Title: | Collection of Functions for Orthogonal and Orthonormal Polynomials |
---|---|
Description: | A collection of functions to construct sets of orthogonal polynomials and their recurrence relations. Additional functions are provided to calculate the derivative, integral, value and roots of lists of polynomial objects. |
Authors: | Frederick Novomestky <[email protected]> |
Maintainer: | Frederick Novomestky <[email protected]> |
License: | GPL (>= 2) |
Version: | 1.0-6.1 |
Built: | 2024-11-06 06:17:00 UTC |
Source: | CRAN |
This function returns a vector with elements containing the inner product of
an order
Chebyshev polynomial of the first kind,
,
with itself (i.e. the norm squared) for orders
.
chebyshev.c.inner.products(n)
chebyshev.c.inner.products(n)
n |
integer value for the highest polynomial order |
The formula used to compute the inner products is as follows.
A vector with elements
1 |
inner product of order 0 orthogonal polynomial |
2 |
inner product of order 1 orthogonal polynomial |
...
n+1 |
inner product of order |
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### generate the inner products vector for the ### C Chebyshev polynomials of orders 0 to 10 ### h <- chebyshev.c.inner.products( 10 ) print( h )
### ### generate the inner products vector for the ### C Chebyshev polynomials of orders 0 to 10 ### h <- chebyshev.c.inner.products( 10 ) print( h )
This function returns a list with elements containing
the order
Chebyshev polynomials of the first kind,
,
for orders
.
chebyshev.c.polynomials(n, normalized=FALSE)
chebyshev.c.polynomials(n, normalized=FALSE)
n |
integer value for the highest polynomial order |
normalized |
a boolean value which, if TRUE, returns a list of normalized orthogonal polynomials |
The function chebyshev.c.recurrences
produces a data frame with the recurrence relation parameters
for the polynomials. If the normalized
argument is FALSE, the
function orthogonal.polynomials
is used to construct the list of orthogonal polynomial objects.
Otherwise, the function orthonormal.polynomials
is used to construct the
list of orthonormal polynomial objects.
A list of polynomial objects
1 |
order 0 Chebyshev polynomial |
2 |
order 1 Chebyshev polynomial |
...
n+1 |
order |
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
chebyshev.c.recurrences
,
orthogonal.polynomials
,
orthonormal.polynomials
### ### gemerate a list of normalized C Chebyshev polynomials of orders 0 to 10 ### normalized.p.list <- chebyshev.c.polynomials( 10, normalized=TRUE ) print( normalized.p.list ) ### ### gemerate a list of unnormalized C Chebyshev polynomials of orders 0 to 10 ### unnormalized.p.list <- chebyshev.c.polynomials( 10, normalized=FALSE ) print( unnormalized.p.list )
### ### gemerate a list of normalized C Chebyshev polynomials of orders 0 to 10 ### normalized.p.list <- chebyshev.c.polynomials( 10, normalized=TRUE ) print( normalized.p.list ) ### ### gemerate a list of unnormalized C Chebyshev polynomials of orders 0 to 10 ### unnormalized.p.list <- chebyshev.c.polynomials( 10, normalized=FALSE ) print( unnormalized.p.list )
This function returns a data frame with rows and four named columns containing
the coefficient vectors c, d, e and f of
the recurrence relations for the order
Chebyshev polynomial of the first kind,
,
and for orders
.
chebyshev.c.recurrences(n, normalized=FALSE)
chebyshev.c.recurrences(n, normalized=FALSE)
n |
integer value for the highest polynomial order |
normalized |
boolean value which, if TRUE, returns recurrence relations for normalized polynomials |
A data frame with the recurrence relation parameters.
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### generate the recurrences data frame for ### the normalized Chebyshev C polynomials ### of orders 0 to 10. ### normalized.r <- chebyshev.c.recurrences( 10, normalized=TRUE ) print( normalized.r ) ### ### generate the recurrences data frame for ### the normalized Chebyshev C polynomials ### of orders 0 to 10. ### unnormalized.r <- chebyshev.c.recurrences( 10, normalized=FALSE ) print( unnormalized.r )
### ### generate the recurrences data frame for ### the normalized Chebyshev C polynomials ### of orders 0 to 10. ### normalized.r <- chebyshev.c.recurrences( 10, normalized=TRUE ) print( normalized.r ) ### ### generate the recurrences data frame for ### the normalized Chebyshev C polynomials ### of orders 0 to 10. ### unnormalized.r <- chebyshev.c.recurrences( 10, normalized=FALSE ) print( unnormalized.r )
This function returns the value of the weight function for the order
Chebyshev polynomial of the first kind,
.
chebyshev.c.weight(x)
chebyshev.c.weight(x)
x |
the function argument which can be a vector |
The function takes on non-zero values in the interval . The formula
used to compute the weight function is as follows.
The value of the weight function
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992. Numerical Recipes in C, Cambridge University Press, Cambridge, U.K.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### compute the C Chebyshev weight function for arguments between -3 and 3 ### x <- seq( -3, 3, .01 ) y <- chebyshev.c.weight( x ) plot( x, y )
### ### compute the C Chebyshev weight function for arguments between -3 and 3 ### x <- seq( -3, 3, .01 ) y <- chebyshev.c.weight( x ) plot( x, y )
This function returns a vector with elements containing the inner product of
an order
Chebyshev polynomial of the second kind,
,
with itself (i.e. the norm squared) for orders
.
chebyshev.s.inner.products(n)
chebyshev.s.inner.products(n)
n |
integer value for the highest polynomial order |
The formula used to compute the inner products is as follows.
.
A vector with elements
1 |
inner product of order 0 orthogonal polynomial |
2 |
inner product of order 1 orthogonal polynomial |
...
n+1 |
inner product of order |
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### generate the inner products vector for the ### S Chebyshev polynomials of orders 0 to 10 ### h <- chebyshev.s.inner.products( 10 ) print( h )
### ### generate the inner products vector for the ### S Chebyshev polynomials of orders 0 to 10 ### h <- chebyshev.s.inner.products( 10 ) print( h )
This function returns a list with elements containing
the order
Chebyshev polynomials of the second kind,
,
for orders
.
chebyshev.s.polynomials(n, normalized=FALSE)
chebyshev.s.polynomials(n, normalized=FALSE)
n |
integer value for the highest polynomial order |
normalized |
a boolean value which, if TRUE, returns a list of normalized orthogonal polynomials |
The function chebyshev.s.recurrences
produces a data frame with the recurrence relation parameters
for the polynomials. If the normalized
argument is FALSE, the
function orthogonal.polynomials
is used to construct the list of orthogonal polynomial objects.
Otherwise, the function orthonormal.polynomials
is used to construct the
list of orthonormal polynomial objects.
A list of polynomial objects
1 |
order 0 Chebyshev polynomial |
2 |
order 1 Chebyshev polynomial |
...
n+1 |
order |
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
chebyshev.s.recurrences
,
orthogonal.polynomials
,
orthonormal.polynomials
### ### gemerate a list of normalized S Chebyshev polynomials of orders 0 to 10 ### normalized.p.list <- chebyshev.s.polynomials( 10, normalized=TRUE ) print( normalized.p.list ) ### ### gemerate a list of unnormalized S Chebyshev polynomials of orders 0 to 10 ### unnormalized.p.list <- chebyshev.s.polynomials( 10, normalized=FALSE ) print( unnormalized.p.list )
### ### gemerate a list of normalized S Chebyshev polynomials of orders 0 to 10 ### normalized.p.list <- chebyshev.s.polynomials( 10, normalized=TRUE ) print( normalized.p.list ) ### ### gemerate a list of unnormalized S Chebyshev polynomials of orders 0 to 10 ### unnormalized.p.list <- chebyshev.s.polynomials( 10, normalized=FALSE ) print( unnormalized.p.list )
This function returns a data frame with rows and four named columns containing
the coefficient vectors c, d, e and f of
the recurrence relations for the order
Chebyshev polynomial of the second kind,
,
and for orders
.
chebyshev.s.recurrences(n, normalized=FALSE)
chebyshev.s.recurrences(n, normalized=FALSE)
n |
integer value for the highest polynomial order |
normalized |
boolean value which, if TRUE, returns recurrence relations for normalized polynomials |
A data frame with the recurrence relation parameters.
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### generate the recurrences data frame for ### the normalized Chebyshev S polynomials ### of orders 0 to 10. ### normalized.r <- chebyshev.s.recurrences( 10, normalized=TRUE ) print( normalized.r ) ### ### generate the recurrences data frame for ### the normalized Chebyshev S polynomials ### of orders 0 to 10. ### unnormalized.r <- chebyshev.s.recurrences( 10, normalized=FALSE ) print( unnormalized.r )
### ### generate the recurrences data frame for ### the normalized Chebyshev S polynomials ### of orders 0 to 10. ### normalized.r <- chebyshev.s.recurrences( 10, normalized=TRUE ) print( normalized.r ) ### ### generate the recurrences data frame for ### the normalized Chebyshev S polynomials ### of orders 0 to 10. ### unnormalized.r <- chebyshev.s.recurrences( 10, normalized=FALSE ) print( unnormalized.r )
This function returns the value of the weight function for the order Chebyshev polynomial of the second kind,
.
chebyshev.s.weight(x)
chebyshev.s.weight(x)
x |
the function argument which can be a vector |
The function takes on non-zero values in the interval . The formula
used to compute the weight function is as follows.
The value of the weight function.
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992. Numerical Recipes in C, Cambridge University Press, Cambridge, U.K.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### compute the S Chebyshev weight function for arguments between -2 and 2 ### x <- seq( -2, 2, .01 ) y <- chebyshev.s.weight( x ) plot( x, y )
### ### compute the S Chebyshev weight function for arguments between -2 and 2 ### x <- seq( -2, 2, .01 ) y <- chebyshev.s.weight( x ) plot( x, y )
This function returns a vector with elements containing the inner product of
an order
Chebyshev polynomial of the first kind,
,
with itself (i.e. the norm squared) for orders
.
chebyshev.t.inner.products(n)
chebyshev.t.inner.products(n)
n |
integer value for the highest polynomial order |
The formula used to compute the inner products is as follows.
A vector with elements
1 |
inner product of order 0 orthogonal polynomial |
2 |
inner product of order 1 orthogonal polynomial |
...
n+1 |
inner product of order |
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### generate the inner products vector for the ### T Chybyshev polynomials of orders 0 to 10 ### h <- chebyshev.t.inner.products( 10 ) print( h )
### ### generate the inner products vector for the ### T Chybyshev polynomials of orders 0 to 10 ### h <- chebyshev.t.inner.products( 10 ) print( h )
This function returns a list with elements containing
the order
Chebyshev polynomials of the first kind,
,
for orders
.
chebyshev.t.polynomials(n, normalized=FALSE)
chebyshev.t.polynomials(n, normalized=FALSE)
n |
integer value for the highest polynomial order |
normalized |
a boolean value which, if TRUE, returns a list of normalized orthogonal polynomials |
The function chebyshev.t.recurrences
produces a data frame with the recurrence relation parameters
for the polynomials. If the normalized
argument is FALSE, the
function orthogonal.polynomials
is used to construct the list of orthogonal polynomial objects.
Otherwise, the function orthonormal.polynomials
is used to construct the
list of orthonormal polynomial objects.
A list of polynomial objects
1 |
order 0 Chebyshev polynomial |
2 |
order 1 Chebyshev polynomial |
...
n+1 |
order |
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
chebyshev.u.recurrences
,
orthogonal.polynomials
,
orthonormal.polynomials
### ### gemerate a list of normalized T Chebyshev polynomials of orders 0 to 10 ### normalized.p.list <- chebyshev.t.polynomials( 10, normalized=TRUE ) print( normalized.p.list ) ### ### gemerate a list of unnormalized T Chebyshev polynomials of orders 0 to 10 ### unnormalized.p.list <- chebyshev.t.polynomials( 10, normalized=FALSE ) print( unnormalized.p.list )
### ### gemerate a list of normalized T Chebyshev polynomials of orders 0 to 10 ### normalized.p.list <- chebyshev.t.polynomials( 10, normalized=TRUE ) print( normalized.p.list ) ### ### gemerate a list of unnormalized T Chebyshev polynomials of orders 0 to 10 ### unnormalized.p.list <- chebyshev.t.polynomials( 10, normalized=FALSE ) print( unnormalized.p.list )
This function returns a data frame with rows and four named columns containing
the coefficient vectors c, d, e and f of
the recurrence relations for the order
Chebyshev polynomial of the first kind,
,
for orders
.
chebyshev.t.recurrences(n, normalized=FALSE)
chebyshev.t.recurrences(n, normalized=FALSE)
n |
integer value for the highest polynomial order |
normalized |
boolean value which, if TRUE, returns recurrence relations for normalized polynomials |
A data frame with the recurrence relation parameters.
