

able, no system variable is confounded with any context variable, and all
context variables are confounded but are not direct causes of each other).

For more information, see Mooij et al. (2020).

contextVars Subset of variable indices {1,...,p} that will be treated as context variables in the
JCI extension of FCI.

verbose If true, more detailed output is provided.

Details

This function is a generalization of the PC algorithm (see pc), in the sense that it allows arbi-
trarily many latent and selection variables. Under the assumption that the data are faithful to a
DAG that includes all latent and selection variables, the FCI algorithm (Fast Causal Inference al-
gorithm) (Spirtes, Glymour and Scheines, 2000) estimates the Markov equivalence class of MAGs
that describe the conditional independence relationships between the observed variables. Under
the assumption that the data are σ-faithful to a simple (possibly cyclic) SCM that allows for latent
confounding (but selection bias is absent), the FCI algorithm estimates the σ-Markov equivalence
class of the DMGs (directed mixed graphs) that describe the causal relations between the observed
variables and the conditional independence relationships in the observed distribution through σ-
separation (Mooij and Claassen, 2020). The FCI-JCI (Joint Causal Inference) extension allows the
algorithm to combine data from different contexts, for example, observational and different types
of interventional data (Mooij et al., 2020).

FCI estimates a partial ancestral graph (PAG). The PAG represents a Markov equivalence class
of DAGs with latent and selection variables in the acyclic case (Zhang, 2008), and a Markov equiv-
alence class of directed graphs with latent variables (but without selection variables) in the cyclic
σ-separation case. A PAG contains the following types of edges: o-o, o–, o->, –>, <->, —. The
bidirected edges come from latent confounders, and the undirected edges come from latent selection
variables. The edges have the following interpretation: (i) there is an edge between x and y if and
only if variables x and y are conditionally dependent given S for all sets S consisting of all selection
variables and a subset of the observed variables (assuming the Markov property and faithfulness);
(ii) a tail x --* y at x on an edge between x and y means that x is an ancestor of y or S; (iii) an
arrowhead x <-* y at x on an edge between x and y means that x is not an ancestor of y, nor of S;
(iv) a circle mark x o-* y at x on an edge between x and y means that there exists both a graph in
the Markov equivalence class where x is ancestor of y or S, and one where x is not ancestor of y,
nor of S. For further information on the interpretation of PAGs see e.g. (Zhang, 2008) and (Mooij
and Claassen, 2020).

The first part of the FCI algorithm is analogous to the PC algorithm. It starts with a complete
undirected graph and estimates an initial skeleton using skeleton(*, method="stable") which
produces an initial order-independent skeleton, see skeleton for more details. All edges of this
skeleton are of the form o-o. Due to the presence of hidden variables, it is no longer sufficient to
consider only subsets of the neighborhoods of nodes x and y to decide whether the edge x o-o y
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should be removed. Therefore, the initial skeleton may contain some superfluous edges. These
edges are removed in the next step of the algorithm which requires some orientations. Therefore,
the v-structures are determined using the conservative method (see discussion on conservative
below).

After the v-structures have been oriented, Possible-D-SEP sets for each node in the graph are com-
puted at once. To decide whether edge x o-o y should be removed, one performs conditional
indepedence tests of x and y given all possible subsets of Possible-D-SEP(x) and of Possible-
D-SEP(y). The edge is removed if a conditional independence is found. This produces a fully
order-independent final skeleton as explained in Colombo and Maathuis (2014). Subsequently, the
v-structures are newly determined on the final skeleton (using information in sepset). Finally, as
many as possible undetermined edge marks (o) are determined using (a subset of) the 10 orientation
rules given by Zhang (2008).

The “Anytime FCI” algorithm was introduced by Spirtes (2001). It can be viewed as a modification
of the FCI algorithm that only performs conditional independence tests up to and including order
m.max when finding the initial skeleton, using the function skeleton, and the final skeleton, using
the function pdsep. Thus, Anytime FCI performs fewer conditional independence tests than FCI. To
use the Anytime algorithm, one sets type = "anytime" and needs to specify m.max, the maximum
size of the conditioning sets.

The “Adaptive Anytime FCI” algorithm was introduced by Colombo et. al (2012). The first part of
the algorithm is identical to the normal FCI described above. But in the second part when the final
skeleton is estimated using the function pdsep, the Adaptive Anytime FCI algorithm only performs
conditional independence tests up to and including order m.max, where m.max is the maximum size
of the conditioning sets that were considered to determine the initial skeleton using the function
skeleton. Thus, m.max is chosen adaptively and does not have to be specified by the user.

Conservative versions of FCI, Anytime FCI, and Adaptive Anytime FCI are computed if conservative
= TRUE is specified. After the final skeleton is computed, all potential v-structures a-b-c are checked
in the following way. We test whether a and c are independent conditioning on any subset of the
neighbors of a or any subset of the neighbors of c. When a subset makes a and c conditionally in-
dependent, we call it a separating set. If b is in no such separating set or in all such separating sets,
no further action is taken and the normal version of the FCI, Anytime FCI, or Adaptive Anytime
FCI algorithm is continued. If, however, b is in only some separating sets, the triple a-b-c is marked
‘ambiguous’. If a is independent of c given some S in the skeleton (i.e., the edge a-c dropped
out), but a and c remain dependent given all subsets of neighbors of either a or c, we will call all
triples a-b-c ‘unambiguous’. This is because in the FCI algorithm, the true separating set might
be outside the neighborhood of either a or c. An ambiguous triple is not oriented as a v-structure.
Furthermore, no further orientation rule that needs to know whether a-b-c is a v-structure or not is
applied. Instead of using the conservative version, which is quite strict towards the v-structures,
Colombo and Maathuis (2014) introduced a less strict version for the v-structures called majority
rule. This adaptation can be called using maj.rule = TRUE. In this case, the triple a-b-c is marked
as ‘ambiguous’ if and only if b is in exactly 50 percent of such separating sets or no separating set
was found. If b is in less than 50 percent of the separating sets it is set as a v-structure, and if in
more than 50 percent it is set as a non v-structure (for more details see Colombo and Maathuis,
2014). Colombo and Maathuis (2014) showed that with both these modifications, the final skeleton
and the decisions about the v-structures of the FCI algorithm are fully order-independent. Note that
the order-dependence issues on the 10 orientation rules are still present, see Colombo and Maathuis
(2014) for more details.

The FCI-JCI extension of FCI was introduced by Mooij et. al (2020). It is an implementation of
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the Joint Causal Inference (JCI) framework that reduces causal discovery from several data sets
corresponding to different contexts (e.g., observational and different interventional settings, or data
measured in different labs or in different countries) to causal discovery from the pooled data (treated
as a single ’observational’ data set). Two types of variables are distinguished in the JCI framework:
system variables (describing aspects of the system in some environment) and context variables (de-
scribing aspects of the environment of the system). Different assumptions regarding the causal
relations between context variables and system variables can be made. The most common assump-
tion (JCI Assumption 1: ’exogeneity’) is that no system variable can affect any context variable.
The second, less common, assumption (JCI Assumption 2: ’complete randomized context’) is that
there is no latent confounding between system and context. The third assumption (JCI Assumption
3: ’generic context model’) is in fact a faithfulness assumption on the context distribution. The FCI-
JCI extension can be used by specifying the subset of the variables that are designated as context
variables with the contextVars argument, and by specifying the combination of JCI assumptions
that is used with the jci argument. For the default values of these arguments, the JCI extension is
not used. The only difference between the FCI-JCI extension and the standard FCI algorithm is that
the background knowledge about the PAG implied by the JCI assumptions is exploited at several
points in the FCI-JCI algorithm to enforce adjacencies between context variables (in case of JCI
Assumption 3) and to orient certain edges adjacent to context variables (in case of JCI Assumptions
1, 2 or 3). The current JCI framework assumes that no selection bias is present, and therefore the
FCI-JCI extension should be called with selectionBias = FALSE. For more details on FCI-JCI,
and the general JCI framework, see Mooij et al. (2020).

Value

An object of class fciAlgo (see fciAlgo) containing the estimated graph (in the form of an
adjacency matrix with various possible edge marks), the conditioning sets that lead to edge removals
(sepset) and several other parameters.

Author(s)

Diego Colombo, Markus Kalisch (<kalisch@stat.math.ethz.ch>) and Joris Mooij.

References
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See Also

fciPlus for a more efficient variation of FCI; skeleton for estimating a skeleton using the PC
algorithm; pc for estimating a CPDAG using the PC algorithm; pdsep for computing Possible-D-
SEP for each node and testing and adapting the graph accordingly; qreach for a fast way of finding
Possible-D-SEP for a given node.

gaussCItest, disCItest, binCItest, dsepTest and dsepAMTest as examples for indepTest.

Examples

##################################################
## Example without latent variables
##################################################

set.seed(42)
p <- 7
## generate and draw random DAG :
myDAG <- randomDAG(p, prob = 0.4)

## find skeleton and PAG using the FCI algorithm
suffStat <- list(C = cov2cor(trueCov(myDAG)), n = 10^9)
res <- fci(suffStat, indepTest=gaussCItest,

alpha = 0.9999, p=p, doPdsep = FALSE)

##################################################
## Example with hidden variables
## Zhang (2008), Fig. 6, p.1882
##################################################

## create the graph g
p <- 4
L <- 1 # '1' is latent
V <- c("Ghost", "Max","Urs","Anna","Eva")
edL <- setNames(vector("list", length=length(V)), V)
edL[[1]] <- list(edges=c(2,4),weights=c(1,1))
edL[[2]] <- list(edges=3,weights=c(1))
edL[[3]] <- list(edges=5,weights=c(1))
edL[[4]] <- list(edges=5,weights=c(1))
g <- new("graphNEL", nodes=V, edgeL=edL, edgemode="directed")
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## compute the true covariance matrix of g
cov.mat <- trueCov(g)

## delete rows and columns belonging to latent variable L
true.cov <- cov.mat[-L,-L]
## transform covariance matrix into a correlation matrix
true.corr <- cov2cor(true.cov)

## The same, for the following three examples
indepTest <- gaussCItest
suffStat <- list(C = true.corr, n = 10^9)

## find PAG with FCI algorithm.
## As dependence "oracle", we use the true correlation matrix in
## gaussCItest() with a large "virtual sample size" and a large alpha:

normal.pag <- fci(suffStat, indepTest, alpha = 0.9999, labels = V[-L],
verbose=TRUE)

## find PAG with Anytime FCI algorithm with m.max = 1
## This means that only conditioning sets of size 0 and 1 are considered.
## As dependence "oracle", we use the true correlation matrix in the
## function gaussCItest with a large "virtual sample size" and a large
## alpha
anytime.pag <- fci(suffStat, indepTest, alpha = 0.9999, labels = V[-L],

type = "anytime", m.max = 1,
verbose=TRUE)

## find PAG with Adaptive Anytime FCI algorithm.
## This means that only conditining sets up to size K are considered
## in estimating the final skeleton, where K is the maximal size of a
## conditioning set found while estimating the initial skeleton.
## As dependence "oracle", we use the true correlation matrix in the
## function gaussCItest with a large "virtual sample size" and a large
## alpha
adaptive.pag <- fci(suffStat, indepTest, alpha = 0.9999, labels = V[-L],

type = "adaptive",
verbose=TRUE)

## define PAG given in Zhang (2008), Fig. 6, p.1882
corr.pag <- rbind(c(0,1,1,0),

c(1,0,0,2),
c(1,0,0,2),
c(0,3,3,0))

## check if estimated and correct PAG are in agreement
all(corr.pag == normal.pag @ amat) # TRUE
all(corr.pag == anytime.pag @ amat) # FALSE
all(corr.pag == adaptive.pag@ amat) # TRUE
ij <- rbind(cbind(1:4,1:4), c(2,3), c(3,2))
all(corr.pag[ij] == anytime.pag @ amat[ij]) # TRUE



fci 51

##################################################
## Joint Causal Inference Example
## Mooij et al. (2020), Fig. 43(a), p. 97
##################################################

# Encode MAG as adjacency matrix
p <- 8 # total number of variables
V <- c("Ca","Cb","Cc","X0","X1","X2","X3","X4") # 3 context variables, 5 system variables
# amat[i,j] = 0 iff no edge btw i,j
# amat[i,j] = 1 iff i *-o j
# amat[i,j] = 2 iff i *-> j
# amat[i,j] = 3 iff i *-- j
amat <- rbind(c(0,2,2,2,0,0,0,0),

c(2,0,2,0,2,0,0,0),
c(2,2,0,0,2,2,0,0),
c(3,0,0,0,0,0,2,0),
c(0,3,3,0,0,3,0,2),
c(0,0,3,0,2,0,0,0),
c(0,0,0,3,0,0,0,2),
c(0,0,0,0,2,0,3,0))

rownames(amat)<-V
colnames(amat)<-V

# Make use of d-separation oracle as "independence test"
indepTest <- dsepAMTest
suffStat<-list(g=amat,verbose=FALSE)

# Derive PAG that represents the Markov equivalence class of the MAG with the FCI algorithm
# (assuming no selection bias)
fci.pag <- fci(suffStat, indepTest, alpha = 0.5, labels = V,
verbose=TRUE, selectionBias=FALSE)

# Derive PAG with FCI-JCI, the Joint Causal Inference extension of FCI
# (assuming no selection bias, and all three JCI assumptions)
fcijci.pag <- fci(suffStat, indepTest, alpha = 0.5, labels = V,
verbose=TRUE, contextVars=c(1,2,3), jci="123", selectionBias=FALSE)

# Report results
cat('True MAG:\n')
print(amat)
cat('PAG output by FCI:\n')
print(fci.pag@amat)
cat('PAG output by FCI-JCI:\n')
print(fcijci.pag@amat)

# Read off causal features from the FCI PAG
cat('Identified absence (-1) and presence (+1) of ancestral causal relations from FCI PAG:\n')
print(pag2anc(fci.pag@amat))
cat('Identified absence (-1) and presence (+1) of direct causal relations from FCI PAG:\n')
print(pag2edge(fci.pag@amat))
cat('Identified absence (-1) and presence (+1) of pairwise latent confounding from FCI PAG:\n')
print(pag2conf(fci.pag@amat))
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# Read off causal features from the FCI-JCI PAG
cat('Identified absence (-1) and presence (+1) of ancestral causal relations from FCI-JCI PAG:\n')
print(pag2anc(fcijci.pag@amat))
cat('Identified absence (-1) and presence (+1) of direct causal relations from FCI-JCI PAG:\n')
print(pag2edge(fcijci.pag@amat))
cat('Identified absence (-1) and presence (+1) of pairwise latent confounding from FCI-JCI PAG:\n')
print(pag2conf(fcijci.pag@amat))

fciAlgo-class Class "fciAlgo" of FCI Algorithm Results

Description

This class of objects is returned by functions fci(), rfci(), fciPlus, and dag2pag and represent
the estimated PAG (and sometimes properties of the algorithm). Objects of this class have methods
for the functions plot, show and summary.

Usage

## S4 method for signature 'fciAlgo'
show(object)
## S3 method for class 'fciAlgo'
print(x, amat = FALSE, zero.print = ".", ...)

## S4 method for signature 'fciAlgo'
summary(object, amat = TRUE, zero.print = ".", ...)
## S4 method for signature 'fciAlgo,ANY'
plot(x, y, main = NULL, ...)

Arguments

x, object a "fciAlgo" object.

amat logical indicating if the adjacency matrix should be shown (printed) as well.

zero.print string for printing 0 (‘zero’) entries in the adjacency matrix.

y (generic plot() argument; unused).

main main title, not yet supported.

... optional further arguments (passed from and to methods).

Slots

The slots call, n, max.ord, n.edgetests, sepset, and pMax are inherited from class "gAlgo", see
there.

In addition, "fciAlgo" has slots

amat: adjacency matrix; for the coding of the adjacency matrix see amatType
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allPdsep a list: the ith entry of this list contains Possible D-SEP of node number i.

n.edgetestsPDSEP the number of new conditional independence tests (i.e., tests that were not
done in the first part of the algorithm) that were performed while checking subsets of Possible
D-SEP.

max.ordPDSEP an integer: the maximum size of the conditioning sets used in the new conditional
independence that were performed when checking subsets of Possible D-SEP.

Extends

Class "gAlgo".

Methods

plot signature(x = "fciAlgo"): Plot the resulting graph

show signature(object = "fciAlgo"): Show basic properties of the fitted object

summary signature(object = "fciAlgo"): Show details of the fitted object

Author(s)

Markus Kalisch and Martin Maechler

See Also

fci, fciPlus, etc (see above); pcAlgo

Examples

## look at slots of the class
showClass("fciAlgo")

## Also look at the extensive examples in ?fci , ?fciPlus, etc !

## Not run:
## Suppose, fciObj is an object of class fciAlgo
## access slots by using the @ symbol
fciObj@amat ## adjacency matrix
fciObj@sepset ## separation sets

## use show, summary and plot method
fciObj ## same as show(fciObj)
show(fciObj)
summary(fciObj)
plot(fciObj)

## End(Not run)
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fciPlus Estimate a PAG with the FCI+ Algorithm

Description

Estimate a Partial Ancestral Graph (PAG) from observational data, using the FCI+ (Fast Causal
Inference) algorithm, or from a combination of data from different (e.g., observational and inter-
ventional) contexts, using the FCI+-JCI (Joint Causal Inference) extension.

Usage

fciPlus(suffStat, indepTest, alpha, labels, p, verbose=TRUE,
selectionBias = TRUE, jci = c("0","1","12","123"), contextVars = NULL)

Arguments

suffStat sufficient statistics: A named list containing all necessary elements for the
conditional independence decisions in the function indepTest.

indepTest a function for testing conditional independence. The function is internally
called as indepTest(x,y, S, suffStat), and tests conditional independence
of x and y given S. Here, x and y are variables, and S is a (possibly empty) vector
of variables (all variables are denoted by their column numbers in the adjacency
matrix). suffStat is a list with all relevant information, see above. The return
value of indepTest() is the p-value of the test for conditional independence.

alpha numeric significance level (in (0, 1)) for the individual conditional independence
tests.

labels (optional) character vector of variable (or “node”) names. Typically preferred
to specifying p.

p (optional) number of variables (or nodes). May be specified if labels are not,
in which case labels is set to 1:p.

selectionBias If TRUE, allow for selection bias. If FALSE, selection bias is excluded by assump-
tion and hence rules R5-R7, as in Zhang (2008), are disabled.

jci String specifying the JCI assumptions that are used. It can be one of:
"0" No JCI assumption is made (default),
"1" JCI assumption 1 (no system variable causes any context variable),
"12" JCI assumptions 1 and 2 (no system variable causes any context variable,

and no system variable is confounded with any context variable),
"123" JCI assumptions 1, 2 and 3 (no system variable causes any context vari-

able, no system variable is confounded with any context variable, and all
context variables are confounded but are not direct causes of each other).

For more information, see Mooij et al. (2020).
contextVars Subset of variable indices {1,...,p} that will be treated as context variables in the

JCI extension of FCI+.
verbose logical indicating if progress of the algorithm should be printed. The default is

true, which used to be hard coded previously.
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Details

A (possibly much faster) variation of FCI (Fast Causal Inference). For details, please see the refer-
ences, and also fci.

Value

An object of class fciAlgo (see fciAlgo) containing the estimated graph (in the form of an
adjacency matrix with various possible edge marks), the conditioning sets that lead to edge removals
(sepset) and several other parameters.

Author(s)

Emilija Perkovic, Markus Kalisch (<kalisch@stat.math.ethz.ch>) and Joris Mooij.

References

T. Claassen, J. Mooij, and T. Heskes (2013). Learning Sparse Causal Models is not NP-hard. In
UAI 2013, Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence

See Also

fci for estimating a PAG using the FCI algorithm.

Examples

##################################################
## Example without latent variables
##################################################

## generate a random DAG ( p = 7 )
set.seed(42)
p <- 7
myDAG <- randomDAG(p, prob = 0.4)

## find PAG using the FCI+ algorithm on "Oracle"
suffStat <- list(C = cov2cor(trueCov(myDAG)), n = 10^9)
m.fci <- fciPlus(suffStat, indepTest=gaussCItest,

alpha = 0.9999, p=p)
summary(m.fci)

if (require(Rgraphviz)) {
par(mfrow=c(1,2))

plot(myDAG)
plot(m.fci)
}

##################################################
## Joint Causal Inference Example
## Mooij et al. (2020), Fig. 43(a), p. 97
##################################################
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# Encode MAG as adjacency matrix
p <- 8 # total number of variables
V <- c("Ca","Cb","Cc","X0","X1","X2","X3","X4") # 3 context variables, 5 system variables
# amat[i,j] = 0 iff no edge btw i,j
# amat[i,j] = 1 iff i *-o j
# amat[i,j] = 2 iff i *-> j
# amat[i,j] = 3 iff i *-- j
amat <- rbind(c(0,2,2,2,0,0,0,0),

c(2,0,2,0,2,0,0,0),
c(2,2,0,0,2,2,0,0),
c(3,0,0,0,0,0,2,0),
c(0,3,3,0,0,3,0,2),
c(0,0,3,0,2,0,0,0),
c(0,0,0,3,0,0,0,2),
c(0,0,0,0,2,0,3,0))

rownames(amat)<-V
colnames(amat)<-V

# Make use of d-separation oracle as "independence test"
indepTest <- dsepAMTest
suffStat<-list(g=amat,verbose=FALSE)

# Derive PAG that represents the Markov equivalence class of the MAG with the FCI+ algorithm
# (assuming no selection bias)
# fci.pag <- fciPlus(suffStat, indepTest, alpha = 0.5, labels = V,
# selectionBias=FALSE,verbose=TRUE)

# Derive PAG with FCI+-JCI, the Joint Causal Inference extension of FCI
# (assuming no selection bias, and all three JCI assumptions)
# fcijci.pag <- fciPlus(suffStat, indepTest, alpha = 0.5, labels = V,
# selectionBias=FALSE, contextVars=c(1,2,3), jci="123", verbose=TRUE)

# Report results
# cat('True MAG:\n')
# print(amat)
# cat('PAG output by FCI+:\n')
# print(fci.pag@amat)
# cat('PAG output by FCI+-JCI:\n')
# print(fcijci.pag@amat)

# Read off causal features from the FCI PAG
#cat('Identified absence (-1) and presence (+1) of ancestral causal relations from FCI+ PAG:\n')
#print(pag2anc(fci.pag@amat))
#cat('Identified absence (-1) and presence (+1) of direct causal relations from FCI+ PAG:\n')
#print(pag2edge(fci.pag@amat))
#cat('Identified absence (-1) and presence (+1) of pairwise latent confounding from FCI+ PAG:\n')
#print(pag2conf(fci.pag@amat))

# Read off causal features from the FCI-JCI PAG
#cat('Identified absence (-1) and presence (+1) of ancestral causal relations from FCI+-JCI PAG:\n')
#print(pag2anc(fcijci.pag@amat))
#cat('Identified absence (-1) and presence (+1) of direct causal relations from FCI+-JCI PAG:\n')
#print(pag2edge(fcijci.pag@amat))
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#cat('Ident. absence (-1) and presence (+1) of pairwise latent confounding from FCI+-JCI PAG:\n')
#print(pag2conf(fcijci.pag@amat))

find.unsh.triple Find all Unshielded Triples in an Undirected Graph

Description

Find all unshielded triples in an undirected graph, q, i.e., the ordered ((x, y, z) with x < z) list of
all the triples in the graph.

Usage

find.unsh.triple(g, check=TRUE)

Arguments

g adjacency matrix of type amat.cpdag representing the skeleton; since a skeleton
consists only of undirected edges, g must be symmetric.

check logical indicating that the symmetry of g should be checked.

Details

A triple of nodes x, y and z is “unshielded”, if (all of these are true):

(i) x and y are connected;

(ii) y and z are connected;

(iii) x and z are not connected.

Value

unshTripl Matrix with 3 rows containing in each column an unshielded triple

unshVect Vector containing the unique number for each column in unshTripl (for internal
use only)

Author(s)

Diego Colombo, Markus Kalisch (<kalisch@stat.math.ethz.ch>), and Martin Maechler
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Examples

data(gmG)
if (require(Rgraphviz)) {

## show graph
plot(gmG$g, main = "True DAG")

}

## prepare skeleton use in example
g <- wgtMatrix(gmG$g) ## compute weight matrix
g <- 1*(g != 0) # wgts --> 0/1; still lower triangular
print.table(g, zero.print=".")
skel <- g + t(g) ## adjacency matrix of skeleton

## estimate unshielded triples -- there are 13 :
(uTr <- find.unsh.triple(skel))

gac Test If Set Satisfies Generalized Adjustment Criterion (GAC)

Description

This function tests if z satisfies the Generalized Adjustment Criterion (GAC) relative to (x,y) in
the graph represented by adjacency matrix amat and interpreted as type (DAG, maximal PDAG,
CPDAG, MAG, PAG). If yes, z can be used in covariate adjustment for estimating causal effects of
x on y.

Usage

gac(amat, x, y, z, type = "pag")

Arguments

amat adjacency matrix of type amat.cpdag or amat.pag

x, y, z (integer) positions of variables in x, y or z in the adjacency matrix. x, y and z
can be vectors representing several nodes.

type string specifying the type of graph of the adjacency matrix amat. It can be a
DAG (type="dag"), a PDAG (type="pdag") or a CPDAG (type="cpdag"); then
the type of the adjacency matrix is assumed to be amat.cpdag. It can also be
a MAG (type="mag"), or a PAG (type="pag"); then the type of the adjacency
matrix is assumed to be amat.pag.

Details

This work is a generalization of the work of Shpitser et al. (2012) (necessary and sufficient criterion
in DAGs/ADMGs) and van der Zander et al. (2014) (necessary and sufficient criterion in MAGs).
Moreover, it is a generalization of the Generalized Backdoor Criterion (GBC) of Maathuis and
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Colombo (2013): While GBC is sufficient but not necessary, GAC is both sufficient and necessary
for DAGs, CPDAGs, MAGs and PAGs. For more details see Perkovic et al. (2015, 2017a, 2017b).

The motivation to find a set z that satisfies the GAC with respect to (x,y) is the following:

A set of variables z satisfies the GAC relative to (x,y) in the given graph, if and only if the causal
effect of x on y is identifiable by covariate adjustment and is given by

P (Y |do(X = x)) =
∑
Z

P (Y |X,Z) · P (Z),

(for any joint distribution “compatible” with the graph; the formula is for discrete variables with
straightforward modifications for continuous variables). This result allows to write post-intervention
densities (the one written using Pearl’s do-calculus) using only observational densities estimated
from the data.

For z to satisfy the GAC relative to (x,y) and the graph, the following three conditions must hold:

(0) The graph is adjustment amenable relative to (x,y).

(1) The intersection of z and the forbidden set (explained in Perkovic et al. (2015, 2017b) is empty.

(2) All proper definite status non-causal paths in the graph from x to y are blocked by z.

It is important to note that there can be x and y for which there is no set Z that satisfies the GAC,
but the total causal effect might be identifiable via some technique other than covariate adjustment.

For details on the GAC for DAGs, CPDAGs, PAGs see Perkovic et. al (2015,2017a). For details
on the GAC for MAGs see van der Zander et. al (2014) and for details on the GAC for maximal
PDAGs see Perkovic et. al (2017b).

For the coding of the adjacency matrix see amatType. The input matrix can either be of class matrix
or of class amat.

Value

A list with three components:

gac logical; TRUE if z satisfies the GAC relative to (x,y) in the graph represented
by amat and type

res logical vector of length three indicating if each of the three conditions (0), (1)
and (2) are true

f node positions of nodes in the forbidden set (see Perkovic et al. (2015, 2017b)

Author(s)

Emilija Perkovic and Markus Kalisch (<kalisch@stat.math.ethz.ch>)

References

E. Perkovic, J. Textor, M. Kalisch and M.H. Maathuis (2015). A Complete Generalized Adjustment
Criterion. In Proceedings of UAI 2015.

E. Perkovic, J. Textor, M. Kalisch and M.H. Maathuis (2017a). Complete graphical characterization
and construction of adjustment sets in Markov equivalence classes of ancestral graphs. To appear
in Journal of Machine Learning Research.
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E. Perkovic, M. Kalisch and M.H. Maathuis (2017b). Interpreting and using CPDAGs with back-
ground knowledge. In Proceedings of UAI 2017.

I. Shpitser, T. VanderWeele and J.M. Robins (2012). On the validity of covariate adjustment for
estimating causal effects. In Proceedings of UAI 2010.

B. van der Zander, M. Liskiewicz and J. Textor (2014). Constructing separators and adjustment sets
in ancestral graphs. In Proceedings of UAI 2014.

M.H. Maathuis and D. Colombo (2013). A generalized backdoor criterion. Annals of Statistics 43
1060-1088.

See Also

backdoor for the Generalized Backdoor Criterion, pc for estimating a CPDAG and fci and fciPlus
for estimating a PAG.

Examples

## We reproduce the four examples in Perkovic et. al (2015, 2017a)

##############################
## Example 4.1 in Perkovic et. al (2015), Example 2 in Perkovic et. al (2017a)
##############################
mFig1 <- matrix(c(0,1,1,0,0,0, 1,0,1,1,1,0, 0,0,0,0,0,1,

0,1,1,0,1,1, 0,1,0,1,0,1, 0,0,0,0,0,0), 6,6)
type <- "cpdag"
x <- 3; y <- 6
## Z satisfies GAC :
gac(mFig1, x,y, z=c(2,4), type)
gac(mFig1, x,y, z=c(4,5), type)
gac(mFig1, x,y, z=c(4,2,1), type)
gac(mFig1, x,y, z=c(4,5,1), type)
gac(mFig1, x,y, z=c(4,2,5), type)
gac(mFig1, x,y, z=c(4,2,5,1),type)
## Z does not satisfy GAC :
gac(mFig1,x,y, z=2, type)
gac(mFig1,x,y, z=NULL, type)

##############################
## Example 4.2 in Perkovic et. al (2015), Example 3 in Perkovic et. al (2017a)
##############################
mFig3a <- matrix(c(0,1,0,0, 1,0,1,1, 0,1,0,1, 0,1,1,0), 4,4)
mFig3b <- matrix(c(0,2,0,0, 3,0,3,3, 0,2,0,3, 0,2,2,0), 4,4)
mFig3c <- matrix(c(0,3,0,0, 2,0,3,3, 0,2,0,3, 0,2,2,0), 4,4)
type <- "pag"
x <- 2; y <- 4
## Z does not satisfy GAC
gac(mFig3a,x,y, z=NULL, type) ## not amenable rel. to (X,Y)
gac(mFig3b,x,y, z=NULL, type) ## not amenable rel. to (X,Y)
## Z satisfies GAC
gac(mFig3c,x,y, z=NULL, type) ## amenable rel. to (X,Y)

##############################
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## Example 4.3 in Perkovic et. al (2015), Example 4 in Perkovic et. al (2017a)
##############################
mFig4a <- matrix(c(0,0,1,0,0,0, 0,0,1,0,0,0, 2,2,0,3,3,2,

0,0,2,0,2,2, 0,0,2,1,0,2, 0,0,1,3,3,0), 6,6)
mFig4b <- matrix(c(0,0,1,0,0,0, 0,0,1,0,0,0, 2,2,0,0,3,2,

0,0,0,0,2,2, 0,0,2,3,0,2, 0,0,2,3,2,0), 6,6)
type <- "pag"
x <- 3; y <- 4
## both PAGs are amenable rel. to (X,Y)
## Z satisfies GAC in Fig. 4a
gac(mFig4a,x,y, z=6, type)
gac(mFig4a,x,y, z=c(1,6), type)
gac(mFig4a,x,y, z=c(2,6), type)
gac(mFig4a,x,y, z=c(1,2,6), type)
## no Z satisfies GAC in Fig. 4b
gac(mFig4b,x,y, z=NULL, type)
gac(mFig4b,x,y, z=6, type)
gac(mFig4b,x,y, z=c(5,6), type)

##############################
## Example 4.4 in Perkovic et. al (2015), Example 8 in Perkovic et. al (2017a)
##############################
mFig5a <- matrix(c(0,1,0,0,0, 1,0,1,0,0, 0,0,0,0,1, 0,0,1,0,0, 0,0,0,0,0), 5,5)
type <- "cpdag"
x <- c(1,5); y <- 4
## Z satisfies GAC
gac(mFig5a,x,y, z=c(2,3), type)
## Z does not satisfy GAC
gac(mFig5a,x,y, z=2, type)

mFig5b <- matrix(c(0,1,0,0,0,0,0, 2,0,2,3,0,3,0, 0,1,0,0,0,0,0,
0,2,0,0,3,0,0, 0,0,0,2,0,2,3, 0,2,0,0,2,0,0, 0,0,0,0,2,0,0), 7,7)
type <- "pag"
x<-c(2,7); y<-6
## Z satisfies GAC
gac(mFig5b,x,y, z=c(4,5), type)
gac(mFig5b,x,y, z=c(4,5,1), type)
gac(mFig5b,x,y, z=c(4,5,3), type)
gac(mFig5b,x,y, z=c(1,3,4,5), type)
## Z does not satisfy GAC
gac(mFig5b,x,y, z=NULL, type)

##############################
## Example 4.7 in Perkovic et. al (2017b)
##############################
mFig3a <- matrix(c(0,1,0,0, 1,0,1,1, 0,1,0,1, 0,1,1,0), 4,4)
mFig3b <- matrix(c(0,1,0,0, 0,0,1,1, 0,0,0,1, 0,0,1,0), 4,4)
mFig3c <- matrix(c(0,0,0,0, 1,0,1,0, 0,1,0,1, 0,1,1,0), 4,4)
type <- "pdag"
x <- 2; y <- 4
## Z does not satisfy GAC
gac(mFig3a,x,y, z=NULL, type) ## not amenable rel. to (X,Y)
gac(mFig3c,x,y, z=NULL, type) ## amenable rel. to (X,Y), but no set can block X <- Y



62 gAlgo-class

## Z satisfies GAC
gac(mFig3b,x,y, z=NULL, type) ## amenable rel. to (X,Y)

gAlgo-class Class "gAlgo"

Description

"gAlgo" is a "VIRTUAL" class, the common basis of classes "pcAlgo" and "fciAlgo".

