
Package: parglm (via r-universe)
October 8, 2024

Type Package

Title Parallel GLM

Version 0.1.7

Description Provides a parallel estimation method for generalized
linear models without compiling with a multithreaded LAPACK or
BLAS.

License GPL-2

Encoding UTF-8

URL https://github.com/boennecd/parglm

BugReports https://github.com/boennecd/parglm/issues

LinkingTo Rcpp, RcppArmadillo

Imports Rcpp, Matrix

SystemRequirements C++11

Suggests testthat, SuppDists, knitr, rmarkdown, speedglm,
microbenchmark, R.rsp

RoxygenNote 6.1.1

VignetteBuilder R.rsp

NeedsCompilation yes

Author Benjamin Christoffersen [cre, aut]
(<https://orcid.org/0000-0002-7182-1346>), Anthony Williams
[cph], Boost developers [cph]

Maintainer Benjamin Christoffersen <boennecd@gmail.com>

Repository CRAN

Date/Publication 2021-10-14 15:10:02 UTC

Contents
parglm . 2
parglm.control . 3

Index 5

1

https://github.com/boennecd/parglm
https://github.com/boennecd/parglm/issues
https://orcid.org/0000-0002-7182-1346

2 parglm

parglm Fitting Generalized Linear Models in Parallel

Description

Function like glm which can make the computation in parallel. The function supports most families
listed in family. See "vignette("parglm", "parglm")" for run time examples.

Usage

parglm(formula, family = gaussian, data, weights, subset, na.action,
start = NULL, offset, control = list(...), contrasts = NULL,
model = TRUE, x = FALSE, y = TRUE, ...)

parglm.fit(x, y, weights = rep(1, NROW(x)), start = NULL,
etastart = NULL, mustart = NULL, offset = rep(0, NROW(x)),
family = gaussian(), control = list(), intercept = TRUE, ...)

Arguments

formula an object of class formula.

family a family object.

data an optional data frame, list or environment containing the variables in the model.

weights an optional vector of ’prior weights’ to be used in the fitting process. Should be
NULL or a numeric vector.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

na.action a function which indicates what should happen when the data contain NAs.

start starting values for the parameters in the linear predictor.

offset this can be used to specify an a priori known component to be included in the
linear predictor during fitting.

control a list of parameters for controlling the fitting process. For parglm.fit this is
passed to parglm.control.

contrasts an optional list. See the contrasts.arg of model.matrix.default.

model a logical value indicating whether model frame should be included as a compo-
nent of the returned value.

x, y For parglm: logical values indicating whether the response vector and model
matrix used in the fitting process should be returned as components of the re-
turned value.
For parglm.fit: x is a design matrix of dimension n * p, and y is a vector of
observations of length n.

... For parglm: arguments to be used to form the default control argument if it is
not supplied directly.
For parglm.fit: unused.

parglm.control 3

etastart starting values for the linear predictor. Not supported.

mustart starting values for the vector of means. Not supported.

intercept logical. Should an intercept be included in the null model?

Details

The current implementation uses min(as.integer(n / p), nthreads) threads where n is the num-
ber observations, p is the number of covariates, and nthreads is the nthreads element of the list
returned by parglm.control. Thus, there is likely little (if any) reduction in computation time if p
is almost equal to n. The current implementation cannot handle p > n.

Value

glm object as returned by glm but differs mainly by the qr element. The qr element in the object
returned by parglm(.fit) only has the R matrix from the QR decomposition.

Examples

small example from `help('glm')`. Fitting this model in parallel does
not matter as the data set is small
clotting <- data.frame(

u = c(5,10,15,20,30,40,60,80,100),
lot1 = c(118,58,42,35,27,25,21,19,18),
lot2 = c(69,35,26,21,18,16,13,12,12))

f1 <- glm (lot1 ~ log(u), data = clotting, family = Gamma)
f2 <- parglm(lot1 ~ log(u), data = clotting, family = Gamma,

control = parglm.control(nthreads = 2L))
all.equal(coef(f1), coef(f2))

parglm.control Auxiliary for Controlling GLM Fitting in Parallel

Description

Auxiliary function for parglm fitting.

Usage

parglm.control(epsilon = 1e-08, maxit = 25, trace = FALSE,
nthreads = 1L, block_size = NULL, method = "LINPACK")

Arguments

epsilon positive convergence tolerance.

maxit integer giving the maximal number of IWLS iterations.

trace logical indicating if output should be produced doing estimation.

4 parglm.control

nthreads number of cores to use. You may get the best performance by using your number
of physical cores if your data set is sufficiently large. Using the number of
physical CPUs/cores may yield the best performance (check your number e.g.,
by calling parallel::detectCores(logical = FALSE)).

block_size number of observation to include in each parallel block.

method string specifying which method to use. Either "LINPACK", "LAPACK", or "FAST".

Details

The LINPACK method uses the same QR method as glm.fit for the final QR decomposition. This
is the dqrdc2 method described in qr. All other QR decompositions but the last are made with
DGEQP3 from LAPACK. See Wood, Goude, and Shaw (2015) for details on the QR method.

The FAST method computes the Fisher information and then solves the normal equation. This is
faster but less numerically stable.

Value

A list with components named as the arguments.

References

Wood, S.N., Goude, Y. & Shaw S. (2015) Generalized additive models for large datasets. Journal
of the Royal Statistical Society, Series C 64(1): 139-155.

Examples

use one core
clotting <- data.frame(
u = c(5,10,15,20,30,40,60,80,100),
lot1 = c(118,58,42,35,27,25,21,19,18),
lot2 = c(69,35,26,21,18,16,13,12,12))

f1 <- parglm(lot1 ~ log(u), data = clotting, family = Gamma,
control = parglm.control(nthreads = 1L))

use two cores
f2 <- parglm(lot1 ~ log(u), data = clotting, family = Gamma,

control = parglm.control(nthreads = 2L))
all.equal(coef(f1), coef(f2))

Index

family, 2
formula, 2

glm, 2, 3
glm.fit, 4

model.matrix.default, 2

parglm, 2, 3
parglm.control, 2, 3, 3

qr, 4

5

	parglm
	parglm.control
	Index