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### generate the recurrence relations for ### the normalized T Chebyshev polynomials ### of orders 0 to 10 ### normalized.r <- chebyshev.t.recurrences( 10, normalized=TRUE ) print( normalized.r ) ### ### generate the recurrence relations for ### the normalized T Chebyshev polynomials ### of orders 0 to 10 ### unnormalized.r <- chebyshev.t.recurrences( 10, normalized=FALSE ) print( unnormalized.r )
### ### generate the recurrence relations for ### the normalized T Chebyshev polynomials ### of orders 0 to 10 ### normalized.r <- chebyshev.t.recurrences( 10, normalized=TRUE ) print( normalized.r ) ### ### generate the recurrence relations for ### the normalized T Chebyshev polynomials ### of orders 0 to 10 ### unnormalized.r <- chebyshev.t.recurrences( 10, normalized=FALSE ) print( unnormalized.r )
This function returns the value of the weight function for the order Chebyshev polynomial
of the first kind,
.
chebyshev.t.weight(x)
chebyshev.t.weight(x)
x |
the function argument which can be a vector |
The function takes on non-zero values in the interval . The formula
used to compute the weight function is as follows.
The value of the weight function.
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992. Numerical Recipes in C, Cambridge University Press, Cambridge, U.K.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### compute the T Chebyshev function for argument values between -2 and 2 x <- seq( -1, 1, .01 ) y <- chebyshev.t.weight( x ) plot( x, y )
### ### compute the T Chebyshev function for argument values between -2 and 2 x <- seq( -1, 1, .01 ) y <- chebyshev.t.weight( x ) plot( x, y )
This function returns a vector with elements containing the inner product of
an order
Chebyshev polynomial of the second kind,
,
with itself (i.e. the norm squared) for orders
.
chebyshev.u.inner.products(n)
chebyshev.u.inner.products(n)
n |
integer value for the highest polynomial order |
The formula used to compute the inner products is as follows.
A vector with elements
1 |
inner product of order 0 orthogonal polynomial |
2 |
inner product of order 1 orthogonal polynomial |
...
n+1 |
inner product of order |
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### generate the inner products vector for the ### U Chebyshev polynomials of orders 0 to 10 ### h <- chebyshev.u.inner.products( 10 ) print( h )
### ### generate the inner products vector for the ### U Chebyshev polynomials of orders 0 to 10 ### h <- chebyshev.u.inner.products( 10 ) print( h )
This function returns a list with elements containing
the order
Chebyshev polynomials of the second kind,
,
for orders
.
chebyshev.u.polynomials(n, normalized=FALSE)
chebyshev.u.polynomials(n, normalized=FALSE)
n |
integer value for the highest polynomial order |
normalized |
a boolean value which, if TRUE, returns a list of normalized orthogonal polynomials |
The function chebyshev.u.recurrences
produces a data frame with the recurrence relation parameters
for the polynomials. If the normalized
argument is FALSE, the
function orthogonal.polynomials
is used to construct the list of orthogonal polynomial objects.
Otherwise, the function orthonormal.polynomials
is used to construct the
list of orthonormal polynomial objects.
A list of polynomial objects
1 |
order 0 Chebyshev polynomial |
2 |
order 1 Chebyshev polynomial |
...
n+1 |
order |
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
chebyshev.u.recurrences
,
orthogonal.polynomials
,
orthonormal.polynomials
### ### gemerate a list of normalized U Chebyshev polynomials of orders 0 to 10 ### normalized.p.list <- chebyshev.u.polynomials( 10, normalized=TRUE ) print( normalized.p.list ) ### ### gemerate a list of unnormalized T Chebyshev polynomials of orders 0 to 10 ### unnormalized.p.list <- chebyshev.u.polynomials( 10, normalized=FALSE ) print( unnormalized.p.list )
### ### gemerate a list of normalized U Chebyshev polynomials of orders 0 to 10 ### normalized.p.list <- chebyshev.u.polynomials( 10, normalized=TRUE ) print( normalized.p.list ) ### ### gemerate a list of unnormalized T Chebyshev polynomials of orders 0 to 10 ### unnormalized.p.list <- chebyshev.u.polynomials( 10, normalized=FALSE ) print( unnormalized.p.list )
This function returns a data frame with rows and four named columns containing
the coefficient vectors c, d, e and f of
the recurrence relations for the order
Chebyshev polynomial of the second kind,
,
for orders
.
chebyshev.u.recurrences(n, normalized=FALSE)
chebyshev.u.recurrences(n, normalized=FALSE)
n |
integer value for the highest polynomial order |
normalized |
boolean value which, if TRUE, returns recurrence relations for normalized polynomials |
A data frame with the recurrence relation parameters.
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### generate the recurrence relations for ### the normalized U Chebyshev polynomials ### of orders 0 to 10 ### normalized.r <- chebyshev.u.recurrences( 10, normalized=TRUE ) print( normalized.r ) ### ### generate the recurrence relations for ### the unnormalized U Chebyshev polynomials ### of orders 0 to 10 ### unnormalized.r <- chebyshev.u.recurrences( 10, normalized=FALSE ) print( unnormalized.r )
### ### generate the recurrence relations for ### the normalized U Chebyshev polynomials ### of orders 0 to 10 ### normalized.r <- chebyshev.u.recurrences( 10, normalized=TRUE ) print( normalized.r ) ### ### generate the recurrence relations for ### the unnormalized U Chebyshev polynomials ### of orders 0 to 10 ### unnormalized.r <- chebyshev.u.recurrences( 10, normalized=FALSE ) print( unnormalized.r )
This function returns the value of the weight function for the order Chebyshev polynomial of the second kind,
.
chebyshev.u.weight(x)
chebyshev.u.weight(x)
x |
the function argument which can be a vector |
The function takes on non-zero values in the interval . The formula used
to compute the weight function is as follows.
The value of the weight function.
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992. Numerical Recipes in C, Cambridge University Press, Cambridge, U.K.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### compute the U Chebyshev function for argument values between -2 and 2 ### x <- seq( -1, 1, .01 ) y <- chebyshev.u.weight( x ) plot( x, y )
### ### compute the U Chebyshev function for argument values between -2 and 2 ### x <- seq( -1, 1, .01 ) y <- chebyshev.u.weight( x ) plot( x, y )
This function returns a vector with elements containing the inner product of
an order
Gegenbauer polynomial,
,
with itself (i.e. the norm squared) for orders
.
gegenbauer.inner.products(n,alpha)
gegenbauer.inner.products(n,alpha)
n |
integer value for the highest polynomial order |
alpha |
numeric value for the polynomial parameter |
The formula used to compute the inner products is as follows.
.
A vector with elements
1 |
inner product of order 0 orthogonal polynomial |
2 |
inner product of order 1 orthogonal polynomial |
...
n+1 |
inner product of order |
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### generate the inner products vector for the ### Gegenbauer polynomials of orders 0 to 10 ### the polynomial parameter is 1.0 ### h <- gegenbauer.inner.products( 10, 1 ) print( h )
### ### generate the inner products vector for the ### Gegenbauer polynomials of orders 0 to 10 ### the polynomial parameter is 1.0 ### h <- gegenbauer.inner.products( 10, 1 ) print( h )
This function returns a list with elements containing
the order
Gegenbauer polynomials,
,
for orders
.
gegenbauer.polynomials(n, alpha, normalized=FALSE)
gegenbauer.polynomials(n, alpha, normalized=FALSE)
n |
integer value for the highest polynomial order |
alpha |
polynomial parameter |
normalized |
a boolean value which, if TRUE, returns a list of normalized orthogonal polynomials |
The function gegenbauer.recurrences
produces a data frame with the recurrence relation parameters
for the polynomials. If the normalized
argument is FALSE, the
function orthogonal.polynomials
is used to construct the list of orthogonal polynomial objects.
Otherwise, the function orthonormal.polynomials
is used to construct the
list of orthonormal polynomial objects.
A list of polynomial objects
1 |
order 0 Gegenbauer polynomial |
2 |
order 1 Gegenbauer polynomial |
...
n+1 |
order |
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
gegenbauer.recurrences
,
orthogonal.polynomials
,
orthonormal.polynomials
### ### gemerate a list of normalized Gegenbauer polynomials of orders 0 to 10 ### polynomial parameter is 1.0 ### normalized.p.list <- gegenbauer.polynomials( 10, 1, normalized=TRUE ) print( normalized.p.list ) ### ### gemerate a list of unnormalized Gegenbauer polynomials of orders 0 to 10 ### polynomial parameter is 1.0 ### unnormalized.p.list <- gegenbauer.polynomials( 10, 1, normalized=FALSE ) print( unnormalized.p.list )
### ### gemerate a list of normalized Gegenbauer polynomials of orders 0 to 10 ### polynomial parameter is 1.0 ### normalized.p.list <- gegenbauer.polynomials( 10, 1, normalized=TRUE ) print( normalized.p.list ) ### ### gemerate a list of unnormalized Gegenbauer polynomials of orders 0 to 10 ### polynomial parameter is 1.0 ### unnormalized.p.list <- gegenbauer.polynomials( 10, 1, normalized=FALSE ) print( unnormalized.p.list )
This function returns a data frame with rows and four named columns containing
the coefficient vectors c, d, e and f of
the recurrence relations for the order
Gegenbauer polynomial,
,
and for orders
.
gegenbauer.recurrences(n, alpha, normalized=FALSE)
gegenbauer.recurrences(n, alpha, normalized=FALSE)
n |
integer value for the highest polynomial order |
alpha |
numeric value for polynomial parameter |
normalized |
boolean value which, if TRUE, returns recurrence relations for normalized polynomials |
A data frame with the recurrence relation parameters.
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### generate the recurrences data frame for ### the normalized Gegenbauer polynomials ### of orders 0 to 10. ### polynomial parameter value is 1.0 ### normalized.r <- gegenbauer.recurrences( 10, 1, normalized=TRUE ) print( normalized.r ) ### ### generate the recurrences data frame for ### the normalized Gegenbauer polynomials ### of orders 0 to 10. ### polynomial parameter value is 1.0 ### unnormalized.r <- gegenbauer.recurrences( 10, 1, normalized=FALSE ) print( unnormalized.r )
### ### generate the recurrences data frame for ### the normalized Gegenbauer polynomials ### of orders 0 to 10. ### polynomial parameter value is 1.0 ### normalized.r <- gegenbauer.recurrences( 10, 1, normalized=TRUE ) print( normalized.r ) ### ### generate the recurrences data frame for ### the normalized Gegenbauer polynomials ### of orders 0 to 10. ### polynomial parameter value is 1.0 ### unnormalized.r <- gegenbauer.recurrences( 10, 1, normalized=FALSE ) print( unnormalized.r )
This function returns the value of the weight function for the order
Gegenbauer polynomial,
.
gegenbauer.weight(x,alpha)
gegenbauer.weight(x,alpha)
x |
the function argument which can be a vector |
alpha |
polynomial parameter |
The function takes on non-zero values in the interval . The formula
used to compute the weight function is as follows.
The value of the weight function
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992. Numerical Recipes in C, Cambridge University Press, Cambridge, U.K.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### compute the Gegenbauer weight function for argument values between -1 and 1 ### x <- seq( -1, 1, .01 ) y <- gegenbauer.weight( x, 1 ) plot( x, y )
### ### compute the Gegenbauer weight function for argument values between -1 and 1 ### x <- seq( -1, 1, .01 ) y <- gegenbauer.weight( x, 1 ) plot( x, y )
This function returns a vector with elements containing the inner product of
an order
generalized Hermite polynomial,
,
with itself (i.e. the norm squared) for orders
.
ghermite.h.inner.products(n, mu)
ghermite.h.inner.products(n, mu)
n |
|
mu |
|
The parameter must be greater than -0.5. The formula used to compute the inner
products is as follows.
A vector with elements
1 |
inner product of order 0 orthogonal polynomial |
2 |
inner product of order 1 orthogonal polynomial |
...
n+1 |
inner product of order |
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### generate the inner products vector for the ### generalized Hermite polynomials of orders 0 to 10 ### polynomial parameter is 1 ### h <- ghermite.h.inner.products( 10, 1 ) print( h )
### ### generate the inner products vector for the ### generalized Hermite polynomials of orders 0 to 10 ### polynomial parameter is 1 ### h <- ghermite.h.inner.products( 10, 1 ) print( h )
This function returns a list with elements containing
the order
generalized Hermite polynomials,
,
for orders
.
ghermite.h.polynomials(n, mu, normalized = FALSE)
ghermite.h.polynomials(n, mu, normalized = FALSE)
n |
integer value for the highest polynomial order |
mu |
numeric value for the polynomial parameter |
normalized |
boolean value which, if TRUE, returns recurrence relations for normalized polynomials |
The parameter must be greater than -0.5.
The function
ghermite.h.recurrences
produces a data frame with the recurrence relation parameters
for the polynomials. If the normalized
argument is FALSE, the
function orthogonal.polynomials
is used to construct the list of orthogonal polynomial objects.
Otherwise, the function orthonormal.polynomials
is used to construct the
list of orthonormal polynomial objects.
A list of polynomial objects
1 |
order 0 generalized Hermite polynomial |
2 |
order 1 generalized Hermite polynomial |
...
n+1 |
order |
Frederick Novomestky [email protected]
Alvarez-Nordase, R., M. K. Atakishiyeva and N. M. Atakishiyeva, 2004. A q-extension of the generalized Hermite polynomials with continuous orthogonality property on R, International Journal of Pure and Applied Mathematics, 10(3), 335-347.