We describe the common slots here; for more see the help pages of the specific classes.

Slots

call: a call object: the original function call.

n: an "integer", the sample size used to estimate the graph.

max.ord: an integer, the maximum size of the conditioning set used in the conditional indepen-
dence tests of the (first part of the algorithm), in function skeleton.

n.edgetests: the number of conditional independence tests performed by the (first part of the)
algorithm.

sepset: a list, the conditioning sets that led to edge deletions. The set that led to the removal of
the edge i -- j is saved in either sepset[[i]][[j]] or in sepset[[j]][[i]].

pMax: a numeric square matrix, where the (i, j)th entry contains the maximal p-value of all con-
ditional independence tests for edge i−−j.

Author(s)

Martin Maechler

See Also

"pcAlgo" and "fciAlgo".

Examples

showClass("gAlgo")
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GaussL0penIntScore-class

Class "GaussL0penIntScore"

Description

This class represents a score for causal inference from jointly interventional and observational Gaus-
sian data; it is used in the causal inference functions gies and simy.

Details

The class implements an ℓ0-penalized Gaussian maximum likelihood estimator. The penalization
is a constant (specified by the argument lambda in the constructor) times the number of parameters
of the DAG model. By default, the constant λ is chosen as log(n)/2, which corresponds to the BIC
score.

Extends

Class "Score", directly.

All reference classes extend and inherit methods from "envRefClass".

Fields

The class GaussL0penIntScore has the same fields as Score. They need not be accessed by the
user.

Constructor

new("GaussL0penIntScore",
data = matrix(1, 1, 1),
targets = list(integer(0)),
target.index = rep(as.integer(1), nrow(data)),
lambda = 0.5*log(nrow(data)),
intercept = FALSE,
use.cpp = TRUE,
...)

data Data matrix with n rows and p columns. Each row corresponds to one realization, either
interventional or observational.

targets List of mutually exclusive intervention targets that have been used for data generation.

target.index Vector of length n; the i-th entry specifies the index of the intervention target in
targets under which the i-th row of data was measured.

lambda Penalization constant (cf. details)

intercept Indicates whether an intercept is allowed in the linear structural equations, or, equiva-
lently, if a mean different from zero is allowed for the observational distribution.
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use.cpp Indicates whether the calculation of the score should be done by the C++ library of the
package, which speeds up calculation. This parameter should only be set to FALSE in the case
of problems.

Methods

local.score(vertex, parents, ...) Calculates the local score of a vertex and its parents. Since
this score has no obvious interpretation, it is rather for internal use.

global.score.int(edges, ...) Calculates the global score of a DAG, represented as a list of
in-edges: for each vertex in the DAG, this list contains a vector of parents.

global.score(dag, ...) Calculates the global score of a DAG, represented as an object of a class
derived from ParDAG.

local.mle(vertex, parents, ...) Calculates the local MLE of a vertex and its parents. The
result is a vector of parameters encoded as follows:

• First element: variance of the Gaussian error term
• Second element: intercept
• Following elements: regression coefficients; one per parent vertex

global.mle(dag, ...) Calculates the global MLE of a DAG, represented by an object of a class
derived from ParDAG. The result is a list of vectors, one per vertex, each in the same format as
the result vector of local.mle.

Author(s)

Alain Hauser (<alain.hauser@bfh.ch>)

See Also

gies, simy, GaussL0penObsScore, Score

Examples

##################################################
## Using Gaussian Data
##################################################
## Load predefined data
data(gmInt)

## Define the score object
score <- new("GaussL0penIntScore", gmInt$x, gmInt$targets, gmInt$target.index)

## Score of the true underlying DAG
score$global.score(as(gmInt$g, "GaussParDAG"))

## Score of the DAG that has only one edge from 1 to 2
A <- matrix(0, ncol(gmInt$x), ncol(gmInt$x))
A[1, 2] <- 1
score$global.score(as(A, "GaussParDAG"))
## (Note: this is lower than the score of the true DAG.)
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GaussL0penObsScore-class

Class "GaussL0penObsScore"

Description

This class represents a score for causal inference from observational Gaussian data; it is used in the
causal inference function ges.

Details

The class implements an ℓ0-penalized Gaussian maximum likelihood estimator. The penalization
is a constant (specified by the argument lambda in the constructor) times the number of parameters
of the DAG model. By default, the constant λ is chosen as log(n)/2, which corresponds to the BIC
score.

Extends

Class "Score", directly.

All reference classes extend and inherit methods from "envRefClass".

Fields

The class GaussL0penObsScore has the same fields as Score. They need not be accessed by the
user.

Constructor

new("GaussL0penObsScore",
data = matrix(1, 1, 1),
lambda = 0.5*log(nrow(data)),
intercept = TRUE,
use.cpp = TRUE,
...)

data Data matrix with n rows and p columns. Each row corresponds to one observational realiza-
tion.

lambda Penalization constant (cf. details)

intercept Indicates whether an intercept is allowed in the linear structural equations, or, equiva-
lently, if a mean different from zero is allowed for the observational distribution.

use.cpp Indicates whether the calculation of the score should be done by the C++ library of the
package, which speeds up calculation. This parameter should only be set to FALSE in the case
of problems.
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Methods

local.score(vertex, parents, ...) Calculates the local score of a vertex and its parents. Since
this score has no obvious interpretation, it is rather for internal use.

global.score.int(edges, ...) Calculates the global score of a DAG, represented as a list of
in-edges: for each vertex in the DAG, this list contains a vector of parents.

global.score(dag, ...) Calculates the global score of a DAG, represented as an object of a class
derived from ParDAG.

local.mle(vertex, parents, ...) Calculates the local MLE of a vertex and its parents. The
result is a vector of parameters encoded as follows:

• First element: variance of the Gaussian error term
• Second element: intercept
• Following elements: regression coefficients; one per parent vertex

global.mle(dag, ...) Calculates the global MLE of a DAG, represented by an object of a class
derived from ParDAG. The result is a list of vectors, one per vertex, each in the same format as
the result vector of local.mle.

Author(s)

Alain Hauser (<alain.hauser@bfh.ch>)

See Also

ges, GaussL0penIntScore, Score

Examples

##################################################
## Using Gaussian Data
##################################################
## Load predefined data
data(gmG)

## Define the score object
score <- new("GaussL0penObsScore", gmG$x)

## Score of the true underlying DAG
score$global.score(as(gmG$g, "GaussParDAG"))

## Score of the DAG that has only one edge from 1 to 2
A <- matrix(0, ncol(gmG$x), ncol(gmG$x))
A[1, 2] <- 1
score$global.score(as(A, "GaussParDAG"))
## (Note: this is lower than the score of the true DAG.)
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GaussParDAG-class Class "GaussParDAG" of Gaussian Causal Models

Description

The "GaussParDAG" class represents a Gaussian causal model.

Details

The class "GaussParDAG" is used to simulate observational and/or interventional data from Gaus-
sian causal models as well as for parameter estimation (maximum-likelihood estimation) for a given
DAG structure in the presence of a data set with jointly observational and interventional data.

A Gaussian causal model can be represented as a set of p linear structural equations with Gaussian
noise variables. Those equations are fully specified by indicating the regression parameters, the
intercept and the variance of the noise or error terms. More details can be found e.g. in Kalisch and
Bühlmann (2007) or Hauser and Bühlmann (2012).

Extends

Class "ParDAG", directly.

All reference classes extend and inherit methods from "envRefClass".

Constructor

new("GaussParDAG", nodes, in.edges, params)

nodes Vector of node names; cf. also field .nodes.

in.edges A list of length p consisting of index vectors indicating the edges pointing into the nodes
of the DAG.

params A list of length p consisting of parameter vectors modeling the conditional distribution of
a node given its parents; cf. also field .params for the meaning of the parameters.

Fields

.nodes: Vector of node names; defaults to as.character(1:p), where p denotes the number of
nodes (variables) of the model.

.in.edges: A list of length p consisting of index vectors indicating the edges pointing into the
nodes of the DAG. The i-th entry lists the indices of the parents of the i-th node.

.params: A list of length p consisting of parameter vectors modeling the conditional distribution
of a node given its parents. The i-th entry models the conditional (normal) distribution of
the i-th variable in the model given its parents. It is a vector of length k + 2, where k is the
number of parents of node i; the first entry encodes the error variance of node i, the second
entry the intercept, and the remaining entries the regression coefficients (see above). In most
cases, it is easier to access the parameters via the wrapper functions err.var, intercept and
weight.mat.
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Class-Based Methods

set.err.var(value): Sets the error variances. The argument must be a vector of length p, where
p denotes the number of nodes in the model.

err.var(): Yields the vector of error variances.

intercept(): Yields the vector of intercepts.

set.intercept(value): Sets the intercepts. The argument must be a vector of length p, where p
denotes the number of nodes in the model.

weight.mat(target): Yields the (observational or interventional) weight matrix of the model.
The weight matrix is an p× p matrix whose i-th columns contains the regression coefficients
of the i-th structural equation, if node i is not intervened (i.e., if i is not contained in the vector
target), and is empty otherwise.

cov.mat(target, ivent.var): Yields the covariance matrix of the observational or an interven-
tional distribution of the causal model. If target has length 0, the covariance matrix of the
observational distribution is returned; otherwise target is a vector of the intervened nodes,
and ivent.var is a vector of the same length indicating the variances of the intervention
levels. Deterministic interventions with fix intervention levels would correspond to vanish-
ing intervention variances; with non-zero intervention variances, stochastic interventions are
considered in which intervention values are realizations of Gaussian variables (Korb et al.,
2004).

The following methods are inherited (from the corresponding class): node.count ("ParDAG"),
edge.count ("ParDAG"), simulate ("ParDAG")

Author(s)

Alain Hauser (<alain.hauser@bfh.ch>)

References

A. Hauser and P. Bühlmann (2012). Characterization and greedy learning of interventional Markov
equivalence classes of directed acyclic graphs. Journal of Machine Learning Research 13, 2409–
2464.

M. Kalisch and P. Buehlmann (2007). Estimating high-dimensional directed acyclic graphs with
the PC-algorithm. Journal of Machine Learning Research 8, 613–636.

K.B. Korb, L.R. Hope, A.E. Nicholson, and K. Axnick (2004). Varieties of causal intervention.
Proc. of the Pacific Rim International Conference on Artificial Intelligence (PRICAI 2004), 322–
331

See Also

ParDAG

Examples

set.seed(307)
myDAG <- r.gauss.pardag(p = 5, prob = 0.4)
(wm <- myDAG$weight.mat())
m <- as(myDAG, "matrix") # TRUE/FALSE adjacency matrix
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symnum(m)
stopifnot(identical(unname( m ),

unname(wm != 0)))
myDAG$err.var()
myDAG$intercept()
myDAG$set.intercept(runif(5, min=3, max=4))
myDAG$intercept()
if (require(Rgraphviz)) plot(myDAG)

gds Greedy DAG Search to Estimate Markov Equivalence Class of DAG

Description

Estimate the observational or interventional essential graph representing the Markov equivalence
class of a DAG by greedily optimizing a score function in the space of DAGs. In practice, greedy
search should always be done in the space of equivalence classes instead of DAGs, giving the
functions gies or ges the preference over gds.

Usage

gds(score, labels = score$getNodes(), targets = score$getTargets(),
fixedGaps = NULL, phase = c("forward", "backward", "turning"),
iterate = length(phase) > 1, turning = TRUE, maxDegree = integer(0),
verbose = FALSE, ...)

Arguments

score An instance of a class derived from Score.

labels Node labels; by default, they are determined from the scoring object.

targets A list of intervention targets (cf. details). A list of vectors, each vector listing
the vertices of one intervention target.

fixedGaps Logical symmetric matrix of dimension p*p. If entry [i, j] is TRUE, the result
is guaranteed to have no edge between nodes i and j.

phase Character vector listing the phases that should be used; possible values: forward,
backward, and turning (cf. details).

iterate Logical indicating whether the phases listed in the argument phase should be
iterated more than once (iterate = TRUE) or not.

turning Setting turning = TRUE is equivalent to setting phases = c("forward", "backward")
and iterate = FALSE; the use of the argument turning is deprecated.

maxDegree Parameter used to limit the vertex degree of the estimated graph. Valid argu-
ments:

1. Vector of length 0 (default): vertex degree is not limited.
2. Real number r, 0 < r < 1: degree of vertex v is limited to r · nv , where nv

denotes the number of data points where v was not intervened.
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3. Single integer: uniform bound of vertex degree for all vertices of the graph.

4. Integer vector of length p: vector of individual bounds for the vertex de-
grees.

verbose if TRUE, detailed output is provided.

... additional arguments for debugging purposes and fine tuning.

Details

This function estimates the observational or interventional Markov equivalence class of a DAG
based on a data sample with interventional data originating from various interventions and possi-
bly observational data. The intervention targets used for data generation must be specified by the
argument targets as a list of (integer) vectors listing the intervened vertices; observational data is
specified by an empty set, i.e. a vector of the form integer(0). As an example, if data contains
observational samples as well as samples originating from an intervention at vertices 1 and 4, the
intervention targets must be specified as list(integer(0), as.integer(1), as.integer(c(1,
4))).

An interventional Markov equivalence class of DAGs can be uniquely represented by a partially
directed graph called interventional essential graph. Its edges have the following interpretation:

1. a directed edge a −→ b stands for an arrow that has the same orientation in all representatives
of the interventional Markov equivalence class;

2. an undirected edge a – b stands for an arrow that is oriented in one way in some representatives
of the equivalence class and in the other way in other representatives of the equivalence class.

Note that when plotting the object, undirected and bidirected edges are equivalent.

Greedy DAG search (GDS) maximizes a score function (typically the BIC, passed to the function
via the argument score) of a DAG in three phases, starting from the empty DAG:

Forward phase In the forward phase, GDS adds single arrows to the DAG as long as this augments
the score.

Backward phase In the backward phase, the algorithm removes arrows from the DAG as long as
this augments the score.

Turning phase In the turning phase, the algorithm reverts arrows of the DAG as long as this aug-
ments the score.

The phases that are actually run are specified with the argument phase. GDS cycles through the
specified phases until no augmentation of the score is possible any more if iterate = TRUE. In the
end, gds returns the (interventional or observational) essential graph of the last visited DAG.

It is well-known that a greedy search in the space of DAGs instead of essential graphs is more prone
to be stuck in local optima of the score function and hence expected to yield worse estimation results
than GIES (function gies) or GES (function ges) (Chickering, 2002; Hauser and Bühlmann, 2012).
The function gds is therefore not of practical use, but can be used to compare causal inference
algorithms to an elementary and straight-forward approach.



gds 71

Value

gds returns a list with the following two components:

essgraph An object of class EssGraph containing an estimate of the equivalence class of
the underlying DAG.

repr An object of a class derived from ParDAG containing a (random) representative
of the estimated equivalence class.

Author(s)

Alain Hauser (<alain.hauser@bfh.ch>)

References

D.M. Chickering (2002). Optimal structure identification with greedy search. Journal of Machine
Learning Research 3, 507–554

A. Hauser and P. Bühlmann (2012). Characterization and greedy learning of interventional Markov
equivalence classes of directed acyclic graphs. Journal of Machine Learning Research 13, 2409–
2464.

See Also

gies, ges, Score, EssGraph

Examples

## Load predefined data
data(gmInt)

## Define the score (BIC)
score <- new("GaussL0penIntScore", gmInt$x, gmInt$targets, gmInt$target.index)

## Estimate the essential graph
gds.fit <- gds(score)

## Plot the estimated essential graph and the true DAG
if (require(Rgraphviz)) {

par(mfrow=c(1,2))
plot(gds.fit$essgraph, main = "Estimated ess. graph")
plot(gmInt$g, main = "True DAG")

}
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ges Estimate the Markov equivalence class of a DAG using GES

Description

Estimate the observational essential graph representing the Markov equivalence class of a DAG
using the greedy equivalence search (GES) algorithm of Chickering (2002).

Usage

ges(score, labels = score$getNodes(),
fixedGaps = NULL, adaptive = c("none", "vstructures", "triples"),
phase = c("forward", "backward", "turning"), iterate = length(phase) > 1,
turning = NULL, maxDegree = integer(0), verbose = FALSE, ...)

Arguments

score An instance of a class derived from Score which only accounts for observa-
tional data. If the dataset is high-dimensional (p>=n) ges might not be able to
terminate.

labels Node labels; by default, they are determined from the scoring object.

fixedGaps logical symmetric matrix of dimension p*p. If entry [i, j] is TRUE, the result is
guaranteed to have no edge between nodes i and j.

adaptive indicating whether constraints should be adapted to newly detected v-structures
or unshielded triples (cf. details).

phase Character vector listing the phases that should be used; possible values: forward,
backward, and turning (cf. details).

iterate Logical indicating whether the phases listed in the argument phase should be
iterated more than once (iterate = TRUE) or not.

turning Setting turning = TRUE is equivalent to setting phases = c("forward", "backward")
and iterate = FALSE; the use of the argument turning is deprecated.

maxDegree Parameter used to limit the vertex degree of the estimated graph. Valid argu-
ments:

1. Vector of length 0 (default): vertex degree is not limited.
2. Real number r, 0 < r < 1: degree of vertex v is limited to r · nv , where nv

denotes the number of data points where v was not intervened.
3. Single integer: uniform bound of vertex degree for all vertices of the graph.
4. Integer vector of length p: vector of individual bounds for the vertex de-

grees.

verbose If TRUE, detailed output is provided.

... Additional arguments for debugging purposes and fine tuning.
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Details

Under the assumption that the distribution of the observed variables is faithful to a DAG, this func-
tion estimates the Markov equivalence class of the DAG. It does not estimate the DAG itself, be-
cause this is typically impossible (even with an infinite amount of data): different DAGs (forming
a Markov equivalence class) can describe the same conditional independence relationships and be
statistically indistinguishable from observational data alone.

All DAGs in an equivalence class have the same skeleton (i.e., the same adjacency information) and
the same v-structures (i.e., the same induced subgraphs of the form a −→ b ←− c). However, the
direction of some edges may be undetermined, in the sense that they point one way in one DAG in
the equivalence class, while they point the other way in another DAG in the equivalence class.

An equivalence class can be uniquely represented by a partially directed graph called (observational)
essential graph or CPDAG (completed partially directed acyclic graph). Its edges have the following
interpretation:

1. a directed edge a −→ b stands for an arrow that has the same orientation in all representatives
of the Markov equivalence class;

2. an undirected edge a – b stands for an arrow that is oriented in one way in some representatives
of the equivalence class and in the other way in other representatives of the equivalence class.

Note that when plotting the object, undirected and bidirected edges are equivalent.

GES (greedy equivalence search) is a score-based algorithm that greedily maximizes a score func-
tion (typically the BIC, passed to the function via the argument score) in the space of (observa-
tional) essential graphs in three phases, starting from the empty graph:

Forward phase In the forward phase, GES moves through the space of essential graphs in steps
that correspond to the addition of a single edge in the space of DAGs; the phase is aborted as
soon as the score cannot be augmented any more.

Backward phase In the backward phase, the algorithm performs moves that correspond to the
removal of a single edge in the space of DAGs until the score cannot be augmented any more.

Turning phase In the turning phase, the algorithm performs moves that correspond to the reversal
of a single arrow in the space of DAGs until the score cannot be augmented any more.

GES cycles through these three phases until no augmentation of the score is possible any more if
iterate = TRUE. Note that the turning phase was not part of the original implementation of Chick-
ering (2002), but was introduced by Hauser and Bühlmann (2012) and shown to improve the overall
estimation performance. The original algorithm of Chickering (2002) is reproduced with phase =
c("forward", "backward") and iterate = FALSE.

GES has the same purpose as the PC algorithm (see pc). While the PC algorithm is based on
conditional independence tests (requiring the choice of an independence test and a significance
level, see pc), the GES algorithm is a score-based method (requiring the choice of a score function)
and does not depend on conditional independence tests. Since GES always operates in the space of
essential graphs, it returns a valid essential graph (or CPDAG) in any case.

Using the argument fixedGaps, one can make sure that certain edges will not be present in the re-
sulting essential graph: if the entry [i, j] of the matrix passed to fixedGaps is TRUE, there will be
no edge between nodes i and j. Using this argument can speed up the execution of GIES and allows
the user to account for previous knowledge or other constraints. The argument adaptive can be
used to relax the constraints encoded by fixedGaps according to a modification of GES called
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ARGES (adaptively restricted greedy equivalence search) which has been presented in Nandy,
Hauser and Maathuis (2015):

• When adaptive = "vstructures" and the algorithm introduces a new v-structure a −→
b ←− c in the forward phase, then the edge a − c is removed from the list of fixed gaps,
meaning that the insertion of an edge between a and c becomes possible even if it was forbid-
den by the initial matrix passed to fixedGaps.

• When adaptive = "triples" and the algorithm introduces a new unshielded triple in the
forward phase (i.e., a subgraph of three nodes a, b and c where a and b as well as b and c are
adjacent, but a and c are not), then the edge a− c is removed from the list of fixed gaps.

With one of the adaptive modifications, the successive application of a skeleton estimation method
and GES restricted to an estimated skeleton still gives a consistent estimator of the DAG, which is
not the case without the adaptive modification.

Value

ges returns a list with the following two components:

essgraph An object of class EssGraph containing an estimate of the equivalence class of
the underlying DAG.

repr An object of a class derived from ParDAG containing a (random) representative
of the estimated equivalence class.

Author(s)

Alain Hauser (<alain.hauser@bfh.ch>)

References

D.M. Chickering (2002). Optimal structure identification with greedy search. Journal of Machine
Learning Research 3, 507–554

A. Hauser and P. Bühlmann (2012). Characterization and greedy learning of interventional Markov
equivalence classes of directed acyclic graphs. Journal of Machine Learning Research 13, 2409–
2464.

P. Nandy, A. Hauser and M. Maathuis (2015). Understanding consistency in hybrid causal structure
learning. arXiv preprint 1507.02608

P. Spirtes, C.N. Glymour, and R. Scheines (2000). Causation, Prediction, and Search, MIT Press,
Cambridge (MA).

See Also

pc, Score, EssGraph
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Examples

## Load predefined data
data(gmG)

## Define the score (BIC)
score <- new("GaussL0penObsScore", gmG8$x)

## Estimate the essential graph
ges.fit <- ges(score)

## Plot the estimated essential graph and the true DAG
if (require(Rgraphviz)) {

par(mfrow=c(1,2))
plot(ges.fit$essgraph, main = "Estimated CPDAG")
plot(gmG8$g, main = "True DAG")
str(ges.fit, max=2)

}
## alternative:
if (require(Matrix)) {

as(as(ges.fit$essgraph,"graphNEL"),"Matrix")
}

getGraph Get the "graph" Part or Aspect of R Object

Description

Get the graph-class part or “aspect” of an R object, notably from our pc(), skeleton(), fci(),
etc, results.

Usage

getGraph(x)

Arguments

x potentially any R object which can be interpreted as a graph (with nodes and
edges).

Value

a graph-class object, i.e., one inheriting from (the virtual) class "graph", package graph.

Methods

signature(x = "ANY") the default method just tries as(x, "graph"), so works when a coerce
(S4) method is defined for x.

signature(x = "pcAlgo") and
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signature(x = "fciAlgo") extract the graph part explicitly.

signature(x = "matrix") interpret x as adjacency matrix and return the corresponding "graphAM"
object.

For sparseMatrix methods, see the ‘Note’.

Note

For large graphs, it may be attractive to work with sparse matrices from the Matrix package. If
desired, you can activate this by

require(Matrix)
setMethod("getGraph", "sparseMatrix", function(x) as(x, "graphNEL"))
setMethod("getGraph", "Matrix", function(x) as(x, "graphAM"))

Author(s)

Martin Maechler

See Also

fci, etc. The graph-class class description in package graph.

Examples

A <- rbind(c(0,1,0,0,1),
c(0,0,0,1,1),
c(1,0,0,1,0),
c(1,0,0,0,1),
c(0,0,0,1,0))

sum(A) # 9
getGraph(A) ## a graph with 5 nodes and 'sum(A)' edges

getNextSet Iteration through a list of all combinations of choose(n,k)

Description

Given a combination of k elements out of the elements 1, . . . , n, the next set of size k in a specified
sequence is computed.

Usage

getNextSet(n,k,set)
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Arguments

n Number of elements to choose from (integer)
k Size of chosen set (integer)
set Previous set in list (numeric vector)

Details

The initial set is 1:k. Last index varies quickest. Using the dynamic creation of sets reduces
the memory demands dramatically for large sets. If complete lists of combination sets have to be
produced and memory is no problem, the function combn from package combinat is an alternative.

Value

List with two elements:

nextSet Next set in list (numeric vector)
wasLast Logical indicating whether the end of the specified sequence is reached.

Author(s)

Markus Kalisch <kalisch@stat.math.ethz.ch> and Martin Maechler

See Also

This function is used in skeleton.

Examples

## start from first set (1,2) and get the next set of size 2 out of 1:5
## notice that res$wasLast is FALSE :
str(r <- getNextSet(5,2,c(1,2)))

## input is the last set; notice that res$wasLast now is TRUE:
str(r2 <- getNextSet(5,2,c(4,5)))

## Show all sets of size k out of 1:n :
## {if you really want this in practice, use something like combn() !}
n <- 5
k <- 3
currentSet <- 1:k
(res <- rbind(currentSet, deparse.level = 0))
repeat {

newEl <- getNextSet(n,k,currentSet)
if (newEl$wasLast)

break
## otherwise continue:
currentSet <- newEl$nextSet
res <- rbind(res, currentSet, deparse.level = 0)

}
res
stopifnot(choose(n,k) == nrow(res)) ## must be identical
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gies Estimate Interventional Markov Equivalence Class of a DAG by GIES

Description

Estimate the interventional essential graph representing the Markov equivalence class of a DAG us-
ing the greedy interventional equivalence search (GIES) algorithm of Hauser and Bühlmann (2012).

Usage

gies(score, labels = score$getNodes(), targets = score$getTargets(),
fixedGaps = NULL, adaptive = c("none", "vstructures", "triples"),
phase = c("forward", "backward", "turning"), iterate = length(phase) > 1,
turning = NULL, maxDegree = integer(0), verbose = FALSE, ...)

Arguments

score An R object inheriting from Score.

labels Node labels; by default, they are determined from the scoring object.

targets A list of intervention targets (cf. details). A list of vectors, each vector listing
the vertices of one intervention target.

fixedGaps Logical symmetric matrix of dimension p*p. If entry [i, j] is TRUE, the result
is guaranteed to have no edge between nodes i and j.

adaptive indicating whether constraints should be adapted to newly detected v-structures
or unshielded triples (cf. details).

phase Character vector listing the phases that should be used; possible values: forward,
backward, and turning (cf. details).

iterate Logical indicating whether the phases listed in the argument phase should be
iterated more than once (iterate = TRUE) or not.

turning Setting turning = TRUE is equivalent to setting phases = c("forward", "backward")
and iterate = FALSE; the use of the argument turning is deprecated.

maxDegree Parameter used to limit the vertex degree of the estimated graph. Possible val-
ues:

1. Vector of length 0 (default): vertex degree is not limited.
2. Real number r, 0 < r < 1: degree of vertex v is limited to r · nv , where nv

denotes the number of data points where v was not intervened.
3. Single integer: uniform bound of vertex degree for all vertices of the graph.
4. Integer vector of length p: vector of individual bounds for the vertex de-

grees.

verbose If TRUE, detailed output is provided.

... Additional arguments for debugging purposes and fine tuning.
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Details

This function estimates the interventional Markov equivalence class of a DAG based on a data
sample with interventional data originating from various interventions and possibly observational
data. The intervention targets used for data generation must be specified by the argument targets
as a list of (integer) vectors listing the intervened vertices; observational data is specified by an
empty set, i.e. a vector of the form integer(0). As an example, if data contains observational
samples as well as samples originating from an intervention at vertices 1 and 4, the intervention
targets must be specified as list(integer(0), as.integer(1), as.integer(c(1, 4))).

An interventional Markov equivalence class of DAGs can be uniquely represented by a partially
directed graph called interventional essential graph. Its edges have the following interpretation:

1. a directed edge a −→ b stands for an arrow that has the same orientation in all representatives
of the interventional Markov equivalence class;

2. an undirected edge a – b stands for an arrow that is oriented in one way in some representatives
of the equivalence class and in the other way in other representatives of the equivalence class.

Note that when plotting the object, undirected and bidirected edges are equivalent.

GIES (greedy interventional equivalence search) is a score-based algorithm that greedily maximizes
a score function (typically the BIC, passed to the function via the argument score) in the space of
interventional essential graphs in three phases, starting from the empty graph:

Forward phase In the forward phase, GIES moves through the space of interventional essential
graphs in steps that correspond to the addition of a single edge in the space of DAGs; the
phase is aborted as soon as the score cannot be augmented any more.

Backward phase In the backward phase, the algorithm performs moves that correspond to the
removal of a single edge in the space of DAGs until the score cannot be augmented any more.

Turning phase In the turning phase, the algorithm performs moves that correspond to the reversal
of a single arrow in the space of DAGs until the score cannot be augmented any more.

The phases that are actually run are specified with the argument phase. GIES cycles through the
specified phases until no augmentation of the score is possible any more if iterate = TRUE. GIES is
an interventional extension of the GES (greedy equivalence search) algorithm of Chickering (2002)
which is limited to observational data and hence operates on the space of observational instead of
interventional Markov equivalence classes.

Using the argument fixedGaps, one can make sure that certain edges will not be present in the
resulting essential graph: if the entry [i, j] of the matrix passed to fixedGaps is TRUE, there will
be no edge between nodes i and j. Using this argument can speed up the execution of GIES and
allows the user to account for previous knowledge or other constraints. The argument adaptive
can be used to relax the constraints encoded by fixedGaps as follows:

• When adaptive = "vstructures" and the algorithm introduces a new v-structure a −→
b ←− c in the forward phase, then the edge a − c is removed from the list of fixed gaps,
meaning that the insertion of an edge between a and c becomes possible even if it was forbid-
den by the initial matrix passed to fixedGaps.

• When adaptive = "triples" and the algorithm introduces a new unshielded triple in the
forward phase (i.e., a subgraph of three nodes a, b and c where a and b as well as b and c are
adjacent, but a and c are not), then the edge a− c is removed from the list of fixed gaps.
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This modifications of the forward phase of GIES are inspired by the analog modifications in the
forward phase of GES, which makes the successive application of a skeleton estimation method
and GES restricted to an estimated skeleton a consistent estimator of the DAG (cf. Nandy, Hauser
and Maathuis, 2015).

