Title: | Pathway Based Tumor Mutational Burden |
---|---|
Description: | A systematic bioinformatics tool to develop a new pathway-based gene panel for tumor mutational burden (TMB) assessment (pathway-based tumor mutational burden, PTMB), using somatic mutations files in an efficient manner from either The Cancer Genome Atlas sources or any in-house studies as long as the data is in mutation annotation file (MAF) format. Besides, we develop a multiple machine learning method using the sample's PTMB profiles to identify cancer-specific dysfunction pathways, which can be a biomarker of prognostic and predictive for cancer immunotherapy. |
Authors: | Junwei Han [aut, cre, cph], Xiangmei Li [aut] |
Maintainer: | Junwei Han <[email protected]> |
License: | GPL (>= 2) |
Version: | 0.1.3 |
Built: | 2024-10-24 07:03:28 UTC |
Source: | CRAN |
final_character, a potential marker for cancer prognostic and immunotherapy, generated by 'get_final_signature'
final_character
final_character
An object of class character
of length 2.
gene_path, a list of KEGG Non-metabolic pathways geneset.
gene_path
gene_path
An object of class list
of length 27.
takes output generated by read.maf and draws an GenePathwayOncoplots.
GenePathwayOncoplots( maffile, gene_path, freq_matrix, risk_score, cut_off, final_character, isTCGA = FALSE, top = 20, clinicalFeatures = "sample_group", annotationColor = c("red", "green"), sortByAnnotation = TRUE, removeNonMutated = FALSE, drawRowBar = TRUE, drawColBar = TRUE, leftBarData = NULL, leftBarLims = NULL, rightBarData = NULL, rightBarLims = NULL, topBarData = NULL, logColBar = FALSE, draw_titv = FALSE, showTumorSampleBarcodes = FALSE, fill = TRUE, showTitle = TRUE, titleText = NULL )
GenePathwayOncoplots( maffile, gene_path, freq_matrix, risk_score, cut_off, final_character, isTCGA = FALSE, top = 20, clinicalFeatures = "sample_group", annotationColor = c("red", "green"), sortByAnnotation = TRUE, removeNonMutated = FALSE, drawRowBar = TRUE, drawColBar = TRUE, leftBarData = NULL, leftBarLims = NULL, rightBarData = NULL, rightBarLims = NULL, topBarData = NULL, logColBar = FALSE, draw_titv = FALSE, showTumorSampleBarcodes = FALSE, fill = TRUE, showTitle = TRUE, titleText = NULL )
maffile |
an MAF object generated by read.maf. |
gene_path |
User input pathways geneset list. |
freq_matrix |
The mutations matrix,generated by 'get_mut_matrix'. |
risk_score |
Samples' PTMB-related risk score,which could be a biomarker for survival analysis and immunotherapy prediction. |
cut_off |
A threshold value(the median risk score as the default value).Using this value to divide the sample into high and low risk groups with different overall survival. |
final_character |
The pathway signature,use to map gene in the GenePathwayOncoplots. |
isTCGA |
Is input MAF file from TCGA source. If TRUE uses only first 12 characters from Tumor_Sample_Barcode. |
top |
how many top genes to be drawn,genes are arranged from high to low depending on the frequency of mutations. defaults to 20. |
clinicalFeatures |
columns names from 'clinical.data' slot of MAF to be drawn in the plot. Dafault "sample_group". |
annotationColor |
Custom colors to use for sample annotation-"sample_group". Must be a named list containing a named vector of colors. Default "red" and "green". |
sortByAnnotation |
logical sort oncomatrix (samples) by provided 'clinicalFeatures'. Sorts based on first 'clinicalFeatures'. Defaults to TRUE. column-sort. |
removeNonMutated |
Logical. If TRUE removes samples with no mutations in the GenePathwayOncoplots for better visualization. Default FALSE. |
drawRowBar |
logical. Plots righ barplot for each gene. Default TRUE. |
