Package 'orthoDr'

Title: Semi-Parametric Dimension Reduction Models Using Orthogonality Constrained Optimization
Description: Utilize an orthogonality constrained optimization algorithm of Wen & Yin (2013) <DOI:10.1007/s10107-012-0584-1> to solve a variety of dimension reduction problems in the semiparametric framework, such as Ma & Zhu (2012) <DOI:10.1080/01621459.2011.646925>, Ma & Zhu (2013) <DOI:10.1214/12-AOS1072>, Sun, Zhu, Wang & Zeng (2019) <DOI:10.1093/biomet/asy064> and Zhou, Zhu & Zeng (2021) <DOI:10.1093/biomet/asaa087>. The package also implements some existing dimension reduction methods such as hMave by Xia, Zhang, & Xu (2010) <DOI:10.1198/jasa.2009.tm09372> and partial SAVE by Feng, Wen & Zhu (2013) <DOI:10.1080/01621459.2012.746065>. It also serves as a general purpose optimization solver for problems with orthogonality constraints, i.e., in Stiefel manifold. Parallel computing for approximating the gradient is enabled through 'OpenMP'.
Authors: Ruilin Zhao [aut, cph], Ruoqing Zhu [aut, cre, cph] , Jiyang Zhang [aut, cph], Wenzhuo Zhou [aut, cph], Peng Xu [aut, cph], James Joseph Balamuta [ctb]
Maintainer: Ruoqing Zhu <[email protected]>
License: GPL (>= 2)
Version: 0.6.8
Built: 2024-12-09 06:59:47 UTC
Source: CRAN

Help Index


Counting process based sliced inverse regression model

Description

The CP-SIR model for right-censored survival outcome. This model is correct only under very strong assumptions, however, since it only requires an SVD, the solution is used as the initial value in the orthoDr optimization.

Usage

CP_SIR(x, y, censor, bw = silverman(1, length(y)))

Arguments

x

A matrix for features (continuous only).

y

A vector of observed time.

censor

A vector of censoring indicator.

bw

Kernel bandwidth for nonparametric estimations (one-dimensional), the default is using Silverman's formula.

Value

A list consisting of

values

The eigenvalues of the estimation matrix

vectors

The estimated directions, ordered by eigenvalues

References

Sun, Q., Zhu, R., Wang, T. and Zeng, D. (2019) "Counting Process Based Dimension Reduction Method for Censored Outcomes." Biometrika, 106(1), 181-196. DOI: doi:10.1093/biomet/asy064

Examples

# This is setting 1 in Sun et. al. (2017) with reduced sample size
library(MASS)
set.seed(1)
N <- 200
P <- 6
V <- 0.5^abs(outer(1:P, 1:P, "-"))
dataX <- as.matrix(mvrnorm(N, mu = rep(0, P), Sigma = V))
failEDR <- as.matrix(c(1, 0.5, 0, 0, 0, rep(0, P - 5)))
censorEDR <- as.matrix(c(0, 0, 0, 1, 1, rep(0, P - 5)))
T <- rexp(N, exp(dataX %*% failEDR))
C <- rexp(N, exp(dataX %*% censorEDR - 1))
ndr <- 1
Y <- pmin(T, C)
Censor <- (T < C)

# fit the model
cpsir.fit <- CP_SIR(dataX, Y, Censor)
distance(failEDR, cpsir.fit$vectors[, 1:ndr, drop = FALSE], "dist")

Cross distance matrix

Description

Calculate the Gaussian kernel distance between rows of X1 and rows of X2. As a result, this is an extension to the stats::dist() function.

Usage

dist_cross(x1, x2)

Arguments

x1

First data matrix

x2

Second data matrix

Value

A distance matrix with its (i, j)th element being the Gaussian kernel distance between ith row of X1 jth row of X2.

Examples

# two matrices
set.seed(1)
x1 <- matrix(rnorm(10), 5, 2)
x2 <- matrix(rnorm(6), 3, 2)
dist_cross(x1, x2)

Compute Distance Correlation

Description

Calculate the distance correlation between two linear spaces.

Usage

distance(s1, s2, type = "dist", x = NULL)

Arguments

s1

First space

s2

Second space

type

Type of distance measures: "dist" (default), "trace", "canonical" or "sine"

x

The covariate values, for canonical correlation only.

Value

The distance between s1 and s2.

Examples

# two spaces
failEDR <- as.matrix(cbind(
  c(1, 1, 0, 0, 0, 0),
  c(0, 0, 1, -1, 0, 0)
))
B <- as.matrix(cbind(
  c(0.1, 1.1, 0, 0, 0, 0),
  c(0, 0, 1.1, -0.9, 0, 0)
))

distance(failEDR, B, "dist")
distance(failEDR, B, "trace")

N <- 300
P <- 6
dataX <- matrix(rnorm(N * P), N, P)
distance(failEDR, B, "canonical", dataX)

Hazard Mave for Censored Survival Data

Description

This is an almost direct R translation of Xia, Zhang & Xu's (2010) hMave MATLAB code. We implemented further options for setting a different initial value. The computational algorithm does not utilize the orthogonality constrained optimization.

Usage

hMave(x, y, censor, m0, B0 = NULL)

Arguments

x

A matrix for features.

y

A vector of observed time.

censor

A vector of censoring indicator.

m0

number of dimensions to use

B0

initial value of B. This is a feature we implemented.