Value

gies returns a list with the following two components:

essgraph An object of class EssGraph containing an estimate of the equivalence class of
the underlying DAG.

repr An object of a class derived from ParDAG containing a (random) representative
of the estimated equivalence class.

Author(s)

Alain Hauser (<alain.hauser@bfh.ch>)

References

D.M. Chickering (2002). Optimal structure identification with greedy search. Journal of Machine
Learning Research 3, 507–554

A. Hauser and P. Bühlmann (2012). Characterization and greedy learning of interventional Markov
equivalence classes of directed acyclic graphs. Journal of Machine Learning Research 13, 2409–
2464.

P. Nandy, A. Hauser and M. Maathuis (2015). Understanding consistency in hybrid causal structure
learning. arXiv preprint 1507.02608

See Also

ges, Score, EssGraph

Examples

## Load predefined data
data(gmInt)

## Define the score (BIC)
score <- new("GaussL0penIntScore", gmInt$x, gmInt$targets, gmInt$target.index)

## Estimate the essential graph
gies.fit <- gies(score)

## Plot the estimated essential graph and the true DAG
if (require(Rgraphviz)) {

par(mfrow=c(1,2))
plot(gies.fit$essgraph, main = "Estimated ess. graph")
plot(gmInt$g, main = "True DAG")

}
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gmB Graphical Model 5-Dim Binary Example Data

Description

This data set contains a matrix containing information on five binary variables (coded as 0/1) and
the corresonding DAG model.

Usage

data(gmB)

Format

The format is a list of two components

x: Int [1:5000, 1:5] 0 1 1 0 0 1 1 0 1 1 ...

g: Formal class ’graphNEL’ [package "graph"] with 6 slots
.. ..@ nodes : chr [1:5] "1" "2" "3" "4" ...
.. ..@ edgeL :List of 5
........

Details

The data was generated using Tetrad in the following way. A random DAG on five nodes was gener-
ated; binary variables were assigned to each node; then conditional probability tables corresponding
to the structure of the generated DAG were constructed. Finally, 5000 samples were drawn using
the conditional probability tables.

Examples

data(gmB)
## maybe str(gmB) ; plot(gmB) ...

gmD Graphical Model Discrete 5-Dim Example Data

Description

This data set contains a matrix containing information on five discrete variables (levels are coded
as numbers) and the corresonding DAG model.

Usage

data(gmD)
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Format

A list of two components

x: a data.frame with 5 columns X1 .. X5 each coding a discrete variable (aka factor) with inter-
agesInt [1:10000, 1:5] 2 2 1 1 1 2 2 0 2 0 ...

g: Formal class ’graphNEL’ [package "graph"] with 6 slots
.. ..@ nodes : chr [1:5] "1" "2" "3" "4" ...
.. ..@ edgeL :List of 5
........

where x is the data matrix and g is the DAG from which the data were generated.

Details

The data was generated using Tetrad in the following way. A random DAG on five nodes was gen-
erated; discrete variables were assigned to each node (with 3, 2, 3, 4 and 2 levels); then conditional
probability tables corresponding to the structure of the generated DAG were constructed. Finally,
10000 samples were drawn using the conditional probability tables.

Examples

data(gmD)
str(gmD, max=1)
if(require("Rgraphviz"))

plot(gmD$ g, main = "gmD $ g --- the DAG of the gmD (10'000 x 5 discrete data)")
## >>> 1 --> 3 <-- 2 --> 4 --> 5
str(gmD$x)
## The number of unique values of each variable:
sapply(gmD$x, function(v) nlevels(as.factor(v)))
## X1 X2 X3 X4 X5
## 3 2 3 4 2
lapply(gmD$x, table) ## the (marginal) empirical distributions
## $X1
## 0 1 2
## 1933 3059 5008
##
## $X2
## 0 1
## 8008 1992
##
## $X3
## .....

gmG Graphical Model 8-Dimensional Gaussian Example Data

Description

These two data sets contain a matrix containing information on eight gaussian variables and the
corresonding DAG model.
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Usage

data(gmG)

Format

gmG and gmG8 are each a list of two components

x: a numeric matrix 5000× 8.

g: a graph, i.e., of formal class "graphNEL" from package graph with 6 slots
.. ..@ nodes : chr [1:8] "1" "2" "3" "4" ...
.. ..@ edgeL :List of 8
........

Details

The data was generated as indicated below. First, a random DAG model was generated, then 5000
samples were drawn from “almost” this model, for gmG: In the previous version, the data generation
wgtMatrix had the non-zero weights in reversed order for each node. On the other hand, for gmG8,
the correct weights were used in all cases

Source

The data set is identical to the one generated by

## Used to generate "gmG"
set.seed(40)
p <- 8
n <- 5000
## true DAG:
vars <- c("Author", "Bar", "Ctrl", "Goal", paste0("V",5:8))
gGtrue <- randomDAG(p, prob = 0.3, V = vars)
gmG <- list(x = rmvDAG(n, gGtrue, back.compatible=TRUE), g = gGtrue)
gmG8 <- list(x = rmvDAG(n, gGtrue), g = gGtrue)

Examples

data(gmG)
str(gmG, max=3)
stopifnot(identical(gmG $ g, gmG8 $ g))
if(dev.interactive()) { ## to save time in tests

round(as(gmG $ g, "Matrix"), 2) # weight ("adjacency") matrix
if (require(Rgraphviz)) plot(gmG$g)
pairs(gmG$x, gap = 0,
panel=function(...) smoothScatter(..., add=TRUE))

}
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gmI Graphical Model 7-dim IDA Data Examples

Description

This data set contains a matrix containing information on seven gaussian variables and the cor-
resonding DAG model.

Usage

data(gmI)

Format

The two gmI* objects are each a list of two components x, an n × 7 numeric matrix, and g, a
DAG, a graph generated by randomDAG.

See gmG for more

Details

The data was generated as indicated below. First, a random DAG was generated, then samples were
drawn from this model, strictly speaking for gmI7 only.

Source

The data sets are identical to those generated by

## Used to generate "gmI"
set.seed(123)
p <- 7
myDAG <- randomDAG(p, prob = 0.2) ## true DAG
gmI <- list(x = rmvDAG(10000, myDAG, back.compatible=TRUE), g = myDAG)
gmI7 <- list(x = rmvDAG( 8000, myDAG), g = myDAG)

Examples

data(gmI)
str(gmI, max=3)
stopifnot(identical(gmI $ g, gmI7 $ g))
if(dev.interactive()) { ## to save time in tests

round(as(gmI $ g, "Matrix"), 2) # weight ("adjacency") matrix
if (require(Rgraphviz)) plot(gmI $ g)
pairs(gmI$x, gap = 0,

panel=function(...) smoothScatter(..., add=TRUE))
}
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gmInt Graphical Model 8-Dimensional Interventional Gaussian Example
Data

Description

This data set contains a matrix with an ensemble of observational and interventional data from eight
Gaussian variables. The corresponding (data generating) DAG model is also stored.

Usage

data(gmInt)

Format

The format is a list of four components

x: Matrix with 5000 rows (one row a measurement) and 8 columns (corresponding to the 8 variables

targets: List of (mutually exclusive) intervention targets. In this example, the three entries integer(0),
3 and 5 indicate that the data set consists of observational data, interventional data originating
from an intervention at vertex 3, and interventional data originating from an intervention at
vertex 5.

target.index: Vector with 5000 elements. Each entry maps a row of x to the corresponding in-
tervention target. Example: gmInt$target.index[3322] == 2 means that x[3322, ] was
simulated from an intervention at gmInt$targets[[2]], i.e. at vertex 3.

g: Formal class ’graphNEL’ [package "graph"] with 6 slots, representing the true DAG from which
observational and interventional data was sampled.

Details

The data was generated as indicated below. First, a random DAG model was generated, then 5000
samples were drawn from this model: 3000 observational ones, and 1000 each from an intervention
at vertex 3 and 5, respectively (see gmInt$target.index).

Source

The data set is identical to the one generated by

set.seed(40)
p <- 8
n <- 5000
gGtrue <- randomDAG(p, prob = 0.3)
pardag <- as(gGtrue, "GaussParDAG")
pardag$set.err.var(rep(1, p))
targets <- list(integer(0), 3, 5)
target.index <- c(rep(1, 0.6*n), rep(2, n/5), rep(3, n/5))
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x1 <- rmvnorm.ivent(0.6*n, pardag)
x2 <- rmvnorm.ivent(n/5, pardag, targets[[2]],

matrix(rnorm(n/5, mean = 4, sd = 0.02), ncol = 1))
x3 <- rmvnorm.ivent(n/5, pardag, targets[[3]],

matrix(rnorm(n/5, mean = 4, sd = 0.02), ncol = 1))
gmInt <- list(x = rbind(x1, x2, x3),

targets = targets,
target.index = target.index,
g = gGtrue)

Examples

data(gmInt)
str(gmInt, max = 3)
pairs(gmInt$x, gap = 0, pch = ".")

gmL Latent Variable 4-Dim Graphical Model Data Example

Description

This data set contains a matrix containing information on four gaussian variables and the corresond-
ing DAG model containing four observed and one latent variable.

Usage

data(gmL)

Format

The format is a list of 2 components

x: $ x: num [1:10000, 1:4] 0.924 -0.189 1.016 0.363 0.497 ... ..- attr(*, "dimnames")=List of 2 ..
..$ : NULL .. ..$ : chr [1:4] "2" "3" "4" "5"

g: $ g:Formal class ’graphNEL’ [package "graph"] with 6 slots .. ..@ nodes : chr [1:5] "1" "2" "3"
"4" ... .. ..@ edgeL :List of 5 ........

Details

The data was generated as indicated below. First, a random DAG model was generated with five
nodes; then 10000 samples were drawn from this model; finally, variable one was declared to be
latent and the corresponding column was deleted from the simulated data set.
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Source

## Used to generate "gmL"
set.seed(47)
p <- 5
n <- 10000
gGtrue <- randomDAG(p, prob = 0.3) ## true DAG
myX <- rmvDAG(n, gGtrue)
colnames(myX) <- as.character(1:5)
gmL <- list(x = myX[,-1], g = gGtrue)

Examples

data(gmL)
str(gmL, max=3)

## the graph:
gmL$g
graph::nodes(gmL$g) ; str(graph::edges(gmL$g))
if(require("Rgraphviz"))

plot(gmL$g, main = "gmL $ g -- latent variable example data")

pairs(gmL $x) # the data

ida Estimate Multiset of Possible Joint Total Causal Effects

Description

ida() estimates the multiset of possible joint total causal effects of variables (X) onto variables (Y)
from observational data via adjustment.

Usage

ida(x.pos, y.pos, mcov, graphEst, method = c("local","optimal","global"),
y.notparent = FALSE, verbose = FALSE, all.dags = NA, type = c("cpdag", "pdag"))

Arguments

x.pos, x Positions of variables X in the covariance matrix.

y.pos, y Positions of variables Y in the covariance matrix.

mcov Covariance matrix that was used to estimate graphEst.

graphEst Estimated CPDAG or PDAG. The CPDAG is typically from pc(): If the re-
sult of pc is pc.fit, the estimated CPDAG can be obtained by pc.fit@graph.
A PDAG can be obtained from the CPDAG by adding background knowledge
using addBgKnowledge().
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method Character string specifying the method with default "local".

"global": The algorithm considers all undirected edges in the CPDAG or PDAG,
using the possible parents as adjustment sets to estimate all possible causal
effects. It is hence slow and can only be applied to singleton X.

"local": The algorithm only considers edges in the neighborhood of X in the
CPDAG or PDAG, using the possible parents as adjustment sets to estimate
the unique possible causal effects. It is hence much faster than "global"
and can only be applied to singleton X.

"optimal": The algorithm considers only those edges necessary to compute
the possible optimal valid adjustment sets, using these as adjustment sets
to estimate the unique possible causal effects. It is hence faster than the
"global" option but also slower than "local". It provides more efficient
estimates than both alternatives but is also more sensitive to faulty graph
estimates. Can be applied to sets X.

See details below.

y.notparent Logical; for singleton X and Y. If true, any edge between X and Y is assumed to
be of the form X->Y. Not implemented for the method="optimal"

verbose If TRUE, details on the regressions are printed.

all.dags All DAGs in the equivalence class represented by the CPDAG or PDAG can be
precomputed by pdag2allDags() and passed via this argument. In that case,
pdag2allDags(..) is not called internally. This option is only relevant when
using method="global".

type Type of graph "graphEst"; can be of type "cpdag" or "pdag" (e.g. a CPDAG
with background knowledge from Meek, 1995)

Details

It is assumed that we have observational data from a multivariate Gaussian distribution faithful to the
true (but unknown) underlying causal DAG (without hidden variables). Under these assumptions,
this function estimates the multiset of possible total joint effects of X on Y. Here the total joint effect
of X = (X1, X2) on Y is defined via Pearl’s do-calculus as the vector (E[Y |do(X1 = x1 + 1, X2 =
x2)]−E[Y |do(X1 = x1, X2 = x2)], E[Y |do(X1 = x1, X2 = x2+1)]−E[Y |do(X1 = x1, X2 =
x2)]), with a similar definition for more than two variables. These values are equal to the partial
derivatives (evaluated at x1, x2) of E[Y |do(X = x′

1, X2 = x′
2)] with respect to x1’ and x2’.

Moreover, under the Gaussian assumption, these partial derivatives do not depend on the values at
which they are evaluated.

We estimate a set of possible joint total causal effects instead of the unique joint total causal ef-
fect, since it is typically impossible to identify the latter when the true underlying causal DAG is
unknown (even with an infinite amount of data). Conceptually, the method works as follows. First,
we estimate the equivalence class of DAGs that describe the conditional independence relationships
in the data, using the function pc (see the help file of this function). For each DAG G in the equiv-
alence class, we apply Pearl’s do-calculus to estimate the total causal effect of X on Y. This can be
done via a simple linear regression adjusting for a valid adjustment set.

For example, if X and Y are singleton and Y is not a parent of X, we can take the regression coefficient
of X in the regression lm(Y ~ X + pa(X,G)), where pa(X,G) denotes the parents of X in the DAG G;
if Y is a parent of X in G, we can set the estimated causal effect to zero.
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If the equivalence class contains k DAGs, this will yield k estimated total causal effects. Since we
do not know which DAG is the true causal DAG, we do not know which estimated possible total
joint causal effect of X on Y is the correct one. Therefore, we return the entire multiset of k estimated
effects (it is a multiset rather than a set because it can contain duplicate values).

One can take summary measures of the multiset. For example, the minimum absolute value provides
a lower bound on the size of the true causal effect: If the minimum absolute value of all values in
the multiset is larger than one, then we know that the size of the true causal effect (up to sampling
error) must be larger than one.

If method="global", the method as described above is carried out, where all DAGs in the equiva-
lene class of the estimated CPDAG or PDAG graphEst are computed using the function pdag2allDags.
The parent set for each DAG is then used to estimate the corresponding possible total causal effect.
This method is suitable for small graphs (say, up to 10 nodes) and can only be used for singleton X.

If method="local", we only consider all valid possible directions of undirected edges that have X
as an endpoint.

In the case of a CPDAG, we consider all possible directions of undirected edges that have X as an
endpoint, such that no new v-structure is created. Maathuis, Kalisch and Buehlmann (2009) showed
that there is at least one DAG in the equivalence class for each such local configuration. Hence, the
procedure is truly local in this setting.

In the case of a PDAG, we need to verify for all possible directions whether they lead to an amenable
max. PDAG if we apply Meek’s orientation rules. In this setting the complexity of the "local"
method is similar to the "optimal" one and it is not truly local. For details see Section 4.2 in
Perkovic, Kalisch and Maathuis (2017).

We estimate the total causal effect of X on Y for each valid configuration as above, using linear
regression adjusting for the correspoding possible parents. As we adjust for the same sets as in the
"global" method, it follows that the multisets of total causal effects of the two methods have the
same unique values. They may, however, have different multiplicities.

Since the parents of X are usually an inefficient valid adjustment set we provide a third method, that
uses different adjustment sets.

If method="optimal", we do not determine all DAGs in the equivalence class of the CPDAG or
PDAG. Instead, we only direct edges until obtaining an amenable PDAG, which is sufficient for
computing the optimal valid adjustment set. Each amenable PDAG can be obtained by orienting the
neighborhood of X and then applying Meek’s orientation rules, similar to the "local" method for
PDAGs. This can be done faster than the "global" method but is slower than the "local" method,
especially for CPDAGs. For details see Witte, Henckel, Maathuis and Didelez (2019).

For each amenable PDAG the corresponding optimal valid adjustment set is computed. The optimal
set is a valid adjustment set irrespectively of whether X is a singleton. Hence, as opposed to the other
two, this method can be applied to sets X. Sometimes, however, a joint total causal effect cannot be
estimated via adjustment. In these cases we recommend use of the pcalg function jointIda.

We then estimate the joint total causal effect of X on Y for each valid configuration with linear
regression, adjusting for the possible optimal sets. If the estimated graph is correct, each of these
regressions is guaranteed to be more efficient than the corresponding linear regression with any
other valid adjustment set (see Henckel, Perkovic and Maathuis (2019) for more details). The
estimates are, however, more sensitive to graph estimation errors than the ones obtained with the
other two methods. If X is a singleton, the output of this method is a multiset of the same size as the
output of the "local" method.
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For example, a CPDAG may represent eight DAGs, and the "global" method may produce an
estimate of the multiset of possible total effects {1.3, -0.5, 0.7, 1.3, 1.3, -0.5, 0.7, 0.7}. The unique
values in this set are -0.5, 0.7 and 1.3, and the multiplicities are 2, 3 and 3. The "local" and
"optimal" methods, on the other hand, may prodcue estimates of the set {1.3, -0.5, -0.5, 0.7}. The
unique values are again -0.5, 0.7 and 1.3, but the multiplicities are now 2, 1 and 1. The fact that the
unique values of the multisets for all three methods are identical implies that summary measures
of the multiset that only depend on the unique values (such as the minimum absolute value) can be
estimated with all three.

Value

A list of length |Y| of matrices, each containing the possible joint total causal effect of X on one node
in Y.

Author(s)

Markus Kalisch (<kalisch@stat.math.ethz.ch>), Emilija Perkovic and Leonard Henckel

References

M.H. Maathuis, M. Kalisch, P. Buehlmann (2009). Estimating high-dimensional intervention ef-
fects from observational data. Annals of Statistics 37, 3133–3164.

M.H. Maathuis, D. Colombo, M. Kalisch, P. Bühlmann (2010). Predicting causal effects in large-
scale systems from observational data. Nature Methods 7, 247–248.

C. Meek (1995). Causal inference and causal explanation with background knowledge, In Proceed-
ings of UAI 1995, 403-410.

Markus Kalisch, Martin Maechler, Diego Colombo, Marloes H. Maathuis, Peter Buehlmann (2012).
Causal inference using graphical models with the R-package pcalg. Journal of Statistical Software
47(11) 1–26, doi:10.18637/jss.v047.i11.

Pearl (2005). Causality. Models, reasoning and inference. Cambridge University Press, New York.

E. Perkovic, M. Kalisch and M.H. Maathuis (2017). Interpreting and using CPDAGs with back-
ground knowledge. In Proceedings of UAI 2017.

L. Henckel, E. Perkovic and M.H. Maathuis (2019). Graphical criteria for efficient total effect
estimation via adjustment in causal linear models. Working Paper.

J. Witte, L. Henckel, M.H Maathuis and V. Didelez (2019). On efficient adjustment in causal graphs.
Working Paper.

See Also

jointIda for estimating the multiset of possible total joint effects; idaFast for faster estimation of
the multiset of possible total causal effects for several target variables.

pc for estimating a CPDAG. addBgKnowledge for obtaining a PDAG from CPDAG and background
knowledge.

https://doi.org/10.18637/jss.v047.i11
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Examples

## Simulate the true DAG
suppressWarnings(RNGversion("3.5.0"))
set.seed(123)
p <- 10
myDAG <- randomDAG(p, prob = 0.2) ## true DAG
myCPDAG <- dag2cpdag(myDAG) ## true CPDAG
myPDAG <- addBgKnowledge(myCPDAG,2,3) ## true PDAG with background knowledge 2 -> 3
covTrue <- trueCov(myDAG) ## true covariance matrix

## simulate Gaussian data from the true DAG
n <- 10000
dat <- rmvDAG(n, myDAG)

## estimate CPDAG and PDAG -- see help(pc)
suffStat <- list(C = cor(dat), n = n)
pc.fit <- pc(suffStat, indepTest = gaussCItest, p=p, alpha = 0.01)
pc.fit.pdag <- addBgKnowledge(pc.fit@graph,2,3)

if (require(Rgraphviz)) {
## plot the true and estimated graphs
par(mfrow = c(1,3))
plot(myDAG, main = "True DAG")
plot(pc.fit, main = "Estimated CPDAG")
plot(pc.fit.pdag, main = "Max. PDAG")

}

## Supppose that we know the true CPDAG and covariance matrix
(l.ida.cpdag <- ida(3,10, covTrue, myCPDAG, method = "local", type = "cpdag"))
(o.ida.cpdag <- ida(3,10, covTrue, myCPDAG, method = "optimal", type = "cpdag"))
## Not run: (g.ida.cpdag <- ida(3,10, covTrue, myCPDAG, method = "global", type = "cpdag"))
## All three methods produce the same unique values.

## Supppose that we know the true PDAG and covariance matrix
(l.ida.pdag <- ida(3,10, covTrue, myPDAG, method = "local", type = "pdag"))
(o.ida.pdag <- ida(3,10, covTrue, myPDAG, method = "optimal", type = "pdag"))
## Not run: (g.ida.pdag <- ida(3,10, covTrue, myPDAG, method = "global", type = "pdag"))
## All three methods produce the same unique values.

## From the true DAG, we can compute the true causal effect of 3 on 10
(ce.3.10 <- causalEffect(myDAG, 10, 3))
## Indeed, this value is contained in the values found by all methods

## When working with data we have to use the estimated CPDAG and
## the sample covariance matrix
(l.ida.est.cpdag <- ida(3,10, cov(dat), pc.fit@graph, method = "local", type = "cpdag"))
(o.ida.est.cpdag <- ida(3,10, cov(dat), pc.fit@graph, method = "optimal", type = "cpdag"))
## Not run: (g.ida.est.cpdag <- ida(3,10, cov(dat), pc.fit@graph,
method = "global", type = "cpdag"))
## End(Not run)
## The unique values of the local and the global method are still identical.
## While not identical, the values of the optimal method are very similar.
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## The true causal effect is contained in all three sets, up to a small
## estimation error (0.118 vs. 0.112 with true value 0.114)

## Similarly, when working with data and background knowledge we have to use the estimated PDAG and
## the sample covariance matrix
(l.ida.est.pdag <- ida(3,10, cov(dat), pc.fit.pdag, method = "local", type = "pdag"))
(o.ida.est.pdag <- ida(3,10, cov(dat), pc.fit.pdag, method = "optimal", type = "pdag"))
## Not run: (g.ida.est.pdag <- ida(3,10, cov(dat), pc.fit.pdag, method = "global", type = "pdag"))
## The unique values of the local and the global method are still identical.
## While not necessarily identical, the values of the optimal method will be similar.

## The true causal effect is contained in both sets, up to a small estimation error

## All three can also be applied to sets y.
(l.ida.cpdag.2 <- ida(3,c(6,10), cov(dat), pc.fit@graph, method = "local", type = "cpdag"))
(o.ida.cpdag.2 <- ida(3,c(6,10), cov(dat), pc.fit@graph, method = "optimal", type = "cpdag"))
## Not run: (g.ida.cpdag.2 <- ida(3,c(6,10), cov(dat), pc.fit@graph,
method = "global", type = "cpdag"))
## End(Not run)
## For the methods local and global we recommend use of idaFast in this case for better performance.

## Note that only the optimal method can be appplied to sets x.
(o.ida.cpdag.2 <- ida(c(2,3),10, cov(dat), pc.fit@graph, method = "optimal", type = "cpdag"))

idaFast Multiset of Possible Total Causal Effects for Several Target Var.s

Description

This function estimates the multiset of possible total causal effects of one variable (x) on a several
(i.e., a vector of) target variables (y) from observational data.

idaFast() is more efficient than looping over ida. Only method="local" (see ida) is available.

Usage

idaFast(x.pos, y.pos.set, mcov, graphEst)

Arguments

x.pos (integer) position of variable x in the covariance matrix.

y.pos.set integer vector of positions of the target variables y in the covariance matrix.

mcov covariance matrix that was used to estimate graphEst

graphEst estimated CPDAG from the function pc. If the output of pc is pc.fit, then the
estimated CPDAG can be obtained by pc.fit@graph.
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Details

This function performs ida(x.pos, y.pos, mcov, graphEst, method="local", y.notparent=FALSE,
verbose=FALSE) for all values of y.pos in y.pos.set simultaneously, in an efficient way. See (the
help about) ida for more details. Note that the option y.notparent = TRUE is not implemented,
since it is not clear how to do that efficiently without orienting all edges away from y.pos.set at
the same time, which seems not to be desirable. Suggestions are welcome.

Value

Matrix with length(y.pos.set) rows. Row i contains the multiset of estimated possible total
causal effects of x on y.pos.set[i]. Note that all multisets in the matrix have the same length,
since the parents of x are the same for all elements of y.pos.set.

Author(s)

Markus Kalisch (<kalisch@stat.math.ethz.ch>)

References

see the list in ida.

See Also

pc for estimating a CPDAG, and ida for estimating the multiset of possible total causal effects from
observational data on only one target variable but with many more options (than here in idaFast).

Examples

## Simulate the true DAG
set.seed(123)
p <- 7
myDAG <- randomDAG(p, prob = 0.2) ## true DAG
myCPDAG <- dag2cpdag(myDAG) ## true CPDAG
covTrue <- trueCov(myDAG) ## true covariance matrix

## simulate data from the true DAG
n <- 10000
dat <- rmvDAG(n, myDAG)
cov.d <- cov(dat)

## estimate CPDAG (see help on the function "pc")
suffStat <- list(C = cor(dat), n = n)
pc.fit <- pc(suffStat, indepTest = gaussCItest, alpha = 0.01, p=p)

if(require(Rgraphviz)) {
op <- par(mfrow=c(1,3))
plot(myDAG, main="true DAG")
plot(myCPDAG, main="true CPDAG")
plot(pc.fit@graph, main="pc()-estimated CPDAG")
par(op)

}
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(eff.est1 <- ida(2,5, cov.d, pc.fit@graph))## method = "local" is default
(eff.est2 <- ida(2,6, cov.d, pc.fit@graph))
(eff.est3 <- ida(2,7, cov.d, pc.fit@graph))
## These three computations can be combinded in an efficient way
## by using idaFast :
(eff.estF <- idaFast(2, c(5,6,7), cov.d, pc.fit@graph))

iplotPC Plotting a pcAlgo object using the package igraph

Description

Notably, when the Rgraphviz package is not easily available, iplotPC() is an alternative for plot-
ting a "pcAlgo" object, making use of package igraph.

It extracts the adjacency matrix and converts it into an object from package igraph which is then
plotted.

Usage

iplotPC(pc.fit, labels = NULL)

Arguments

pc.fit an R object of class pcAlgo, as returned from skeleton() or pc().

labels optional labels for nodes; by default, the labels from the pc.fit object are used.

Value

Nothing. As side effect, the plot of pcAlgo object pc.fit.

Note

Note that this function does not work on fciAlgo objects, as those need different edge marks.

Author(s)

Markus Kalisch <kalisch@stat.math.ethz.ch>

See Also

showEdgeList for printing the edge list of a pcAlgo object; showAmat for printing the adjacency
matrix of a pcAlgo object.
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Examples

## Load predefined data
data(gmG)
n <- nrow (gmG8$x)
V <- colnames(gmG8$x)

## define sufficient statistics
suffStat <- list(C = cor(gmG8$x), n = n)
## estimate CPDAG
pc.fit <- pc(suffStat, indepTest = gaussCItest,

alpha = 0.01, labels = V, verbose = TRUE)

## Edge list
showEdgeList(pc.fit)

## Adjacency matrix
showAmat(pc.fit)

## Plot using package igraph; show estimated CPDAG:
iplotPC(pc.fit)

isValidGraph Check for a DAG, CPDAG or a maximally oriented PDAG

Description

Check whether the adjacency matrix amat matches the specified type.

Usage

isValidGraph(amat, type = c("pdag", "cpdag", "dag"), verbose = FALSE)

Arguments

amat adjacency matrix of type amat.cpdag (see amatType)

type string specifying the type of graph of the adjacency matrix amat. It can be a
DAG (type="dag"), a CPDAG (type="cpdag") or a maximally oriented PDAG
(type="pdag") from Meek (1995).

verbose If TRUE, detailed output on why the graph might not be valid is provided.

Details

For a given adjacency matrix amat and graph type, this function checks whether the two match.

For type = "dag" we require that amat does NOT contain directed cycles.

For type = "cpdag" we require that amat does NOT contain directed or partially directed cycles.
We also require that the undirected part of the CPDAG (represented by amat) is made up of chordal
components and that our graph is maximally oriented according to rules from Meek (1995).



96 isValidGraph

For type = "pdag" we require that amat does NOT contain directed cycles. We also require that
the PDAG is maximally oriented according to rules from Meek (1995). Additionally, we require
that the adjacency matrix amat1 of the CPDAG corresponding to our PDAG (represented by amat),
satisfies isValidGraph(amat = amat1,type = "cpdag") == TRUE and that there is no mismatch in
the orientations implied by amat and amat1. We obtain amat1 by extracting the skeleton and v-
structures from amat and then closing the orientation rules from Meek (1995).

Value

TRUE, if the adjacency matrix amat is of the type specified and FALSE, otherwise.

Author(s)

Emilija Perkovic and Markus Kalisch

References

C. Meek (1995). Causal inference and causal explanation with background knowledge, In Proceed-
ings of UAI 1995, 403-410.

Examples

## a -> b -> c
amat <- matrix(c(0,1,0, 0,0,1, 0,0,0), 3,3)
colnames(amat) <- rownames(amat) <- letters[1:3]
## graph::plot(as(t(amat), "graphNEL"))
isValidGraph(amat = amat, type = "dag") ## is a valid DAG
isValidGraph(amat = amat, type = "cpdag") ## not a valid CPDAG
isValidGraph(amat = amat, type = "pdag") ## is a valid PDAG

## a -- b -- c
amat <- matrix(c(0,1,0, 1,0,1, 0,1,0), 3,3)
colnames(amat) <- rownames(amat) <- letters[1:3]
## plot(as(t(amat), "graphNEL"))
isValidGraph(amat = amat, type = "dag") ## not a valid DAG
isValidGraph(amat = amat, type = "cpdag") ## is a valid CPDAG
isValidGraph(amat = amat, type = "pdag") ## is a valid PDAG

## a -- b -- c -- d -- a
amat <- matrix(c(0,1,0,1, 1,0,1,0, 0,1,0,1, 1,0,1,0), 4,4)
colnames(amat) <- rownames(amat) <- letters[1:4]
## plot(as(t(amat), "graphNEL"))
isValidGraph(amat = amat, type = "dag") ## not a valid DAG
isValidGraph(amat = amat, type = "cpdag") ## not a valid CPDAG
isValidGraph(amat = amat, type = "pdag") ## not a valid PDAG
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jointIda Estimate Multiset of Possible Total Joint Effects

Description

jointIda() estimates the multiset of possible total joint effects of a set of intervention variables
(X) on another variable (Y) from observational data. This is a version of ida that allows multiple
simultaneous interventions.