drawColBar |
logical plots top barplot for each sample. Default TRUE. |
leftBarData |
Data for leftside barplot. Must be a data.frame with two columns containing gene names and values. Default 'NULL'. |
leftBarLims |
limits for 'leftBarData'. Default 'NULL'. |
rightBarData |
Data for rightside barplot. Must be a data.frame with two columns containing to gene names and values. Default 'NULL' which draws distibution by variant classification. This option is applicable when only 'drawRowBar' is TRUE. |
rightBarLims |
limits for 'rightBarData'. Default 'NULL'. |
topBarData |
Default 'NULL' which draws absolute number of mutation load for each sample. Can be overridden by choosing one clinical indicator(Numeric) or by providing a two column data.frame contaning sample names and values for each sample. This option is applicable when only 'drawColBar' is TRUE. |
logColBar |
Plot top bar plot on log10 scale. Default FALSE. |
draw_titv |
logical Includes TiTv plot. Default FALSE |
showTumorSampleBarcodes |
logical to include sample names. |
fill |
Logical. If TRUE draws genes and samples as blank grids even when they are not altered. |
showTitle |
Default TRUE. |
titleText |
Custom title. Default 'NULL'. |
No return value
#get the path of the mutation annotation file and samples' survival data maf<-system.file("extdata","data_mutations_extended.txt",package = "pathwayTMB") sur_path<-system.file("extdata","sur.csv",package = "pathwayTMB") sur<-read.csv(sur_path,header=TRUE,row.names = 1) #perform the function 'get_mut_matrix' mut_matrix<-get_mut_matrix(maffile=maf,mut_fre = 0.01,is.TCGA=FALSE,sur=sur) #perform the function `get_PTMB` PTMB_matrix<-get_PTMB(freq_matrix=mut_matrix,genesmbol=genesmbol,gene_path=gene_path) set.seed(1) final_character<-get_final_signature(PTMB=PTMB_matrix,sur=sur) #calculate the risksciore riskscore<-plotKMcurves(t(PTMB_matrix[final_character,]),sur=sur,plots=FALSE)$risk_score cut<-median(riskscore) GenePathwayOncoplots(maf,gene_path,mut_matrix,riskscore,cut,final_character)
#get the path of the mutation annotation file and samples' survival data maf<-system.file("extdata","data_mutations_extended.txt",package = "pathwayTMB") sur_path<-system.file("extdata","sur.csv",package = "pathwayTMB") sur<-read.csv(sur_path,header=TRUE,row.names = 1) #perform the function 'get_mut_matrix' mut_matrix<-get_mut_matrix(maffile=maf,mut_fre = 0.01,is.TCGA=FALSE,sur=sur) #perform the function `get_PTMB` PTMB_matrix<-get_PTMB(freq_matrix=mut_matrix,genesmbol=genesmbol,gene_path=gene_path) set.seed(1) final_character<-get_final_signature(PTMB=PTMB_matrix,sur=sur) #calculate the risksciore riskscore<-plotKMcurves(t(PTMB_matrix[final_character,]),sur=sur,plots=FALSE)$risk_score cut<-median(riskscore) GenePathwayOncoplots(maf,gene_path,mut_matrix,riskscore,cut,final_character)
genesmbol,a list of coding genes' length, generated by 'get_gene_length'.
genesmbol
genesmbol
An object of class list
of length 34931.
The function 'get_final_signature' , using to filter cancer-specific dysfunction pathways (a potential marker for cancer prognostic and immunotherapy), is the main function of our analysis.
get_final_signature(PTMB, sur, pval_cutoff = 0.01)
get_final_signature(PTMB, sur, pval_cutoff = 0.01)
PTMB |
The pathway tumor mutation burden matrix,generated by'get_PTMB'. |
sur |
A nx2 data frame of samples' survival data,the first line is samples' survival event and the second line is samples' overall survival. |
pval_cutoff |
A threshold value (0.01 as the default value) to identify the differential PTMB pathway. |
Return the final PTMB signature,could be a potential marker for prognostic and immunotherapy prediction.