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
ghermite.h.recurrences
,
orthogonal.polynomials
,
orthonormal.polynomials
### ### gemerate a list of normalized generalized Hermite polynomials of orders 0 to 10 ### polynomial parameter is 1.0 ### normalized.p.list <- ghermite.h.polynomials( 10, 1, normalized=TRUE ) print( normalized.p.list ) ### ### gemerate a list of unnormalized generalized Hermite polynomials of orders 0 to 10 ### polynomial parameter is 1.0 ### unnormalized.p.list <- ghermite.h.polynomials( 10, 1, normalized=FALSE ) print( unnormalized.p.list )
### ### gemerate a list of normalized generalized Hermite polynomials of orders 0 to 10 ### polynomial parameter is 1.0 ### normalized.p.list <- ghermite.h.polynomials( 10, 1, normalized=TRUE ) print( normalized.p.list ) ### ### gemerate a list of unnormalized generalized Hermite polynomials of orders 0 to 10 ### polynomial parameter is 1.0 ### unnormalized.p.list <- ghermite.h.polynomials( 10, 1, normalized=FALSE ) print( unnormalized.p.list )
This function returns a data frame with rows and four named columns containing
the coefficient vectors c, d, e and f of
the recurrence relations for the order
generalized Hermite polynomial,
,
and for orders
.
ghermite.h.recurrences(n, mu, normalized = FALSE)
ghermite.h.recurrences(n, mu, normalized = FALSE)
n |
integer value for the highest polynomial order |
mu |
numeric value for the polynomial parameter |
normalized |
|
The parameter must be greater than -0.5.
A data frame with the recurrence relation parameters.
Frederick Novomestky [email protected]
Alvarez-Nordase, R., M. K. Atakishiyeva and N. M. Atakishiyeva, 2004. A q-extension of the generalized Hermite polynomials with continuous orthogonality property on R, International Journal of Pure and Applied Mathematics, 10(3), 335-347.
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### generate the recurrences data frame for ### the normalized generalized Hermite polynomials ### of orders 0 to 10. ### polynomial parameter value is 1.0 ### normalized.r <- ghermite.h.recurrences( 10, 1, normalized=TRUE ) print( normalized.r ) ### ### generate the recurrences data frame for ### the unnormalized generalized Hermite polynomials ### of orders 0 to 10. ### polynomial parameter value is 1.0 ### unnormalized.r <- ghermite.h.recurrences( 10, 1, normalized=FALSE ) print( unnormalized.r )
### ### generate the recurrences data frame for ### the normalized generalized Hermite polynomials ### of orders 0 to 10. ### polynomial parameter value is 1.0 ### normalized.r <- ghermite.h.recurrences( 10, 1, normalized=TRUE ) print( normalized.r ) ### ### generate the recurrences data frame for ### the unnormalized generalized Hermite polynomials ### of orders 0 to 10. ### polynomial parameter value is 1.0 ### unnormalized.r <- ghermite.h.recurrences( 10, 1, normalized=FALSE ) print( unnormalized.r )
This function returns the value of the weight function for the order
generalized Hermite polynomial,
.
ghermite.h.weight(x, mu)
ghermite.h.weight(x, mu)
x |
a numeric vector function argument |
mu |
polynomial parameter |
The function takes on non-zero values in the interval .
The parameter
must be greater than -0.5. The formula used to compute the
generalized Hermite weight function is as follows.
The value of the weight function
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992. Numerical Recipes in C, Cambridge University Press, Cambridge, U.K.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### compute the generalized Hermite weight function for argument values ### between -3 and 3 ### x <- seq( -3, 3, .01 ) y <- ghermite.h.weight( x, 1 )
### ### compute the generalized Hermite weight function for argument values ### between -3 and 3 ### x <- seq( -3, 3, .01 ) y <- ghermite.h.weight( x, 1 )
This function returns a vector with elements containing the inner product of
an order
generalized Laguerre polynomial,
,
with itself (i.e. the norm squared) for orders
.
glaguerre.inner.products(n,alpha)
glaguerre.inner.products(n,alpha)
n |
integer highest polynomial order |
alpha |
polynomial parameter |
The formula used to compute the inner products is as follows.
.
A vector with elements
1 |
inner product of order 0 orthogonal polynomial |
2 |
inner product of order 1 orthogonal polynomial |
...
n+1 |
inner product of order |
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### generate the inner products vector for the ### generalized Laguerre polynomial inner products of orders 0 to 10 ### polynomial parameter is 1. ### h <- glaguerre.inner.products( 10, 1 ) print( h )
### ### generate the inner products vector for the ### generalized Laguerre polynomial inner products of orders 0 to 10 ### polynomial parameter is 1. ### h <- glaguerre.inner.products( 10, 1 ) print( h )
This function returns a list with elements containing
the order
generalized Laguerre polynomials,
,
for orders
.
glaguerre.polynomials(n, alpha, normalized=FALSE)
glaguerre.polynomials(n, alpha, normalized=FALSE)
n |
integer value for the highest polynomial order |
alpha |
numeric value for the polynomial parameter |
normalized |
a boolean value which, if TRUE, returns a list of normalized orthogonal polynomials |
The function glaguerre.recurrences
produces a data frame with the recurrence relation parameters
for the polynomials. If the normalized
argument is FALSE, the
function orthogonal.polynomials
is used to construct the list of orthogonal polynomial objects.
Otherwise, the function orthonormal.polynomials
is used to construct the
list of orthonormal polynomial objects.
A list of polynomial objects
1 |
order 0 generalized Laguerre polynomial |
2 |
order 1 generalized Laguerre polynomial |
...
n+1 |
order |
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
glaguerre.recurrences
,
orthogonal.polynomials
,
orthonormal.polynomials
### ### gemerate a list of normalized generalized Laguerre polynomials of orders 0 to 10 ### polynomial parameter is 1.0 ### normalized.p.list <- glaguerre.polynomials( 10, 1, normalized=TRUE ) print( normalized.p.list ) ### ### gemerate a list of unnormalized generalized Laguerre polynomials of orders 0 to 10 ### polynomial parameter is 1.0 ### unnormalized.p.list <- glaguerre.polynomials( 10, 1, normalized=FALSE )
### ### gemerate a list of normalized generalized Laguerre polynomials of orders 0 to 10 ### polynomial parameter is 1.0 ### normalized.p.list <- glaguerre.polynomials( 10, 1, normalized=TRUE ) print( normalized.p.list ) ### ### gemerate a list of unnormalized generalized Laguerre polynomials of orders 0 to 10 ### polynomial parameter is 1.0 ### unnormalized.p.list <- glaguerre.polynomials( 10, 1, normalized=FALSE )
This function returns a data frame with rows and four named columns containing
the coefficient vectors c, d, e and f of the recurrence relations for
the order
generalized Laguerre polynomial,
and for orders
.
glaguerre.recurrences(n, alpha, normalized=FALSE)
glaguerre.recurrences(n, alpha, normalized=FALSE)
n |
integer value for the highest polynomial order |
alpha |
numeric value for the polynomial parameter |
normalized |
boolean value which, if TRUE, returns recurrence relations for normalized polynomials |
A data frame with the recurrence relation parameters.
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### generate the recurrences data frame for ### the normalized generalized Laguerre polynomials ### of orders 0 to 10. the polynomial parameter value is 1.0. ### normalized.r <- glaguerre.recurrences( 10, 1, normalized=TRUE ) print( normalized.r ) ### ### generate the recurrences data frame for ### the unnormalized generalized Laguerre polynomials ### of orders 0 to 10. the polynomial parameter value is 1.0. ### unnormalized.r <- glaguerre.recurrences( 10, 1, normalized=FALSE ) print( unnormalized.r )
### ### generate the recurrences data frame for ### the normalized generalized Laguerre polynomials ### of orders 0 to 10. the polynomial parameter value is 1.0. ### normalized.r <- glaguerre.recurrences( 10, 1, normalized=TRUE ) print( normalized.r ) ### ### generate the recurrences data frame for ### the unnormalized generalized Laguerre polynomials ### of orders 0 to 10. the polynomial parameter value is 1.0. ### unnormalized.r <- glaguerre.recurrences( 10, 1, normalized=FALSE ) print( unnormalized.r )
This function returns the value of the weight function for the order
generalized Laguerre polynomial,
.
glaguerre.weight(x,alpha)
glaguerre.weight(x,alpha)
x |
the function argument which can be a vector |
alpha |
polynomial parameter |
The function takes on non-zero values in the interval . The formula
used to compute the weight function is as follows.
The value of the weight function
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992. Numerical Recipes in C, Cambridge University Press, Cambridge, U.K.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### compute the generalized Laguerre weight function for argument values ### between -3 and 3 ### polynomial parameter value is 1.0 ### x <- seq( -3, 3, .01 ) y <- glaguerre.weight( x, 1 )
### ### compute the generalized Laguerre weight function for argument values ### between -3 and 3 ### polynomial parameter value is 1.0 ### x <- seq( -3, 3, .01 ) y <- glaguerre.weight( x, 1 )
This function returns a vector with elements containing the inner product of
an order
Hermite polynomial,
,
with itself (i.e. the norm squared) for orders
.
hermite.h.inner.products(n)
hermite.h.inner.products(n)
n |
integer value for highest polynomial order |
The formula used to compute the innner product is as follows.
.
A vector with elements
1 |
inner product of order 0 orthogonal polynomial |
2 |
inner product of order 1 orthogonal polynomial |
...
n+1 |
inner product of order |
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### generate the inner products vector for the ### Hermite polynomials of orders 0 to 10 ### h <- hermite.h.inner.products( 10 ) print( h )
### ### generate the inner products vector for the ### Hermite polynomials of orders 0 to 10 ### h <- hermite.h.inner.products( 10 ) print( h )
This function returns a list with elements containing
the order
Hermite polynomials,
,
for orders
.
hermite.h.polynomials(n, normalized=FALSE)
hermite.h.polynomials(n, normalized=FALSE)
n |
integer value for the highest polynomial order |
normalized |
a boolean value which, if TRUE, returns a list of normalized orthogonal polynomials |
The function hermite.h.recurrences
produces a data frame with the recurrence relation parameters
for the polynomials. If the normalized
argument is FALSE, the
function orthogonal.polynomials
is used to construct the list of orthogonal polynomial objects.
Otherwise, the function orthonormal.polynomials
is used to construct
list of orthonormal polynomial objects.
A list of polynomial objects
1 |
order 0 Hermite polynomial |
2 |
order 1 Hermite polynomial |
...
n+1 |
order |
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
hermite.h.recurrences
,
orthogonal.polynomials
,
orthonormal.polynomials
### ### gemerate a list of normalized Hermite polynomials of orders 0 to 10 ### normalized.p.list <- hermite.h.polynomials( 10, normalized=TRUE ) print( normalized.p.list ) ### ### gemerate a list of unnormalized Hermite polynomials of orders 0 to 10 ### unnormalized.p.list <- hermite.h.polynomials( 10, normalized=FALSE ) print( unnormalized.p.list )
### ### gemerate a list of normalized Hermite polynomials of orders 0 to 10 ### normalized.p.list <- hermite.h.polynomials( 10, normalized=TRUE ) print( normalized.p.list ) ### ### gemerate a list of unnormalized Hermite polynomials of orders 0 to 10 ### unnormalized.p.list <- hermite.h.polynomials( 10, normalized=FALSE ) print( unnormalized.p.list )
This function returns a data frame with rows and four named columns containing
the coefficient vectors c, d, e and f of
the recurrence relations for the order
Hermite polynomial,
,
and for orders
.
hermite.h.recurrences(n, normalized=FALSE)
hermite.h.recurrences(n, normalized=FALSE)
n |
integer value for the highest polynomial order |
normalized |
boolean value which, if TRUE, returns recurrence relations for normalized polynomials |
A data frame with the recurrence relation parameters.
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### generate the recurrences data frame for ### the normalized Hermite H polynomials ### of orders 0 to 10. ### normalized.r <- hermite.h.recurrences( 10, normalized=TRUE ) print( normalized.r ) ### ### generate the recurrences data frame for ### the unnormalized Hermite H polynomials ### of orders 0 to 10. ### unnormalized.r <- hermite.h.recurrences( 10, normalized=FALSE ) print( unnormalized.r )
### ### generate the recurrences data frame for ### the normalized Hermite H polynomials ### of orders 0 to 10. ### normalized.r <- hermite.h.recurrences( 10, normalized=TRUE ) print( normalized.r ) ### ### generate the recurrences data frame for ### the unnormalized Hermite H polynomials ### of orders 0 to 10. ### unnormalized.r <- hermite.h.recurrences( 10, normalized=FALSE ) print( unnormalized.r )
This function returns the value of the weight function for the order
Hermite polynomial,
.
hermite.h.weight(x)
hermite.h.weight(x)
x |
the function argument which can be a vector |
The function takes on non-zero values in the interval . The
formula used to compute the weight function.