Usage

jointIda(x.pos, y.pos, mcov, graphEst = NULL, all.pasets = NULL,
technique = c("RRC", "MCD"), type = c("pdag", "cpdag", "dag"))

Arguments

x.pos (integer vector) positions of the intervention variables X in the covariance matrix.

y.pos (integer) position of variable Y in the covariance matrix. (y.pos can also be an
integer vector, see Note.)

mcov (estimated) covariance matrix.

graphEst (graphNEL object) Estimated CPDAG or PDAG. The CPDAG is typically from
pc(): If the result of pc is pc.fit, the estimated CPDAG can be obtained
by pc.fit@graph. The PDAG can be obtained from CPDAG by adding bac-
ground knowledge using addBgKnowledge(). graphEst can only be considered
if all.pasets is NULL.

all.pasets (an optional argument and the default is NULL) A list where each element is a
list of size length(x.pos). Each sub-list all.pasets[[i]] contains possible
parent sets of x.pos in the same order, i.e., all.pasets[[i]][[j]] is a pos-
sible parent set of x.pos[j]. This option can be used if possible parent sets of
the intervention variables are known.

technique character string specifying the technique that will be used to estimate the total
joint causal effects (given the parent sets), see details below.

"RRC": Recursive regressions for causal effects.
"MCD": Modifying the Cholesky decomposition.

type Type of graph "graphEst"; can be of type "cpdag", "pdag" (e.g. a CPDAG
with background knowledge from Meek, 1995) or "dag".

Details

It is assumed that we have observational data that are multivariate Gaussian and faithful to the true
(but unknown) underlying causal DAG (without hidden variables). Under these assumptions, this
function estimates the multiset of possible total joint effects of X on Y. Here the total joint effect of
X = (X1, X2) on Y is defined via Pearl’s do-calculus as the vector (E[Y |do(X1 = x1 + 1, X2 =
x2)]−E[Y |do(X1 = x1, X2 = x2)], E[Y |do(X1 = x1, X2 = x2+1)]−E[Y |do(X1 = x1, X2 =
x2)]), with a similar definition for more than two variables. These values are equal to the partial
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derivatives (evaluated at (x1, x2)) of E[Y |do(X = x′
1, X2 = x′

2)] with respect to x′
1 and x′

2.
Moreover, under the Gaussian assumption, these partial derivatives do not depend on the values at
which they are evaluated.

We estimate a multiset of possible total joint effects instead of the unique total joint effect, since it
is typically impossible to identify the latter when the true underlying causal DAG is unknown (even
with an infinite amount of data).

Conceptually, the method works as follows. First, we estimate the CPDAG or PDAG based on the
data. The CPDAG represents the equivalence class of DAGs and can be estimated from observa-
tional data with the function pc (see the help file of this function).

The PDAG contains more orientations than the CPDAG and thus, represents a smaller equivalence
class of DAGs, compared to the CPDAG. We can obtain a PDAG if we have background knowledge
of, for example, certain edge orientations of undirected edges in the CPDAG. We obtain the PDAG
by adding these orientations to the CPDAG using the function addBgKnowledge (see the help file
of this function).

Then using the CPDAG or PDAG we extract a collection of "jointly valid" parent sets of the in-
tervention variables from the estimated CPDAG. For each set of jointly valid parent sets we apply
RRC (recursive regressions for causal effects) or MCD (modifying the Cholesky decomposition) to
estimate the total joint effect of X on Y from the sample covariance matrix (see Section 3 of Nandy
et. al, 2015).

Value

A matrix representing the multiset containing the estimated possible total joint effects of X on Y.
The number of rows is equal to length(x.pos), i.e., each column represents a vector of possible
joint causal effects.

Note

For a single variable X, jointIda() estimates the same quantities as ida(). If graphEst is of
type = "cpdag", jointIda() obtains all.pasets by using the semi-local approach described in
Section 5 in Nandy et. al, (2015). Nandy et. al, (2015) show that jointIda() yields correct
multiplicities of the distinct elements of the resulting multiset (in the sense that it matches ida()
with method="global" up to a constant factor).

If graphEst is of type = "pdag", jointIda() obtains all.pasets by using the semi-local ap-
proach described in Algorithm 2, Section 4.2 in Perkovic et. al (2017). For this case, jointIda()
does not necessarily yield the correct multiplicities of the distinct elements of the resulting multiset
(it behaves similarly to ida() with method="local").

jointIda() (like idaFast) also allows direct computation of the total joint effect of a set of in-
tervention variables X on another set of target variables Y. In this case, y.pos must be an integer
vector containing positions of the target variables Y in the covariance matrix and the output is a list
of matrices that correspond to the variables in Y in the same order. This method is slightly more
efficient than looping over jointIda() with single target variables, if all.pasets is not specified.

Author(s)

Preetam Nandy, Emilija Perkovic
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References

P. Nandy, M.H. Maathuis and T.S. Richardson (2017). Estimating the effect of joint interventions
from observational data in sparse high-dimensional settings. In Annals of Statistics.

E. Perkovic, M. Kalisch and M.H. Maathuis (2017). Interpreting and using CPDAGs with back-
ground knowledge. In Proceedings of UAI 2017.

See Also

ida, the simple version; pc for estimating a CPDAG.

Examples

## Create a weighted DAG
p <- 6
V <- as.character(1:p)
edL <- list(

"1" = list(edges=c(3,4), weights=c(1.1,0.3)),
"2" = list(edges=c(6), weights=c(0.4)),
"3" = list(edges=c(2,4,6),weights=c(0.6,0.8,0.9)),
"4" = list(edges=c(2),weights=c(0.5)),
"5" = list(edges=c(1,4),weights=c(0.2,0.7)),
"6" = NULL)

myDAG <- new("graphNEL", nodes=V, edgeL=edL, edgemode="directed") ## true DAG
myCPDAG <- dag2cpdag(myDAG) ## true CPDAG
myPDAG <- addBgKnowledge(myCPDAG,1,3) ## true PDAG with background knowledge 1 -> 3
covTrue <- trueCov(myDAG) ## true covariance matrix

n <- 1000
## simulate Gaussian data from the true DAG
dat <- if (require("mvtnorm")) {

set.seed(123)
rmvnorm(n, mean=rep(0,p), sigma=covTrue)

} else readRDS(system.file(package="pcalg", "external", "N_6_1000.rds"))

## estimate CPDAG and PDAG -- see help(pc), help(addBgKnoweldge)
suffStat <- list(C = cor(dat), n = n)
pc.fit <- pc(suffStat, indepTest = gaussCItest, p = p, alpha = 0.01, u2pd="relaxed")
pc.fit.pdag <- addBgKnowledge(pc.fit@graph,1,3)

if (require(Rgraphviz)) {
## plot the true and estimated graphs
par(mfrow = c(1,3))
plot(myDAG, main = "True DAG")
plot(pc.fit, main = "Estimated CPDAG")
plot(pc.fit.pdag, main = "Estimated PDAG")

}

## Suppose that we know the true CPDAG and covariance matrix
jointIda(x.pos=c(1,2), y.pos=6, covTrue, graphEst=myCPDAG, technique="RRC", type = "cpdag")
jointIda(x.pos=c(1,2), y.pos=6, covTrue, graphEst=myCPDAG, technique="MCD", type = "cpdag")
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## Suppose that we know the true PDAG and covariance matrix
jointIda(x.pos=c(1,2), y.pos=6, covTrue, graphEst=myPDAG, technique="RRC", type = "pdag")
jointIda(x.pos=c(1,2), y.pos=6, covTrue, graphEst=myPDAG, technique="MCD", type = "pdag")

## Instead of knowing the true CPDAG or PDAG, it is enough to know only
## the jointly valid parent sets of the intervention variables
## to use RRC or MCD
## all.jointly.valid.pasets:
ajv.pasets <- list(list(5,c(3,4)),list(integer(0),c(3,4)),list(3,c(3,4)))
jointIda(x.pos=c(1,2), y.pos=6, covTrue, all.pasets=ajv.pasets, technique="RRC")
jointIda(x.pos=c(1,2), y.pos=6, covTrue, all.pasets=ajv.pasets, technique="MCD")

## From the true DAG, we can compute the true total joint effects
## using RRC or MCD
cat("Dim covTrue: ", dim(covTrue),"\n")
jointIda(x.pos=c(1,2), y.pos=6, covTrue, graphEst=myDAG, technique="RRC", type = "dag")
jointIda(x.pos=c(1,2), y.pos=6, covTrue, graphEst=myDAG, technique="MCD", type = "dag")

## When working with data, we have to use the estimated CPDAG or PDAG
## and the sample covariance matrix
jointIda(x.pos=c(1,2), y.pos=6, cov(dat), graphEst=pc.fit@graph, technique="RRC", type = "cpdag")
jointIda(x.pos=c(1,2), y.pos=6, cov(dat), graphEst=pc.fit@graph, technique="MCD", type = "cpdag")

jointIda(x.pos=c(1,2), y.pos=6, cov(dat), graphEst=pc.fit.pdag, technique="RRC", type = "pdag")
jointIda(x.pos=c(1,2), y.pos=6, cov(dat), graphEst=pc.fit.pdag, technique="MCD", type = "pdag")
## RRC and MCD can produce different results when working with data

## jointIda also works when x.pos has length 1 and in the following example
## it gives the same result as ida() (see Note)
##
## When the CPDAG is known
jointIda(x.pos=1, y.pos=6, covTrue, graphEst=myCPDAG, technique="RRC", type = "cpdag")
ida(x.pos=1, y.pos=6, covTrue, graphEst=myCPDAG, method="global", type = "cpdag")

## When the PDAG is known
jointIda(x.pos=1, y.pos=6, covTrue, graphEst=myPDAG, technique="RRC", type = "pdag")
ida(x.pos=1, y.pos=6, covTrue, graphEst=myPDAG, method="global", type = "pdag")

## When the DAG is known
jointIda(x.pos=1, y.pos=6, covTrue, graphEst=myDAG, technique="RRC", type = "dag")
ida(x.pos=1, y.pos=6, covTrue, graphEst=myDAG, method="global")
## Note that, causalEffect(myDAG,y=6,x=1) does not give the correct value in this case,
## since this function requires that the variables are in a causal order.

legal.path Check if a 3-node-path is Legal
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Description

Check if the path a−−b−−c is legal.

A 3-node path a−−b−−c is “legal” iff either b is a collider or a−−b−−c is a triangle.

Usage

legal.path(a, b, c, amat)

Arguments

a, b, c (integer) positions in adjacency matrix of nodes a, b, and c, respectively.
amat Adjacency matrix (coding 0,1,2,3 for no edge, circle, arrowhead, tail; e.g., amat[a,b]

= 2 and amat[b,a] = 3 implies a -> b)

Value

TRUE if path is legal, otherwise FALSE.

Note

Prerequisite: a−−b−−c must be in a path (and this is not checked by legal.path()).

Author(s)

Markus Kalisch (<kalisch@stat.math.ethz.ch>)

Examples

amat <- matrix( c(0,1,1,0,0, 2,0,1,0,0, 2,2,0,2,1,
0,0,1,0,0, 0,0,2,0,0), 5,5)

legal.path(1,3,5, amat)
legal.path(1,2,3, amat)
legal.path(2,3,4, amat)

LINGAM Linear non-Gaussian Acyclic Models (LiNGAM)

Description

Fits a Linear non-Gaussian Acyclic Model (LiNGAM) to the data and returns the corresponding
DAG.

For details, see the reference below.

Usage

lingam(X, verbose = FALSE)

## For back-compatibility; this is *deprecated*
LINGAM(X, verbose = FALSE)
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Arguments

X n x p data matrix (n: sample size, p: number of variables).

verbose logical or integer indicating that increased diagnostic output is to be provided.

Value

lingam() returns an R object of (S3) class "LINGAM", basically a list with components

Bpruned a p × p matrix B of linear coefficients, where Bi,j corresponds to a directed
edge from j to i.

stde a vector of length p with the standard deviations of the estimated residuals

ci a vector of length p with the intercepts of each equation
. . . . . . . . . . . . . . . . . .

LINGAM() — deprecated now — returns a list with components

Adj a p × p 0/1 adjacency matrix A. A[i,j] == 1 corresponds to a directed edge
from i to j.

B p × p matrix of corresponding linear coefficients. Note it corresponds to the
transpose of Adj, i.e., identical( Adj, t(B) != 0 ) is true.

Author(s)

Of LINGAM() and the underlying functionality, Patrik Hoyer <patrik.hoyer@helsinki.fi>, Doris
Entner <entnerd@hotmail.com>, Antti Hyttinen <antti.hyttinen@cs.helsinki.fi> and Jonas Peters
<jonas.peters@tuebingen.mpg.de>.

References

S. Shimizu, P.O. Hoyer, A. Hyv\"arinen, A. Kerminen (2006) A Linear Non-Gaussian Acyclic
Model for Causal Discovery; Journal of Machine Learning Research 7, 2003–2030.

See Also

fastICA from package fastICA is used.

Examples

##################################################
## Exp 1
##################################################
set.seed(1234)
n <- 500
eps1 <- sign(rnorm(n)) * sqrt(abs(rnorm(n)))
eps2 <- runif(n) - 0.5

x2 <- 3 + eps2
x1 <- 0.9*x2 + 7 + eps1
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#truth: x1 <- x2
trueDAG <- cbind(c(0,1),c(0,0))

X <- cbind(x1,x2)
res <- lingam(X)

cat("true DAG:\n")
show(trueDAG)

cat("estimated DAG:\n")
as(res, "amat")

cat("\n true constants:\n")
show(c(7,3))
cat("estimated constants:\n")
show(res$ci)

cat("\n true (sample) noise standard deviations:\n")
show(c(sd(eps1), sd(eps2)))
cat("estimated noise standard deviations:\n")
show(res$stde)

##################################################
## Exp 2
##################################################
set.seed(123)
n <- 500
eps1 <- sign(rnorm(n)) * sqrt(abs(rnorm(n)))
eps2 <- runif(n) - 0.5
eps3 <- sign(rnorm(n)) * abs(rnorm(n))^(1/3)
eps4 <- rnorm(n)^2

x2 <- eps2
x1 <- 0.9*x2 + eps1
x3 <- 0.8*x2 + eps3
x4 <- -x1 -0.9*x3 + eps4

X <- cbind(x1,x2,x3,x4)

trueDAG <- cbind(x1 = c(0,1,0,0),
x2 = c(0,0,0,0),
x3 = c(0,1,0,0),
x4 = c(1,0,1,0))

## x4 <- x3 <- x2 -> x1 -> x4
## adjacency matrix:
## 0 0 0 1
## 1 0 1 0
## 0 0 0 1
## 0 0 0 0

res1 <- lingam(X, verbose = TRUE)# details on LINGAM
res2 <- lingam(X, verbose = 2) # details on LINGAM and fastICA
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## results are the same, of course:
stopifnot(identical(res1, res2))
cat("true DAG:\n")
show(trueDAG)

cat("estimated DAG:\n")
as(res1, "amat")

mat2targets Conversion between an intervention matrix and a list of intervention
targets

Description

In a data set with n measurements of p variables, intervened variables can be specified in two ways:

• with a logical intervention matrix of dimension n × p, where the entry [i, j] indicates
whether variable j has been intervened in measurement i; or

• with a list of (unique) intervention targets and a p-dimensional vector indicating the indices of
the intervention targets of the p measurements.

The function mat2targets converts the first representation to the second one, the function targets2mat
does the reverse conversion. The second representation can be used to create scoring objects (see
Score) and to run causal inference methods based on interventional data such as gies or simy.

Usage

mat2targets(A)
targets2mat(p, targets, target.index)

Arguments

A Logical matrix with n rows and p columns, where n is the sample size of a data
set with jointly interventional and observational data, and p is the number of
variables. A[i, j] is TRUE iff variable j is intervened in data point i.

p Number of variables

targets List of unique intervention targets

target.index Vector of intervention target indices. The intervention target of data point i is
encoded as targets[[target.index[i]]].

Value

mat2targets returns a list with two components:

targets A list of unique intervention targets.

target.index A vector of intervention target indices. The intervention target of data point i is
encoded as targets[[target.index[i]]].
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Author(s)

Alain Hauser (<alain.hauser@bfh.ch>)

See Also

Score, gies, simy

Examples

## Specify interventions using a matrix
p <- 5
n <- 10
A <- matrix(FALSE, nrow = n, ncol = p)
for (i in 1:n) A[i, (i-1) %% p + 1] <- TRUE

## Generate list of intervention targets and corresponding indices
target.list <- mat2targets(A)

for (i in 1:length(target.list$target.index))
sprintf("Intervention target of %d-th data point: %d",
i, target.list$targets[[target.list$target.index[i]]])

## Convert back to matrix representation
all(A == targets2mat(p, target.list$targets, target.list$target.index))

mcor Compute (Large) Correlation Matrix

Description

Compute a correlation matrix, possibly by robust methods, applicable also for the case of a large
number of variables.

Usage

mcor(dm, method = c("standard", "Qn", "QnStable",
"ogkScaleTau2", "ogkQn", "shrink"))

Arguments

dm numeric data matrix; rows are observiations (“samples”), columns are variables.

method a string; "standard" (default), "Qn", "QnStable", "ogkQn" and "shrink" en-
vokes standard, elementwise robust (based on Qn scale estimator, see Qn), robust
(Qn using OGK, see covOGK) or shrinked correlation estimate respectively.
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Details

The "standard" method envokes a standard correlation estimator. "Qn" envokes a robust, ele-
mentwise correlation estimator based on the Qn scale estimte. "QnStable" also uses the Qn scale
estimator, but uses an improved way of transforming that into the correlation estimator. "ogkQn"
envokes a correlation estimator based on Qn using OGK. "shrink" is only useful when used with
pcSelect. An optimal shrinkage parameter is used. Only correlation between response and covari-
ates is shrinked.

Value

A correlation matrix estimated by the specified method.

Author(s)

Markus Kalisch <kalisch@stat.math.ethz.ch> and Martin Maechler

References

See those in the help pages for Qn and covOGK from package robustbase.

See Also

Qn and covOGK from package robustbase. pcorOrder for computing partial correlations.

Examples

## produce uncorrelated normal random variables
set.seed(42)
x <- rnorm(100)
y <- 2*x + rnorm(100)
## compute correlation of var1 and var2
mcor(cbind(x,y), method="standard")

## repeat but this time with heavy-tailed noise
yNoise <- 2*x + rcauchy(100)
mcor(cbind(x,yNoise), method="standard") ## shows almost no correlation
mcor(cbind(x,yNoise), method="Qn") ## shows a lot correlation
mcor(cbind(x,yNoise), method="QnStable") ## shows still much correlation
mcor(cbind(x,yNoise), method="ogkQn") ## ditto

opt.target Get an optimal intervention target

Description

Given a (observational or interventional) essential graph (or "CPDAG"), find the optimal interven-
tion target that maximizes the number of edges that can be oriented after the intervention.
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Usage

opt.target(essgraph, max.size, use.node.names = TRUE)

Arguments

essgraph An EssGraph or graphNEL object representing a (observational or interven-
tional) essential graph (or "CPDAG").

max.size Maximum size of the intervention target. Only 1 and the number of vertices of
essgraph are allowed; the latter means no size limit is applied (the default if the
parameter is missing).

use.node.names Indicates if the intervention target should be returned as a list of node names (if
TRUE) or indices (if FALSE).

Details

This function implements active learning strategies for structure learning from interventional data,
one that calculates an optimal single-vertex intervention target, and one that calculates an optimal
intervention target of arbitrary size. "Optimal" means the proposed intervention target guarantees
the highest number of edges that can be oriented after performing the intervention, assuming the es-
sential graph provided as input is the true essential graph under the currently available interventional
data (i.e., neglecting possible estimation errors).

Implementation corresponds to algorithms "OptSingle" and "OptUnb" published in Hauser and
Bühlmann (2012).

Value

A character vector of node names (if use.node.names = TRUE), or an integer vector of node indices
(if use.node.names = FALSE) indicating the optimal intervention target.

Author(s)

Alain Hauser (<alain.hauser@math.ethz.ch>)

References

A. Hauser and P. Bühlmann (2012). Two optimal strategies for active learning of causal models
from interventions. Proceedings of the 6th European Workshop on Probabilistic Graphical Models
(PGM-2012), 123–130

See Also

EssGraph

Examples

## Load predefined data
data(gmG)

## Define the score (BIC)
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score <- new("GaussL0penObsScore", gmG8$x)

## Estimate the essential graph using GES
ges.fit <- ges(score)
essgraph <- ges.fit$essgraph

## Plot the estimated essential graph
if (require(Rgraphviz)) {

plot(essgraph, main = "Estimated CPDAG")
}
## The CPDAG has 1 unoriented component with 3 edges (Author <-> Bar, Bar <->
## Ctrl, Bar <-> V5)

## Get optimal single-vertex and unbounded intervention target
opt.target(essgraph, max.size = 1)
opt.target(essgraph, max.size = essgraph$node.count())

optAdjSet Compute the optimal adjustment set

Description

optAdjSet computes the optimal valid adjustment set relative to the variables (X,Y) in the given
graph.

Usage

optAdjSet(graphEst,x.pos,y.pos)

Arguments

graphEst graphNel object or adjacency matrix of type amat.cpdag.

x.pos, x Positions of variables X in the covariance matrix.

y.pos, y Positions of variables Y in the covariance matrix.

Details

Suppose we have data from a linear SEM compatible with a known causal graph G and our aim is
to estimate the total joint effect of X on Y. Here the total joint effect of X = (X1, X2) on Y is defined
via Pearl’s do-calculus as the vector (E[Y |do(X1 = x1 +1, X2 = x2)]−E[Y |do(X1 = x1, X2 =
x2)], E[Y |do(X1 = x1, X2 = x2 + 1)]− E[Y |do(X1 = x1, X2 = x2)]), with a similar definition
for more than two variables. These values are equal to the partial derivatives (evaluated at x1, x2) of
E[Y |do(X = x′

1, X2 = x′
2)] with respect to x1’ and x2’. Moreover, under the linearity assumption,

these partial derivatives do not depend on the values at which they are evaluated.

It is possible to estimate the total joint effect of X on Y with a simple linear regression of the form
lm(Y ~ X + Z), if and only if the covariate set Z is a valid adjustment set (see Perkovic et al. (2018)).
Often, however, there are multiple such valid adjustment sets, providing total effect estimates with
varying accuracies. Suppose that there exists a valid adjustment set relative to (X,Y) in causal graph
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G, and each node in Y is a descendant of X, then there exists a valid adjustment which provides
the total effect estimate with the optimal asymptotic variance, which we will refer to as O(X,Y,G)
(Henckel et al., 2019). This function returns this optimal valid adjustment set O(X,Y,G).

The restriction that each node in Y be a descendant of the node set X is not notable, as the total effect
of the node set X on a non-descendant is always 0. If provided with a node set Y that does not fulfill
this condition this function computes a pruned node set Y2 by removing all nodes from Y that are
not descendants of X and returns O(X,Y2,G) instead. The user will be alerted to this and given the
pruned set Y2.

Value

A vector with the positions of the nodes of the optimal set O(X,Y,G).

Author(s)

Leonard Henckel

References

E. Perković, J. Textor, M. Kalisch and M.H. Maathuis (2018). Complete graphical characterization
and construction of adjustment sets in Markov equivalence classes of ancestral graphs. Journal of
Machine Learning Research. 18(220) 1–62,

L. Henckel, E. Perkovic and M.H. Maathuis (2019). Graphical criteria for efficient total effect
estimation via adjustment in causal linear models. Working Paper.

Examples

## Simulate a true DAG, its CPDAG and an intermediate max. PDAG
suppressWarnings(RNGversion("3.5.0"))
set.seed(123)
p <- 10
## true DAG
myDAG <- randomDAG(p, prob = 0.3)
## true CPDAG
myCPDAG <- dag2cpdag(myDAG)
## true PDAG with added background knowledge 5 -> 6
myPDAG <- addBgKnowledge(myCPDAG,5,6)
if (require(Rgraphviz)) {
par(mfrow = c(1,3))
plot(myDAG)
plot(myPDAG)
plot(myCPDAG) ## plot of the graphs
}

## if the CPDAG C is amenable relative to (X,Y),
## the optimal set will be the same for all DAGs
## and any max. PDAGs obtained by adding background knowledge to C
(optAdjSet(myDAG,3,10))
(optAdjSet(myPDAG,3,10))
(optAdjSet(myCPDAG,3,10))
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## the optimal adjustment set can also be compute for sets X and Y
(optAdjSet(myDAG,c(3,4),c(9,10)))
(optAdjSet(myPDAG,c(3,4),c(9,10)))
(optAdjSet(myCPDAG,c(3,4),c(9,10)))

## The only restriction is that it requires all nodes in Y to be
## descendants of X.
## However, if a node in Y is non-descendant of X the lowest variance
## partial total effect estimate is simply 0.
## Hence, we can proceed with a pruned Y. This function does this automatically!
optAdjSet(myDAG,1,c(3,9))

## Note that for sets X there may be no valid adjustment set even
## if the PDAG is is amenable relative to (X,Y).
## Not run: optAdjSet(myPDAG,c(4,9),7)

pag2anc Reads off identifiable ancestors and non-ancestors from a directed
PAG

Description

Constructs a matrix which contains identifiable ancestral and non-ancestral relations in the Markov
equivalence class represented by a directed partial ancestral graph.

Usage

pag2anc(P,verbose=FALSE)

Arguments

P Adjacency matrix of type amat.pag, which should encode a directed PAG (i.e.,
it should not contain any undirected edges of the form x --- y or any circle-tail
edges of the form x o-- y).

verbose If true, more detailed output is provided.

Details

We say that node i is ancestor of node j in a directed mixed graph (DMG) iff there exists a directed
path from i to j in that graph. If the directed mixed graph has a causal interpretation (for example, if
it is the graph of a simple SCM) then ancestral relations coincide (generically) with causal relations.

This function implements the sufficient conditions (Propositions 4 and 5) in Mooij and Claassen
(2020) for concluding whether an ancestral relation between two nodes must be present or absent
in all directed mixed graphs in the Markov equivalence class represented by the directed PAG P. It
applies to both the acyclic case as well as the cyclic (simple SCM) case, assuming the d-separation
resp. σ-separation Markov property.
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The output is a matrix containing for each ordered pair of nodes whether the presence of an ancestral
relation was identified, or the absence, or neither.

It is not known whether these sufficient conditions for identifiability are complete. Hence, zero
entries in the result indicate that the sufficient condition gives no conclusion, rather than that the
Markov equivalence class represented by the directed PAG necessarily contains DMGs where an
ancestral relation is present as well as DMGs where it is absent.

P should be an adjacency matrix of type amat.pag that contains no undirected and circle-tail edges.

Value

Matrix A, where entry A[i,j] equals

1 if node i is an identifiable ancestor of node j,

-1 if node i is an identifiable non-ancestor of node j,

0 in case the ancestral relationship between nodes i and j is unknown.

Author(s)

Joris Mooij.

References

J. M. Mooij and T. Claassen (2020). Constraint-Based Causal Discovery using Partial Ancestral
Graphs in the presence of Cycles. In Proc. of the 36th Conference on Uncertainty in Artificial
Intelligence (UAI-20), 1159-1168.

Examples

##################################################
## Mooij et al. (2020), Fig. 43(a), p. 97
##################################################

# Encode ADMG as adjacency matrix
p <- 8 # total number of variables
V <- c("Ca","Cb","Cc","X0","X1","X2","X3","X4") # 3 context variables, 5 system variables
# amat[i,j] = 0 iff no edge btw i,j
# amat[i,j] = 1 iff i *-o j
# amat[i,j] = 2 iff i *-> j
# amat[i,j] = 3 iff i *-- j
amat <- rbind(c(0,2,2,2,0,0,0,0),

c(2,0,2,0,2,0,0,0),
c(2,2,0,0,2,2,0,0),
c(3,0,0,0,0,0,2,0),
c(0,3,3,0,0,3,0,2),
c(0,0,3,0,2,0,0,0),
c(0,0,0,3,0,0,0,2),
c(0,0,0,0,2,0,3,0))

rownames(amat)<-V
colnames(amat)<-V
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# Make use of d-separation oracle as "independence test"
indepTest <- dsepAMTest
suffStat<-list(g=amat,verbose=FALSE)

# Derive PAG that represents the Markov equivalence class of the ADMG with the FCI algorithm
# (assuming no selection bias)
fci.pag <- fci(suffStat,indepTest,alpha = 0.5,labels = V,verbose=TRUE,selectionBias=FALSE)

# Read off causal features from the FCI PAG
cat('Identified absence (-1) and presence (+1) of ancestral causal relations from FCI PAG:\n')
print(pag2anc(fci.pag@amat))

pag2conf Reads off identifiable unconfounded node pairs from a directed PAG

Description

Constructs a matrix which contains identifiably unconfounded node pairs in the Markov equivalence
class represented by a directed partial ancestral graph.

Usage

pag2conf(P)

Arguments

P Adjacency matrix of type amat.pag, which should encode a directed PAG (i.e.,
it should not contain any undirected edges of the form x --- y or any circle-tail
edges of the form x o-- y).

Details

We say that nodes i and j are confounded in a directed mixed graph (DMG) iff there exists a
bidirected edge i<->j in that graph. If the directed mixed graph has a causal interpretation (for
example, if it is the graph of a simple SCM) then the presence of a bidirected edge coincides
(generically) with the presence of a confounder, i.e., a latent common cause (relative to the variables
in the graph).

This function implements the sufficient condition (Proposition 6) in Mooij and Claassen (2020)
for concluding whether two nodes are unconfounded in all directed mixed graphs in the Markov
equivalence class represented by the directed PAG P. It applies to both the acyclic case as well as
the cyclic (simple SCM) case, assuming the d-separation resp. σ-separation Markov property.

The output is a (symmetric) matrix containing for each ordered pair of nodes whether the two nodes
are identifiably unconfounded.

It is not known whether these sufficient conditions for identifiability are complete. Hence, zero
entries in the result indicate that the sufficient condition gives no conclusion, rather than that the
Markov equivalence class represented by the directed PAG necessarily contains DMGs where a
bidirected edge is present.

P should be an adjacency matrix of type amat.pag that contains no undirected and circle-tail edges.
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Value

Matrix A, where entry A[i,j] equals

-1 if nodes i and j are identifiably unconfounded,

0 in case it is unknown whether nodes i and j are confounded or not.

Author(s)

Joris Mooij.

References

J. M. Mooij and T. Claassen (2020). Constraint-Based Causal Discovery using Partial Ancestral
Graphs in the presence of Cycles. In Proc. of the 36th Conference on Uncertainty in Artificial
Intelligence (UAI-20), 1159-1168.

Examples

##################################################
## Mooij et al. (2020), Fig. 43(a), p. 97
##################################################

# Encode ADMG as adjacency matrix
p <- 8 # total number of variables
V <- c("Ca","Cb","Cc","X0","X1","X2","X3","X4") # 3 context variables, 5 system variables
# amat[i,j] = 0 iff no edge btw i,j
# amat[i,j] = 1 iff i *-o j
# amat[i,j] = 2 iff i *-> j
# amat[i,j] = 3 iff i *-- j
amat <- rbind(c(0,2,2,2,0,0,0,0),

c(2,0,2,0,2,0,0,0),
c(2,2,0,0,2,2,0,0),
c(3,0,0,0,0,0,2,0),
c(0,3,3,0,0,3,0,2),
c(0,0,3,0,2,0,0,0),
c(0,0,0,3,0,0,0,2),
c(0,0,0,0,2,0,3,0))

rownames(amat)<-V
colnames(amat)<-V

# Make use of d-separation oracle as "independence test"
indepTest <- dsepAMTest
suffStat<-list(g=amat,verbose=FALSE)

# Derive PAG that represents the Markov equivalence class of the ADMG with the FCI algorithm
# (assuming no selection bias)
fci.pag <- fci(suffStat,indepTest,alpha = 0.5,labels = V,verbose=TRUE,selectionBias=FALSE)

# Read off causal features from the FCI PAG
cat('Identified absence (-1) and presence (+1) of pairwise latent confounding from FCI PAG:\n')
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print(pag2conf(fci.pag@amat))

pag2edge Reads off identifiable parents and non-parents from a directed PAG

Description

Constructs a matrix which contains identifiable parental and non-parental relations in the Markov
equivalence class represented by a directed partial ancestral graph.

Usage

pag2edge(P)

Arguments

P Adjacency matrix of type amat.pag, which should encode a directed PAG (i.e.,
it should not contain any undirected edges of the form x --- y or any circle-tail
edges of the form x o-- y).

Details

We say that node i is parent of node j in a directed mixed graph (DMG) iff there exists a directed
edge i-->j in that graph. If the directed mixed graph has a causal interpretation (for example, if
it is the graph of a simple SCM) then parental relations coincide (generically) with direct causal
relations (relative to the variables in the graph).