#get the path of the mutation annotation file and samples' survival data maf<-system.file("extdata","data_mutations_extended.txt",package = "pathwayTMB") sur_path<-system.file("extdata","sur.csv",package = "pathwayTMB") sur<-read.csv(sur_path,header=TRUE,row.names = 1) #perform the function 'get_mut_matrix' mut_matrix<-get_mut_matrix(maffile=maf,mut_fre = 0.01,is.TCGA=FALSE,sur=sur) #perform the function `get_PTMB` PTMB_matrix<-get_PTMB(freq_matrix=mut_matrix,genesmbol=genesmbol,gene_path=gene_path) set.seed(1) final_character<-get_final_signature(PTMB=PTMB_matrix,sur=sur)
#get the path of the mutation annotation file and samples' survival data maf<-system.file("extdata","data_mutations_extended.txt",package = "pathwayTMB") sur_path<-system.file("extdata","sur.csv",package = "pathwayTMB") sur<-read.csv(sur_path,header=TRUE,row.names = 1) #perform the function 'get_mut_matrix' mut_matrix<-get_mut_matrix(maffile=maf,mut_fre = 0.01,is.TCGA=FALSE,sur=sur) #perform the function `get_PTMB` PTMB_matrix<-get_PTMB(freq_matrix=mut_matrix,genesmbol=genesmbol,gene_path=gene_path) set.seed(1) final_character<-get_final_signature(PTMB=PTMB_matrix,sur=sur)
The function 'get_mut_matrix' converts mutation annotation file (MAF) format data into a mutations matrix.Then use the fisher exact test to select the geneset with higher mutation frequency in alive sample group.Finally return the higher mutation frequency matrix.
get_mut_matrix( maffile, is.TCGA = TRUE, mut_fre = 0, nonsynonymous = TRUE, cut_Cox.pval = 1, cut_HR = 1, sur )
get_mut_matrix( maffile, is.TCGA = TRUE, mut_fre = 0, nonsynonymous = TRUE, cut_Cox.pval = 1, cut_HR = 1, sur )
maffile |
Input mutation annotation file (MAF) format data. It must be an absolute path or the name relatived to the current working directory. |
is.TCGA |
Is input MAF file from TCGA source. If TRUE uses only first 15 characters from Tumor_Sample_Barcode. |
mut_fre |
A threshold value(zero as the default value). The genes with a given mutation frequency equal or greater than the threshold value are retained for the following analysis. |
nonsynonymous |
Logical,tell if extract the non-synonymous somatic mutations (nonsense mutation, missense mutation, frame-shif indels, splice site, nonstop mutation, translation start site, inframe indels). |
cut_Cox.pval |
The significant cut_off pvalue for the univariate Cox regression. |
cut_HR |
The cut_off HR for the univariate Cox regression, uses to select the genes with survival benefit mutations. |
sur |
A nx2 data frame of samples' survival data,the first line is samples' survival event and the second line is samples' overall survival. |
The survival-related mutations matrix.
#get the path of the mutation annotation file and samples' survival data maf<-system.file("extdata","data_mutations_extended.txt",package = "pathwayTMB") sur_path<-system.file("extdata","sur.csv",package = "pathwayTMB") sur<-read.csv(sur_path,header=TRUE,row.names = 1) #perform the function 'get_mut_matrix' mut_matrix<-get_mut_matrix(maffile=maf,mut_fre = 0.01,is.TCGA=FALSE,sur=sur)
#get the path of the mutation annotation file and samples' survival data maf<-system.file("extdata","data_mutations_extended.txt",package = "pathwayTMB") sur_path<-system.file("extdata","sur.csv",package = "pathwayTMB") sur<-read.csv(sur_path,header=TRUE,row.names = 1) #perform the function 'get_mut_matrix' mut_matrix<-get_mut_matrix(maffile=maf,mut_fre = 0.01,is.TCGA=FALSE,sur=sur)
The function 'get_PTMB' uses to calculate the Pathway-based Tumor Mutational Burden (PTMB). PTMB is defined as pathway-based tumor mutational burden corrected by genes’ length and number.
get_PTMB(freq_matrix, genesmbol, path_mut_cutoff = 0, gene_path)
get_PTMB(freq_matrix, genesmbol, path_mut_cutoff = 0, gene_path)
freq_matrix |
The mutations matrix,generated by 'get_mut_matrix'. |
genesmbol |
The genes' length matrix,generated by 'get_gene_length'. |
path_mut_cutoff |
A threshold value(zero percent as the default value).Pathways with a given mutation frequency equal or greater than the threshold value are retained for the following analysis. |
gene_path |
User input pathways geneset list. |
Return the Pathway-based Tumor Mutational Burden matrix.