The value of the weight function
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992. Numerical Recipes in C, Cambridge University Press, Cambridge, U.K.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### compute the Hermite weight function for argument values ### between -3 and 3 x <- seq( -3, 3, .01 ) y <- hermite.h.weight( x ) plot( x, y )
### ### compute the Hermite weight function for argument values ### between -3 and 3 x <- seq( -3, 3, .01 ) y <- hermite.h.weight( x ) plot( x, y )
This function returns a vector with elements containing the inner product of
an order
Hermite polynomial,
,
with itself (i.e. the norm squared) for orders
.
hermite.he.inner.products(n)
hermite.he.inner.products(n)
n |
integer value for the highest polynomial order |
The formula used to compute the inner products is as follows.
.
A vector with elements
1 |
inner product of order 0 orthogonal polynomial |
2 |
inner product of order 1 orthogonal polynomial |
...
n+1 |
inner product of order |
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### generate the inner products vector for the ### scaled Hermite polynomials of orders 0 to 10 ### h <- hermite.he.inner.products( 10 ) print( h )
### ### generate the inner products vector for the ### scaled Hermite polynomials of orders 0 to 10 ### h <- hermite.he.inner.products( 10 ) print( h )
This function returns a list with elements containing
the order
Hermite polynomials,
,
for orders
.
hermite.he.polynomials(n, normalized=FALSE)
hermite.he.polynomials(n, normalized=FALSE)
n |
integer value for thehighest polynomial order |
normalized |
a boolean value which, if TRUE, returns a list of normalized orthogonal polynomials |
The function hermite.he.recurrences
produces a data frame with the recurrence relation parameters
for the polynomials. If the normalized
argument is FALSE, the
function orthogonal.polynomials
is used to construct the list of orthogonal polynomial objects.
Otherwise, the function orthonormal.polynomials
is used to construct the
list of orthonormal polynomial objects.
A list of polynomial objects
1 |
order 0 Hermite polynomial |
2 |
order 1 Hermite polynomial |
...
n+1 |
order |
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
hermite.he.recurrences
,
orthogonal.polynomials
,
orthonormal.polynomials
### ### gemerate a list of normalized Hermite polynomials of orders 0 to 10 ### normalized.p.list <- hermite.he.polynomials( 10, normalized=TRUE ) print( normalized.p.list ) ### ### gemerate a list of unnormalized Hermite polynomials of orders 0 to 10 ### unnormalized.p.list <- hermite.he.polynomials( 10, normalized=FALSE ) print( unnormalized.p.list )
### ### gemerate a list of normalized Hermite polynomials of orders 0 to 10 ### normalized.p.list <- hermite.he.polynomials( 10, normalized=TRUE ) print( normalized.p.list ) ### ### gemerate a list of unnormalized Hermite polynomials of orders 0 to 10 ### unnormalized.p.list <- hermite.he.polynomials( 10, normalized=FALSE ) print( unnormalized.p.list )
This function returns a data frame with rows and four named columns containing
the coefficient vectors c, d, e and f of
the recurrence relations for the order
Hermite polynomial,
,
and for orders
.
hermite.he.recurrences(n, normalized=FALSE)
hermite.he.recurrences(n, normalized=FALSE)
n |
integer value for the highest polynomial order |
normalized |
boolean value which, if TRUE, returns recurrence relations for normalized polynomials |
A data frame with the recurrence relation parameters.
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### generate the recurrences data frame for ### the normalized Hermite H polynomials ### of orders 0 to 10. ### normalized.r <- hermite.he.recurrences( 10, normalized=TRUE ) print( normalized.r ) ### ### generate the recurrences data frame for ### the unnormalized Hermite H polynomials ### of orders 0 to 10. ### unnormalized.r <- hermite.he.recurrences( 10, normalized=FALSE ) print( unnormalized.r )
### ### generate the recurrences data frame for ### the normalized Hermite H polynomials ### of orders 0 to 10. ### normalized.r <- hermite.he.recurrences( 10, normalized=TRUE ) print( normalized.r ) ### ### generate the recurrences data frame for ### the unnormalized Hermite H polynomials ### of orders 0 to 10. ### unnormalized.r <- hermite.he.recurrences( 10, normalized=FALSE ) print( unnormalized.r )
This function returns the value of the weight function for the order
Hermite polynomial,
.
hermite.he.weight(x)
hermite.he.weight(x)
x |
the function argument which can be a vector |
The function takes on non-zero values in the interval . The
formula used to compute the weight function is as follows.
The value of the weight function
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992. Numerical Recipes in C, Cambridge University Press, Cambridge, U.K.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### compute the scaled Hermite weight function for argument values ### between -3 and 3 ### x <- seq( -3, 3, .01 ) y <- hermite.he.weight( x )
### ### compute the scaled Hermite weight function for argument values ### between -3 and 3 ### x <- seq( -3, 3, .01 ) y <- hermite.he.weight( x )
This function returns a vector with elements containing the inner product of
an order
Jacobi polynomial,
,
with itself (i.e. the norm squared) for orders
.
jacobi.g.inner.products(n,p,q)
jacobi.g.inner.products(n,p,q)
n |
integer value for the highest polynomial order |
p |
numeric value for the first polynomial parameter |
q |
numeric value for the first polynomial parameter |
The formula used to compute the inner products is as follows.
.
A vector with elements
1 |
inner product of order 0 orthogonal polynomial |
2 |
inner product of order 1 orthogonal polynomial |
...
n+1 |
inner product of order |
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### generate the inner products vector for the ### G Jacobi polynomials of orders 0 to 10 ### parameter p is 3 and parameter q is 2 ### h <- jacobi.g.inner.products( 10, 3, 2 ) print( h )
### ### generate the inner products vector for the ### G Jacobi polynomials of orders 0 to 10 ### parameter p is 3 and parameter q is 2 ### h <- jacobi.g.inner.products( 10, 3, 2 ) print( h )
This function returns a list with elements containing
the order
Jacobi polynomials,
,
for orders
.
jacobi.g.polynomials(n, p, q, normalized=FALSE)
jacobi.g.polynomials(n, p, q, normalized=FALSE)
n |
integer value for the highest polynomial order |
p |
numeic value for the first polynomial parameter |
q |
numeric value for the second polynomial parameter |
normalized |
a boolean value which, if TRUE, returns a list of normalized orthogonal polynomials |
The function jacobi.g.recurrences
produces a data frame with the recurrence relation parameters
for the polynomials. If the normalized
argument is FALSE, the
function orthogonal.polynomials
is used to construct the list of orthogonal polynomial objects.
Otherwise, the function orthonormal.polynomials
is used to construct the
list of orthonormal polynomial objects.
A list of polynomial objects
1 |
order 0 Jacobi polynomial |
2 |
order 1 Jacobi polynomial |
...
n+1 |
order |
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
jacobi.g.recurrences
,
orthogonal.polynomials
,
orthonormal.polynomials
### ### gemerate a list of normalized Jacobi G polynomials of orders 0 to 10 ### first parameter value p is 3 and second parameter value q is 2 ### normalized.p.list <- jacobi.g.polynomials( 10, 3, 2, normalized=TRUE ) print( normalized.p.list ) ### ### gemerate a list of normalized Jacobi G polynomials of orders 0 to 10 ### first parameter value p is 3 and second parameter value q is 2 ### unnormalized.p.list <- jacobi.g.polynomials( 10, 3, 2, normalized=FALSE ) print( unnormalized.p.list )
### ### gemerate a list of normalized Jacobi G polynomials of orders 0 to 10 ### first parameter value p is 3 and second parameter value q is 2 ### normalized.p.list <- jacobi.g.polynomials( 10, 3, 2, normalized=TRUE ) print( normalized.p.list ) ### ### gemerate a list of normalized Jacobi G polynomials of orders 0 to 10 ### first parameter value p is 3 and second parameter value q is 2 ### unnormalized.p.list <- jacobi.g.polynomials( 10, 3, 2, normalized=FALSE ) print( unnormalized.p.list )
This function returns a data frame with rows and four named columns containing
the coefficient vectors c, d, e and f of
the recurrence relations for the order
Jacobi polynomial,
,
and for orders
.
jacobi.g.recurrences(n, p, q, normalized=FALSE)
jacobi.g.recurrences(n, p, q, normalized=FALSE)
n |
integer value for the highest polynomial order |
p |
numeric value for the first polynomial parameter |
q |
numeric value for the second polynomial parameter |
normalized |
boolean value which, if TRUE, returns recurrence relations for normalized polynomials |
A data frame with the recurrence relation parameters.
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
jacobi.g.inner.products
,
pochhammer
### ### generate the recurrences data frame for ### the normalized Jacobi G polynomials ### of orders 0 to 10. ### parameter p is 3 and parameter q is 2 ### normalized.r <- jacobi.g.recurrences( 10, 3, 2, normalized=TRUE ) print( normalized.r ) ### ### generate the recurrences data frame for ### the normalized Jacobi G polynomials ### of orders 0 to 10. ### parameter p is 3 and parameter q is 2 ### unnormalized.r <- jacobi.g.recurrences( 10, 3, 2, normalized=FALSE ) print( unnormalized.r )
### ### generate the recurrences data frame for ### the normalized Jacobi G polynomials ### of orders 0 to 10. ### parameter p is 3 and parameter q is 2 ### normalized.r <- jacobi.g.recurrences( 10, 3, 2, normalized=TRUE ) print( normalized.r ) ### ### generate the recurrences data frame for ### the normalized Jacobi G polynomials ### of orders 0 to 10. ### parameter p is 3 and parameter q is 2 ### unnormalized.r <- jacobi.g.recurrences( 10, 3, 2, normalized=FALSE ) print( unnormalized.r )
This function returns the value of the weight function for the order
Jacobi polynomial,
.
jacobi.g.weight(x,p,q)
jacobi.g.weight(x,p,q)
x |
the function argument which can be a vector |
p |
the first polynomial parameter |
q |
the second polynomial parameter |
The function takes on non-zero values in the interval . The formula
used to compute the weight function is as follows.
The value of the weight function
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992. Numerical Recipes in C, Cambridge University Press, Cambridge, U.K.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### compute the Jacobi G weight function for argument values ### between 0 and 1 ### parameter p is 3 and q is 2 ### x <- seq( 0, 1, .01 ) y <- jacobi.g.weight( x, 3, 2 )
### ### compute the Jacobi G weight function for argument values ### between 0 and 1 ### parameter p is 3 and q is 2 ### x <- seq( 0, 1, .01 ) y <- jacobi.g.weight( x, 3, 2 )
Return a list of $n$ real symmetric, tri-diagonal matrices which are
the principal minors of the Jacobi matrix derived from
the monic recurrence parameters,
and
, for orthogonal polynomials.
jacobi.matrices(r)
jacobi.matrices(r)
r |
a data frame containing the parameters |
A list of symmetric, tri-diagnonal matrices
1 |
a |
2 |
a |
...
n |
an |
Frederick Novomestky [email protected]
Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992. Numerical Recipes in C, Cambridge University Press, Cambridge, U.K.
r <- chebyshev.t.recurrences( 5 ) m.r <- monic.polynomial.recurrences( r ) j.m <- jacobi.matrices( m.r )
r <- chebyshev.t.recurrences( 5 ) m.r <- monic.polynomial.recurrences( r ) j.m <- jacobi.matrices( m.r )
This function returns a vector with elements containing the inner product of
an order
Jacobi polynomial,
,
with itself (i.e. the norm squared) for orders
.
jacobi.p.inner.products(n,alpha,beta)
jacobi.p.inner.products(n,alpha,beta)
n |
integer value for the highest polynomial order |
alpha |
numeric value for the first polynomial parameter |
beta |
numeric value for the first polynomial parameter |
The formula used to compute the innser products is as follows.
.
A vector with elements
1 |
inner product of order 0 orthogonal polynomial |
2 |
inner product of order 1 orthogonal polynomial |
...
n+1 |
inner product of order |
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### generate the inner product vector for the P Jacobi polynomials of orders 0 to 10 ### h <- jacobi.p.inner.products( 10, 2, 2 ) print( h )
### ### generate the inner product vector for the P Jacobi polynomials of orders 0 to 10 ### h <- jacobi.p.inner.products( 10, 2, 2 ) print( h )
This function returns a list with elements containing
the order
Jacobi polynomials,
,
for orders
.
jacobi.p.polynomials(n, alpha, beta, normalized=FALSE)
jacobi.p.polynomials(n, alpha, beta, normalized=FALSE)
n |
integer value for the highest polynomial order |
alpha |
numeric value for the first polynomial parameter |
beta |
numeric value for the second polynomial parameter |
normalized |
a boolean value which, if TRUE, returns a list of normalized orthogonal polynomials |
The function jacobi.p.recurrences
produces a data frame with the recurrence relation parameters
for the polynomials. If the normalized
argument is FALSE, the
function orthogonal.polynomials
is used to construct the list of orthogonal polynomial objects.
Otherwise, the function orthonormal.polynomials
is used to construct the
list of orthonormal polynomial objects.