This function implements the sufficient conditions (Propositions 7 and 8) in Mooij and Claassen
(2020) for concluding whether a parental relation between two nodes must be present or absent in
all directed mixed graphs in the Markov equivalence class represented by the directed PAG P. It
applies to both the acyclic case as well as the cyclic (simple SCM) case, assuming the d-separation
resp. σ-separation Markov property.

The output is a matrix containing for each ordered pair of nodes whether the presence of a parental
relation was identified, or the absence, or neither.

It is not known whether these sufficient conditions for identifiability are complete. Hence, zero
entries in the result indicate that the sufficient condition gives no conclusion, rather than that the
Markov equivalence class represented by the directed PAG necessarily contains DMGs where a
parental relation is present as well as DMGs where it is absent.

P should be an adjacency matrix of type amat.pag that contains no undirected and circle-tail edges.

Value

Matrix A, where entry A[i,j] equals

1 if node i is an identifiable parent of node j,

-1 if node i is an identifiable non-parent of node j,

0 in case the parental relationship between nodes i and j is unknown.
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Author(s)

Joris Mooij.

References

J. M. Mooij and T. Claassen (2020). Constraint-Based Causal Discovery using Partial Ancestral
Graphs in the presence of Cycles. In Proc. of the 36th Conference on Uncertainty in Artificial
Intelligence (UAI-20), 1159-1168.

Examples

##################################################
## Mooij et al. (2020), Fig. 43(a), p. 97
##################################################

# Encode ADMG as adjacency matrix
p <- 8 # total number of variables
V <- c("Ca","Cb","Cc","X0","X1","X2","X3","X4") # 3 context variables, 5 system variables
# amat[i,j] = 0 iff no edge btw i,j
# amat[i,j] = 1 iff i *-o j
# amat[i,j] = 2 iff i *-> j
# amat[i,j] = 3 iff i *-- j
amat <- rbind(c(0,2,2,2,0,0,0,0),

c(2,0,2,0,2,0,0,0),
c(2,2,0,0,2,2,0,0),
c(3,0,0,0,0,0,2,0),
c(0,3,3,0,0,3,0,2),
c(0,0,3,0,2,0,0,0),
c(0,0,0,3,0,0,0,2),
c(0,0,0,0,2,0,3,0))

rownames(amat)<-V
colnames(amat)<-V

# Make use of d-separation oracle as "independence test"
indepTest <- dsepAMTest
suffStat<-list(g=amat,verbose=FALSE)

# Derive PAG that represents the Markov equivalence class of the ADMG with the FCI algorithm
# (assuming no selection bias)
fci.pag <- fci(suffStat,indepTest,alpha = 0.5,labels = V,verbose=TRUE,selectionBias=FALSE)

# Read off causal features from the FCI PAG
cat('Identified absence (-1) and presence (+1) of direct causal relations from FCI PAG:\n')
print(pag2edge(fci.pag@amat))
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pag2mag Transform a PAG into a MAG in the Corresponding Markov Equiva-
lence Class

Description

Transform a Partial Ancestral Graph (PAG) into a valid Maximal Ancestral Graph (MAG) that
belongs to the Markov equivalence class represented by the given PAG, with no additional edges
into node x.

Usage

pag2magAM(amat.pag, x, max.chordal = 10, verbose = FALSE)

Arguments

amat.pag Adjacency matrix of type amat.pag

x (integer) position in adjacency matrix of node in the PAG into which no addi-
tional edges are oriented.

max.chordal Positive integer: graph paths larger than max.chordal are considered to be too
large to be checked for chordality.

verbose Logical; if true, some output is produced during computation.

Details

This function converts a PAG (adjacency matrix) to a valid MAG (adjacency matrix) that belongs to
the Markov equivalence class represented by the given PAG. Note that we assume that there are no
selection variables, meaning that the edges in the PAG can be of the following types: ->, <->, o->,
and o-o. In a first step, it uses the Arrowhead Augmentation of Zhang (2006), i.e., any o-> edge is
oriented into ->. Afterwards, it orients each chordal component into a valid DAG without orienting
any additional edges into x.

This function is used in the Generalized Backdoor Criterion backdoor with type="pag", see
Maathuis and Colombo (2015) for details.

Value

The output is an adjacency matrix of type amat.pag representing a valid MAG that belongs to the
Markov equivalence class represented by the given PAG.

Author(s)

Diego Colombo, Markus Kalisch and Martin Maechler.
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References

M.H. Maathuis and D. Colombo (2015). A generalized back-door criterion. Annals of Statistics 43
1060-1088.

Zhang, J. (2006). Causal Inference and Reasoning in Causally Insufficient Systems. Ph. D. thesis,
Carnegie Mellon University.

See Also

fci, dag2pag, backdoor

Examples

## create the graph
set.seed(78)
p <- 12
g <- randomDAG(p, prob = 0.4)
## Compute the true covariance and then correlation matrix of g:
true.corr <- cov2cor(trueCov(g))

## define nodes 2 and 6 to be latent variables
L <- c(2,6)

## Find PAG
## As dependence "oracle", we use the true correlation matrix in
## gaussCItest() with a large "virtual sample size" and a large alpha:
true.pag <- dag2pag(suffStat = list(C= true.corr, n= 10^9),

indepTest= gaussCItest, graph=g, L=L, alpha= 0.9999)

## find a valid MAG such that no additional edges are directed into
(amat.mag <- pag2magAM(true.pag@amat, 4)) # -> the adj.matrix of the MAG

ParDAG-class Class "ParDAG" of Parametric Causal Models

Description

This virtual base class represents a parametric causal model.

Details

The class "ParDAG" serves as a basis for simulating observational and/or interventional data from
causal models as well as for parameter estimation (maximum-likelihood estimation) for a given
causal model in the presence of a data set with jointly observational and interventional data.

The virtual base class "ParDAG" provides a “skeleton” for all functions relied to the aforementioned
task. In practical cases, a user may always choose an appropriate class derived from ParDAG which
represents a specific parametric model class. The base class itself does not represent such a model
class.
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Constructor

new("ParDAG", nodes, in.edges, params)

nodes Vector of node names; cf. also field .nodes.

in.edges A list of length p consisting of index vectors indicating the edges pointing into the nodes
of the DAG.

params A list of length p consisting of parameter vectors modeling the conditional distribution of
a node given its parents; cf. also field .params.

Fields

.nodes: Vector of node names; defaults to as.character(1:p), where p denotes the number of
nodes (variables) of the model.

.in.edges: A list of length p consisting of index vectors indicating the edges pointing into the
nodes of the DAG.

.params: A list of length p consisting of parameter vectors modeling the conditional distribution
of a node given its parents. The entries of the parameter vectors only get a concrete meaning
in derived classes belonging to specific parametric model classes.

Class-Based Methods

node.count(): Yields the number of nodes (variables) of the model.

simulate(n, target, int.level): Generates n (observational or interventional) samples from
the parametric causal model. The intervention target to be used is specified by the parameter
target; if the target is empty (target = integer(0)), observational samples are generated.
int.level indicates the values of the intervened variables; if it is a vector of the same length
as target, all samples are drawn from the same intervention levels; if it is a matrix with
n rows and as many columns as target has entries, its rows are interpreted as individual
intervention levels for each sample.

edge.count(): Yields the number of edges (arrows) in the DAG.

mle.fit(score): Fits the parameters using an appropriate Score object.

Methods

plot signature(x = "ParDAG", y = "ANY"): plots the underlying DAG of the causal model. Pa-
rameters are not visualized.

Author(s)

Alain Hauser (<alain.hauser@bfh.ch>)

See Also

GaussParDAG
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pc Estimate the Equivalence Class of a DAG using the PC Algorithm

Description

Estimate the equivalence class of a directed acyclic graph (DAG) from observational data, using the
PC-algorithm.

Usage

pc(suffStat, indepTest, alpha, labels, p,
fixedGaps = NULL, fixedEdges = NULL, NAdelete = TRUE, m.max = Inf,
u2pd = c("relaxed", "rand", "retry"),
skel.method = c("stable", "original", "stable.fast"),
conservative = FALSE, maj.rule = FALSE, solve.confl = FALSE,
numCores = 1, verbose = FALSE)

Arguments

suffStat A list of sufficient statistics, containing all necessary elements for the condi-
tional independence decisions in the function indepTest.

indepTest A function for testing conditional independence. It is internally called as
indepTest(x,y,S,suffStat), and tests conditional independence of x and y
given S. Here, x and y are variables, and S is a (possibly empty) vector of vari-
ables (all variables are denoted by their (integer) column positions in the adja-
cency matrix). suffStat is a list, see the argument above. The return value of
indepTest is the p-value of the test for conditional independence.

alpha significance level (number in (0, 1) for the individual conditional independence
tests.

labels (optional) character vector of variable (or “node”) names. Typically preferred to
specifying p.

p (optional) number of variables (or nodes). May be specified if labels are not,
in which case labels is set to 1:p.

numCores Specifies the number of cores to be used for parallel estimation of skeleton.

verbose If TRUE, detailed output is provided.

fixedGaps A logical matrix of dimension p*p. If entry [i,j] or [j,i] (or both) are TRUE,
the edge i-j is removed before starting the algorithm. Therefore, this edge is
guaranteed to be absent in the resulting graph.

fixedEdges A logical matrix of dimension p*p. If entry [i,j] or [j,i] (or both) are TRUE,
the edge i-j is never considered for removal. Therefore, this edge is guaranteed
to be present in the resulting graph.

NAdelete If indepTest returns NA and this option is TRUE, the corresponding edge is deleted.
If this option is FALSE, the edge is not deleted.
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m.max Maximal size of the conditioning sets that are considered in the conditional in-
dependence tests.

u2pd String specifying the method for dealing with conflicting information when try-
ing to orient edges (see details below).

skel.method Character string specifying method; the default, "stable" provides an order-
independent skeleton, see skeleton.

conservative Logical indicating if the conservative PC is used. In this case, only option u2pd
= "relaxed" is supported. Note that therefore the resulting object might not be
extendable to a DAG. See details for more information.

maj.rule Logical indicating that the triples shall be checked for ambiguity using a major-
ity rule idea, which is less strict than the conservative PC algorithm. For more
information, see details.

solve.confl If TRUE, the orientation of the v-structures and the orientation rules work with
lists for candidate sets and allow bi-directed edges to resolve conflicting edge
orientations. In this case, only option u2pd = relaxed is supported. Note, that
therefore the resulting object might not be a CPDAG because bi-directed edges
might be present. See details for more information.

Details

Under the assumption that the distribution of the observed variables is faithful to a DAG, this func-
tion estimates the Markov equivalence class of the DAG. We do not estimate the DAG itself, be-
cause this is typically impossible (even with an infinite amount of data), since different DAGs can
describe the same conditional independence relationships. Since all DAGs in an equivalence class
describe the same conditional independence relationships, they are equally valid ways to describe
the conditional dependence structure that was given as input.

All DAGs in a Markov equivalence class have the same skeleton (i.e., the same adjacency informa-
tion) and the same v-structures (see definition below). However, the direction of some edges may
be undetermined, in the sense that they point one way in one DAG in the equivalence class, while
they point the other way in another DAG in the equivalence class.

A Markov equivalence class can be uniquely represented by a completed partially directed acyclic
graph (CPDAG). A CPDAG contains undirected and directed edges. The edges have the following
interpretation: (i) there is a (directed or undirected) edge between i and j if and only if variables i
and j are conditionally dependent given S for all possible subsets S of the remaining nodes; (ii) a
directed edge i −→ j means that this directed edge is present in all DAGs in the Markov equivalence
class; (iii) an undirected edge i− j means that there is at least one DAG in the Markov equivalence
class with edge i −→ j and there is at least one DAG in the Markov equivalence class with edge
i←− j.

The CPDAG is estimated using the PC algorithm (named after its inventors Peter Spirtes and Clark
Glymour). The skeleton is estimated by the function skeleton which uses a modified version of the
original PC algorithm (see Colombo and Maathuis (2014) for details). The original PC algorithm
is known to be order-dependent, in the sense that the output depends on the order in which the
variables are given. Therefore, Colombo and Maathuis (2014) proposed a simple modification,
called PC-stable, that yields order-independent adjacencies in the skeleton (see the help file of this
function for details). Subsequently, as many edges as possible are oriented. This is done in two
steps. It is important to note that if no further actions are taken (see below) these two steps still
remain order-dependent.
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The edges are oriented as follows. First, the algorithm considers all triples (a,b,c), where a and b
are adjacent, b and c are adjacent, but a and c are not adjacent. For all such triples, we direct both
edges towards b (a −→ b ←− c) if and only if b was not part of the conditioning set that made
the edge between a and c drop out. These conditioning sets were saved in sepset. The structure
a −→ b←− c is called a v-structure.

After determining all v-structures, there may still be undirected edges. It may be possible to direct
some of these edges, since one can deduce that one of the two possible directions of the edge is
invalid because it introduces a new v-structure or a directed cycle. Such edges are found by repeat-
edly applying rules R1-R3 of the PC algorithm as given in Algorithm 2 of Kalisch and Bühlmann
(2007). The algorithm stops if none of the rules is applicable to the graph.

The conservative PC algorithm (conservative = TRUE) is a slight variation of the PC algorithm
(see Ramsey et al. 2006). After the skeleton is computed, all potential v-structures a − b − c
are checked in the following way. We test whether a and c are independent conditioning on all
subsets of the neighbors of a and all subsets of the neighbors of c. When a subset makes a and c
conditionally independent, we call it a separating set. If b is in no such separating set or in all such
separating sets, no further action is taken and the usual PC is continued. If, however, b is in only
some separating sets, the triple a − b − c is marked as ’ambiguous’. Moreover, if no separating
set is found among the neighbors, the triple is also marked as ’ambiguous’. An ambiguous triple is
not oriented as a v-structure. Furthermore, no further orientation rule that needs to know whether
a − b − c is a v-structure or not is applied. Instead of using the conservative version, which is
quite strict towards the v-structures, Colombo and Maathuis (2014) introduced a less strict version
for the v-structures called majority rule. This adaptation can be called using maj.rule = TRUE. In
this case, the triple a − b − c is marked as ’ambiguous’ if and only if b is in exactly 50 percent of
such separating sets or no separating set was found. If b is in less than 50 percent of the separating
sets it is set as a v-structure, and if in more than 50 percent it is set as a non v-structure (for more
details see Colombo and Maathuis, 2014). The usage of both the conservative and the majority rule
versions resolve the order-dependence issues of the determination of the v-structures.

Sampling errors (or hidden variables) can lead to conflicting information about edge directions.
For example, one may find that a − b − c and b − c − d should both be directed as v-structures.
This gives conflicting information about the edge b − c, since it should be directed as b ←− c in
v-structure a −→ b ←− c, while it should be directed as b −→ c in v-structure b −→ c ←− d.
With the option solve.confl = FALSE, in such cases, we simply overwrite the directions of the
conflicting edge. In the example above this means that we obtain a −→ b −→ c←− d if a− b− c
was visited first, and a −→ b ←− c ←− d if b − c − d was visited first, meaning that the final
orientation on the edge depends on the ordering in which the v-structures were considered. With
the option solve.confl = TRUE (which is only supported with option u2pd = "relaxed"), we first
generate a list of all (unambiguous) v-structures (in the example above a − b − c and b − c − d),
and then we simply orient them allowing both directions on the edge b − c, namely we allow the
bi-directed edge b ↔ c resolving the order-dependence issues on the edge orientations. We denote
bi-directed edges in the adjacency matrix M of the graph as M[b,c] = 2 and M[c,b] = 2. In a similar
way, using lists for the candidate edges for each orientation rule and allowing bi-directed edges, the
order-dependence issues in the orientation rules can be resolved. Note that bi-directed edges merely
represent a conflicting orientation and they should not to be interpreted causally. The useage of these
lists for the candidate edges and allowing bi-directed edges resolves the order-dependence issues on
the orientation of the v-structures and on the orientation rules, see Colombo and Maathuis (2014)
for more details.

Note that calling (conservative = TRUE), or maj.rule = TRUE, together with solve.confl = TRUE
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produces a fully order-independent output, see Colombo and Maathuis (2014).

Sampling errors, non faithfulness, or hidden variables can also lead to non-extendable CPDAGs,
meaning that there does not exist a DAG that has the same skeleton and v-structures as the graph
found by the algorithm. An example of this is an undirected cycle consisting of the edges a−b−c−d
and d − a. In this case it is impossible to direct the edges without creating a cycle or a new v-
structure. The option u2pd specifies what should be done in such a situation. If the option is set
to "relaxed", the algorithm simply outputs the invalid CPDAG. If the option is set to "rand",
all direction information is discarded and a random DAG is generated on the skeleton, which is
then converted into its CPDAG. If the option is set to "retry", up to 100 combinations of possible
directions of the ambiguous edges are tried, and the first combination that results in an extendable
CPDAG is chosen. If no valid combination is found, an arbitrary DAG is generated on the skeleton
as in the option "rand", and then converted into its CPDAG. Note that the output can also be an
invalid CPDAG, in the sense that it cannot arise from the oracle PC algorithm, but be extendible to
a DAG, for example a −→ b←− c←− d. In this case, u2pd is not used.

Using the function isValidGraph one can check if the final output is indeed a valid CPDAG.

Notes: (1) Throughout, the algorithm works with the column positions of the variables in the adja-
cency matrix, and not with the names of the variables. (2) When plotting the object, undirected and
bidirected edges are equivalent.

Value

An object of class "pcAlgo" (see pcAlgo) containing an estimate of the equivalence class of the
underlying DAG.

Author(s)

Markus Kalisch (<kalisch@stat.math.ethz.ch>), Martin Maechler, and Diego Colombo.

References

D. Colombo and M.H. Maathuis (2014).Order-independent constraint-based causal structure learn-
ing. Journal of Machine Learning Research 15 3741-3782.

M. Kalisch, M. Maechler, D. Colombo, M.H. Maathuis and P. Buehlmann (2012). Causal Inference
Using Graphical Models with the R Package pcalg. Journal of Statistical Software 47(11) 1–26,
doi:10.18637/jss.v047.i11.

M. Kalisch and P. Buehlmann (2007). Estimating high-dimensional directed acyclic graphs with
the PC-algorithm. JMLR 8 613-636.

J. Ramsey, J. Zhang and P. Spirtes (2006). Adjacency-faithfulness and conservative causal infer-
ence. In Proceedings of the 22nd Annual Conference on Uncertainty in Artificial Intelligence. AUAI
Press, Arlington, VA.

P. Spirtes, C. Glymour and R. Scheines (2000). Causation, Prediction, and Search, 2nd edition.
The MIT Press.

See Also

skeleton for estimating a skeleton of a DAG; udag2pdag for converting the skeleton to a CPDAG;
gaussCItest, disCItest, binCItest and dsepTest as examples for indepTest. isValidGraph
for testing whether the output is a valid CPDAG.

https://doi.org/10.18637/jss.v047.i11
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Examples

##################################################
## Using Gaussian Data
##################################################
## Load predefined data
data(gmG)
n <- nrow (gmG8$ x)
V <- colnames(gmG8$ x) # labels aka node names

## estimate CPDAG
pc.fit <- pc(suffStat = list(C = cor(gmG8$x), n = n),

indepTest = gaussCItest, ## indep.test: partial correlations
alpha=0.01, labels = V, verbose = TRUE)

if (require(Rgraphviz)) {
## show estimated CPDAG
par(mfrow=c(1,2))
plot(pc.fit, main = "Estimated CPDAG")
plot(gmG8$g, main = "True DAG")

}
##################################################
## Using d-separation oracle
##################################################
## define sufficient statistics (d-separation oracle)
suffStat <- list(g = gmG8$g, jp = RBGL::johnson.all.pairs.sp(gmG8$g))
## estimate CPDAG
fit <- pc(suffStat, indepTest = dsepTest, labels = V,

alpha= 0.01) ## value is irrelevant as dsepTest returns either 0 or 1
if (require(Rgraphviz)) {

## show estimated CPDAG
plot(fit, main = "Estimated CPDAG")
plot(gmG8$g, main = "True DAG")

}

##################################################
## Using discrete data
##################################################
## Load data
data(gmD)
V <- colnames(gmD$x)
## define sufficient statistics
suffStat <- list(dm = gmD$x, nlev = c(3,2,3,4,2), adaptDF = FALSE)
## estimate CPDAG
pc.D <- pc(suffStat,

## independence test: G^2 statistic
indepTest = disCItest, alpha = 0.01, labels = V, verbose = TRUE)

if (require(Rgraphviz)) {
## show estimated CPDAG
par(mfrow = c(1,2))
plot(pc.D, main = "Estimated CPDAG")
plot(gmD$g, main = "True DAG")

}



124 pc.cons.intern

##################################################
## Using binary data
##################################################
## Load binary data
data(gmB)
V <- colnames(gmB$x)
## estimate CPDAG
pc.B <- pc(suffStat = list(dm = gmB$x, adaptDF = FALSE),

indepTest = binCItest, alpha = 0.01, labels = V, verbose = TRUE)
pc.B
if (require(Rgraphviz)) {

## show estimated CPDAG
plot(pc.B, main = "Estimated CPDAG")
plot(gmB$g, main = "True DAG")

}

##################################################
## Detecting ambiguities due to sampling error
##################################################
## Load predefined data
data(gmG)
n <- nrow (gmG8$ x)
V <- colnames(gmG8$ x) # labels aka node names

## estimate CPDAG
pc.fit <- pc(suffStat = list(C = cor(gmG8$x), n = n),

indepTest = gaussCItest, ## indep.test: partial correlations
alpha=0.01, labels = V, verbose = TRUE)

## due to sampling error, some edges were overwritten:
isValidGraph(as(pc.fit, "amat"), type = "cpdag")

## re-fit with solve.confl = TRUE
pc.fit2 <- pc(suffStat = list(C = cor(gmG8$x), n = n),

indepTest = gaussCItest, ## indep.test: partial correlations
alpha=0.01, labels = V, verbose = TRUE,
solve.confl = TRUE)

## conflicting edge is V5 - V6
as(pc.fit2, "amat")

pc.cons.intern Utility for conservative and majority rule in PC and FCI

Description

The pc.cons.intern() function is used in pc and fci, notably when conservative = TRUE (con-
servative orientation of v-structures) or maj.rule = TRUE (majority rule orientation of v-structures).
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Usage

pc.cons.intern(sk, suffStat, indepTest, alpha, version.unf = c(NA, NA),
maj.rule = FALSE, verbose = FALSE)

Arguments

sk A skeleton object as returned from skeleton().

suffStat Sufficient statistic: List containing all necessary elements for the conditional
independence decisions in the function indepTest.

indepTest Pre-defined function for testing conditional independence. The function is in-
ternally called as indepTest(x,y,S,suffStat), and tests conditional indepen-
dence of x and y given S. Here, x and y are variables, and S is a (possibly
empty) vector of variables (all variables are denoted by their column numbers
in the adjacency matrix). suffStat is a list containing all relevant elements for
the conditional independence decisions. The return value of indepTest is the
p-value of the test for conditional independence.

alpha Significance level for the individual conditional independence tests.

version.unf Vector of length two. If version.unf[2]==1, the intitial separating set found by
the PC/FCI algorithm is added to the set of separating sets; if version.unf[2]==2,
it is not added. In the latter case, if the set of separating sets is empty, the
triple is marked as unambiguous if version.unf[1]==1, and as ambiguous if
version.unf[1]==2.

maj.rule Logical indicatin if the triples are checked for ambiguity using the majority rule
idea, which is less strict than the standard conservative method.

verbose Logical asking for detailed output.

Details

For any unshielded triple A-B-C, consider all subsets of the neighbors of A and of the neighbors
of C, and record all such sets D for which A and C are conditionally independent given D. We call
such sets “separating sets”.

If version.unf[2]==1, the initial separating set found in the PC/FCI algorithm is added to this set
of separating sets. If version.unf[2]==2, the initial separating set is not added (as in Tetrad).

In the latter case, if the set of separating sets is empty, then the triple is marked as ‘ambiguous’ if
version.unf[1]==2, for example in pc, or as ‘unambiguous’ if version.unf[1]==1, for example
in fci. Otherwise, there is at least one separating set. If maj.rule=FALSE, the conservative PC
algorithm is used (Ramsey et al., 2006): If B is in some but not all separating sets, the triple is
marked as ambiguous. Otherwise it is treated as in the standard PC algorithm. If maj.rule=TRUE,
the majority rule is applied (Colombo and Maathuis, 2014): The triple is marked as ‘ambiguous’
if B is in exactly 50 percent of the separating sets. If it is in less than 50 percent it is marked as a
v-structure, and if it is in more than 50 percent it is marked as a non v-structure.

Note: This function modifies the separating sets for unambiguous triples in the skeleton object
(adding or removing B) to ensure that the usual orientations rules later on lead to the correct v-
structures/non v-structures.
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Value

unfTripl numeric vector of triples coded as numbers (via triple2numb()) that were
marked as ambiguous.

vers Vector containing the version (1 or 2) of the corresponding triple saved in un-
fTripl (1=normal ambiguous triple, i.e., B is in some sepsets but not all or none;
2=triple coming from version.unf[1]==2, i.e., a and c are indep given the ini-
tial sepset but there does not exist a subset of the neighbours of a or of c that
d-separates them.)

sk The updated skeleton-object (separating sets might have been updated).

Author(s)

Markus Kalisch (<kalisch@stat.math.ethz.ch>) and Diego Colombo.

References

D. Colombo and M.H. Maathuis (2014).Order-independent constraint-based causal structure learn-
ing. Journal of Machine Learning Research 15 3741-3782.

J. Ramsey, J. Zhang and P. Spirtes (2006). Adjacency-faithfulness and conservative causal infer-
ence. In Proceedings of the 22nd Annual Conference on Uncertainty in Artificial Intelligence,
Arlington, VA. AUAI Press.

See Also

skeleton, pc, fci

pcalg2dagitty Transform the adjacency matrix from pcalg into a dagitty object

Description

Transform the adjacency matrix of type amat.cpdag or amat.pag (for details on coding see amatType).

Usage

pcalg2dagitty(amat, labels, type = "cpdag")

Arguments

amat adjacency matrix of type amat.cpdag or amat.pag

labels character vector of variable (or “node”) names.

type string specifying the type of graph of the adjacency matrix amat. It can be a
DAG (type="dag"), a CPDAG (type="cpdag") or a maximally oriented PDAG
(type="pdag") from Meek (1995); then the type of adjacency matrix is as-
sumed to be amat.cpdag. It can also be a MAG (type = "mag") or a PAG
(type="pag"); then the type of the adjacency matrix is assumed to be amat.pag.
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Details

For a given adjacency matrix amat the form amat.cpdag or amat.pag and a specified graph type,
this function returns a dagitty object corresponding to the graph structure specified by amat, labels
and type. The resulting object is compatible with the dagitty package.

Value

A dagitty graph (see the dagitty package).

Author(s)

Emilija Perkovic and Markus Kalisch

Examples

data(gmG)
n <- nrow (gmG8$x)
V <- colnames(gmG8$x) # labels aka node names

amat <- wgtMatrix(gmG8$g)
amat[amat != 0] <- 1
if(requireNamespace("dagitty", quietly = TRUE)) {
dagitty_dag1 <- pcalg2dagitty(amat,V,type="dag")
}

pcAlgo PC-Algorithm [OLD]: Estimate Skeleton or Equivalence Class of a
DAG

Description

This function is DEPRECATED! Use skeleton, pc or fci instead.

Use the PC-algorithm to estimate the underlying graph (“skeleton”) or the equivalence class (CPDAG)
of a DAG.

Usage

pcAlgo(dm = NA, C = NA, n=NA, alpha, corMethod = "standard",
verbose=FALSE, directed=FALSE, G=NULL, datatype = "continuous",
NAdelete=TRUE, m.max=Inf, u2pd = "rand", psepset=FALSE)

Arguments

dm Data matrix; rows correspond to samples, cols correspond to nodes.

C Correlation matrix; this is an alternative for specifying the data matrix.

n Sample size; this is only needed if the data matrix is not provided.

alpha Significance level for the individual partial correlation tests.
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corMethod A character string speciyfing the method for (partial) correlation estimation.
"standard", "QnStable", "Qn" or "ogkQn" for standard and robust (based on the
Qn scale estimator without and with OGK) correlation estimation. For robust
estimation, we recommend "QnStable".

verbose 0-no output, 1-small output, 2-details;using 1 and 2 makes the function very
much slower

directed If FALSE, the underlying skeleton is computed; if TRUE, the underlying CPDAG
is computed

G The adjacency matrix of the graph from which the algorithm should start (logi-
cal)

datatype Distinguish between discrete and continuous data

NAdelete Delete edge if pval=NA (for discrete data)

m.max Maximal size of conditioning set

u2pd Function used for converting skeleton to cpdag. "rand" (use udag2pdag); "re-
laxed" (use udag2pdagRelaxed); "retry" (use udag2pdagSpecial)

psepset If true, also possible separation sets are tested.

Value

An object of class "pcAlgo" (see pcAlgo) containing an undirected graph (object of class "graph",
see graph-class from the package graph) (without weigths) as estimate of the skeleton or the
CPDAG of the underlying DAG.

Author(s)

Markus Kalisch (<kalisch@stat.math.ethz.ch>) and Martin Maechler.

References

P. Spirtes, C. Glymour and R. Scheines (2000) Causation, Prediction, and Search, 2nd edition, The
MIT Press.

Kalisch M. and P. B\"uhlmann (2007) Estimating high-dimensional directed acyclic graphs with the
PC-algorithm; JMLR, Vol. 8, 613-636, 2007.

pcAlgo-class Class "pcAlgo" of PC Algorithm Results, incl. Skeleton

Description

This class of objects is returned by the functions skeleton and pc to represent the (skeleton) of an
estimated CPDAG. Objects of this class have methods for the functions plot, show and summary.
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Usage

## S4 method for signature 'pcAlgo,ANY'
plot(x, y, main = NULL,

zvalue.lwd = FALSE, lwd.max = 7, labels = NULL, ...)
## S3 method for class 'pcAlgo'
print(x, amat = FALSE, zero.print = ".", ...)

## S4 method for signature 'pcAlgo'
summary(object, amat = TRUE, zero.print = ".", ...)
## S4 method for signature 'pcAlgo'
show(object)

Arguments

x, object a "pcAlgo" object.

y (generic plot() argument; unused).

main main title for the plot (with an automatic default).

zvalue.lwd logical indicating if the line width (lwd) of the edges should be made propor-
tional to the entries of matrix zMin (originally) or derived from matrix pMax.

lwd.max maximal lwd to be used, if zvalue.lwd is true.

labels if non-NULL, these are used to define node attributes nodeAttrs and attrs,
passed to agopen() from package Rgraphviz.

amat logical indicating if the adjacency matrix should be shown (printed) as well.

zero.print string for printing 0 (‘zero’) entries in the adjacency matrix.

... optional further arguments (passed from and to methods).

Creation of objects

Objects are typically created as result from skeleton() or pc(), but could be be created by calls
of the form new("pcAlgo", ...).

Slots

The slots call, n, max.ord, n.edgetests, sepset, and pMax are inherited from class "gAlgo", see
there.

In addition, "pcAlgo" has slots

graph: Object of class "graph-class": the undirected or partially directed graph that was esti-
mated.

zMin: Deprecated.

Extends

Class "gAlgo".
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Methods

plot signature(x = "pcAlgo"): Plot the resulting graph. If argument "zvalue.lwd" is true, the
linewidth an edge reflects zMin, so that thicker lines indicate more reliable dependencies. The
argument "lwd.max" controls the maximum linewidth.

show signature(object = "pcAlgo"): Show basic properties of the fitted object

summary signature(object = "pcAlgo"): Show details of the fitted object

Author(s)

Markus Kalisch and Martin Maechler

See Also

pc, skeleton, fciAlgo

Examples

showClass("pcAlgo")

## generate a pcAlgo object
p <- 8
set.seed(45)
myDAG <- randomDAG(p, prob = 0.3)
n <- 10000
d.mat <- rmvDAG(n, myDAG, errDist = "normal")
suffStat <- list(C = cor(d.mat), n = n)
pc.fit <- pc(suffStat, indepTest = gaussCItest, alpha = 0.01, p = p)

## use methods of class pcAlgo
show(pc.fit)
if(require(Rgraphviz))

plot(pc.fit, main = "Fitted graph")
summary(pc.fit)

## access slots of this object
(g <- pc.fit@graph)
str(ss <- pc.fit@sepset, max=1)

pcorOrder Compute Partial Correlations

Description

This function computes partial correlations given a correlation matrix using a recursive algorithm.