#get the path of the mutation annotation file and samples' survival data maf<-system.file("extdata","data_mutations_extended.txt",package = "pathwayTMB") sur_path<-system.file("extdata","sur.csv",package = "pathwayTMB") sur<-read.csv(sur_path,header=TRUE,row.names = 1) #perform the function 'get_mut_matrix' mut_matrix<-get_mut_matrix(maffile=maf,mut_fre = 0.01,is.TCGA=FALSE,sur=sur) #perform the function `get_PTMB` PTMB_matrix<-get_PTMB(freq_matrix=mut_matrix,genesmbol=genesmbol,gene_path=gene_path)
#get the path of the mutation annotation file and samples' survival data maf<-system.file("extdata","data_mutations_extended.txt",package = "pathwayTMB") sur_path<-system.file("extdata","sur.csv",package = "pathwayTMB") sur<-read.csv(sur_path,header=TRUE,row.names = 1) #perform the function 'get_mut_matrix' mut_matrix<-get_mut_matrix(maffile=maf,mut_fre = 0.01,is.TCGA=FALSE,sur=sur) #perform the function `get_PTMB` PTMB_matrix<-get_PTMB(freq_matrix=mut_matrix,genesmbol=genesmbol,gene_path=gene_path)
mut_matrix, the mutations matrix,generated by 'get_mut_matrix'
mut_matrix
mut_matrix
An object of class matrix
(inherits from array
) with 673 rows and 35 columns.
The function 'plotKMcurves' uses to draw Kaplan-Meier Survival Curves based on PTMB-related riskscore.The riskscore is generated by the signature's PTMB and the coefficient of "Univariate" or "Multivariate" cox regression.
plotKMcurves( sig_PTMB, sur, method = "Multivariate", returnAll = TRUE, pval = TRUE, color = NULL, plots = TRUE, palette = NULL, linetype = 1, conf.int = FALSE, pval.method = FALSE, test.for.trend = FALSE, surv.median.line = "none", risk.table = FALSE, cumevents = FALSE, cumcensor = FALSE, tables.height = 0.25, add.all = FALSE, ggtheme = theme_survminer() )
plotKMcurves( sig_PTMB, sur, method = "Multivariate", returnAll = TRUE, pval = TRUE, color = NULL, plots = TRUE, palette = NULL, linetype = 1, conf.int = FALSE, pval.method = FALSE, test.for.trend = FALSE, surv.median.line = "none", risk.table = FALSE, cumevents = FALSE, cumcensor = FALSE, tables.height = 0.25, add.all = FALSE, ggtheme = theme_survminer() )
sig_PTMB |
The signature's PTMB matrix,which rows are samples and columns are pathways. |
sur |
A nx2 data frame of samples' survival data,the first line is samples' survival event and the second line is samples' overall survival. |
method |
Method must be one of "Univariate" and "Multivariate". |
returnAll |
Logicalvalue.Default is TRUE. If TRUE, return the riskscore and the coefficient of cox regression. |
pval |
Logical value, a numeric or a string. If logical and TRUE, the p-value is added on the plot. If numeric, than the computet p-value is substituted with the one passed with this parameter. If character, then the customized string appears on the plot. |
color |
Color to be used for the survival curves.If the number of strata/group (n.strata) = 1, the expected value is the color name. For example color = "blue".If n.strata > 1, the expected value is the grouping variable name. By default, survival curves are colored by strata using the argument color = "strata", but you can also color survival curves by any other grouping variables used to fit the survival curves. In this case, it's possible to specify a custom color palette by using the argument palette. |
plots |
logical value.Default is TRUE.If TRUE,plot the Kaplan Meier Survival Curves. |
palette |
the color palette to be used. Allowed values include "hue" for the default hue color scale; "grey" for grey color palettes; brewer palettes e.g. "RdBu", "Blues", ...; or custom color palette e.g. c("blue", "red"); and scientific journal palettes from ggsci R package, e.g.: "npg", "aaas", "lancet", "jco", "ucscgb", "uchicago", "simpsons" and "rickandmorty". See details section for more information. Can be also a numeric vector of length(groups); in this case a basic color palette is created using the function palette. |