A list of polynomial objects
1 |
order 0 Jacobi polynomial |
2 |
order 1 Jacobi polynomial |
...
n+1 |
order |
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
jacobi.p.recurrences
,
orthogonal.polynomials
,
orthonormal.polynomials
### ### gemerate a list of normalized Jacobi P polynomials of orders 0 to 10 ### first parameter value a is 2 and second parameter value b is 2 ### normalized.p.list <- jacobi.p.polynomials( 10, 2, 2, normalized=TRUE ) print( normalized.p.list ) ### ### gemerate a list of unnormalized Jacobi P polynomials of orders 0 to 10 ### first parameter value a is 2 and second parameter value b is 2 ### unnormalized.p.list <- jacobi.p.polynomials( 10, 2, 2, normalized=FALSE ) print( unnormalized.p.list )
### ### gemerate a list of normalized Jacobi P polynomials of orders 0 to 10 ### first parameter value a is 2 and second parameter value b is 2 ### normalized.p.list <- jacobi.p.polynomials( 10, 2, 2, normalized=TRUE ) print( normalized.p.list ) ### ### gemerate a list of unnormalized Jacobi P polynomials of orders 0 to 10 ### first parameter value a is 2 and second parameter value b is 2 ### unnormalized.p.list <- jacobi.p.polynomials( 10, 2, 2, normalized=FALSE ) print( unnormalized.p.list )
This function returns a data frame with rows and four named columns containing
the coefficient vectors c, d, e and f of
the recurrence relations for the order
Jacobi polynomial,
,
and for orders
.
jacobi.p.recurrences(n, alpha, beta, normalized=FALSE)
jacobi.p.recurrences(n, alpha, beta, normalized=FALSE)
n |
integer value for the highest polynomial order |
alpha |
numeric value for the first polynomial parameter |
beta |
numeric value for the second polynomial parameter |
normalized |
boolean value which, if TRUE, returns recurrence relations for normalized polynomials |
A data frame with the recurrence relation parameters.
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
jacobi.p.inner.products
,
pochhammer
### ### generate the recurrences data frame for ### the normalized Jacobi P polynomials ### of orders 0 to 10. ### parameter a is 2 and parameter b is 2 ### normalized.r <- jacobi.p.recurrences( 10, 2, 2, normalized=TRUE ) print( normalized.r ) ### ### generate the recurrences data frame for ### the unnormalized Jacobi P polynomials ### of orders 0 to 10. ### parameter a is 2 and parameter b is 2 ### unnormalized.r <- jacobi.p.recurrences( 10, 2, 2, normalized=FALSE ) print( unnormalized.r )
### ### generate the recurrences data frame for ### the normalized Jacobi P polynomials ### of orders 0 to 10. ### parameter a is 2 and parameter b is 2 ### normalized.r <- jacobi.p.recurrences( 10, 2, 2, normalized=TRUE ) print( normalized.r ) ### ### generate the recurrences data frame for ### the unnormalized Jacobi P polynomials ### of orders 0 to 10. ### parameter a is 2 and parameter b is 2 ### unnormalized.r <- jacobi.p.recurrences( 10, 2, 2, normalized=FALSE ) print( unnormalized.r )
This function returns the value of the weight function for the order
Jacobi polynomial,
.
jacobi.p.weight(x,alpha,beta)
jacobi.p.weight(x,alpha,beta)
x |
the function argument which can be a vector |
alpha |
the first polynomial parameter |
beta |
the second polynomial parameter |
The function takes on non-zero values in the interval . The formula
used to compute the weight function is as follows.
The value of the weight function
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992. Numerical Recipes in C, Cambridge University Press, Cambridge, U.K.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### compute the Jacobi P weight function for argument values ### between -1 and 1 ### x <- seq( -1, 1, .01 ) y <- jacobi.p.weight( x, 2, 2 )
### ### compute the Jacobi P weight function for argument values ### between -1 and 1 ### x <- seq( -1, 1, .01 ) y <- jacobi.p.weight( x, 2, 2 )
This function returns a vector with elements containing the inner product of
an order
Laguerre polynomial,
,
with itself (i.e. the norm squared) for orders
.
laguerre.inner.products(n)
laguerre.inner.products(n)
n |
integer value for the highest polynomial order |
The formula used to compute the inner products is as follows.
.
A vector with elements
1 |
inner product of order 0 orthogonal polynomial |
2 |
inner product of order 1 orthogonal polynomial |
...
n+1 |
inner product of order |
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### generate the inner products vector for the ### Laguerre polynomial inner products of orders 0 to 10 ### h <- laguerre.inner.products( 10 ) print( h )
### ### generate the inner products vector for the ### Laguerre polynomial inner products of orders 0 to 10 ### h <- laguerre.inner.products( 10 ) print( h )
This function returns a list with elements containing
the order
Laguerre polynomials,
,
for orders
.
laguerre.polynomials(n, normalized=FALSE)
laguerre.polynomials(n, normalized=FALSE)
n |
integer value for the highest polynomial order |
normalized |
a boolean value which, if TRUE, returns a list of normalized orthogonal polynomials |
The function laguerre.recurrences
produces a data frame with the recurrence relation parameters
for the polynomials. If the normalized
argument is FALSE, the
function orthogonal.polynomials
is used to construct the list of orthogonal polynomial objects.
Otherwise, the function orthonormal.polynomials
is used to construct the
list of orthonormal polynomial objects.
A list of polynomial objects
1 |
order 0 Laguerre polynomial |
2 |
order 1 Laguerre polynomial |
...
n+1 |
order |
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
laguerre.recurrences
,
orthogonal.polynomials
,
orthonormal.polynomials
### ### gemerate a list of normalized Laguerre polynomials of orders 0 to 10 ### normalized.p.list <- laguerre.polynomials( 10, normalized=TRUE ) print( normalized.p.list ) ### ### gemerate a list of unnormalized Laguerre polynomials of orders 0 to 10 ### unnormalized.p.list <- laguerre.polynomials( 10, normalized=FALSE ) print( unnormalized.p.list )
### ### gemerate a list of normalized Laguerre polynomials of orders 0 to 10 ### normalized.p.list <- laguerre.polynomials( 10, normalized=TRUE ) print( normalized.p.list ) ### ### gemerate a list of unnormalized Laguerre polynomials of orders 0 to 10 ### unnormalized.p.list <- laguerre.polynomials( 10, normalized=FALSE ) print( unnormalized.p.list )
This function returns a data frame with rows and four named columns containing
the coefficient vectors c, d, e and f of
the recurrence relations for the order
Laguerre polynomial,
,
and for orders
.
laguerre.recurrences(n, normalized=FALSE)
laguerre.recurrences(n, normalized=FALSE)
n |
integer value for the highest polynomial order |
normalized |
boolean value which, if TRUE, returns recurrence relations for normalized polynomials |
A data frame with the recurrence relation parameters.
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### generate the recurrences data frame for ### the normalized Laguerre polynomials ### of orders 0 to 10. ### normalized.r <- laguerre.recurrences( 10, normalized=TRUE ) print( normalized.r ) ### ### generate the recurrences data frame for ### the normalized Laguerre polynomials ### of orders 0 to 10. ### unnormalized.r <- laguerre.recurrences( 10, normalized=FALSE ) print( unnormalized.r )
### ### generate the recurrences data frame for ### the normalized Laguerre polynomials ### of orders 0 to 10. ### normalized.r <- laguerre.recurrences( 10, normalized=TRUE ) print( normalized.r ) ### ### generate the recurrences data frame for ### the normalized Laguerre polynomials ### of orders 0 to 10. ### unnormalized.r <- laguerre.recurrences( 10, normalized=FALSE ) print( unnormalized.r )
This function returns the value of the weight function for the order
Laguerre polynomial,
.
laguerre.weight(x)
laguerre.weight(x)
x |
the function argument which can be a vector |
The function takes on non-zero values in the interval . The formula
used to compute the weight function is as follows.
The value of the weight function
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992. Numerical Recipes in C, Cambridge University Press, Cambridge, U.K.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### compute the Laguerre weight function for argument values ### between 0 and 3 x <- seq( -0, 3, .01 ) y <- laguerre.weight( x ) plot( x, y )
### ### compute the Laguerre weight function for argument values ### between 0 and 3 x <- seq( -0, 3, .01 ) y <- laguerre.weight( x ) plot( x, y )
This function returns a vector with elements containing the inner product
of an order
Legendre polynomial,
,
with itself (i.e. the norm squared) for orders
.
legendre.inner.products(n)
legendre.inner.products(n)
n |
integer value for the highest polynomial order |
The formula used compute the inner products is as follows.
.
A vector with elements
1 |
inner product of order 0 orthogonal polynomial |
2 |
inner product of order 1 orthogonal polynomial |
...
n+1 |
inner product of order |
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### compute the inner product for the ### Legendre polynomials of orders 0 to 1 ### h <- legendre.inner.products( 10 ) print( h )
### ### compute the inner product for the ### Legendre polynomials of orders 0 to 1 ### h <- legendre.inner.products( 10 ) print( h )
This function returns a list with elements containing
the order
Legendre polynomials,
,
for orders
.
legendre.polynomials(n, normalized=FALSE)
legendre.polynomials(n, normalized=FALSE)
n |
integer value for the highest polynomial order |
normalized |
a boolean value which, if TRUE, returns a list of normalized orthogonal polynomials |
The function legendre.recurrences
produces a data frame with the recurrence relation parameters
for the polynomials. If the normalized
argument is FALSE, the
function orthogonal.polynomials
is used to construct the list of orthogonal polynomial objects.
Otherwise, the function orthonormal.polynomials
is used to construct the
list of orthonormal polynomial objects.
A list of polynomial objects
1 |
order 0 Legendre polynomial |
2 |
order 1 Legendre polynomial |
...
n+1 |
order |
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
legendre.recurrences
,
orthogonal.polynomials
,
orthonormal.polynomials
### ### gemerate a list of normalized Laguerre polynomials of orders 0 to 10 ### normalized.p.list <- legendre.polynomials( 10, normalized=TRUE ) print( normalized.p.list ) ### ### gemerate a list of unnormalized Laguerre polynomials of orders 0 to 10 ### unnormalized.p.list <- legendre.polynomials( 10, normalized=FALSE ) print( unnormalized.p.list )
### ### gemerate a list of normalized Laguerre polynomials of orders 0 to 10 ### normalized.p.list <- legendre.polynomials( 10, normalized=TRUE ) print( normalized.p.list ) ### ### gemerate a list of unnormalized Laguerre polynomials of orders 0 to 10 ### unnormalized.p.list <- legendre.polynomials( 10, normalized=FALSE ) print( unnormalized.p.list )
This function returns a data frame with rows and four named columns containing
the coefficient vectors c, d, e and f of
the recurrence relations for the order
Legendre polynomial,
,
and for orders
.
legendre.recurrences(n, normalized=FALSE)
legendre.recurrences(n, normalized=FALSE)
n |
integer value for the highest polynomial order |
normalized |
boolean value which, if TRUE, returns recurrence relations for normalized polynomials |
A data frame with the recurrence relation parameters.
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### generate the recurrences data frame for ### the normalized Legendre polynomials ### of orders 0 to 10. ### normalized.r <- legendre.recurrences( 10, normalized=TRUE ) print( normalized.r ) ### ### generate the recurrences data frame for ### the normalized Legendre polynomials ### of orders 0 to 10. ### unnormalized.r <- legendre.recurrences( 10, normalized=FALSE ) print( unnormalized.r )
### ### generate the recurrences data frame for ### the normalized Legendre polynomials ### of orders 0 to 10. ### normalized.r <- legendre.recurrences( 10, normalized=TRUE ) print( normalized.r ) ### ### generate the recurrences data frame for ### the normalized Legendre polynomials ### of orders 0 to 10. ### unnormalized.r <- legendre.recurrences( 10, normalized=FALSE ) print( unnormalized.r )
This function returns the value of the weight function for the order
Legendre polynomial,
.
legendre.weight(x)
legendre.weight(x)
x |
the function argument which can be a vector |
The function takes on non-zero values in the interval . The formula used
to compute the weight function is as follows.
The value of the weight function
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992. Numerical Recipes in C, Cambridge University Press, Cambridge, U.K.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### compute the Legendre weight function for argument values ### between -1 and 1 ### x <- seq( -1, 1, .01 ) y <- legendre.weight( x ) plot( x, y )
### ### compute the Legendre weight function for argument values ### between -1 and 1 ### x <- seq( -1, 1, .01 ) y <- legendre.weight( x ) plot( x, y )
lpochhammer
returns the value of the natural logarithm of Pochhammer's symbol
calculated as
where is the Gamma function
lpochhammer(z, n)
lpochhammer(z, n)
z |
argument of the symbol |
n |
integer number of terms in the symbol |
The value of the logarithm of the symbol
Frederick Novomestky [email protected]
lpochhammer( pi, 5 )
lpochhammer( pi, 5 )
This function returns a data frame with parameters required to construct monic orthogonal polynomials based on the standard recurrence relation for the non-monic polynomials. The recurrence relation for monic orthogonal polynomials is as follows.
We require that and
.
The recurrence for non-monic orthogonal polynomials is given by
We require that and
.
The monic polynomial recurrence parameters, a and b, are related to
the non-monic polynomial parameter vectors c, d, e and f in the following manner.
with .
monic.polynomial.recurrences(recurrences)
monic.polynomial.recurrences(recurrences)
recurrences |
the data frame of recurrence parameter vectors c, d, e and f |
A data frame with rows and two named columns, a and b.