Usage

pcorOrder(i,j, k, C, cut.at = 0.9999999)
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Arguments

i, j (integer) position of variable i and j, respectively, in correlation matrix.

k (integer) positions of zero or more conditioning variables in the correlation ma-
trix.

C Correlation matrix (matrix)

cut.at Number slightly smaller than one; if c is cut.at, values outside of [−c, c] are
set to −c or c respectively.

Details

The partial correlations are computed using a recusive formula if the size of the conditioning set is
one. For larger conditioning sets, the pseudoinverse of parts of the correlation matrix is computed
(by pseudoinverse() from package corpcor). The pseudoinverse instead of the inverse is used in
order to avoid numerical problems.

Value

The partial correlation of i and j given the set k.

Author(s)

Markus Kalisch <kalisch@stat.math.ethz.ch> and Martin Maechler

See Also

condIndFisherZ for testing zero partial correlation.

Examples

## produce uncorrelated normal random variables
mat <- matrix(rnorm(3*20),20,3)
## compute partial correlation of var1 and var2 given var3
pcorOrder(1,2, 3, cor(mat))

## define graphical model, simulate data and compute
## partial correlation with bigger conditional set
genDAG <- randomDAG(20, prob = 0.2)
dat <- rmvDAG(1000, genDAG)
C <- cor(dat)
pcorOrder(2,5, k = c(3,7,8,14,19), C)
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pcSelect PC-Select: Estimate subgraph around a response variable

Description

The goal is feature selection: If you have a response variable y and a data matrix dm, we want
to know which variables are “strongly influential” on y. The type of influence is the same as in
the PC-Algorithm, i.e., y and x (a column of dm) are associated if they are correlated even when
conditioning on any subset of the remaining columns in dm. Therefore, only very strong relations
will be found and the result is typically a subset of other feature selection techniques. Note that
there are also robust correlation methods available which render this method robust.

Usage

pcSelect(y, dm, alpha, corMethod = "standard",
verbose = FALSE, directed = FALSE)

Arguments

y response vector.
dm data matrix (rows: samples/observations, columns: variables); nrow(dm) ==

length(y).
alpha significance level of individual partial correlation tests.
corMethod a string determining the method for correlation estimation via mcor(); specifi-

cally any of the mcor(*, method = "..") can be used, e.g., "Qn" for one kind
of robust correlation estimate.

verbose logical or in {0, 1, 2};
FALSE, 0: No output,
TRUE, 1: Little output,
2: Detailed output.
Note that such diagnostic output may make the function considerably slower.

directed logical; should the output graph be directed?

Details

This function basically applies pc on the data matrix obtained by joining y and dm. Since the
output is not concerned with the edges found within the columns of dm, the algorithm is adapted
accordingly. Therefore, the runtime and the ability to deal with large datasets is typically increased
substantially.

Value

G A logical vector indicating which column of dm is associated with y.
zMin The minimal z-values when testing partial correlations between y and each col-

umn of dm. The larger the number, the more consistent is the edge with the
data.
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Author(s)

Markus Kalisch (<kalisch@stat.math.ethz.ch>) and Martin Maechler.

References

Buehlmann, P., Kalisch, M. and Maathuis, M.H. (2010). Variable selection for high-dimensional
linear models: partially faithful distributions and the PC-simple algorithm. Biometrika 97, 261–278.

See Also

pc which is the more general version of this function; pcSelect.presel which applies pcSelect()
twice.

Examples

p <- 10
## generate and draw random DAG :
suppressWarnings(RNGversion("3.5.0"))
set.seed(101)
myDAG <- randomDAG(p, prob = 0.2)
if (require(Rgraphviz)) {

plot(myDAG, main = "randomDAG(10, prob = 0.2)")
}
## generate 1000 samples of DAG using standard normal error distribution
n <- 1000
d.mat <- rmvDAG(n, myDAG, errDist = "normal")

## let's pretend that the 10th column is the response and the first 9
## columns are explanatory variable. Which of the first 9 variables
## "cause" the tenth variable?
y <- d.mat[,10]
dm <- d.mat[,-10]
(pcS <- pcSelect(d.mat[,10], d.mat[,-10], alpha=0.05))
## You see, that variable 4,5,6 are considered as important
## By inspecting zMin,
with(pcS, zMin[G])
## you can also see that the influence of variable 6
## is most evident from the data (its zMin is 18.64, so quite large - as
## a rule of thumb for judging what is large, you could use quantiles
## of the Standard Normal Distribution)

pcSelect.presel Estimate Subgraph around a Response Variable using Preselection

Description

This function uses pcSelect to preselect some covariates and then runs pcSelect again on the
reduced data set.
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Usage

pcSelect.presel(y, dm, alpha, alphapre, corMethod = "standard",
verbose = 0, directed=FALSE)

Arguments

y Response vector.

dm Data matrix (rows: samples, cols: nodes; i.e., length(y) == nrow(dm)).

alpha Significance level of individual partial correlation tests.

alphapre Significance level for pcSelect in preselection

corMethod "standard" or "Qn" for standard or robust correlation estimation

verbose 0-no output, 1-small output, 2-details (using 1 and 2 makes the function very
much slower)

directed Logical; should the output graph be directed?

Details

First, pcSelect is run using alphapre. Then, only the important variables are kept and pcSelect
is run on them again.

Value

pcs Logical vector indicating which column of dm is associated with y

zMin The minimal z-values when testing partial correlations between y and each col-
umn of dm. The larger the number, the more consistent is the edge with the
data.

Xnew Preselected Variables.

Author(s)

Philipp Ruetimann

See Also

pcSelect

Examples

p <- 10
## generate and draw random DAG :
set.seed(101)
myDAG <- randomDAG(p, prob = 0.2)
if(require(Rgraphviz))

plot(myDAG, main = "randomDAG(10, prob = 0.2)")

## generate 1000 samples of DAG using standard normal error distribution
n <- 1000
d.mat <- rmvDAG(n, myDAG, errDist = "normal")
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## let's pretend that the 10th column is the response and the first 9
## columns are explanatory variable. Which of the first 9 variables
## "cause" the tenth variable?
y <- d.mat[,10]
dm <- d.mat[,-10]
res <- pcSelect.presel(d.mat[,10], d.mat[,-10], alpha=0.05, alphapre=0.6)

pdag2allDags Enumerate All DAGs in a Markov Equivalence Class

Description

pdag2allDags computes all DAGs in the Markov Equivalence Class Represented by a Given Par-
tially Directed Acyclic Graph (PDAG).

Usage

pdag2allDags(gm, verbose = FALSE)

Arguments

gm adjacency matrix of type amat.cpdag

verbose logical; if true, some output is produced during computation

Details

All DAGs extending the given PDAG are computing while avoiding new v-structures and cycles. If
no DAG is found, the function returns NULL.

Value

List with two elements:

dags: Matrix; every row corresponds to a DAG; every column corresponds to an en-
try in the adjacency matrix of this DAG. Thus, the adjacency matrix (of type
amat.cpdag) contained in the i-th row of matrix dags can be obtained by call-
ing matrix(dags[i,],p,p, byrow = TRUE) (assuming the input PDAG has p
nodes).

nodeNms Node labels of the input PDAG.

Author(s)

Markus Kalisch (<kalisch@stat.math.ethz.ch>)
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Examples

## Example 1
gm <- rbind(c(0,1),

c(1,0))
colnames(gm) <- rownames(gm) <- LETTERS[1:2]
res1 <- pdag2allDags(gm)
## adjacency matrix of first DAG in output
amat1 <- matrix(res1$dags[1,],2,2, byrow = TRUE)
colnames(amat1) <- rownames(amat1) <- res1$nodeNms
amat1 ## A --> B

## Example 2
gm <- rbind(c(0,1,1),

c(1,0,1),
c(1,1,0))

colnames(gm) <- rownames(gm) <- LETTERS[1:ncol(gm)]
res2 <- pdag2allDags(gm)
## adjacency matrix of first DAG in output
amat2 <- matrix(res2$dags[1,],3,3, byrow = TRUE)
colnames(amat2) <- rownames(amat2) <- res2$nodeNms
amat2

## Example 3
gm <- rbind(c(0,1,1,0,0),

c(1,0,0,0,0),
c(1,0,0,0,0),
c(0,1,1,0,1),
c(0,0,0,1,0))

colnames(gm) <- rownames(gm) <- LETTERS[1:ncol(gm)]
res3 <- pdag2allDags(gm)
## adjacency matrix of first DAG in output
amat3 <- matrix(res3$dags[1,],5,5, byrow = TRUE)
colnames(amat3) <- rownames(amat3) <- res3$nodeNms
amat3

if (require(Rgraphviz)) {
## for convenience a simple plotting function
## for the function output
plotAllDags <- function(res) {

require(graph)
p <- sqrt(ncol(res$dags))
nDags <- ceiling(sqrt(nrow(res$dags)))
par(mfrow = c(nDags, nDags))
for (i in 1:nrow(res$dags)) {

tmp <- matrix(res$dags[i,],p,p)
colnames(tmp) <- rownames(tmp) <- res$nodeNms
plot(as(tmp, "graphNEL"))

}
}
plotAllDags(res1)
amat1 ## adj.matrix corresponding to the first plot for expl 1
plotAllDags(res2)
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amat2 ## adj.matrix corresponding to the first plot for expl 2
plotAllDags(res3)
amat3 ## adj.matrix corresponding to the first plot for expl 3
}

pdag2dag Extend a Partially Directed Acyclic Graph (PDAG) to a DAG

Description

This function extends a PDAG (Partially Directed Acyclic Graph) to a DAG, if this is possible.

Usage

pdag2dag(g, keepVstruct=TRUE)

Arguments

g Input PDAG (graph object)

keepVstruct Logical indicating if the v-structures in g are kept. Otherwise they are ignored
and an arbitrary extension is generated.

Details

Direct undirected edges without creating directed cycles or additional v-structures. The PDAG is
consistently extended to a DAG using the algorithm by Dor and Tarsi (1992). If no extension is
possible, a DAG corresponding to the skeleton of the PDAG is generated and a warning message is
produced.

Value

List with entries

graph Contains a consistent DAG extension (graph object),

success Is TRUE iff the extension was possible.

Author(s)

Markus Kalisch <kalisch@stat.math.ethz.ch>

References

D.Dor, M.Tarsi (1992). A simple algorithm to construct a consistent extension of a partially oriented
graph. Technicial Report R-185, Cognitive Systems Laboratory, UCLA
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Examples

p <- 10 # number of random variables
n <- 10000 # number of samples
s <- 0.4 # sparsness of the graph

## generate random data
set.seed(42)
g <- randomDAG(p, prob = s) # generate a random DAG
d <- rmvDAG(n,g) # generate random samples

gSkel <- pcAlgo(d,alpha=0.05) # estimate of the skeleton

(gPDAG <- udag2pdag(gSkel))

(gDAG <- pdag2dag(gPDAG@graph))

pdsep Estimate Final Skeleton in the FCI algorithm

Description

Estimate the final skeleton in the FCI algorithm (Spirtes et al, 2000), as described in Steps 2 and 3
of Algorithm 3.1 in Colombo et al. (2012). The input of this function consists of an initial skeleton
that was estimated by the PC algorithm (Step 1 of Algorithm 3.1 in Colombo et al. (2012)).

Given the initial skeleton, all unshielded triples are considered and oriented as colliders when ap-
propriate. Then, for all nodes x in the resulting partially directed graph G, Possible-D-SEP(x,G) is
computed, using the function qreach. Finally, for any edge y-z that is present in G and that is not
flagged as fixed by the fixedEdges argument, conditional independence between Y and Z is tested
given all subsets of Possible-D-SEP(y,G) and all subsets of Possible-D-SEP(z,G). These tests are
done at level alpha, using indepTest. If the pair of nodes is judged to be independent given some
set S, then S is recorded in sepset(y,z) and sepset(z,y) and the edge y-z is deleted. Otherwise, the
edge remains and there is no change to sepset.

Usage

pdsep(skel, suffStat, indepTest, p, sepset, alpha, pMax, m.max = Inf,
pdsep.max = Inf, NAdelete = TRUE, unfVect = NULL,
biCC = FALSE, fixedEdges = NULL, verbose = FALSE)

Arguments

skel Graph object returned by skeleton.

suffStat Sufficient statistic: A list containing all necessary elements for making condi-
tional independence decisions using function indepTest.

indepTest Predefined function for testing conditional independence. The function is inter-
nally called as indepTest(x,y,S,suffStat) for testing conditional indepen-
dence of x and y given S. Here, x and y are node numbers of the adjacency
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matrix, S is a (possibly empty) vector of node numbers of the adjacency matrix
and suffStat is a list containing all relevant elements for making conditional
independence decisions. The return value of indepTest is the p-value of the
test for conditional independence.

p Number of variables.

sepset List of length p; each element of the list contains another list of length p. The
element sepset[[x]][[y]] contains the separation set that made the edge be-
tween x and y drop out. This object is thought to be obtained from a pcAlgo-
object or fciAlgo-object.

alpha Significance level for the individual conditional independence tests.

pMax Matrix with the maximal p-values of conditional independence tests in a previ-
ous call of skeleton, pc or fci which produced G. This object is thought to be
obtained from a pcAlgo-object or fciAlgo-object.

m.max Maximum size of the conditioning sets that are considered in the conditional
independence tests.

pdsep.max Maximum size of Possible-D-SEP for which subsets are considered as condi-
tioning sets in the conditional independence tests. If the nodes x and y are
adjacent in the graph and the size of Possible-D-SEP(x,G) \ {x, y}, is bigger
than pdsep.max, the edge is simply left in the graph. Note that if pdsep.max is
less than Inf, the final PAG is typically a supergraph of the one computed with
pdsep.max = Inf, because fewer tests may have been performed in the former.

NAdelete If indepTest returns NA and this option is TRUE, the corresponding edge is deleted.
If this option is FALSE, the edge is not deleted.

unfVect Vector containing numbers that encode the unfaithful triple (as returned by pc.cons.intern).
This is needed in the conservative FCI.

biCC Logical; if TRUE, only nodes on paths between nodes a and c are considered
to be in sepset(a,c). This uses biconnected components, see biConnComp from
RBGL.

fixedEdges a logical symmetric matrix of dimension p*p. If entry [i,j] is true, the edge
i−−j is never considered for removal. Therefore, this edge is guaranteed to be
present in the resulting graph.

verbose Logical indicating that detailed output is to be provided.

Details

To make the code more efficient, we only perform tests that were not performed in the estimation
of the initial skeleton.

Note that the Possible-D-SEP sets are computed once in the beginning. They are not updated after
edge deletions, in order to make sure that the output of the algorithm does not depend on the ordering
of the variables (see also Colombo and Maathuis (2014)).

Value

A list with the following elements:

G Updated adjacency matrix representing the final skeleton
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sepset Updated sepsets

pMax Updated matrix containing maximal p-values

allPdsep Possible-D-Sep for each node

max.ord Maximal order of conditioning sets during independence tests

n.edgetests Number of conditional edgetests performed, grouped by the size of the condi-
tioning set.

Author(s)

Markus Kalisch (<kalisch@stat.math.ethz.ch>) and Diego Colombo.

References

P. Spirtes, C. Glymour and R. Scheines (2000). Causation, Prediction, and Search, 2nd edition.
The MIT Press.

D. Colombo, M.H. Maathuis, M. Kalisch and T.S. Richardson (2012). Learning high-dimensional
directed acyclic graphs with latent and selection variables. Annals of Statistics 40, 294–321.

D. Colombo and M.H. Maathuis (2014). Order-independent constraint-based causal structure learn-
ing. Journal of Machine Learning Research 15 3741-3782.

See Also

qreach to find Possible-D-SEP(x,G); fci.

Examples

p <- 10
## generate and draw random DAG:
set.seed(44)
myDAG <- randomDAG(p, prob = 0.2)

## generate 10000 samples of DAG using gaussian distribution
library(RBGL)
n <- 10000
d.mat <- rmvDAG(n, myDAG, errDist = "normal")

## estimate skeleton
indepTest <- gaussCItest
suffStat <- list(C = cor(d.mat), n = n)
alpha <- 0.01
skel <- skeleton(suffStat, indepTest, alpha=alpha, p=p)

## prepare input for pdsep
sepset <- skel@sepset
pMax <- skel@pMax

## call pdsep to find Possible-D-Sep and enhance the skeleton
pdsepRes <- pdsep(skel@graph, suffStat, indepTest, p, sepset, alpha,

pMax, verbose = TRUE)
## call pdsep with biconnected components to find Possible-D-Sep and enhance the skeleton
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pdsepResBicc <- pdsep(skel@graph, suffStat, indepTest, p, sepset, alpha,
pMax, biCC= TRUE, verbose = TRUE)

plotAG Plot partial ancestral graphs (PAG)

Description

This function is DEPRECATED! Use the plot method of the fciAlgo class instead.

Usage

plotAG(amat)

Arguments

amat Adjacency matrix (coding 0,1,2,3 for no edge, circle, arrowhead, tail; e.g., amat[a,b]
= 2 and amat[b,a] = 3 implies a -> b)

Author(s)

Markus Kalisch (<kalisch@stat.math.ethz.ch>)

See Also

fci

plotSG Plot the subgraph around a Specific Node in a Graph Object

Description

Plots a subgraph for a specified starting node and a given graph. The subgraph consists of those
nodes that can be reached from the starting node by passing no more than a specified number of
edges.

Usage

plotSG(graphObj, y, dist, amat = NA, directed = TRUE,
plot = requireNamespace("Rgraphviz"), main = ,
cex.main = 1.25, font.main = par("font.main"), col.main=par("col.main"),
...)
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Arguments

graphObj An R object of class graph.

y (integer) position of the starting node in the adjacency matrix.

dist Distance of nodes included in subgraph from starting node y.

amat Precomputed adjacency matrix of type amat.cpdag (optional)

directed logical indicating if the subgraph should be directed.

plot logical indicating if the subgraph should be plotted (or just returned). Defaults
to true when Rgraphviz is installed.

main title to be used, with a sensible default; see title.
cex.main, font.main, col.main

optional settings for the main title; see title.

... optional arguments passed to the plot() from package Rgraphviz.

Details

Commencing at the starting point y the function looks for the neighbouring nodes. Beginning with
direct parents and children it will continue hierarchically through the distances to y. Note that
the neighbourhood does not depend on edge directions. If directed is true (as per default), the
orientation of the edges is taken from the initial graph.

For the plotting, the package Rgraphviz must be installed.

Value

the desired subgraph is returned; invisibly, i.e., via invisible, if plot is true.

Author(s)

Daniel Stekhoven, then Martin Maechler.

Examples

## generate a random DAG:
p <- 10
set.seed(45)
myDAG <- randomDAG(p, prob = 0.3)

if(requireNamespace("Rgraphviz")) {
## plot whole the DAG
plot(myDAG, main = "randomDAG(10, prob = 0.3)")

op <- par(mfrow = c(3,2))
## plot the neighbours of node number 8 up to distance 1
plotSG(myDAG, 8, 1, directed = TRUE)
plotSG(myDAG, 8, 1, directed = FALSE)

## plot the neighbours of node number 8 up to distance 2
plotSG(myDAG, 8, 2, directed = TRUE)
plotSG(myDAG, 8, 2, directed = FALSE)
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## plot the neighbours of node number 8 up to distance 3
plotSG(myDAG, 8, 3, directed = TRUE)
plotSG(myDAG, 8, 3, directed = FALSE)

## Note that the layout of the subgraph might be different than in the
## original graph, but the graph structure is identical
par(op)

} else { ## without 'Rgraphviz'
sg2d <- plotSG(myDAG, 8, 2, directed = TRUE, plot=FALSE)
sg2u <- plotSG(myDAG, 8, 2, directed = FALSE, plot=FALSE)

}

possAn Find possible ancestors of given node(s).

Description

In a DAG, CPDAG, MAG or PAG determine which nodes are (possible) ancestors of x on definite
status or just any paths potentially avoiding given nodes on the paths.

Usage

possAn(m, x, y = NULL, possible = TRUE, ds = TRUE,
type = c("cpdag", "pdag", "dag", "mag", "pag"))

Arguments

m Adjacency matrix in coding according to type.

x Node positions of starting nodes.

y Node positions of nodes through which a path must not go.

possible If TRUE, possible ancestors are returned.

ds If TRUE, only paths of definite status are considered.

type Type of adjacency matrix in m. The coding is according to amatType.

Details

Not all possible combinations of the arguments are currently implemented and will issue an error if
called.

Value

Vector of all node positions found as (possible) ancestors of the nodes in x.

Author(s)

Markus Kalisch
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See Also

amatType

Examples

## a -- b -> c
amat <- matrix(c(0,1,0, 1,0,1, 0,0,0), 3,3)
colnames(amat) <- rownames(amat) <- letters[1:3]
if (require(Rgraphviz)) plot(as(t(amat), "graphNEL"))

possAn(m = amat, x = 3, possible = TRUE, ds = FALSE, type = "pdag") ## all nodes
possAn(m = amat, x = 3, y = 2, possible = TRUE, ds = FALSE, type = "pdag") ## only node 1

possDe Find possible descendants of given node(s).

Description

In a DAG, CPDAG, MAG or PAG determine which nodes are (possible) descendants of x on definite
status or just any paths potentially avoiding given nodes on the paths.

Usage

possDe(m, x, y = NULL, possible = TRUE, ds = TRUE,
type = c("cpdag", "pdag", "dag", "mag", "pag"))

Arguments

m Adjacency matrix in coding according to type.

x Node positions of starting nodes.

y Node positions of nodes through which a path must not go.

possible If TRUE, possible descendents are returned.

ds If TRUE, only paths of definite status are considered.

type Type of adjacency matrix in m. The coding is according to amatType.

Details

Not all possible combinations of the arguments are currently implemented and will issue an error if
called.

Value

Vector of all node positions found as (possible) descendents of the nodes in x.

Author(s)

Markus Kalisch
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See Also

amatType

Examples

## a -> b -- c
amat <- matrix(c(0,1,0, 0,0,1, 0,1,0), 3,3)
colnames(amat) <- rownames(amat) <- letters[1:3]
if (require(Rgraphviz)) plot(as(t(amat), "graphNEL"))

possDe(m = amat, x = 1, possible = TRUE, ds = FALSE, type = "pdag") ## all nodes
possDe(m = amat, x = 1, possible = FALSE, ds = FALSE, type = "pdag") ## only nodes 1 and 2
possDe(m = amat, x = 1, y = 2, possible = TRUE, ds = FALSE, type = "pdag") ## only node 1

possibleDe [DEPRECATED] Find possible descendants on definite status paths.

Description

This function is DEPRECATED! Use possDe instead.

In a DAG, CPDAG, MAG or PAG determine which nodes are possible descendants of x on definite
status paths.

Usage

possibleDe(amat, x)

Arguments

amat adjacency matrix of type amat.pag

x (integer) position of node x (node of interest) in the adjacency matrix.

Details

A non-endpoint vertex X on a path p in a partial mixed graph is said to be of a definite status if it
is either a collider or a definite non-collider on p. The path p is said to be of a definite status if all
non-endpoint vertices on the path are of a definite status (see e.g. Maathuis and Colombo (2015),
Def. 3.4).

A possible descendent of x can be reached moving to adjacent nodes of x but never going against
an arrowhead.

Value

Vector with possible descendents.

Author(s)

Diego Colombo
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References

M.H. Maathuis and D. Colombo (2015). A generalized back-door criterion. Annals of Statistics 43
1060-1088.

See Also

backdoor, amatType

Examples

amat <- matrix( c(0,3,0,0,0,0, 2,0,2,0,0,0, 0,3,0,0,0,0, 0,0,0,0,1,0,
0,0,0,1,0,1, 0,0,0,0,1,0), 6,6)
colnames(amat) <- rownames(amat) <- letters[1:6]
if(require(Rgraphviz)) {
plotAG(amat)
}

possibleDe(amat, 1) ## a, b are poss. desc. of a
possibleDe(amat, 4) ## d, e, f are poss. desc. of d

qreach Compute Possible-D-SEP(x,G) of a node x in a PDAG G

Description

Let G be a graph with the following edge types: o-o, o-> or <->, and let x be a vertex in the graph.
Then this function computes Possible-D-SEP(x,G), which is defined as follows:

v is in Possible-D-SEP(x,G) iff there is a path p between x and v in G such that for every subpath
<s,t,u> of p, t is a collider on this subpath or <s,t,u> is a triangle in G.

See Spirtes et al (2000) or Definition 3.3 of Colombo et al (2012).

Usage

qreach(x, amat, verbose = FALSE)

Arguments

x (integer) position of vertex x in the adjacency matrix of which Possible-D-SEP
set is to be computed.

amat Adjacency matrix of type amat.pag.

verbose Logical, asking for details on output

Value

Vector of column positions indicating the nodes in Possible-D-SEP of x.
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Author(s)

Markus Kalisch (<kalisch@stat.math.ethz.ch>)

References

P. Spirtes, C. Glymour and R. Scheines (2000). Causation, Prediction, and Search, 2nd edition,
The MIT Press.

D. Colombo, M.H. Maathuis, M. Kalisch, T.S. Richardson (2012). Learning high-dimensional
directed acyclic graphs with latent and selection variables. Annals of Statistics 40, 294–321.

See Also

fci and pdsep which both use this function.

r.gauss.pardag Generate a Gaussian Causal Model Randomly

Description

Generate a random Gaussian causal model. Parameters specifying the connectivity as well as coef-
ficients and error terms of the corresponding linear structural equation model can be specified. The
observational expectation value of the generated model is always 0, meaning that no interception
terms are drawn.

Usage

r.gauss.pardag(p, prob, top.sort = FALSE, normalize = FALSE,
lbe = 0.1, ube = 1, neg.coef = TRUE, labels = as.character(1:p),
lbv = 0.5, ubv = 1)

Arguments

p the number of nodes.

prob probability of connecting a node to another node.

top.sort logical indicating whether the output graph should be topologically sorted,
meaning that arrows always point from lower to higher node indices.

normalize logical indicating whether weights and error variances should be normalized
such that the diagonal of the corresponding observational covariance matrix is
1.

lbe, ube lower and upper bounds of the absolute values of edge weights.

neg.coef logical indicating whether negative edge weights are also admissible.

labels (optional) character vector of variable (or “node”) names.

lbv, ubv lower and upper bound on error variances of the noise terms in the structural
equations.
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Details

The underlying directed acyclic graph (DAG) is generated by drawing an undirected graph from an
Erdős-Rényi model orienting the edges according to a random topological ordering drawn uniformly
from the set of permutations of p variables. This means that any two nodes are connected with (the
same) probability prob, and that the connectivity of different pairs of nodes is independent.

A Gaussian causal model can be represented as a set of linear structural equations. The regression
coefficients of the model can be represented as "edge weights" of the DAG. Edge weights are drawn
uniformly and independently from the interval between lbe and ube; if neg.coef = TRUE, their
sign is flipped with probability 0.5. Error variances are drawn uniformly and independently from
the interval between lbv and ubv.

If normalize = TRUE, the edge weights and error variances are normalized in the end to ensure
that the diagonal elements of the observational covariance matrix are all 1; the procedure used is
described in Hauser and Bühlmann (2012). Note that in this case the error variances and edge
weights are no longer guaranteed to lie in the specified intervals after normalization.

Value

An object of class "GaussParDAG".

Author(s)

Alain Hauser (<alain.hauser@bfh.ch>)

References

P. Erdős and A. Rényi (1960). On the evolution of random graphs. Publications of the Mathematical
Institute of the Hungarian Academy of Sciences 5, 17–61.

A. Hauser and P. Bühlmann (2012). Characterization and greedy learning of interventional Markov
equivalence classes of directed acyclic graphs. Journal of Machine Learning Research 13, 2409–
2464.

See Also

GaussParDAG, randomDAG

Examples

set.seed(307)

## Plot some random DAGs
if (require(Rgraphviz)) {

## Topologically sorted random DAG
myDAG <- r.gauss.pardag(p = 10, prob = 0.2, top.sort = TRUE)
plot(myDAG)

## Unsorted DAG
myDAG <- r.gauss.pardag(p = 10, prob = 0.2, top.sort = FALSE)
plot(myDAG)

}
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## Without normalization, edge weigths and error variances lie within the
## specified borders
set.seed(307)
myDAG <- r.gauss.pardag(p = 10, prob = 0.4,

lbe = 0.1, ube = 1, lbv = 0.5, ubv = 1.5, neg.coef = FALSE)
B <- myDAG$weight.mat()
V <- myDAG$err.var()
any((B > 0 & B < 0.1) | B > 1)
any(V < 0.5 | V > 1.5)

## After normalization, edge weights and error variances are not necessarily
## within the specified range, but the diagonal of the observational covariance
## matrix consists of ones only
set.seed(308)
myDAG <- r.gauss.pardag(p = 10, prob = 0.4, normalize = TRUE,

lbe = 0.1, ube = 1, lbv = 0.5, ubv = 1.5, neg.coef = FALSE)
B <- myDAG$weight.mat()
V <- myDAG$err.var()
any((B > 0 & B < 0.1) | B > 1)
any(V < 0.5 | V > 1.5)
diag(myDAG$cov.mat())

randDAG Random DAG Generation

Description

Generating random directed acyclic graphs (DAGs) with fixed expected number of neighbours.
Several different methods are provided, each intentionally biased towards certain properties. The
methods are based on the analogue *.game functions in the igraph package.

Usage

randDAG(n, d, method ="er", par1=NULL, par2=NULL,
DAG = TRUE, weighted = TRUE, wFUN = list(runif, min=0.1, max=1))

Arguments

n integer, at least 2, indicating the number of nodes in the DAG.

d a positive number, corresponding to the expected number of neighbours per
node, more precisely the expected sum of the in- and out-degree.

method a string, specifying the method used for generating the random graph. See de-
tails below.

par1, par2 optional additional arguments, dependent on the method. See details.

DAG logical, if TRUE, labelled graph is directed to a labelled acyclic graph.

weighted logical indicating if edge weights are computed according to wFUN.
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wFUN a function for computing the edge weights in the DAG. It takes as first argu-
ment a number of edges m for which it returns a vector of length m containing the
weights. Alternatively, wFUN can be a list consisting of the function in the first
entry and of further arguments of the function in the additional entries. The de-
fault (only if weighted is true) is a uniform weight in [0.1, 1]. See the examples
for more.

Details

A (weighted) random graph with n nodes and expected number of neighbours d is constructed. For
DAG=TRUE, the graph is oriented to a DAG. There are eight different random graph models provided,
each selectable by the parameters method, par1 and par2, with method, a string, taking one of the
following values:

regular: Graph where every node has exactly d incident edges. par1 and par2 are not used.

watts: Watts-Strogatz graph that interpolates between the regular (par1->0) and Erdoes-Renyi
graph (par1->1). The parameter par1 is per default 0.5 and has to be in (0,1). par2 is not
used.

er: Erdoes-Renyi graph where every edge is present independently. par1 and par2 are not used.

power: A graph with power-law degree distribution with expectation d.par1 and par2 are not used.

bipartite: Bipartite graph with at least par1*n nodes in group 1 and at most (1-par1)*n nodes
in group 2. The argument par1 has to be in [0,1] and is per default 0.5. par2 is not used.

barabasi: A graph with power-law degree distribution and preferential attachement according to
parameter par1. It must hold that par1 >= 1 and the default is par1=1. par2 is not used.

geometric: A geometric random graph in dimension par1, where par1 can take values from
{2,3,4,5} and is per default 2. If par2="geo" and weighted=TRUE, then the weights are
computed according to the Euclidean distance. There are currently no other option for par2
implemented.

interEr: A graph with par1 islands of Erdoes-Renyi graphs, every pair of those connected by a
certain number of edges proportional to par2 (fraction of inter-connectivity). It is required
that n/s be integer and par2 in (0, 1). Defaults are par1=2 and par2=0.25, respectively.