linetype |
line types. Allowed values includes i) "strata" for changing linetypes by strata (i.e. groups); ii) a numeric vector (e.g., c(1, 2)) or a character vector c("solid", "dashed"). |
conf.int |
logical value. If TRUE, plots confidence interval. |
pval.method |
whether to add a text with the test name used for calculating the pvalue, that corresponds to survival curves' comparison - used only when pval=TRUE |
test.for.trend |
logical value. Default is FALSE. If TRUE, returns the test for trend p-values. Tests for trend are designed to detect ordered differences in survival curves. That is, for at least one group. The test for trend can be only performed when the number of groups is > 2. |
surv.median.line |
character vector for drawing a horizontal/vertical line at median survival. Allowed values include one of c("none", "hv", "h", "v"). v: vertical, h:horizontal. |
risk.table |
Allowed values include:(1)TRUE or FALSE specifying whether to show or not the risk table. Default is FALSE.(2)"absolute" or "percentage". Shows the absolute number and the percentage of subjects at risk by time, respectively.(3)"abs_pct" to show both absolute number and percentage.(4)"nrisk_cumcensor" and "nrisk_cumevents". Show the number at risk and, the cumulative number of censoring and events, respectively. |
cumevents |
logical value specifying whether to show or not the table of the cumulative number of events. Default is FALSE. |
cumcensor |
logical value specifying whether to show or not the table of the cumulative number of censoring. Default is FALSE. |
tables.height |
numeric value (in [0 - 1]) specifying the general height of all tables under the main survival plot. |
add.all |
a logical value. If TRUE, add the survival curve of pooled patients (null model) onto the main plot. |
ggtheme |
function, ggplot2 theme name. Default value is theme_survminer. Allowed values include ggplot2 official themes: see theme. |
Return a list of riskscore and coefficient of cox regression.
#get the path of the mutation annotation file and samples' survival data maf<-system.file("extdata","data_mutations_extended.txt",package = "pathwayTMB") sur_path<-system.file("extdata","sur.csv",package = "pathwayTMB") sur<-read.csv(sur_path,header=TRUE,row.names = 1) #perform the function 'get_mut_matrix' mut_matrix<-get_mut_matrix(maffile=maf,mut_fre = 0.01,is.TCGA=FALSE,sur=sur) #perform the function `get_PTMB` PTMB_matrix<-get_PTMB(freq_matrix=mut_matrix,genesmbol=genesmbol,gene_path=gene_path) set.seed(1) final_character<-get_final_signature(PTMB=PTMB_matrix,sur=sur) #plot the K-M survival curve plotKMcurves(t(PTMB_matrix[final_character,]),sur=sur,risk.table = TRUE)
#get the path of the mutation annotation file and samples' survival data maf<-system.file("extdata","data_mutations_extended.txt",package = "pathwayTMB") sur_path<-system.file("extdata","sur.csv",package = "pathwayTMB") sur<-read.csv(sur_path,header=TRUE,row.names = 1) #perform the function 'get_mut_matrix' mut_matrix<-get_mut_matrix(maffile=maf,mut_fre = 0.01,is.TCGA=FALSE,sur=sur) #perform the function `get_PTMB` PTMB_matrix<-get_PTMB(freq_matrix=mut_matrix,genesmbol=genesmbol,gene_path=gene_path) set.seed(1) final_character<-get_final_signature(PTMB=PTMB_matrix,sur=sur) #plot the K-M survival curve plotKMcurves(t(PTMB_matrix[final_character,]),sur=sur,risk.table = TRUE)
Performs Pair-wise Fisher's Exact test to detect mutually exclusive or co-occuring events.