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992. Numerical Recipes in C, Cambridge University Press, Cambridge, U.K.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### construct a list of the recurrences for the T Chebyshev polynomials of ### orders 0 to 10 ### r <- chebyshev.t.recurrences( 10, normalized=TRUE ) ### ### construct the monic polynomial recurrences from the above list ### m.r <- monic.polynomial.recurrences( r )
### ### construct a list of the recurrences for the T Chebyshev polynomials of ### orders 0 to 10 ### r <- chebyshev.t.recurrences( 10, normalized=TRUE ) ### ### construct the monic polynomial recurrences from the above list ### m.r <- monic.polynomial.recurrences( r )
This function returns a list with elements containing
the order
monic polynomials
for orders
.
monic.polynomials(monic.recurrences)
monic.polynomials(monic.recurrences)
monic.recurrences |
a data frame containing the parameters a and b |
A list with polynomial objects
1 |
order 0 monic orthogonal polynomial |
2 |
order 1 monic orthogonal polynomial |
...
n+1 |
order |
Frederick Novomestky [email protected]
Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992. Numerical Recipes in C, Cambridge University Press, Cambridge, U.K.
### ### generate the recurrences for the T Chebyshev polynomials ### of orders 0 to 10 ### r <- chebyshev.t.recurrences( 10, normalized=TRUE ) ### ### get the corresponding monic polynomial recurrences ### m.r <- monic.polynomial.recurrences( r ) ### ### obtain the list of monic polynomials ### p.list <- monic.polynomials( m.r )
### ### generate the recurrences for the T Chebyshev polynomials ### of orders 0 to 10 ### r <- chebyshev.t.recurrences( 10, normalized=TRUE ) ### ### get the corresponding monic polynomial recurrences ### m.r <- monic.polynomial.recurrences( r ) ### ### obtain the list of monic polynomials ### p.list <- monic.polynomials( m.r )
Create list of orthogonal polynomials from the following recurrence relations for
.
We require that and
.
The coefficients are the column vectors
,
,
and
.
orthogonal.polynomials(recurrences)
orthogonal.polynomials(recurrences)
recurrences |
a data frame containing the parameters of the orthogonal polynomial recurrence relations |
The argument is a data frame with rows and four named columns.
The column names are
c
, d
, e
and f
.
These columns correspond to the column vectors described above.
A list of polynomial objects
1 |
Order 0 orthogonal polynomial |
2 |
Order 1 orthogonal polynomial |
...
n+1 |
Order |
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992. Numerical Recipes in C, Cambridge University Press, Cambridge, U.K.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### generate the recurrence relations for T Chebyshev polynomials of orders 0 to 10 ### r <- chebyshev.t.recurrences( 10, normalized=FALSE ) print( r ) ### ### generate the list of orthogonal polynomials ### p.list <- orthogonal.polynomials( r ) print( p.list )
### ### generate the recurrence relations for T Chebyshev polynomials of orders 0 to 10 ### r <- chebyshev.t.recurrences( 10, normalized=FALSE ) print( r ) ### ### generate the list of orthogonal polynomials ### p.list <- orthogonal.polynomials( r ) print( p.list )
Create list of orthonormal polynomials from the following recurrence relations for
.
We require that and
.
The coefficients are the column vectors
,
,
and
.
orthonormal.polynomials(recurrences, p.0)
orthonormal.polynomials(recurrences, p.0)
recurrences |
a data frame containing the parameters of the orthonormal polynomial recurrence relations |
p.0 |
a polynomial object for the order 0 orthonormal polynomial |
The argument is a data frame with rows and four named columns.
The column names are
c
, d
, e
and f
.
These columns correspond to the column vectors described above.
A list of polynomial objects
1 |
Order 0 orthonormal polynomial |
2 |
Order 1 orthonormal polynomial |
...
n+1 |
Order |
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992. Numerical Recipes in C, Cambridge University Press, Cambridge, U.K.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### generate a data frame with the recurrences parameters for normalized T Chebyshev ### polynomials of orders 0 to 10 ### r <- chebyshev.t.recurrences( 10, normalized=TRUE ) print( r ) norm <- sqrt( pi ) ### ### create the order 0 orthonormal polynomial ### library("polynom") p.0 <- polynomial( c( 1 / norm ) ) ### ### generate a list of orthonormal polynomial objects ### p.list <- orthonormal.polynomials( r, p.0 ) print( p.list )
### ### generate a data frame with the recurrences parameters for normalized T Chebyshev ### polynomials of orders 0 to 10 ### r <- chebyshev.t.recurrences( 10, normalized=TRUE ) print( r ) norm <- sqrt( pi ) ### ### create the order 0 orthonormal polynomial ### library("polynom") p.0 <- polynomial( c( 1 / norm ) ) ### ### generate a list of orthonormal polynomial objects ### p.list <- orthonormal.polynomials( r, p.0 ) print( p.list )
pochhammer
returns the value of Pochhammer's symbol calculated as
where is the Gamma function
pochhammer(z, n)
pochhammer(z, n)
z |
numeric value for the argument of the symbol |
n |
integer value for the number of terms in the symbol |
The value of Pochhammer's symbol
Frederick Novomestky [email protected]
### ### compute the Pochhamer's symbol fo z equal to 1 and ### n equal to 5 ### pochhammer( 1, 5 )
### ### compute the Pochhamer's symbol fo z equal to 1 and ### n equal to 5 ### pochhammer( 1, 5 )
This function returns a list with elements containing
the vector of coefficients of the order
polynomials
for orders
.
Each element in the list is a vector.
polynomial.coefficients(polynomials)
polynomial.coefficients(polynomials)
polynomials |
list of polynomial objects |
A list of polynomial objects where each element is a vector of coefficients.
1 |
Coefficient(s) of the order 0 polynomial |
2 |
Coefficient(s) of the order 1 polynomial |
...
n+1 |
Coefficient(s) of the order |
Frederick Novomestky [email protected]
### ### generate a list of normalized T Chebyshev polynomials ### of orders 0 to 10 ### p.list <- chebyshev.t.polynomials( 10, normalized=TRUE ) ### ### obtain the list of coefficients for these polynomials ### p.coef <- polynomial.coefficients( p.list )
### ### generate a list of normalized T Chebyshev polynomials ### of orders 0 to 10 ### p.list <- chebyshev.t.polynomials( 10, normalized=TRUE ) ### ### obtain the list of coefficients for these polynomials ### p.coef <- polynomial.coefficients( p.list )
This function returns a list with elements containing polynomial objects
which are the derivatives of the order
polynomials
for orders
.
polynomial.derivatives(polynomials)
polynomial.derivatives(polynomials)
polynomials |
list of polynomial objects |
The polynomial objects in the argument polynomials
are as follows
1order 0 polynomial
2order 1 polynomial ...
n+1order polynomial
List of polynomial objects
1 |
derivative of |
2 |
derivative of |
...
n+1 |
derivative of |
Frederick Novomestky [email protected]
### ### generate a list of normalized T Chebyshev polynomials of ### orders 0 to 10 ### p.list <- chebyshev.t.polynomials( 10, normalized=TRUE ) ### ### generate the corresponding list of polynomial derivatives ### p.deriv <- polynomial.derivatives( p.list )
### ### generate a list of normalized T Chebyshev polynomials of ### orders 0 to 10 ### p.list <- chebyshev.t.polynomials( 10, normalized=TRUE ) ### ### generate the corresponding list of polynomial derivatives ### p.deriv <- polynomial.derivatives( p.list )
This function returns a list with elements containing the functions of the
order $k$ polynomials for orders
and for the given argument
.
polynomial.functions(polynomials, ...)
polynomial.functions(polynomials, ...)
polynomials |
a list of polynomial objects |
... |
further arguments to be passed to or from methods |
The function uses the method as.function.polynomial to coerce each polynomial object to a function object.
A list of polynomial objects where each element is the function for the polynomial.
1 |
Function for the order 0 polynomial |
2 |
Function for the order 1 polynomial |
...
n+1 |
Function for the order |
Frederick Novomestky [email protected]
### ### generate a list of T Chebyshev polynomials of ### orders 0 to 10 ### p.list <- chebyshev.t.polynomials( 10, normalized=FALSE ) ### ### create the list of functions for each polynomial ### f.list <- polynomial.functions( p.list )
### ### generate a list of T Chebyshev polynomials of ### orders 0 to 10 ### p.list <- chebyshev.t.polynomials( 10, normalized=FALSE ) ### ### create the list of functions for each polynomial ### f.list <- polynomial.functions( p.list )
This function returns a list with elements containing polynomial objects
which are the indefinite integrals of the order
polynomials
for orders
.
polynomial.integrals(polynomials)
polynomial.integrals(polynomials)
polynomials |
list of polynomial objects |
The polynomial objects in the argument polynomials
are as follows
1order 0 polynomial
2order 1 polynomial ...
n+1order n polynomial
List of polynomial objects
1 |
integral of |
2 |
integral of |
...
n+1 |
integral of |
Frederick Novomestky [email protected]
### ### generate a list of normalized T Chebyshev polynomials ### of orders 0 to 10 ### p.list <- chebyshev.t.polynomials( 10, normalized=TRUE ) ### ### generate the corresponding list of polynomial integrals ### p.int <- polynomial.integrals( p.list )
### ### generate a list of normalized T Chebyshev polynomials ### of orders 0 to 10 ### p.list <- chebyshev.t.polynomials( 10, normalized=TRUE ) ### ### generate the corresponding list of polynomial integrals ### p.int <- polynomial.integrals( p.list )
This function returns a vector with elements containing the orders of the polynomials
polynomial.orders(polynomials)
polynomial.orders(polynomials)
polynomials |
list of $n$ polynomial objects |
A vector of values
1 |
Order of polynomials[[1]] |
2 |
Order of polynomials[[2]] |
...
n |
Order of polynomials[[n]] |
Frederick Novomestky [email protected]
### ### generate a list of normalized T Chebyshev polynomials ### of orders 0 to 10 ### p.list <- chebyshev.t.polynomials( 10, normalized=TRUE ) ### ### get the vector of polynomial orders ### p.order <- polynomial.orders( p.list )
### ### generate a list of normalized T Chebyshev polynomials ### of orders 0 to 10 ### p.list <- chebyshev.t.polynomials( 10, normalized=TRUE ) ### ### get the vector of polynomial orders ### p.order <- polynomial.orders( p.list )
This function returns a list with elements containing the vector of
linear combinations of the order
polynomials for orders
.
Each element in the list is a vector.
polynomial.powers(polynomials)
polynomial.powers(polynomials)
polynomials |
A list of polynomials |
The -th component in the list is a vector of linear combinations of
the order
polynomials for orders
equal to
the monomial x raised to the power
.
A list of elements where each element is a vector of linear combinations.
1 |
Linear combination(s) of polynomials up to order 0 |
2 |
Linear combination(s) of polynomials up to order 1 |
...
n+1 |
Linear combination(s) of polynomials up to order |
Frederick Novomestky [email protected]
### ### generate Legendre polynomials of orders 0 to 10 ### polynomials <- legendre.polynomials( 10 ) ### ### generate list of linear combinations of these polynomials ### alphas <- polynomial.powers( polynomials ) print( alphas )
### ### generate Legendre polynomials of orders 0 to 10 ### polynomials <- legendre.polynomials( 10 ) ### ### generate list of linear combinations of these polynomials ### alphas <- polynomial.powers( polynomials ) print( alphas )
This function returns a list with elements containing the roots of
the order $k$ monic orthogonal polynomials for orders
using a data frame with the monic polynomial recurrence parameter vectors
and
polynomial.roots(m.r)
polynomial.roots(m.r)
m.r |
monic recurrence data frame with parameters a and b |
The parameter m.r
is a data frame with $n$+1 rows and two names columns.
The columns which are names a
and b
correspond to the above referenced vectors.
Function jacobi.matrices
is used to create a list of symmetric,
tridiagonal Jacobi matrices from these named columns. The eigenvalues of
the Jacobi matrix are the roots or zeros of the order $k$
monic orthogonal polynomial.
A list with elements each of which is a vector of polynomial roots
1 |
roots of the order 1 monic polynomial |
2 |
roots of the order 2 monic polynomial |
...
n |
roots of the order |
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
monic.polynomial.recurrences
,
jacobi.matrices
### ### generate the recurrences data frame for ### the normalized Chebyshev polynomials of ### orders 0 to 10 ### r <- chebyshev.t.recurrences( 10, normalized=TRUE ) ### ### construct the corresponding monic polynomial ### recurrences ### m.r <- monic.polynomial.recurrences( r ) ### ### obtain the polynomial roots from the monic polynomial ### recurrences p.roots <- polynomial.roots( m.r )
### ### generate the recurrences data frame for ### the normalized Chebyshev polynomials of ### orders 0 to 10 ### r <- chebyshev.t.recurrences( 10, normalized=TRUE ) ### ### construct the corresponding monic polynomial ### recurrences ### m.r <- monic.polynomial.recurrences( r ) ### ### obtain the polynomial roots from the monic polynomial ### recurrences p.roots <- polynomial.roots( m.r )
This function returns a list with elements containing the values of the
order
polynomials for orders
and for the given argument
.
polynomial.values( polynomials, x )
polynomial.values( polynomials, x )
polynomials |
list of polynomial objects |
x |
the argument which can be any numeric object |
A list of polynomial objects where each element is the value of the polynomial.