Value

A graph object of class graphNEL.

Note

The output is not topologically sorted (as opposed to the output of randomDAG).

Author(s)

Markus Kalisch (<kalisch@stat.math.ethz.ch>) and Manuel Schuerch.

References

These methods are mainly based on the analogue functions in the igraph package.
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See Also

the package igraph, notably help pages such as sample_k_regular or sample_smallworld;

unifDAG from package unifDAG for generating uniform random DAGs.

randomDAG a limited and soon deprecated version of randDAG; rmvDAG for generating multivariate
data according to a DAG.

Examples

set.seed(38)
dag1 <- randDAG(10, 4, "regular")
dag2 <- randDAG(10, 4, "watts")
dag3 <- randDAG(10, 4, "er")
dag4 <- randDAG(10, 4, "power")
dag5 <- randDAG(10, 4, "bipartite")
dag6 <- randDAG(10, 4, "barabasi")
dag7 <- randDAG(10, 4, "geometric")
dag8 <- randDAG(10, 4, "interEr", par2 = 0.5)

if (require(Rgraphviz)) {
par(mfrow=c(4,2))
plot(dag1,main="Regular graph")
plot(dag2,main="Watts-Strogatz graph")
plot(dag3,main="Erdoes-Renyi graph")
plot(dag4,main="Power-law graph")
plot(dag5,main="Bipartite graph")
plot(dag6,main="Barabasi graph")
plot(dag7,main="Geometric random graph")
plot(dag8,main="Interconnected island graph")

}

set.seed(45)
dag0 <- randDAG(6,3)
dag1 <- randDAG(6,3, weighted=FALSE)
dag2 <- randDAG(6,3, DAG=FALSE)
if (require(Rgraphviz)) {

par(mfrow=c(1,2))
plot(dag1)
plot(dag2) ## undirected graph

}
dag0@edgeData ## note the uniform weights between 0.1 and 1
dag1@edgeData ## note the constant weights

wFUN <- function(m,lB,uB) { runif(m,lB,uB) }
dag <- randDAG(6,3,wFUN=list(wFUN,1,4))
dag@edgeData ## note the uniform weights between 1 and 4

randomDAG Generate a Directed Acyclic Graph (DAG) randomly
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Description

Generate a random Directed Acyclic Graph (DAG). The resulting graph is topologically ordered
from low to high node numbers.

Usage

randomDAG(n, prob, lB = 0.1, uB = 1, V = as.character(1:n))

Arguments

n Number of nodes, n ≥ 2.

prob Probability of connecting a node to another node with higher topological order-
ing.

lB, uB Lower and upper limit of edge weights, chosen uniformly at random, i.e., by
runif(., min=lB, max=uB).

V character vector length n of node names.

Details

The n nodes are ordered. Start with first node. Let the number of nodes with higher order be
k. Then, the number of neighbouring nodes is drawn as Bin(k, prob). The neighbours are then
drawn without replacement from the nodes with higher order. For each node, a weight is uniformly
sampled from lB to uB. This procedure is repeated for the next node in the original ordering and so
on.

Value

An object of class "graphNEL", see graph-class from package graph, with n named ("1" to "n")
nodes and directed edges. The graph is topologically ordered. Each edge has a weight between lB
and uB.

Author(s)

Markus Kalisch (<kalisch@stat.math.ethz.ch>) and Martin Maechler

See Also

randDAG for a more elaborate version of this function; rmvDAG for generating data according to a
DAG; compareGraphs for comparing the skeleton of a DAG with some other undirected graph (in
terms of TPR, FPR and TDR).

Examples

set.seed(101)
myDAG <- randomDAG(n = 20, prob= 0.2, lB = 0.1, uB = 1)
if (require(Rgraphviz)) plot(myDAG)
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rfci Estimate an RFCI-PAG using the RFCI Algorithm

Description

Estimate an RFCI-PAG from observational data, using the RFCI-algorithm.

Usage

rfci(suffStat, indepTest, alpha, labels, p,
skel.method = c("stable", "original", "stable.fast"),
fixedGaps = NULL, fixedEdges = NULL, NAdelete = TRUE,
m.max = Inf, rules = rep(TRUE, 10),
conservative = FALSE, maj.rule = FALSE,
numCores = 1, verbose = FALSE)

Arguments

suffStat Sufficient statistics: List containing all necessary elements for the conditional
independence decisions in the function indepTest.

indepTest Predefined function for testing conditional independence. The function is in-
ternally called as indepTest(x,y,S,suffStat), and tests conditional indepen-
dence of x and y given S. Here, x and y are variables, and S is a (possibly
empty) vector of variables (all variables are denoted by their column numbers
in the adjacency matrix). suffStat is a list containing all relevant elements for
the conditional independence decisions. The return value of indepTest is the
p-value of the test for conditional independence.

alpha significance level (number in (0, 1) for the individual conditional independence
tests.

labels (optional) character vector of variable (or “node”) names. Typically preferred to
specifying p.

p (optional) number of variables (or nodes). May be specified if labels are not,
in which case labels is set to 1:p.

skel.method Character string specifying method; the default, "stable" provides an order-
independent skeleton, see skeleton.

fixedGaps A logical matrix of dimension p*p. If entry [i,j] or [j,i] (or both) are TRUE,
the edge i-j is removed before starting the algorithm. Therefore, this edge is
guaranteed to be absent in the resulting graph.

fixedEdges A logical matrix of dimension p*p. If entry [i,j] or [j,i] (or both) are TRUE,
the edge i-j is never considered for removal. Therefore, this edge is guaranteed
to be present in the resulting graph.

NAdelete If indepTest returns NA and this option is TRUE, the corresponding edge is deleted.
If this option is FALSE, the edge is not deleted.

m.max Maximum size of the conditioning sets that are considered in the conditional
independence tests.
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rules Logical vector of length 10 indicating which rules should be used when directing
edges. The order of the rules is taken from Zhang (2009).

conservative Logical indicating if the unshielded triples should be checked for ambiguity after
the skeleton has been found, similar to the conservative PC algorithm.

maj.rule Logical indicating if the unshielded triples should be checked for ambiguity after
the skeleton has been found using a majority rule idea, which is less strict than
the conservative.

numCores Specifies the number of cores to be used for parallel estimation of skeleton.

verbose If true, more detailed output is provided.

Details

This function is rather similar to fci. However, it does not compute any Possible-D-SEP sets and
thus does not make tests conditioning on subsets of Possible-D-SEP. This makes RFCI much faster
than FCI. The orientation rules for v-structures and rule 4 were modified in order to produce an
RFCI-PAG which, in the oracle version, is guaranteed to have the correct ancestral relationships.

The first part of the RFCI algorithm is analogous to the PC and FCI algorithm. It starts with a
complete undirected graph and estimates an initial skeleton using the function skeleton, which
produces an initial order-independent skeleton, see skeleton for more details. All edges of this
skeleton are of the form o-o. Due to the presence of hidden variables, it is no longer sufficient
to consider only subsets of the neighborhoods of nodes x and y to decide whether the edge x o-o
y should be removed. The FCI algorithm performs independence tests conditioning on subsets of
Possible-D-SEP to remove those edges. Since this procedure is computationally infeasible, the
RFCI algorithm uses a different approach to remove some of those superfluous edges before orient-
ing the v-structures and the discriminating paths in orientation rule 4.

Before orienting the v-structures, we perform the following additional conditional independence
tests. For each unshielded triple a-b-c in the initial skeleton, we check if both a and b and b and c
are conditionally dependent given the separating of a and c (sepset(a,c)). These conditional depen-
dencies may not have been checked while estimating the initial skeleton, since sepset(a,c) does not
need to be a subset of the neighbors of a nor of the neighbors of c. If both conditional dependencies
hold and b is not in the sepset(a,c), the triple is oriented as a v-structure a->b<-c. On the other hand,
if an additional conditional independence relationship may be detected, say a is independent from
b given the sepset(a,c), the edge between a and c is removed from the graph and the set responsible
for that is saved in sepset(a,b). The removal of an edge can destroy or create new unshielded triples
in the graph. To solve this problem we work with lists (for details see Colombo et al., 2012).

Before orienting discriminating paths, we perform the following additional conditional indepen-
dence tests. For each triple a <-* b o- *c with a -> c, the algorithm searches for a discriminating
path p = <d, . . . , a,b,c> for b of minimal length, and checks that the vertices in every consecutive
pair (f1,f2) on p are conditionally dependent given all subsets of sepset(d, c) \ {f1, f2} . If we do
not find any conditional independence relationship, the path is oriented as in rule (R4). If one or
more conditional independence relationships are found, the corresponding edges are removed, their
minimal separating sets are stored.

Conservative RFCI can be computed if the argument of conservative is TRUE. After the final
skeleton is computed and the additional local tests on all unshielded triples, as described above,
have been done, all potential v-structures a-b-c are checked in the following way. We test whether
a and c are independent conditioning on any subset of the neighbors of a or any subset of the
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neighbors of c. When a subset makes a and c conditionally independent, we call it a separating
set. If b is in no such separating set or in all such separating sets, no further action is taken and
the normal version of the RFCI algorithm is continued. If, however, b is in only some separating
sets, the triple a-b-c is marked ’ambiguous’. If a is independent of c given some S in the skeleton
(i.e., the edge a-c dropped out), but a and c remain dependent given all subsets of neighbors of
either a or c, we will call all triples a-b-c ’unambiguous’. This is because in the RFCI algorithm,
the true separating set might be outside the neighborhood of either a or c. An ambiguous triple is
not oriented as a v-structure. Furthermore, no further orientation rule that needs to know whether
a-b-c is a v-structure or not is applied. Instead of using the conservative version, which is quite
strict towards the v-structures, Colombo and Maathuis (2014) introduced a less strict version for the
v-structures called majority rule. This adaptation can be called using maj.rule = TRUE. In this case,
the triple a-b-c is marked as ’ambiguous’ if and only if b is in exactly 50 percent of such separating
sets or no separating set was found. If b is in less than 50 percent of the separating sets it is set
as a v-structure, and if in more than 50 percent it is set as a non v-structure (for more details see
Colombo and Maathuis, 2014).

The implementation uses the stabilized skeleton skeleton, which produces an initial order-independent
skeleton. The final skeleton and edge orientations can still be order-dependent, see Colombo and
Maathuis (2014).

Value

An object of class fciAlgo (see fciAlgo) containing the estimated graph (in the form of an
adjacency matrix with various possible edge marks), the conditioning sets that lead to edge removals
(sepset) and several other parameters.

Author(s)

Diego Colombo and Markus Kalisch (<kalisch@stat.math.ethz.ch>).

References

D. Colombo and M.H. Maathuis (2014).Order-independent constraint-based causal structure learn-
ing. Journal of Machine Learning Research 15 3741-3782.

D. Colombo, M. H. Maathuis, M. Kalisch, T. S. Richardson (2012). Learning high-dimensional
directed acyclic graphs with latent and selection variables. Ann. Statist. 40, 294-321.

See Also

fci and fciPlus for estimating a PAG using the FCI algorithm; skeleton for estimating an
initial skeleton using the RFCI algorithm; pc for estimating a CPDAG using the PC algorithm;
gaussCItest, disCItest, binCItest and dsepTest as examples for indepTest.

Examples

##################################################
## Example without latent variables
##################################################
set.seed(42)
p <- 7
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## generate and draw random DAG :
myDAG <- randomDAG(p, prob = 0.4)

## find skeleton and PAG using the RFCI algorithm
suffStat <- list(C = cov2cor(trueCov(myDAG)), n = 10^9)
indepTest <- gaussCItest
res <- rfci(suffStat, indepTest, alpha = 0.9999, p=p, verbose=TRUE)

##################################################% --------------
## Example with hidden variables
## Zhang (2008), Fig. 6, p.1882
##################################################

## create the DAG :
V <- LETTERS[1:5]
edL <- setNames(vector("list", length = 5), V)
edL[[1]] <- list(edges=c(2,4),weights=c(1,1))
edL[[2]] <- list(edges=3,weights=c(1))
edL[[3]] <- list(edges=5,weights=c(1))
edL[[4]] <- list(edges=5,weights=c(1))
## and leave edL[[ 5 ]] empty
g <- new("graphNEL", nodes=V, edgeL=edL, edgemode="directed")
if (require(Rgraphviz))

plot(g)

## define the latent variable
L <- 1

## compute the true covariance matrix of g
cov.mat <- trueCov(g)
## delete rows and columns belonging to latent variable L
true.cov <- cov.mat[-L,-L]
## transform covariance matrix into a correlation matrix
true.corr <- cov2cor(true.cov)

## find PAG with RFCI algorithm
## as dependence "oracle", we use the true correlation matrix in
## gaussCItest() with a large "virtual sample size" and a large alpha :
rfci.pag <- rfci(suffStat = list(C = true.corr, n = 10^9),

indepTest = gaussCItest, alpha = 0.9999, labels = V[-L],
verbose=TRUE)

## define PAG given in Zhang (2008), Fig. 6, p.1882
corr.pag <- rbind(c(0,1,1,0),

c(1,0,0,2),
c(1,0,0,2),
c(0,3,3,0))

## check that estimated and correct PAG are in agreement:
stopifnot(corr.pag == rfci.pag@amat)

rmvDAG Generate Multivariate Data according to a DAG
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Description

Generate multivariate data with dependency structure specified by a (given) DAG (Directed Acyclic
Graph) with nodes corresponding to random variables. The DAG has to be topologically ordered.

Usage

rmvDAG(n, dag,
errDist = c("normal", "cauchy", "t4", "mix", "mixt3", "mixN100"),
mix = 0.1, errMat = NULL, back.compatible = FALSE,
use.node.names = !back.compatible)

Arguments

n number of samples that should be drawn. (integer)
dag a graph object describing the DAG; must contain weights for all the edges. The

nodes must be topologically sorted. (For topological sorting use tsort from the
RBGL package.)

errDist string specifying the distribution of each node. Currently, the options "normal",
"t4", "cauchy", "mix", "mixt3" and "mixN100" are supported. The first three
generate standard normal-, t(df=4)- and cauchy-random numbers. The options
containing the word "mix" create standard normal random variables with a mix
of outliers. The outliers for the options "mix", "mixt3", "mixN100" are drawn
from a standard cauchy, t(df=3) and N(0,100) distribution, respectively. The
fraction of outliers is determined by the mix argument.

mix for the "mix*" error distributuion, mix specifies the fraction of “outlier” samples
(i.e., Cauchy, t3 or N(0, 100)).

errMat numeric n ∗ p matrix specifiying the error vectors ei (see Details), instead of
specifying errDist (and maybe mix).

back.compatible

logical indicating if the data generated should be the same as with pcalg version
1.0-6 and earlier (where wgtMatrix() differed).

use.node.names logical indicating if the column names of the result matrix should equal nodes(dag),
very sensibly, but new, hence the default.

Details

Each node is visited in the topological order. For each node i we generate a p-dimensional value
Xi in the following way: Let X1, . . . , Xk denote the values of all neighbours of i with lower order.
Let w1, . . . , wk be the weights of the corresponding edges. Furthermore, generate a random vector
Ei according to the specified error distribution. Then, the value of Xi is computed as

Xi = w1 ∗X1 + . . .+ wk ∗Xk + Ei.

If node i has no neighbors with lower order, Xi = Ei is set.

Value

A n ∗ p matrix with the generated data. The p columns correspond to the nodes (i.e., random
variables) and each of the n rows correspond to a sample.
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Author(s)

Markus Kalisch (<kalisch@stat.math.ethz.ch>) and Martin Maechler.

See Also

randomDAG for generating a random DAG; skeleton and pc for estimating the skeleton and the
CPDAG of a DAG that corresponds to the data.

Examples

## generate random DAG
p <- 20
rDAG <- randomDAG(p, prob = 0.2, lB=0.1, uB=1)

if (require(Rgraphviz)) {
## plot the DAG
plot(rDAG, main = "randomDAG(20, prob = 0.2, ..)")
}

## generate 1000 samples of DAG using standard normal error distribution
n <- 1000
d.normMat <- rmvDAG(n, rDAG, errDist="normal")

## generate 1000 samples of DAG using standard t(df=4) error distribution
d.t4Mat <- rmvDAG(n, rDAG, errDist="t4")

## generate 1000 samples of DAG using standard normal with a cauchy
## mixture of 30 percent
d.mixMat <- rmvDAG(n, rDAG, errDist="mix",mix=0.3)

require(MASS) ## for mvrnorm()
Sigma <- toeplitz(ARMAacf(0.2, lag.max = p - 1))
dim(Sigma)# p x p
## *Correlated* normal error matrix "e_i" (against model assumption)
eMat <- mvrnorm(n, mu = rep(0, p), Sigma = Sigma)
d.CnormMat <- rmvDAG(n, rDAG, errMat = eMat)

rmvnorm.ivent Simulate from a Gaussian Causal Model

Description

Produces one or more samples from the observational or an interventional distribution associated to
a Gaussian causal model.

Usage

rmvnorm.ivent(n, object, target = integer(0), target.value = numeric(0))
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Arguments

n Number of samples required.

object An instance of GaussParDAG

target Intervention target: vector of intervened nodes. If the vector is empty, samples
from the observational distribution are generated. Otherwise, samples from an
interventional distribution are simulated.

target.value Values of the intervened variables. If target.value is a vector of the same
length as target, the indicated intervention levels are used for all n samples. If
target.value is a matrix of dimension n by length(target), the i-th sample
is simulated using the i-th row of the matrix as intervention levels.

Value

If n = 1 a vector of length p is returned, where p denotes the number of nodes of object. Otherwise
an n by p matrix is returned with one sample per row.

Author(s)

Alain Hauser (<alain.hauser@bfh.ch>)

Examples

set.seed(307)
myDAG <- r.gauss.pardag(5, 0.5)
var(rmvnorm.ivent(n = 1000, myDAG))
myDAG$cov.mat()
var(rmvnorm.ivent(n = 1000, myDAG, target = 1, target.value = 1))
myDAG$cov.mat(target = 1, ivent.var = 0)

Score-class Virtual Class "Score"

Description

This virtual base class represents a score for causal inference; it is used in the causal inference
functions ges, gies and simy.

Details

Score-based structure learning algorithms for causal inference such as Greedy Equivalence Search
(GES, implemented in the function ges), Greedy Interventional Equivalence Search (GIES, imple-
mented in the function gies) and the dynamic programming approach of Silander and Myllymäki
(2006) (implemented in the function simy) try to find the DAG model which maximizes a scoring
criterion for a given data set. A widely-used scoring criterion is the Bayesian Information Criterion
(BIC).
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The virtual class Score is the base class for providing a scoring criterion to the mentioned causal
inference algorithms. It does not implement a concrete scoring criterion, but it defines the functions
that must be provided by its descendants (cf. methods).

Knowledge of this class is only required if you aim to implement an own scoring criterion. At the
moment, it is recommended to use the predefined scoring criteria for multivariate Gaussian data
derived from Score, GaussL0penIntScore and GaussL0penObsScore.

Fields

The fields of Score are mainly of interest for users who aim at deriving an own class from this
virtual base class, i.e., implementing an own score function.

.nodes: Node labels. They are passed to causal inference methods by default to label the nodes of
the resulting graph.

decomp: Indicates whether the represented score is decomposable (cf. details). At the moment,
only decomposable scores are supported by the implementation of the causal inference algo-
rithms; support for non-decomposable scores is planned.

pp.dat: List representing the preprocessed input data; this is typically a statistic which is sufficient
for the calculation of the score.

.pardag.class: Name of the class of the parametric DAG model corresponding to the score. This
must name a class derived from ParDAG.

c.fcn: Only used internally; must remain empty for (user specified) classes derived from Score.

Constructor

new("Score",
data = matrix(1, 1, 1),
targets = list(integer(0)),
target.index = rep(as.integer(1), nrow(data)),
nodes = colnames(data),
...)

data Data matrix with n rows and p columns. Each row corresponds to one realization, either
interventional or observational.

targets List of mutually exclusive intervention targets that have been used for data generation.

target.index Vector of length n; the i-th entry specifies the index of the intervention target in
targets under which the i-th row of data was measured.

nodes Node labels

... Additional parameters used by derived (and non-virtual) classes.

Methods

Note that since Score is a virtual class, its methods cannot be called directly, but only on derived
classes.

local.score(vertex, parents, ...) For decomposable scores, this function calculates the lo-
cal score of a vertex and its parents. Must throw an error in derived classes that do not represent
a decomposable score.



searchAM 161

global.score.int(edges, ...) Calculates the global score of a DAG, represented as a list of
in-edges: for each vertex in the DAG, this list contains a vector of parents.

global.score(dag, ...) Calculates the global score of a DAG, represented as object of a class
derived from ParDAG.

local.fit(vertex, parents, ...) Calculates a local model fit of a vertex and its parents, e.g.
by MLE. The result is a vector of parameters whose meaning depends on the model class; it
matches the convention used in the corresponding causal model (cf. .pardag.class).

global.fit(dag, ...) Calculates the global MLE of a DAG, represented by an object of the class
specified by .pardag.class. The result is a list of vectors, one per vertex, each in the same
format as the result vector of local.mle.

Author(s)

Alain Hauser (<alain.hauser@bfh.ch>)

References

T. Silander and P. Myllymäki (2006). A simple approach for finding the globally optimal Bayesian
network structure. Proceedings of the 22nd Conference on Uncertainty in Artificial Intelligence
(UAI 2006), 445–452

See Also

ges, gies, simy, GaussL0penIntScore, GaussL0penObsScore

searchAM Search for certain nodes in a DAG/CPDAG/MAG/PAG

Description

Searches for all ancestors, descendants, anteriors, spouses, neighbors, parents, children or possible
descendants of a (set of) node(s) in a DAG, CPDAG, MAG or PAG.

Usage

searchAM(amat,x,
type = c("an", "de", "ant", "sp", "nb", "pa", "ch", "pde"))

Arguments

amat Adjacency matrix of type amat.pag.

x Target node(s), given as (a vector of) column number(s) of the node(s) in the
adjacency matrix.

type Character string specifying which relation to the target nodes in x is asked for.
It can be one of:

"an" ancestors: nodes y s.t. y-->...-->x;
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"de" descendants: nodes y s.t. y<--...<--x;
"ant" anteriors: nodes y s.t. y---...---z-->...-->x, i.e. there is an undi-

rected path from y to a node z followed by a directed path from z to x;
"sp" spouses: nodes y s.t. y<->x;
"nb" neighbors: nodes y s.t. y---x;
"pa" parents: nodes y s.t. y-->x;
"ch" children: nodes y s.t. y<--x;
"pde" possible descendants: nodes y s.t. there is a possibly directed path from

y to x: y {o,-}--{o,>} ... {o,-}--{o,>} x.

For the precise definitions of these concepts, see the references.

Details

This function performs a search for nodes related to the set of target nodes x in the way specified
by type in adjacency matrix amat of type amat.pag.

Value

Vector of column numbers of the nodes related to x as specified by type.

Author(s)

Joris Mooij.

References

T.S. Richardson and P. Spirtes (2002). Ancestral graph Markov models. Annals of Statistics 30
962-1030.

J. Zhang (2008). Causal Reasoning with Ancestral Graphs. Journal of Machine Learning Research
9 1437-1474.

Examples

# Y-structure MAG
# Encode as adjacency matrix
p <- 10 # total number of variables
V <- c("X1","X2","X3","X4","X5","X6","X7","X8","X9","X10") # variable labels
# amat[i,j] = 0 iff no edge btw i,j
# amat[i,j] = 1 iff i *-o j
# amat[i,j] = 2 iff i *-> j
# amat[i,j] = 3 iff i *-- j
amat <- rbind(c(0,3,0,0,0,0,0,0,0,0),

c(3,0,3,0,0,0,0,0,0,0),
c(0,3,0,2,0,0,0,0,0,0),
c(0,0,3,0,2,0,0,0,0,0),
c(0,0,0,3,0,2,0,2,2,1),
c(0,0,0,0,3,0,2,0,0,0),
c(0,0,0,0,0,3,0,0,0,0),
c(0,0,0,0,2,0,0,0,0,0),
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c(0,0,0,0,1,0,0,0,0,0),
c(0,0,0,0,1,0,0,0,0,0))

rownames(amat)<-V
colnames(amat)<-V

stopifnot(all.equal(searchAM(amat,5,type = "an"), c(3,4,5))) # ancestors of X5
stopifnot(all.equal(searchAM(amat,5,type = "de"), c(5,6,7))) # descendants of X5
stopifnot(all.equal(searchAM(amat,5,type = "ant"), c(1,2,3,4,5))) # anteriors of X5
stopifnot(all.equal(searchAM(amat,5,type = "sp"), c(8))) # spouses of X5
stopifnot(all.equal(searchAM(amat,2,type = "nb"), c(1,3))) # neighbors of X2
stopifnot(all.equal(searchAM(amat,c(4,6),type = "pa"), c(3,5))) # parents of {X4,X6}
stopifnot(all.equal(searchAM(amat,c(3,5),type = "ch"), c(4,6))) # children of {X3,X5}
stopifnot(all.equal(searchAM(amat,5,type = "pde"), c(5,6,7,9,10))) # possible descendants of X5

shd Compute Structural Hamming Distance (SHD)

Description

Compute the Structural Hamming Distance (SHD) between two graphs. In simple terms, this is the
number of edge insertions, deletions or flips in order to transform one graph to another graph.

Usage

shd(g1,g2)

Arguments

g1 Graph object

g2 Graph object

Value

The value of the SHD (numeric).

Author(s)

Markus Kalisch <kalisch@stat.math.ethz.ch> and Martin Maechler

References

I. Tsamardinos, L.E. Brown and C.F. Aliferis (2006). The Max-Min Hill-Climbing Bayesian Net-
work Structure Learning Algorithm. JMLR 65, 31–78.
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Examples

## generate two graphs
g1 <- randomDAG(10, prob = 0.2)
g2 <- randomDAG(10, prob = 0.2)
## compute SHD
(shd.val <- shd(g1,g2))

showAmat Show Adjacency Matrix of pcAlgo object

Description

This function is deprecated - Use as(*, "amat") instead !

Show the adjacency matrix of a "pcAlgo" object; this is intended to be an alternative if the Rgraphviz
package does not work.

Usage

showAmat(object)

Arguments

object an R object of class pcAlgo, as returned from skeleton() or pc().

Value

The adjacency matrix.

Note

For "fciAlgo" objects, the show method produces a similar result.

Author(s)

Markus Kalisch (<kalisch@stat.math.ethz.ch>)

See Also

showEdgeList for showing the edge list of a pcAlgo object. iplotPC for plotting a "pcAlgo"
object using the package igraph also for an example of showAmat().
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showEdgeList Show Edge List of pcAlgo object

Description

Show the list of edges (of the graph) of a pcAlgo object; this is intended to be an alternative if
Rgraphviz does not work.

Usage

showEdgeList(object, labels = NULL)

Arguments

object an R object of class pcAlgo, as returned from skeleton() or pc().

labels optional labels for nodes; by default, the labels from the object are used.

Value

none; the purpose is in (the side effect of) printing the edge list.

Note

This is not quite ok for "fciAlgo" objects, yet.

Author(s)

Markus Kalisch (<kalisch@stat.math.ethz.ch>)

See Also

showAmat for the adjacency matrix of a pcAlgo object. iplotPC for plotting a pcAlgo object using
the package igraph, also for an example of showEdgeList().

simy Estimate Interventional Markov Equivalence Class of a DAG

Description

Estimate the interventional essential graph representing the Markov equivalence class of a DAG
using the dynamic programming (DP) approach of Silander and Myllymäki (2006). This algorithm
maximizes a decomposable scoring criterion in exponential runtime.

Usage

simy(score, labels = score$getNodes(), targets = score$getTargets(),
verbose = FALSE, ...)
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Arguments

score An instance of a class derived from Score.

labels Node labels; by default, they are determined from the scoring object.

targets A list of intervention targets (cf. details). A list of vectors, each vector listing
the vertices of one intervention target.

verbose if TRUE, detailed output is provided.

... Additional arguments for debugging purposes and fine tuning.

Details

This function estimates the interventional Markov equivalence class of a DAG based on a data
sample with interventional data originating from various interventions and possibly observational
data. The intervention targets used for data generation must be specified by the argument targets
as a list of (integer) vectors listing the intervened vertices; observational data is specified by an
empty set, i.e. a vector of the form integer(0). As an example, if data contains observational
samples as well as samples originating from an intervention at vertices 1 and 4, the intervention
targets must be specified as list(integer(0), as.integer(1), as.integer(c(1, 4))).

An interventional Markov equivalence class of DAGs can be uniquely represented by a partially
directed graph called interventional essential graph. Its edges have the following interpretation:

1. a directed edge a −→ b stands for an arrow that has the same orientation in all representatives
of the interventional Markov equivalence class;

2. an undirected edge a – b stands for an arrow that is oriented in one way in some representatives
of the equivalence class and in the other way in other representatives of the equivalence class.

Note that when plotting the object, undirected and bidirected edges are equivalent.

The DP approach of Silander and Myllymäki (2006) is a score-based algorithm that guarantees to
find the optimum of any decomposable scoring criterion. Its CPU and memory consumption grow
exponentially with the number of variables in the system, irrespective of the sparseness of the true
or estimated DAG. The implementation in the pcalg package is feasible up to approximately 20
variables, depending on the user’s computer.

Value

simy returns a list with the following two components:

essgraph An object of class EssGraph containing an estimate of the equivalence class of
the underlying DAG.

repr An object of a class derived from ParDAG containing a (random) representative
of the estimated equivalence class.

Author(s)

Alain Hauser (<alain.hauser@bfh.ch>)
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References

T. Silander and P. Myllymäki (2006). A simple approach for finding the globally optimal Bayesian
network structure. Proceedings of the 22nd Conference on Uncertainty in Artificial Intelligence
(UAI 2006), 445–452

See Also

gies, Score, EssGraph

Examples

##################################################
## Using Gaussian Data
##################################################
## Load predefined data
data(gmInt)

## Define the score (BIC)
score <- new("GaussL0penIntScore", gmInt$x, gmInt$targets, gmInt$target.index)

## Estimate the essential graph
simy.fit <- simy(score)
eDAG <- simy.fit$essgraph
as(eDAG, "graph")

## Look at the graph incidence matrix (a "sparseMatrix"):
if(require(Matrix))

show( as(as(eDAG, "graphNEL"), "Matrix") )

## Plot the estimated essential graph and the true DAG
if (require(Rgraphviz)) {

par(mfrow=c(1,2))
plot(eDAG, main = "Estimated ess. graph")
plot(gmInt$g, main = "True DAG")

}

skeleton Estimate (Initial) Skeleton of a DAG using the PC / PC-Stable Algo-
rithm

Description

Estimate the skeleton of a DAG without latent and selection variables using the PC Algorithm or
estimate an initial skeleton of a DAG with arbitrarily many latent and selection variables using the
FCI and the RFCI algorithms.

If used in the PC algorithm, it estimates the order-independent “PC-stable” ("stable") or original
PC ("original") “skeleton” of a directed acyclic graph (DAG) from observational data.
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When used in the FCI and RFCI algorithms, this function estimates only an initial order-independent
(or PC original) “skeleton”. Because of the presence of latent and selection variables, to find the
final skeleton those algorithms need to perform additional tests later on and consequently some
edges can be further deleted.

Usage

skeleton(suffStat, indepTest, alpha, labels, p,
method = c("stable", "original", "stable.fast"), m.max = Inf,
fixedGaps = NULL, fixedEdges = NULL, NAdelete = TRUE,
numCores = 1, verbose = FALSE)

Arguments

suffStat Sufficient statistics: List containing all necessary elements for the conditional
independence decisions in the function indepTest.

indepTest Predefined function for testing conditional independence. The function is in-
ternally called as indepTest(x,y,S,suffStat) and tests conditional indepen-
dence of x and y given S. Here, x and y are variables, and S is a (possibly
empty) vector of variables (all variables are denoted by their column numbers
in the adjacency matrix). suffStat is a list containing all relevant elements for
the conditional independence decisions. The return value of indepTest is the
p-value of the test for conditional independence.

alpha significance level (number in (0, 1) for the individual conditional independence
tests.

labels (optional) character vector of variable (or “node”) names. Typically preferred to
specifying p.

p (optional) number of variables (or nodes). May be specified if labels are not,
in which case labels is set to 1:p.

method Character string specifying method; the default, "stable" provides an order-
independent skeleton, see ‘Details’ below.

m.max Maximal size of the conditioning sets that are considered in the conditional in-
dependence tests.

fixedGaps logical symmetric matrix of dimension p*p. If entry [i,j] is true, the edge i−
−j is removed before starting the algorithm. Therefore, this edge is guaranteed
to be absent in the resulting graph.

fixedEdges a logical symmetric matrix of dimension p*p. If entry [i,j] is true, the edge
i−−j is never considered for removal. Therefore, this edge is guaranteed to be
present in the resulting graph.