plotMutInteract( freq_matrix, genes, pvalue = c(0.05, 0.01), returnAll = TRUE, fontSize = 0.8, showSigSymbols = TRUE, showCounts = FALSE, countStats = "all", countType = "all", countsFontSize = 0.8, countsFontColor = "black", colPal = "BrBG", nShiftSymbols = 5, sigSymbolsSize = 2, sigSymbolsFontSize = 0.9, pvSymbols = c(46, 42), limitColorBreaks = TRUE )
plotMutInteract( freq_matrix, genes, pvalue = c(0.05, 0.01), returnAll = TRUE, fontSize = 0.8, showSigSymbols = TRUE, showCounts = FALSE, countStats = "all", countType = "all", countsFontSize = 0.8, countsFontColor = "black", colPal = "BrBG", nShiftSymbols = 5, sigSymbolsSize = 2, sigSymbolsFontSize = 0.9, pvSymbols = c(46, 42), limitColorBreaks = TRUE )
freq_matrix |
The mutations matrix,generated by 'get_mut_matrix'. |
genes |
List of genes or pathways among which interactions should be tested. |
pvalue |
Default c(0.05, 0.01) p-value threshold. You can provide two values for upper and lower threshold. |
returnAll |
If TRUE returns test statistics for all pair of tested genes. Default FALSE, returns for only genes below pvalue threshold. |
fontSize |
cex for gene names. Default 0.8. |
showSigSymbols |
Default TRUE. Heighlight significant pairs. |
showCounts |
Default TRUE. Include number of events in the plot. |
countStats |
Default 'all'. Can be 'all' or 'sig'. |
countType |
Default 'cooccur'. Can be 'all', 'cooccur', 'mutexcl'. |
countsFontSize |
Default 0.8. |
countsFontColor |
Default 'black'. |
colPal |
colPalBrewer palettes. See RColorBrewer::display.brewer.all() for details. |
nShiftSymbols |
shift if positive shift SigSymbols by n to the left, default = 5. |
sigSymbolsSize |
size of symbols in the matrix and in legend. |
sigSymbolsFontSize |
size of font in legends. |
pvSymbols |
vector of pch numbers for symbols of p-value for upper and lower thresholds c(upper, lower). |
limitColorBreaks |
limit color to extreme values. Default TRUE. |
list of data.tables
#get the path of the mutation annotation file and samples' survival data maf<-system.file("extdata","data_mutations_extended.txt",package = "pathwayTMB") sur_path<-system.file("extdata","sur.csv",package = "pathwayTMB") sur<-read.csv(sur_path,header=TRUE,row.names = 1) #perform the function 'get_mut_matrix' mut_matrix<-get_mut_matrix(maffile=maf,mut_fre = 0.01,is.TCGA=FALSE,sur=sur) #perform the function `get_PTMB` PTMB_matrix<-get_PTMB(freq_matrix=mut_matrix,genesmbol=genesmbol,gene_path=gene_path) set.seed(1) final_character<-get_final_signature(PTMB=PTMB_matrix,sur=sur) plotMutInteract(freq_matrix=PTMB_matrix, genes=final_character,nShiftSymbols =0.3)
#get the path of the mutation annotation file and samples' survival data maf<-system.file("extdata","data_mutations_extended.txt",package = "pathwayTMB") sur_path<-system.file("extdata","sur.csv",package = "pathwayTMB") sur<-read.csv(sur_path,header=TRUE,row.names = 1) #perform the function 'get_mut_matrix' mut_matrix<-get_mut_matrix(maffile=maf,mut_fre = 0.01,is.TCGA=FALSE,sur=sur) #perform the function `get_PTMB` PTMB_matrix<-get_PTMB(freq_matrix=mut_matrix,genesmbol=genesmbol,gene_path=gene_path) set.seed(1) final_character<-get_final_signature(PTMB=PTMB_matrix,sur=sur) plotMutInteract(freq_matrix=PTMB_matrix, genes=final_character,nShiftSymbols =0.3)
This function uses to plot a ROC curve.