1 |
Value(s) for the order 0 polynomial |
2 |
Value(s) for the order 1 polynomial |
...
n+1 |
Value(s) for the order |
Frederick Novomestky [email protected]
### ### generate a list of T Chebyshev polynomials of ### orders 0 to 10 ### p.list <- chebyshev.t.polynomials( 10, normalized=FALSE ) x <- seq( -2, 2, .01 ) ### ### compute the value of the polynomials for the given range of values in x ### y <- polynomial.values( p.list, x ) print( y )
### ### generate a list of T Chebyshev polynomials of ### orders 0 to 10 ### p.list <- chebyshev.t.polynomials( 10, normalized=FALSE ) x <- seq( -2, 2, .01 ) ### ### compute the value of the polynomials for the given range of values in x ### y <- polynomial.values( p.list, x ) print( y )
This function returns a vector of values that have been mapped from the interval [a,b] to the interval [u.v].
scaleX(x, a = min(x, na.rm = TRUE), b = max(x, na.rm = TRUE), u, v)
scaleX(x, a = min(x, na.rm = TRUE), b = max(x, na.rm = TRUE), u, v)
x |
A numerical vector of values to be mapped into a target interval |
a |
A numerical lower bound for the domain interval with min(x) as the default value |
b |
A numerical upper bound for the domain interval with max(x) as the default value |
u |
A numerical lower bound for the target interval |
v |
A numerical upper bound for the target interval |
Target lower and/or upper bounds can be and
, respectively. This accomodates
finite target intervals, semi-infinite target intervals and infinite target intervals.
A vector of transformed values with four attributes. The first attribute is called "a" and it is the domain interval lower bound. The second attribute is called "b" and it is the domain interval upper bound. The third attribute is called "u" and it is the target interval lower bound. The fourth attribute is called "v" and it is the target interval upper bound.
Frederick Novomestky [email protected], Gregor Gorjanc [email protected]
Seber, G. A. F. (1997) Linear Regression Analysis, New York.
x <- rnorm( 1000, 0, 10 ) y0 <- scaleX( x, u=0 , v=1 ) y1 <- scaleX( x, u=-1, v=1 ) y2 <- scaleX( x, u=-Inf, v=0 ) y3 <- scaleX( x, u=0, v=Inf ) y4 <- scaleX( x, u=-Inf, v=Inf )
x <- rnorm( 1000, 0, 10 ) y0 <- scaleX( x, u=0 , v=1 ) y1 <- scaleX( x, u=-1, v=1 ) y2 <- scaleX( x, u=-Inf, v=0 ) y3 <- scaleX( x, u=0, v=Inf ) y4 <- scaleX( x, u=-Inf, v=Inf )
This function returns a vector with elements containing the inner product of
an order
shifted Chebyshev polynomial of the first kind,
,
with itself (i.e. the norm squared) for orders
.
schebyshev.t.inner.products(n)
schebyshev.t.inner.products(n)
n |
integer value for the highest polynomial order |
The formula used to compute the inner products is as follows.
A vector with elements
1 |
inner product of order 0 orthogonal polynomial |
2 |
inner product of order 1 orthogonal polynomial |
...
n+1 |
inner product of order |
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., NY.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### generate the inner products vector for the ### shifted T Chebyshev polynomials of orders 0 to 10 ### h <- schebyshev.t.inner.products( 10 ) print( h )
### ### generate the inner products vector for the ### shifted T Chebyshev polynomials of orders 0 to 10 ### h <- schebyshev.t.inner.products( 10 ) print( h )
This function returns a list with elements containing
the order
shifted Chebyshev polynomials of the first kind,
,
for orders
.
schebyshev.t.polynomials(n, normalized)
schebyshev.t.polynomials(n, normalized)
n |
integer value for the highest polynomial order |
normalized |
a boolean value which, if TRUE, returns a list of normalized orthogonal polynomials |
The function schebyshev.t.recurrences
produces a data frame with the recurrence relation parameters
for the polynomials. If the normalized
argument is FALSE, the
function orthogonal.polynomials
is used to construct the list of orthogonal polynomial objects.
Otherwise, the function orthonormal.polynomials
is used to construct the
list of orthonormal polynomial objects.
A list of polynomial objects
1 |
order 0 shifted Chebyshev polynomial |
2 |
order 1 shifted Chebyshev polynomial |
...
n+1 |
order |
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
schebyshev.u.recurrences
,
orthogonal.polynomials
,
orthonormal.polynomials
### ### gemerate a list of normalized shifted T Chebyshev polynomials of orders 0 to 10 ### normalized.p.list <- schebyshev.t.polynomials( 10, normalized=TRUE ) print( normalized.p.list ) ### ### gemerate a list of unnormalized shifted T Chebyshev polynomials of orders 0 to 10 ### unnormalized.p.list <- schebyshev.t.polynomials( 10, normalized=FALSE ) print( unnormalized.p.list )
### ### gemerate a list of normalized shifted T Chebyshev polynomials of orders 0 to 10 ### normalized.p.list <- schebyshev.t.polynomials( 10, normalized=TRUE ) print( normalized.p.list ) ### ### gemerate a list of unnormalized shifted T Chebyshev polynomials of orders 0 to 10 ### unnormalized.p.list <- schebyshev.t.polynomials( 10, normalized=FALSE ) print( unnormalized.p.list )
This function returns a data frame with rows and four named columns containing
the coefficient vectors c, d, e and f of the recurrence relations
for the order
shifted Chebyshev polynomial of the first kind,
, and
for orders
.
schebyshev.t.recurrences(n, normalized)
schebyshev.t.recurrences(n, normalized)
n |
integer value for the highest polynomial order |
normalized |
boolean value which, if TRUE, returns recurrence relations for normalized polynomials |
A data frame with the recurrence relation parameters.
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992. Numerical Recipes in C, Cambridge University Press, Cambridge, U.K.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### generate the recurrence relations for ### the normalized shifted T Chebyshev polynomials ### of orders 0 to 10 ### normalized.r <- schebyshev.t.recurrences( 10, normalized=TRUE ) print( normalized.r ) ### ### generate the recurrence relations for ### the unnormalized shifted T Chebyshev polynomials ### of orders 0 to 10 ### unnormalized.r <- schebyshev.t.recurrences( 10, normalized=FALSE ) print( unnormalized.r )
### ### generate the recurrence relations for ### the normalized shifted T Chebyshev polynomials ### of orders 0 to 10 ### normalized.r <- schebyshev.t.recurrences( 10, normalized=TRUE ) print( normalized.r ) ### ### generate the recurrence relations for ### the unnormalized shifted T Chebyshev polynomials ### of orders 0 to 10 ### unnormalized.r <- schebyshev.t.recurrences( 10, normalized=FALSE ) print( unnormalized.r )
This function returns the value of the weight function for the order
shifted Chebyshev polynomial of the first kind,
.
schebyshev.t.weight(x)
schebyshev.t.weight(x)
x |
the function argument which can be a vector |
The function takes on non-zero values in the interval . The formula
used to compute the weight function is as follows.
The value of the weight function
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992. Numerical Recipes in C, Cambridge University Press, Cambridge, U.K.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### compute the shifted T Chebyshev weight function for argument values ### between 0 and 1 x <- seq( 0, 1, .01 ) y <- schebyshev.t.weight( x ) plot( x, y )
### ### compute the shifted T Chebyshev weight function for argument values ### between 0 and 1 x <- seq( 0, 1, .01 ) y <- schebyshev.t.weight( x ) plot( x, y )
This function returns a vector with elements containing the inner product of
an order
shifted Chebyshev polynomial of the second kind,
,
with itself (i.e. the norm squared) for orders
.
schebyshev.u.inner.products(n)
schebyshev.u.inner.products(n)
n |
integer value for the highest polynomial order |
The formula used to compute the inner products is as follows.
.
A vector with elements
1 |
inner product of order 0 orthogonal polynomial |
2 |
inner product of order 1 orthogonal polynomial |
...
n+1 |
inner product of order |
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
h <- schebyshev.u.inner.products( 10 )
h <- schebyshev.u.inner.products( 10 )
This function returns a list with elements containing
the order
shifted Chebyshev polynomials of the second kind,
,
for orders
.
schebyshev.u.polynomials(n, normalized)
schebyshev.u.polynomials(n, normalized)
n |
integer value for highest polynomial order |
normalized |
a boolean value which, if TRUE, returns a list of normalized orthogonal polynomials |
The function schebyshev.u.recurrences
produces a data frame with the recurrence relation parameters
for the polynomials. If the normalized
argument is FALSE, the
function orthogonal.polynomials
is used to construct the list of orthogonal polynomial objects.
Otherwise, the function orthonormal.polynomials
is used to construct the
list of orthonormal polynomial objects.
A list of polynomial objects
1 |
order 0 shifted Chebyshev polynomial |
2 |
order 1 shifted Chebyshev polynomial |
...
n+1 |
order |
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
schebyshev.u.recurrences
,
orthogonal.polynomials
,
orthonormal.polynomials
### ### gemerate a list of normalized shifted U Chebyshev polynomials of orders 0 to 10 ### normalized.p.list <- schebyshev.u.polynomials( 10, normalized=TRUE ) print( normalized.p.list ) ### ### gemerate a list of unnormalized shifted U Chebyshev polynomials of orders 0 to 10 ### unnormalized.p.list <- schebyshev.u.polynomials( 10, normalized=FALSE ) print( unnormalized.p.list )
### ### gemerate a list of normalized shifted U Chebyshev polynomials of orders 0 to 10 ### normalized.p.list <- schebyshev.u.polynomials( 10, normalized=TRUE ) print( normalized.p.list ) ### ### gemerate a list of unnormalized shifted U Chebyshev polynomials of orders 0 to 10 ### unnormalized.p.list <- schebyshev.u.polynomials( 10, normalized=FALSE ) print( unnormalized.p.list )
This function returns a data frame with rows and four named columns containing
the coefficient vectors c, d, e and f of the recurrence relations
for the order
shifted Chebyshev polynomial of the second kind,
, and
for orders
.
schebyshev.u.recurrences(n, normalized)
schebyshev.u.recurrences(n, normalized)
n |
integer value for the highest polynomial order |
normalized |
boolean value which, if TRUE, returns recurrence relations for normalized polynomials |
A data frame with the recurrence relation parameters.
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992. Numerical Recipes in C, Cambridge University Press, Cambridge, U.K.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### generate the recurrence relations for ### the normalized shifted U Chebyshev polynomials ### of orders 0 to 10 ### normalized.r <- schebyshev.u.recurrences( 10, normalized=TRUE ) print( normalized.r ) ### ### generate the recurrence relations for ### the unnormalized shifted T Chebyshev polynomials ### of orders 0 to 10 unnormalized.r <- schebyshev.u.recurrences( 10, normalized=FALSE ) print( unnormalized.r )
### ### generate the recurrence relations for ### the normalized shifted U Chebyshev polynomials ### of orders 0 to 10 ### normalized.r <- schebyshev.u.recurrences( 10, normalized=TRUE ) print( normalized.r ) ### ### generate the recurrence relations for ### the unnormalized shifted T Chebyshev polynomials ### of orders 0 to 10 unnormalized.r <- schebyshev.u.recurrences( 10, normalized=FALSE ) print( unnormalized.r )
This function returns the value of the weight function for the order
shifted Chebyshev polynomial of the second kind,
.
schebyshev.u.weight(x)
schebyshev.u.weight(x)
x |
the function argument which can be a vector |
The function takes on non-zero values in the interval . The formula
used to compute the weight function is as follows.
The value of the weight function.
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992. Numerical Recipes in C, Cambridge University Press, Cambridge, U.K.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### compute the shifted U Chebyshev weight function for argument values ### between 0 and 1 ### x <- seq( 0, 1, .01 ) y <- schebyshev.u.weight( x ) plot( x, y )
### ### compute the shifted U Chebyshev weight function for argument values ### between 0 and 1 ### x <- seq( 0, 1, .01 ) y <- schebyshev.u.weight( x ) plot( x, y )
This function returns a vector with elements containing the inner product of
an order
shifted Legendre polynomial,
,
with itself (i.e. the norm squared) for orders
.
slegendre.inner.products(n)
slegendre.inner.products(n)
n |
integer value for the highest polynomial order |
The formula used to compute the inner products is as follows.
.