NAdelete logical needed for the case indepTest(*) returns NA. If it is true, the corre-
sponding edge is deleted, otherwise not.

numCores number of processor cores to use for parallel computation. Only available for
method = "stable.fast".

verbose if TRUE, detailed output is provided.
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Details

Under the assumption that the distribution of the observed variables is faithful to a DAG and that
there are no latent and selection variables, this function estimates the skeleton of the DAG. The
skeleton of a DAG is the undirected graph resulting from removing all arrowheads from the DAG.
Edges in the skeleton of a DAG have the following interpretation:
There is an edge between i and j, i – j, if and only if variables i and j are conditionally dependent
given S for all possible subsets S of the remaining nodes.

On the other hand, the distribution of the observed variables is faithful to a DAG with arbitrarily
many latent and selection variables, skeleton() estimates the initial skeleton of the DAG. Edges
in this initial skeleton of a DAG have the following interpretation:
There is an edge i – j if and only if variables i and j are conditionally dependent given S for all
possible subsets S of the neighbours of i and the neighbours of j.

The data are not required to follow a specific distribution, but one should make sure that the condi-
tional indepedence test used in indepTest is appropriate for the data. Pre-programmed versions of
indepTest are available for Gaussian data (gaussCItest), discrete data (disCItest), and binary
data (see binCItest). Users may also specify their own indepTest function.

The PC algorithm (Spirtes, Glymour and Scheines, 2000) (method = "original") is known to
be order-dependent, in the sense that the output may depend on the order in which the variables
are given. Therefore, Colombo and Maathuis (2014) proposed a simple modification, called “PC-
stable”, which yields order-independent adjacencies in the skeleton, provided by pc() with the new
default method = "stable". This stable variant of the algorithm is also available with the method
= "stable.fast": it runs the algorithm of Colombo and Maathuis (2014) faster than method =
"stable" in general, but should be regarded as an experimental option at the moment.

The algorithm starts with a complete undirected graph. In each step, it visits all pairs (i, j) of ad-
jacent nodes in the current graph, and determines based on conditional independence tests whether
the edge i−−j should be removed. In particular, for each step m (m = 0, 1, . . . ) of the size of the
conditioning sets, the algorithm at first determines the neighbours a(i) of each node i in the graph.
Then, the algorithm visits all pairs (i, j) of adjacent nodes in the current graph, and the edge i−−j
is kept if and only if the null hypothesis
i and j are conditionally independent given S
rejected at significance level alpha for all subsets S of size m of a(i) and of a(j) (as judged by the
function indepTest). For the "stable" method, the neighborhoods a(i) are kept fixed within each
value of m, and this makes the algorithm order-independent. Method "original", the original PC
algorithm would update the neighbour list after each edge change.

The algorithm stops when m is larger than the largest neighbourhood size of all nodes, or when m
has reached the limit m.max which may be set by the user.

Since the FCI (Spirtes, Glymour and Scheines, 2000) and RFCI (Colombo et al., 2012) algorithms
are built up from the PC algorithm, they are also order-dependent in the skeleton. To resolve their
order-dependence issues in the skeleton is more involved, see Colombo and Maathuis (2014). How-
ever now, with method = "stable", this function estimates an initial order-independent skeleton
in these algorithms (for additional details on how to make the final skeleton of FCI fully order-
independent see fci and Colombo and Maathuis (2014)).

The information in fixedGaps and fixedEdges is used as follows. The gaps given in fixedGaps
are introduced in the very beginning of the algorithm by removing the corresponding edges from
the complete undirected graph. Pairs (i, j) in fixedEdges are skipped in all steps of the algorithm,
so that these edges remain in the graph.
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Note: Throughout, the algorithm works with the column positions of the variables in the adjacency
matrix, and not with the names of the variables.

Value

An object of class "pcAlgo" (see pcAlgo) containing an estimate of the skeleton of the underlying
DAG, the conditioning sets (sepset) that led to edge removals and several other parameters.

Author(s)

Markus Kalisch (<kalisch@stat.math.ethz.ch>), Martin Maechler, Alain Hauser, and Diego
Colombo.

References

D. Colombo and M.H. Maathuis (2014).Order-independent constraint-based causal structure learn-
ing. Journal of Machine Learning Research 15 3741-3782.

D. Colombo, M. H. Maathuis, M. Kalisch, T. S. Richardson (2012). Learning high-dimensional
directed acyclic graphs with latent and selection variables. Ann. Statist. 40, 294-321.

M. Kalisch and P. Buehlmann (2007). Estimating high-dimensional directed acyclic graphs with
the PC-algorithm, JMLR 8 613-636.

P. Spirtes, C. Glymour and R. Scheines (2000). Causation, Prediction, and Search, 2nd edition,
MIT Press.

See Also

pc for generating a partially directed graph using the PC algorithm; fci for generating a partial
ancestral graph using the FCI algorithm; rfci for generating a partial ancestral graph using the
RFCI algorithm; udag2pdag for converting the skeleton to a CPDAG.

Further, gaussCItest, disCItest, binCItest and dsepTest as examples for indepTest.

Examples

##################################################
## Using Gaussian Data
##################################################
## Load predefined data
data(gmG)
n <- nrow (gmG8$x)
V <- colnames(gmG8$x) # labels aka node names

## estimate Skeleton
skel.fit <- skeleton(suffStat = list(C = cor(gmG8$x), n = n),

indepTest = gaussCItest, ## (partial correlations)
alpha = 0.01, labels = V, verbose = TRUE)

if (require(Rgraphviz)) {
## show estimated Skeleton
par(mfrow=c(1,2))
plot(skel.fit, main = "Estimated Skeleton")
plot(gmG8$g, main = "True DAG")
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}

##################################################
## Using d-separation oracle
##################################################

## define sufficient statistics (d-separation oracle)
Ora.stat <- list(g = gmG8$g, jp = RBGL::johnson.all.pairs.sp(gmG8$g))
## estimate Skeleton
fit.Ora <- skeleton(suffStat=Ora.stat, indepTest = dsepTest, labels = V,

alpha=0.01) # <- irrelevant as dsepTest returns either 0 or 1

if (require(Rgraphviz)) {
## show estimated Skeleton
plot(fit.Ora, main = "Estimated Skeleton (d-sep oracle)")
plot(gmG8$g, main = "True DAG")

}
##################################################
## Using discrete data
##################################################
## Load data
data(gmD)
V <- colnames(gmD$x) # labels aka node names

## define sufficient statistics
suffStat <- list(dm = gmD$x, nlev = c(3,2,3,4,2), adaptDF = FALSE)

## estimate Skeleton
skel.fit <- skeleton(suffStat,

indepTest = disCItest, ## (G^2 statistics independence test)
alpha = 0.01, labels = V, verbose = TRUE)

if (require(Rgraphviz)) {
## show estimated Skeleton
par(mfrow = c(1,2))
plot(skel.fit, main = "Estimated Skeleton")
plot(gmD$g, main = "True DAG")

}

##################################################
## Using binary data
##################################################
## Load binary data
data(gmB)
X <- gmB$x

## estimate Skeleton
skel.fm2 <- skeleton(suffStat = list(dm = X, adaptDF = FALSE),

indepTest = binCItest, alpha = 0.01,
labels = colnames(X), verbose = TRUE)

if (require(Rgraphviz)) {
## show estimated Skeleton
par(mfrow = c(1,2))
plot(skel.fm2, main = "Binary Data 'gmB': Estimated Skeleton")
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plot(gmB$g, main = "True DAG")
}

trueCov Covariance matrix of a DAG.

Description

Compute the (true) covariance matrix of a generated DAG.

Usage

trueCov(dag, back.compatible = FALSE)

Arguments

dag Graph object containing the DAG.
back.compatible

logical indicating if the data generated should be the same as with pcalg version
1.0-6 and earlier (where wgtMatrix() differed).

Value

Covariance matrix.

Note

This function can not be used to estimate the covariance matrix from an estimated DAG or corre-
sponding data.

Author(s)

Markus Kalisch

See Also

randomDAG for generating a random DAG

Examples

set.seed(123)
g <- randomDAG(n = 5, prob = 0.3) ## generate random DAG
if(require(Rgraphviz)) {
plot(g)
}

## Compute true covariance matrix
trueCov(g)
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## For comparison:
## Estimate true covariance matrix after generating data from g
d <- rmvDAG(10000, g)
cov(d)

udag2apag Last step of RFCI algorithm: Transform partially oriented graph into
RFCI-PAG

Description

This function performs the last step of the RFCI algorithm: It transforms a partially oriented graph
in which the v-structures have been oriented into an RFCI Partial Ancestral Graph (PAG) (see
Colombo et al (2012)).

While orienting the edges, this function performs some additional conditional independence tests in
orientation rule 4 to ensure correctness of the ancestral relationships. As a result of these additional
tests, some additional edges can be deleted. The result is the final adjacency matrix indicating also
the edge marks and the updated sepsets.

Usage

udag2apag(apag, suffStat, indepTest, alpha, sepset,
rules = rep(TRUE, 10), unfVect = NULL, verbose = FALSE)

Arguments

apag Adjacency matrix of type amat.pag

suffStat Sufficient statistics: A list containing all necessary elements for the condi-
tional independence decisions in the function indepTest.

indepTest Pre-defined function for testing conditional independence. The function is in-
ternally called as indepTest(x,y,S,suffStat), and tests conditional indepen-
dence of x and y given S. Here, x and y are variables, and S is a (possibly empty)
set of variables (all variables are coded by their column numbers in the adjacency
matrix). suffStat is a list containing all relevant elements for the conditional
independence decisions. The return value of indepTest is the p-value of the
test for conditional independence.

alpha Significance level for the individual conditional independence tests.

sepset List of length p; each element of the list contains another list of length p. The
element sepset[[x]][[y]] contains the separation set that made the edge be-
tween x and y drop out. Each separation set is a vector with (integer) positions
of variables in the adjacency matrix. This object is thought to be obtained from
a pcAlgo-object.

rules Logical vector of length 10 with TRUE or FALSE for each rule, where TRUE in
position i means that rule i (Ri) will be applied. By default, all rules are active.
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unfVect Vector containing numbers that encode the ambiguous triples (as returned by
pc.cons.intern). This is needed in the conservative and in the majority rule
versions of RFCI.

verbose Logical indicating if detailed output is to be given.

Details

The partially oriented graph in which the v-structures have been oriented is transformed into an
RFCI-PAG using adapted rules of Zhang (2008). This function is similar to udag2pag used to orient
the skeleton into a PAG in the FCI algorithm. However, it is slightly more complicated because we
perform additional conditional independence tests when applying rule 4, to ensure correctness of
the ancestral relationships. As a result, some additional edges can be deleted, see Colombo et al.
(2012). Because of these addiitonal tests, we need to give suffStat, indepTest, and alpha as
inputs. Since edges can be deleted, the input adjacency matrix apag and the input separating sets
sepset can change in this algorithm.

If unfVect = NULL (no ambiguous triples), the orientation rules are applied to each eligible structure
until no more edges can be oriented. On the other hand, hand, if one uses conservative or majority
rule FCI and ambiguous triples have been found in pc.cons.intern, unfVect contains the num-
bers of all ambiguous triples in the graph. In this case, the orientation rules take this information
into account. For example, if a *-> b o-* c and <a,b,c> is an unambigous unshielded triple and not
a v-structure, then we obtain b -* c (otherwise we would create an additional v-structure). On the
other hand, if a *-> b o-* c but <a,b,c> is an ambiguous unshielded triple, then the circle mark at b
is not oriented.

Note that the algorithm works with columns’ position of the adjacency matrix and not with the
names of the variables.

Note that this function does not resolve possible order-dependence in the application of the orien-
tation rules, see Colombo and Maathuis (2014).

Value

apag Final adjacency matrix of type amat.pag

sepset Updated list of separating sets

Author(s)

Diego Colombo and Markus Kalisch (<kalisch@stat.math.ethz.ch>)

References

D. Colombo and M.H. Maathuis (2014).Order-independent constraint-based causal structure learn-
ing. Journal of Machine Learning Research 15 3741-3782.

D. Colombo, M. H. Maathuis, M. Kalisch, T. S. Richardson (2012). Learning high-dimensional
directed acyclic graphs with latent and selection variables. Ann. Statist. 40, 294–321.

J. Zhang (2008). On the completeness of orientation rules for causal discovery in the presence of
latent confounders and selection bias. Artificial Intelligence 172, 1873–1896.



udag2apag 175

See Also

rfci, udag2pag, dag2pag, udag2pdag, udag2pdagSpecial, udag2pdagRelaxed

Examples

##################################################% -------- -----------
## Example with hidden variables
## Zhang (2008), Fig. 6, p.1882
##################################################

## create the DAG :
amat <- t(matrix(c(0,1,0,0,1, 0,0,1,0,0, 0,0,0,1,0, 0,0,0,0,0, 0,0,0,1,0),5,5))
V <- LETTERS[1:5]
colnames(amat) <- rownames(amat) <- V
edL <- setNames(vector("list",length=5), V)
edL[[1]] <- list(edges= c(2,4),weights=c(1,1))
edL[[2]] <- list(edges= 3, weights=c(1))
edL[[3]] <- list(edges= 5, weights=c(1))
edL[[4]] <- list(edges= 5, weights=c(1))
## and leave edL[[ 5 ]] empty
g <- new("graphNEL", nodes=V, edgeL=edL, edgemode="directed")
if (require(Rgraphviz))

plot(g)

## define the latent variable
L <- 1

## compute the true covariance matrix of g
cov.mat <- trueCov(g)

## delete rows and columns belonging to latent variable L
true.cov <- cov.mat[-L,-L]

## transform covariance matrix into a correlation matrix
true.corr <- cov2cor(true.cov)

n <- 100000
alpha <- 0.01
p <- ncol(true.corr)

if (require("MASS")) {
## generate 100000 samples of DAG using standard normal error distribution
set.seed(289)
d.mat <- mvrnorm(n, mu = rep(0, p), Sigma = true.cov)

## estimate the skeleton of given data
suffStat <- list(C = cor(d.mat), n = n)
indepTest <- gaussCItest
resD <- skeleton(suffStat, indepTest, alpha = alpha, labels=colnames(true.corr))

## estimate all ordered unshielded triples
amat.resD <- as(resD@graph, "matrix")



176 udag2pag

print(u.t <- find.unsh.triple(amat.resD)) # four of them

## check and orient v-structures
vstrucs <- rfci.vStruc(suffStat, indepTest, alpha=alpha,

sepset = resD@sepset, g.amat = amat.resD,
unshTripl= u.t$unshTripl, unshVect = u.t$unshVect,
verbose = TRUE)

## Estimate the final skeleton and extend it into a PAG
## (using all 10 rules, as per default):
resP <- udag2apag(vstrucs$amat, suffStat, indepTest=indepTest, alpha=alpha,

sepset=vstrucs$sepset, verbose = TRUE)
print(Amat <- resP$graph)

} # only if "MASS" is there

udag2pag Last steps of FCI algorithm: Transform Final Skeleton into FCI-PAG

Description

This function performs the last steps of the FCI algorithm, as it transforms an unoriented final
skeleton into a Partial Ancestral Graph (PAG). The final skeleton must have been estimated with
pdsep() or fciplus.intern(). The result is an adjacency matrix indicating also the edge marks.

Usage

udag2pag(pag, sepset, rules = rep(TRUE, 10), unfVect = NULL,
jci = c("0","1","12","123"), contextVars = NULL, verbose = FALSE,
orientCollider = TRUE)

Arguments

pag Adjacency matrix of type amat.pag

sepset List of length p; each element of the list contains another list of length p. The
element sepset[[x]][[y]] contains the separation set that made the edge be-
tween x and y drop out. Each separation set is a vector with (integer) positions
of variables in the adjacency matrix. This object is thought to be obtained from
a pcAlgo-object.

rules Array of length 10 containing TRUE or FALSE for each rule. TRUE in position i
means that rule i (Ri) will be applied. By default, all rules are used.

unfVect Vector containing numbers that encode ambiguous unshielded triples (as re-
turned by pc.cons.intern). This is needed in the conservative and majority
rule versions of FCI.

verbose If TRUE, detailed output is provided.

orientCollider if TRUE, colliders are oriented.

jci String specifying the JCI assumptions that are used. It can be one of:
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"0" No JCI assumption is made (default),
"1" JCI assumption 1 (no system variable causes any context variable),
"12" JCI assumptions 1 and 2 (no system variable causes any context variable,

and no system variable is confounded with any context variable),
"123" JCI assumptions 1, 2 and 3 (no system variable causes any context vari-

able, no system variable is confounded with any context variable, and all
context variables are confounded but are not direct causes of each other).

contextVars Subset of variable indices {1,...,p} that will be treated as context variables in the
JCI extension.

Details

The skeleton is transformed into an FCI-PAG using rules by Zhang (2008). When using the JCI
extension, additional adjacency and orientation rules incorporate the JCI background knowledge
regarding the causal relations of the context variables; for details, see Mooij et al. (2020).

If unfVect = NULL (i.e., one uses standard FCI or one uses conservative/majority rule FCI but there
are no ambiguous triples), then the orientation rules are applied to each eligible structure until no
more edges can be oriented. On the other hand, if one uses conservative or majority rule FCI
and ambiguous triples have been found in pc.cons.intern, unfVect contains the numbers of all
ambiguous triples in the graph. In this case, the orientation rules take this information into account.
For example, if a *-> b o-* c and <a,b,c> is an unambigous unshielded triple and not a v-structure,
then we obtain b -* c (otherwise we would create an additional v-structure). On the other hand, if a
*-> b o-* c but <a,b,c> is an ambiguous unshielded triple, then the circle mark at b is not oriented.

Note that the algorithm works with columns’ position of the adjacency matrix and not with the
names of the variables.

Note that this function does not resolve possible order-dependence in the application of the orien-
tation rules, see Colombo and Maathuis (2014).

Value

Adjacency matrix of type amat.pag.

Author(s)

Diego Colombo and Markus Kalisch (<kalisch@stat.math.ethz.ch>); JCI extension by Joris
Mooij.

References

D. Colombo and M.H. Maathuis (2014).Order-independent constraint-based causal structure learn-
ing. Journal of Machine Learning Research 15 3741-3782.

D. Colombo, M. H. Maathuis, M. Kalisch, T. S. Richardson (2012). Learning high-dimensional
directed acyclic graphs with latent and selection variables. Ann. Statist. 40, 294–321.

J. M. Mooij, S. Magliacane, T. Claassen (2020). Joint Causal Inference from Multiple Contexts.
Journal of Machine Learning Research 21(99), 1–108.

J. Zhang (2008). On the completeness of orientation rules for causal discovery in the presence of
latent confounders and selection bias. Artificial Intelligence 172, 1873–1896.
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See Also

fci, fciPlus, udag2apag, dag2pag; further, udag2pdag (incl. udag2pdagSpecial and udag2pdagRelaxed).

Examples

##################################################
## Example with hidden variables
## Zhang (2008), Fig. 6, p.1882
##################################################

## draw a DAG with latent variables
## this example is taken from Zhang (2008), Fig. 6, p.1882 (see references)
amat <- t(matrix(c(0,1,0,0,1, 0,0,1,0,0, 0,0,0,1,0, 0,0,0,0,0, 0,0,0,1,0),5,5))
V <- as.character(1:5)
colnames(amat) <- rownames(amat) <- V
edL <- vector("list",length=5)
names(edL) <- V
edL[[1]] <- list(edges= c(2,4),weights=c(1,1))
edL[[2]] <- list(edges= 3, weights=c(1))
edL[[3]] <- list(edges= 5, weights=c(1))
edL[[4]] <- list(edges= 5, weights=c(1))
g <- new("graphNEL", nodes=V, edgeL=edL,edgemode="directed")

if(require("Rgraphviz")) plot(g) else print(g)

## define the latent variable
L <- 1

## compute the true covariance matrix of g
cov.mat <- trueCov(g)

## delete rows and columns which belong to L
true.cov <- cov.mat[-L,-L]

## transform it in a correlation matrix
true.corr <- cov2cor(true.cov)

if (require("MASS")) {
## generate 100000 samples of DAG using standard normal error distribution
n <- 100000
alpha <- 0.01
set.seed(314)
d.mat <- mvrnorm(n, mu = rep(0,dim(true.corr)[1]), Sigma = true.cov)

## estimate the skeleton of given data
suffStat <- list(C = cor(d.mat), n = n)
indepTest <- gaussCItest
resD <- skeleton(suffStat, indepTest, p=dim(true.corr)[2], alpha = alpha)

## estimate v-structures conservatively
tmp <- pc.cons.intern(resD, suffStat, indepTest, alpha, version.unf = c(1, 1))
## tripleList <- tmp$unfTripl



udag2pdag 179

resD <- tmp$sk

## estimate the final skeleton of given data using Possible-D-Sep
pdsepRes <- pdsep(resD@graph, suffStat, indepTest, p=dim(true.corr)[2],

resD@sepset, alpha = alpha, m.max = Inf,
pMax = resD@pMax)

## extend the skeleton into a PAG using all 10 rules
resP <- udag2pag(pag = pdsepRes$G, pdsepRes$sepset, rules = rep(TRUE,10),

verbose = TRUE)
colnames(resP) <- rownames(resP) <- as.character(2:5)
print(resP)

} # only if "MASS" is there

udag2pdag Last PC Algorithm Step: Extend Object with Skeleton to Completed
PDAG

Description

These functions perform the last step in the PC algorithm: Transform an object of the class "pcAlgo"
containing a skeleton and corresponding conditional independence information into a completed
partially directed acyclic graph (CPDAG). The functions first determine the v-structures, and then
apply the three orientation rules as described in Sprirtes et al (2000) and Meek (1995) to orient as
many of the remaining edges as possible.

In the oracle version and when all assumptions hold, all three functions yield the same CPDAG.
In the sample version, however, the resulting CPDAG may be invalid in the sense that one cannot
extend it a DAG without additional unshielded colliders by orienting the undirecting edges. This
can for example happen due to errors in the conditional indepedence tests or violations of the faith-
fulness assumption. The three functions deal with such conflicts in different ways, as described in
Details.

Usage

udag2pdag (gInput, verbose)
udag2pdagRelaxed(gInput, verbose, unfVect=NULL, solve.confl=FALSE,
orientCollider = TRUE, rules = rep(TRUE, 3))

udag2pdagSpecial(gInput, verbose, n.max=100)

Arguments

gInput "pcAlgo"-object containing skeleton and conditional indepedence information.

verbose 0: No output; 1: Details

unfVect vector containing numbers that encode ambiguous triples (as returned by pc.cons.intern).
This is needed in the conservative and majority rule PC algorithms.
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solve.confl if TRUE, the orientation of the v-structures and the orientation rules work with
lists for candidate sets and allow bi-directed edges to resolve conflicting edge
orientations. Note that therefore the resulting object is order-independent but
might not be a PDAG because bi-directed edges can be present.

n.max maximum number of tries for re-orienting doubly visited edges in udag2pdagSpecial.

orientCollider if TRUE, collider are oriented.

rules Array of length 3 containing TRUE or FALSE for each rule. TRUE in position i
means that rule i (Ri) will be applied. By default, all rules are used.

Details

for udag2pdag: If there are edges that are part of more than one v-structure (i.e., the edge b - c in
the v-structures a -> b <- c and b -> c <- d), earlier edge orientations are simply overwritten
by later ones. Thus, if a -> b <- c is considered first, the edge b - c is first oriented as b <- c
and later overwritten by b -> c. The v-structures are considered in lexicographical ordering.
If the resulting graph is extendable to a DAG without additional v-structures, then the rules of
Meek (1995) and Spirtes et al (2000) are applied to obtain the corresponding CPDAG. Other-
wise, the edges are oriented randomly to obtain a DAG that fits on the skeleton, discarding all
information about the v-structures. The resulting DAG is then transformed into its CPDAG.
Note that the output of udag2pdag is random whenever the initial graph was not extendable.
Although the output of udag2pdag is always extendable, it is not necessarily a valid CPDAG in
the sense that it describes a Markov equivalence class of DAGs. For example, two v-structures
a -> b <- c and b -> c <- d (considered in this order) would yield the output a -> b -> c <- d. This
is extendable to a DAG (it already is a DAG), but it does not describe a Markov equivalence
class of DAGs, since the DAG a <- b -> c <- d describes the same conditional independencies.

for udag2pdagSpecial: If the graph after orienting the v-structures as in udag2pdag is extendable
to a DAG without additional v-structures, then the rules of Meek (1995) and Spirtes et al
(2000) are applied to obtain the corresponding CPDAG. Otherwise, the algorithm tries at
most n.max different random orderings of the v-structures (hence overwriting orientations in
different orders), until it finds one that yields an extendable CPDAG. If this fails, the edges are
oriented randomly to obtain a DAG that fits on the skeleton, discarding all information about
the v-structures. The resulting DAG is then transformed into its CPDAG. Note that the output
of udag2pdagSpecial is random whenever the initial graph was not extendable.
Although the output of udag2pdag is always extendable, it is not necessarily a valid CPDAG in
the sense that it describes a Markov equivalence class of DAGs. For example, two v-structures
a -> b <- c and b -> c <- d (considered in this order) would yield the output a -> b -> c <-
d. This is extendable to a DAG (it already IS a DAG), but it does not describe a Markov
equivalence class of DAGs, since the DAG a <- b -> c <- d describes the same conditional
independencies.

for udag2pdagRelaxed: This is the default version in the PC/RFCI/FCI algorithm. It does not test
whether the output is extendable to a DAG without additional v-structures.
If unfVect = NULL (no ambiguous triples), the three orientation rules are applied to each eligi-
ble structure until no more edges can be oriented. Otherwise, unfVect contains the numbers
of all ambiguous triples in the graph as determined by pc.cons.intern. Then the orientation
rules take this information into account. For example, if a -> b - c and <a,b,c> is an unam-
bigous triple and a non-v-structure, then rule 1 implies b -> c. On the other hand, if a -> b - c
but <a,b,c> is an ambiguous triple, then the edge b - c is not oriented.
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If solve.confl = FALSE, earlier edge orientations are overwritten by later ones as in udag2pdag
and udag2pdagSpecial.
If solv.confl = TRUE, both the v-structures and the orientation rules work with lists for the
candidate edges and allow bi-directed edges if there are conflicting orientations. For example,
two v-structures a -> b <- c and b -> c <- d then yield a -> b <-> c <-d. This option can be used
to get an order-independent version of the PC algorithm (see Colombo and Maathuis (2014)).
We denote bi-directed edges, for example between two variables i and j, in the adjacency ma-
trix M of the graph as M[i,j]=2 and M[j,i]=2. Such edges should be interpreted as indications
of conflicts in the algorithm, for example due to errors in the conditional independence tests
or violations of the faithfulness assumption.

Value

for udag2pdag() and udag2pdagRelaxed(): oriented "pcAlgo"-object.
for udag2pdagSpecial: a list with components

pcObj An oriented "pcAlgo"-object.
evisit Matrix counting the number of orientation attempts per edge
xtbl.orig Logical indicating whether the original graph with v-structures is extendable.
xtbl Logical indicating whether the final graph with v-structures is extendable
amat0 Adjacency matrix of original graph with v-structures (type amat.cpdag) .
amat1 Adjacency matrix of final graph with v-structures after changing the ordering in which

the v-structures are considered (type amat.cpdag) .
status Integer code with values

0: Original try is extendable;
1: Reorienting double edge visits helps;
2: Original try is not extendable; reorienting double visits does not help; result is acyclic,

has original v-structures, but perhaps additional v-structures.
counter Number of orderings of the v-structures until success or n.max.

Author(s)

Markus Kalisch (<kalisch@stat.math.ethz.ch>)

References

C. Meek (1995). Causal inference and causal explanation with background knowledge. In Proceed-
ings of the Eleventh Conference on Uncertainty in Artificial Intelligence (UAI-95), pp. 403-411.
Morgan Kaufmann Publishers, Inc.

P. Spirtes, C. Glymour and R. Scheines (2000) Causation, Prediction, and Search, 2nd edition, The
MIT Press.

J. Pearl (2000), Causality, Cambridge University Press.

D. Colombo and M.H. Maathuis (2014).Order-independent constraint-based causal structure learn-
ing. Journal of Machine Learning Research 15 3741-3782.

See Also

pc, pdag2dag, dag2cpdag, udag2pag, udag2apag, dag2pag.
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Examples

## simulate data
set.seed(123)
p <- 10
myDAG <- randomDAG(p, prob = 0.2)
trueCPDAG <- dag2cpdag(myDAG)
n <- 1000
d.mat <- rmvDAG(n, myDAG, errDist = "normal")

## estimate skeleton
resU <- skeleton(suffStat = list(C = cor(d.mat), n = n),

indepTest = gaussCItest, ## (partial correlations)
alpha = 0.05, p=p)

## orient edges using three different methods
resD1 <- udag2pdagRelaxed(resU, verbose=0)
resD2 <- udag2pdagSpecial(resU, verbose=0, n.max=100)
resD3 <- udag2pdag (resU, verbose=0)

visibleEdge Check visible edge.

Description

Check if the directed edge from x to z in a MAG or in a PAG is visible or not.

Usage

visibleEdge(amat, x, z)

Arguments

amat Adjacency matrix of type amat.pag

x, z (integer) position of variable x and z, respectively, in the adjacency matrix.

Details

All directed edges in DAGs and CPDAGs are said to be visible. Given a MAG M / PAG P, a directed
edge A -> B in M / P is visible if there is a vertex C not adjacent to B, such that there is an edge
between C and A that is into A, or there is a collider path between C and A that is into A and every
non-endpoint vertex on the path is a parent of B. Otherwise A -> B is said to be invisible. (see
Maathuis and Colombo (2015), Def. 3.1)

Value

TRUE if edge is visible, otherwise FALSE.
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Author(s)

Diego Colombo

References

M.H. Maathuis and D. Colombo (2015). A generalized backdoor criterion. Annals of Statistics 43
1060-1088.

See Also

backdoor

Examples

amat <- matrix(c(0,3,0,0, 2,0,2,3, 0,2,0,3, 0,2,2,0), 4,4)
colnames(amat) <- rownames(amat) <- letters[1:4]
if(require(Rgraphviz)) {
plotAG(amat)
}

visibleEdge(amat, 3, 4) ## visible
visibleEdge(amat, 2, 4) ## visible
visibleEdge(amat, 1, 2) ## invisible

wgtMatrix Weight Matrix of a Graph, e.g., a simulated DAG

Description

Given a graph object g, as generated e.g., by randomDAG, return the matrix of its edge weights, the
“weight matrix”.

Usage

wgtMatrix(g, transpose = TRUE)

Arguments

g graph object (package graph) of, say, p nodes, e.g. containing a DAG.

transpose logical indicating if the weight matrix should be transposed (t(.), see details).
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Details

When generating a DAG (e.g. using randomDAG), a graph object is usually generated and edge
weights are usually specified. This function extracts the edge weights and arranges them in a matrix
M .

If transpose is TRUE (default), M[i,j] is the weight of the edge from j to i. If transpose is false,
M[i,j] is the weight of the edge from i to j.

Nowadays, this is a trivial wrapper around as(g, "matrix") using the (coerce) method provided
by the graph package.

Value

The p× p weight matrix M.

Note

This function can not be used to estimate the edge weights in an estimated DAG / CPDAG.

Author(s)

Markus Kalisch

See Also

randomDAG for generating a random DAG; rmvDAG for simulating data from a generated DAG.

Examples

set.seed(123)
g <- randomDAG(n = 5, prob = 0.3) ## generate random DAG
if(require(Rgraphviz)) {

plot(g)
}

## edge weights as matrix
wgtMatrix(g)

## for comparison: edge weights in graph object
g@edgeData@data
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