plotROC( riskscore, response, main, add = FALSE, col = par("col"), legacy.axes = TRUE, print.auc = FALSE, grid = FALSE, auc.polygon = FALSE, auc.polygon.col = "skyblue", max.auc.polygon = FALSE, max.auc.polygon.col = "#EEEEEE" )
plotROC( riskscore, response, main, add = FALSE, col = par("col"), legacy.axes = TRUE, print.auc = FALSE, grid = FALSE, auc.polygon = FALSE, auc.polygon.col = "skyblue", max.auc.polygon = FALSE, max.auc.polygon.col = "#EEEEEE" )
riskscore |
a numeric vector of the same length than response, containing the predicted value of each observation. |
response |
a factor, numeric or character vector of responses (true class), typically encoded with 0 (controls) and 1 (cases). Only two classes can be used in a ROC curve. |
main |
the title of the ROC curve |
add |
if TRUE, the ROC curve will be added to an existing plot. If FALSE (default), a new plot will be created. |
col |
the color of the ROC curve |
legacy.axes |
a logical indicating if the specificity axis (x axis) must be plotted as as decreasing “specificity” (FALSE) or increasing “1 - specificity” (TRUE, the default) as in most legacy software. This affects only the axis, not the plot coordinates. |
print.auc |
boolean. Should the numeric value of AUC be printed on the plot? |
grid |
boolean or numeric vector of length 1 or 2. Should a background grid be added to the plot? Numeric: show a grid with the specified interval between each line; Logical: show the grid or not. Length 1: same values are taken for horizontal and vertical lines. Length 2: grid value for vertical (grid[1]) and horizontal (grid[2]). Note that these values are used to compute grid.v and grid.h. Therefore if you specify a grid.h and grid.v, it will be ignored. |
auc.polygon |
boolean. Whether or not to display the area as a polygon. |
auc.polygon.col |
color (col) for the AUC polygon. |
max.auc.polygon |
boolean. Whether or not to display the maximal possible area as a polygon. |
max.auc.polygon.col |
color (col) for the maximum AUC polygon. |
No return value
#get the path of the mutation annotation file and samples' survival data maf<-system.file("extdata","data_mutations_extended.txt",package = "pathwayTMB") sur_path<-system.file("extdata","sur.csv",package = "pathwayTMB") sur<-read.csv(sur_path,header=TRUE,row.names = 1) #perform the function 'get_mut_matrix' mut_matrix<-get_mut_matrix(maffile=maf,mut_fre = 0.01,is.TCGA=FALSE,sur=sur) #perform the function `get_PTMB` PTMB_matrix<-get_PTMB(freq_matrix=mut_matrix,genesmbol=genesmbol,gene_path=gene_path) set.seed(1) final_character<-get_final_signature(PTMB=PTMB_matrix,sur=sur) #calculate the risksciore riskscore<-plotKMcurves(t(PTMB_matrix[final_character,]),sur=sur,plots=FALSE)$risk_score #get the path of samples' immunotherapy response data res_path<- system.file("extdata","response.csv",package = "pathwayTMB") response<-read.csv(res_path,header=TRUE,stringsAsFactors =FALSE,row.name=1) plotROC(riskscore=riskscore,response=response,main="Objective Response",print.auc=TRUE)
#get the path of the mutation annotation file and samples' survival data maf<-system.file("extdata","data_mutations_extended.txt",package = "pathwayTMB") sur_path<-system.file("extdata","sur.csv",package = "pathwayTMB") sur<-read.csv(sur_path,header=TRUE,row.names = 1) #perform the function 'get_mut_matrix' mut_matrix<-get_mut_matrix(maffile=maf,mut_fre = 0.01,is.TCGA=FALSE,sur=sur) #perform the function `get_PTMB` PTMB_matrix<-get_PTMB(freq_matrix=mut_matrix,genesmbol=genesmbol,gene_path=gene_path) set.seed(1) final_character<-get_final_signature(PTMB=PTMB_matrix,sur=sur) #calculate the risksciore riskscore<-plotKMcurves(t(PTMB_matrix[final_character,]),sur=sur,plots=FALSE)$risk_score #get the path of samples' immunotherapy response data res_path<- system.file("extdata","response.csv",package = "pathwayTMB") response<-read.csv(res_path,header=TRUE,stringsAsFactors =FALSE,row.name=1) plotROC(riskscore=riskscore,response=response,main="Objective Response",print.auc=TRUE)
PTMB_matrix, the pathway tumor mutation burden matrix,generated by'get_PTMB'
PTMB_matrix
PTMB_matrix
An object of class data.frame
with 27 rows and 35 columns.
sur, a nx2 data frame, the samples' survival data
sur
sur
An object of class data.frame
with 110 rows and 2 columns.