A vector with $n$+1 elements
1 |
inner product of order 0 orthogonal polynomial |
2 |
inner product of order 1 orthogonal polynomial |
...
n+1 |
inner product of order |
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### compute the inner products vector for the ### shifted Legendre polynomials of orders 0 to 10 ### h <- slegendre.inner.products( 10 ) print( h )
### ### compute the inner products vector for the ### shifted Legendre polynomials of orders 0 to 10 ### h <- slegendre.inner.products( 10 ) print( h )
This function returns a list with elements containing
the order
shifted Legendre polynomials,
,
for orders
.
slegendre.polynomials(n, normalized=FALSE)
slegendre.polynomials(n, normalized=FALSE)
n |
integer value for the highest polynomial order |
normalized |
a boolean value which, if TRUE, returns a list of normalized orthogonal polynomials |
The function slegendre.recurrences
produces a data frame with the recurrence relation parameters
for the polynomials. If the normalized
argument is FALSE, the
function orthogonal.polynomials
is used to construct the list of orthogonal polynomial objects
Otherwise, the function orthonormal.polynomials
is used to construct the
list of orthonormal polynomial objects.
A list of polynomial objects
1 |
order 0 shifted Legendre polynomial |
2 |
order 1 shifted Legendre polynomial |
...
n+1 |
order |
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
slegendre.recurrences
,
orthogonal.polynomials
,
orthonormal.polynomials
### ### gemerate a list of normalized shifted Legendre polynomials of orders 0 to 10 ### normalized.p.list <- slegendre.polynomials( 10, normalized=TRUE ) print( normalized.p.list ) ### ### gemerate a list of unnormalized shifted Legendre polynomials of orders 0 to 10 ### unnormalized.p.list <- slegendre.polynomials( 10, normalized=FALSE ) print( unnormalized.p.list )
### ### gemerate a list of normalized shifted Legendre polynomials of orders 0 to 10 ### normalized.p.list <- slegendre.polynomials( 10, normalized=TRUE ) print( normalized.p.list ) ### ### gemerate a list of unnormalized shifted Legendre polynomials of orders 0 to 10 ### unnormalized.p.list <- slegendre.polynomials( 10, normalized=FALSE ) print( unnormalized.p.list )
This function returns a data frame with rows and four named columns containing
the coefficient vectors c, d, e and f of the recurrence relations for
the order
shifted Legendre polynomial,
, and
for orders
.
slegendre.recurrences(n, normalized=FALSE)
slegendre.recurrences(n, normalized=FALSE)
n |
integer value for the highest polynomial order |
normalized |
boolean value which, if TRUE, returns recurrence relations for normalized polynomials |
A data frame with the recurrence relation parameters.
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992. Numerical Recipes in C, Cambridge University Press, Cambridge, U.K.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### generate the recurrence relations for normalized shifted Legendre polynomials ### of orders 0 to 10 ### normalized.r <- slegendre.recurrences( 10, normalized=TRUE ) print( normalized.r ) ### ### generate the recurrence relations for normalized shifted Legendre polynomials ### of orders 0 to 10 ### unnormalized.r <- slegendre.recurrences( 10, normalized=FALSE ) print( unnormalized.r )
### ### generate the recurrence relations for normalized shifted Legendre polynomials ### of orders 0 to 10 ### normalized.r <- slegendre.recurrences( 10, normalized=TRUE ) print( normalized.r ) ### ### generate the recurrence relations for normalized shifted Legendre polynomials ### of orders 0 to 10 ### unnormalized.r <- slegendre.recurrences( 10, normalized=FALSE ) print( unnormalized.r )
This function returns the value of the weight function for the order
shifted Legendre polynomial,
.
slegendre.weight(x)
slegendre.weight(x)
x |
the function argument which can be a vector |
The function takes on non-zero values in the interval . The formula
used to compute the weight function is as follows.
The value of the weight function
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992. Numerical Recipes in C, Cambridge University Press, Cambridge, U.K.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### compute the shifted Legendre weight function for argument values ### between 0 and 1 ### x <- seq( 0, 1, .01 ) y <- slegendre.weight( x )
### ### compute the shifted Legendre weight function for argument values ### between 0 and 1 ### x <- seq( 0, 1, .01 ) y <- slegendre.weight( x )
This function returns a vector with elements containing the inner product
of an order
spherical polynomial,
,
with itself (i.e. the norm squared) for orders
.
spherical.inner.products(n)
spherical.inner.products(n)
n |
integer value for the highest polynomial order |
The formula used to compute the inner products of the spherical orthogonal polynomials is the same as that used for the Legendre orthogonal polynomials.
A vector with elements
1 |
inner product of order 0 orthogonal polynomial |
2 |
inner product of order 1 orthogonal polynomial |
...
n+1 |
inner product of order |
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### generate the inner products vector for the spherical polynomals ### of orders 0 to 10. ### h <- spherical.inner.products( 10 ) print( h )
### ### generate the inner products vector for the spherical polynomals ### of orders 0 to 10. ### h <- spherical.inner.products( 10 ) print( h )
This function returns a list with elements containing
the order
spherical polynomials,
,
for orders
.
spherical.polynomials(n, normalized=FALSE)
spherical.polynomials(n, normalized=FALSE)
n |
integer value for the highest polynomial order |
normalized |
a boolean value which, if TRUE, returns a list of normalized orthogonal polynomials |
The function spherical.recurrences
produces a data frame with the recurrence relation parameters
for the polynomials. If the normalized
argument is FALSE, the
function orthogonal.polynomials
is used to construct the list of orthogonal polynomial objects.
Otherwise, the function orthonormal.polynomials
is used to construct the
list of orthonormal polynomial objects.
A list of polynomial objects
1 |
order 0 spherical polynomial |
2 |
order 1 spherical polynomial |
...
n+1 |
order |
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
spherical.recurrences
,
orthogonal.polynomials
,
orthonormal.polynomials
### ### generate a list of spherical orthonormal polynomials of orders 0 to 10 ### normalized.p.list <- spherical.polynomials( 10, normalized=TRUE ) print( normalized.p.list ) ### ### generate a list of spherical orthogonal polynomials of orders 0 to 10 ### unnormalized.p.list <- spherical.polynomials( 10, normalized=FALSE ) print( unnormalized.p.list )
### ### generate a list of spherical orthonormal polynomials of orders 0 to 10 ### normalized.p.list <- spherical.polynomials( 10, normalized=TRUE ) print( normalized.p.list ) ### ### generate a list of spherical orthogonal polynomials of orders 0 to 10 ### unnormalized.p.list <- spherical.polynomials( 10, normalized=FALSE ) print( unnormalized.p.list )
This function returns a data frame with rows and four named columns containing
the coefficient vectors c, d, e and f of
the recurrence relations for the order
spherical polynomial,
,
and for orders
.
spherical.recurrences(n, normalized=FALSE)
spherical.recurrences(n, normalized=FALSE)
n |
integer value for the highest polynomial order |
normalized |
boolean value which, if TRUE, returns recurrence relations for normalized polynomials |
A data frame with the recurrence relation parameters.
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### generate the recurrence relations for ### the normalized spherical polynomials ### of orders 0 to 10 ### normalized.r <- spherical.recurrences( 10, normalized=TRUE ) print( normalized.r ) ### ### generate the recurrence relations for ### the unnormalized spherical polynomials ### of orders 0 to 10 ### unnormalized.r <- spherical.recurrences( 10, normalized=FALSE ) print( unnormalized.r )
### ### generate the recurrence relations for ### the normalized spherical polynomials ### of orders 0 to 10 ### normalized.r <- spherical.recurrences( 10, normalized=TRUE ) print( normalized.r ) ### ### generate the recurrence relations for ### the unnormalized spherical polynomials ### of orders 0 to 10 ### unnormalized.r <- spherical.recurrences( 10, normalized=FALSE ) print( unnormalized.r )
This function returns the value of the weight function for the order spherical polynomial,
.
spherical.weight(x)
spherical.weight(x)
x |
the function argument which can be a vector or matrix |
The function takes on non-zero values in the interval . The formula used
to compute the weight function is as follows.
The value of the weight function
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992. Numerical Recipes in C, Cambridge University Press, Cambridge, U.K.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### compute the spherical weight function for a sequence of values between -2 and 2 ### x <- seq( -2, 2, .01 ) y <- spherical.weight( x ) plot( x, y )
### ### compute the spherical weight function for a sequence of values between -2 and 2 ### x <- seq( -2, 2, .01 ) y <- spherical.weight( x ) plot( x, y )
This function returns a vector with elements containing the inner product of
an order
ultraspherical polynomial,
,
with itself (i.e. the norm squared) for orders
.
ultraspherical.inner.products(n,alpha)
ultraspherical.inner.products(n,alpha)
n |
integer value for the highest polynomial order |
alpha |
numeric value for the polynomial parameter |
This function uses the same formula as the function gegenbauer.inner.products
.
A vector with elements
1 |
inner product of order 0 orthogonal polynomial |
2 |
inner product of order 1 orthogonal polynomial |
...
n+1 |
inner product of order |
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., NY.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### generate the inner products vector for the ### ultraspherical polynomials of orders 0 to 10. ### the polynomial parameter is 1.0 ### h <- ultraspherical.inner.products( 10, 1 ) print( h )
### ### generate the inner products vector for the ### ultraspherical polynomials of orders 0 to 10. ### the polynomial parameter is 1.0 ### h <- ultraspherical.inner.products( 10, 1 ) print( h )
This function returns a list with elements containing
the order
ultraspherical polynomials,
,
for orders
.
ultraspherical.polynomials(n, alpha, normalized=FALSE)
ultraspherical.polynomials(n, alpha, normalized=FALSE)
n |
integer value for the highest polynomial order |
alpha |
polynomial parameter |
normalized |
a boolean value which, if TRUE, returns a list of normalized orthogonal polynomials |
The function ultraspherical.recurrences
produces a data frame with the recurrence relation parameters
for the polynomials. If the normalized
argument is FALSE, the
function orthogonal.polynomials
is used to construct the list of orthogonal polynomial objects.
Otherwise, the function orthonormal.polynomials
is used to construct the
list of orthonormal polynomial objects.
A list of polynomial objects
1 |
order 0 ultraspherical polynomial |
2 |
order 1 ultraspherical polynomial |
...
n+1 |
order |
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
gegenbauer.recurrences
,
orthogonal.polynomials
,
orthonormal.polynomials
### ### gemerate a list of normalized ultra spherical polynomials ### of orders 0 to 10 ### normalized.p.list <- ultraspherical.polynomials( 10, 1, normalized=TRUE ) print( normalized.p.list ) ### ### gemerate a list of unnormalized ultra spherical polynomials ### of orders 0 to 10 ### unnormalized.p.list <- ultraspherical.polynomials( 10, 1, normalized=FALSE ) print( unnormalized.p.list )
### ### gemerate a list of normalized ultra spherical polynomials ### of orders 0 to 10 ### normalized.p.list <- ultraspherical.polynomials( 10, 1, normalized=TRUE ) print( normalized.p.list ) ### ### gemerate a list of unnormalized ultra spherical polynomials ### of orders 0 to 10 ### unnormalized.p.list <- ultraspherical.polynomials( 10, 1, normalized=FALSE ) print( unnormalized.p.list )
This function returns a data frame with rows and four named columns containing
the coefficient vectors c, d, e and f of
the recurrence relations for the order
ultraspherical polynomial,
,
and for orders
.
ultraspherical.recurrences(n, alpha, normalized=FALSE)
ultraspherical.recurrences(n, alpha, normalized=FALSE)
n |
integer value for the highest polynomial order |
alpha |
numeric value for the polynomial parameter |
normalized |
boolean value which, if TRUE, returns recurrence relations for normalized polynomials |
A data frame with the recurrence relation parameters.
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### generate the recurrence relations for ### the normalized ultraspherical polynomials ### of orders 0 to 10 ### polynomial parameter value is 1.0 ### normalized.r <- ultraspherical.recurrences( 10, 1, normalized=TRUE ) print( normalized.r ) ### ### generate the recurrence relations for ### the normalized ultraspherical polynomials ### of orders 0 to 10 ### polynomial parameter value is 1.0 ### unnormalized.r <- ultraspherical.recurrences( 10, 1, normalized=FALSE ) print( unnormalized.r )
### ### generate the recurrence relations for ### the normalized ultraspherical polynomials ### of orders 0 to 10 ### polynomial parameter value is 1.0 ### normalized.r <- ultraspherical.recurrences( 10, 1, normalized=TRUE ) print( normalized.r ) ### ### generate the recurrence relations for ### the normalized ultraspherical polynomials ### of orders 0 to 10 ### polynomial parameter value is 1.0 ### unnormalized.r <- ultraspherical.recurrences( 10, 1, normalized=FALSE ) print( unnormalized.r )
This function returns the value of the weight function for the order ultraspherical polynomial,
.
ultraspherical.weight(x,alpha)
ultraspherical.weight(x,alpha)
x |
the function argument which can be a vector |
alpha |
polynomial parameter |
The function takes on non-zero values in the interval . The formula used
to compute the weight function is as follows.
The value of the weight function
Frederick Novomestky [email protected]
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992. Numerical Recipes in C, Cambridge University Press, Cambridge, U.K.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
### ### compute the ultraspherical weight function for arguments between -2 and 2 ### polynomial parameter is 1.0 ### x <- seq( -2, 2, .01 ) y <- ultraspherical.weight( x, 1 ) plot( x, y )
### ### compute the ultraspherical weight function for arguments between -2 and 2 ### polynomial parameter is 1.0 ### x <- seq( -2, 2, .01 ) y <- ultraspherical.weight( x, 1 ) plot( x, y )