Value

A list consisting of

B

The estimated B matrix

cv

Leave one out cross-validation error

References

Xia, Y., Zhang, D., & Xu, J. (2010). Dimension reduction and semiparametric estimation of survival models. Journal of the American Statistical Association, 105(489), 278-290. DOI: doi:10.1198/jasa.2009.tm09372

Examples

# generate some survival data
set.seed(1)
P <- 7
N <- 150
dataX <- matrix(runif(N * P), N, P)
failEDR <- as.matrix(cbind(c(1, 1.3, -1.3, 1, -0.5, 0.5, -0.5, rep(0, P - 7))))
T <- exp(dataX %*% failEDR + rnorm(N))
C <- runif(N, 0, 15)
Y <- pmin(T, C)
Censor <- (T < C)

# fit the model
hMave.fit <- hMave(dataX, Y, Censor, 1)

Kernel Weight

Description

Calculate the Gaussian kernel weights between rows of X1 and rows of X2.

Usage

kernel_weight(x1, x2, kernel = "gaussian", dist = "euclidean")

Arguments

x1

First data matrix

x2

Second data matrix

kernel

The kernel function, currently only using Gaussian kernel.

dist

The distance metric, currently only using the Euclidean distance.

Value

A distance matrix, with its (i, j)th element being the kernel weights for the i th row of X1 jth row of X2.

Examples

# two matrices
set.seed(1)
x1 <- matrix(rnorm(10), 5, 2)
x2 <- matrix(rnorm(6), 3, 2)
kernel_weight(x1, x2)

Orthogonality constrained optimization

Description

A general purpose optimization solver with orthogonality constraint. The orthogonality constrained optimization method is a nearly direct translation from Wen and Yin (2010)'s MATLAB code.

Usage

ortho_optim(
  B,
  fn,
  grad = NULL,
  ...,
  maximize = FALSE,
  control = list(),
  maxitr = 500,
  verbose = FALSE
)

Arguments

B

Initial B values. Must be a matrix, and the columns are subject to the orthogonality constrains. Will be processed by Gram-Schmidt if not orthogonal

fn

A function that calculate the objective function value. The first argument should be B. Returns a single value.

grad

A function that calculate the gradient. The first argument should be B. Returns a matrix with the same dimension as B. If not specified, then numerical approximation is used.

...

Arguments passed to fn and grad

maximize

By default, the solver will try to minimize the objective function unless maximize = TRUE

control

A list of tuning variables for optimization. epsilon is the size for numerically approximating the gradient. For others, see Wen and Yin (2013).

maxitr

Maximum number of iterations

verbose

Should information be displayed

Value

A orthoDr object that consists of a list with named entries of:

B

The optimal B value

fn

The final functional value

itr

The number of iterations

converge

convergence code

References

Wen, Z., & Yin, W. (2013). A feasible method for optimization with orthogonality constraints. Mathematical Programming, 142(1), 397-434. DOI: doi:10.1007/s10107-012-0584-1

Examples

# an eigen value problem
library(pracma)
set.seed(1)
n <- 100
k <- 6
A <- matrix(rnorm(n * n), n, n)
A <- t(A) %*% A
B <- gramSchmidt(matrix(rnorm(n * k), n, k))$Q

fx <- function(B, A) -0.5 * sum(diag(t(B) %*% A %*% B))
gx <- function(B, A) -A %*% B
fit <- ortho_optim(B, fx, gx, A = A)
fx(fit$B, A)

# compare with the solution from the eigen function
sol <- eigen(A)$vectors[, 1:k]
fx(sol, A)

Direct Learning & Pseudo-direct Learning Model

Description

Performs the "Direct Learning & Pseudo-direct Learning" Method for personalized medicine.

Usage

orthoDr_pdose(
  x,
  a,
  r,
  ndr = ndr,
  B.initial = NULL,
  bw = NULL,
  lambda = 0.1,
  K = sqrt(length(r)),
  method = c("direct", "pseudo_direct"),
  keep.data = FALSE,
  control = list(),
  maxitr = 500,
  verbose = FALSE,
  ncore = 0
)

Arguments

x

A matrix or data.frame for features (continuous only).

a

A vector of observed dose

r

A vector of observed reward

ndr

A dimension structure

B.initial

Initial B values. Will use the partial SAVE pSAVE as the initial if leaving as NULL. If specified, must be a matrix with ncol(x) rows and ndr columns. Will be processed by Gram-Schmidt if not orthogonal.

bw

A Kernel bandwidth, assuming each variables have unit variance

lambda

The penalty level for kernel ridge regression. If a range of values is specified, the GCV will be used to select the best tuning

K

A number of grids in the range of dose

method

Either "direct" or "pseudo_direct"

keep.data

Should the original data be kept for prediction

control

A list of tuning variables for optimization. epsilon is the size for numerically approximating the gradient. For others, see Wen and Yin (2013).

maxitr

Maximum number of iterations

verbose

Should information be displayed

ncore

the number of cores for parallel computing

Value

A orthoDr object consisting of list with named elements:

B

The optimal B value

fn

The final functional value

itr

The number of iterations

converge

convergence code

References

Zhou, W., Zhu, R., & Zeng, D. (2021). A parsimonious personalized dose-finding model via dimension reduction. Biometrika, 108(3), 643-659. DOI: doi:10.1093/biomet/asaa087

Examples

# generate some personalized dose scenario

exampleset <- function(size, ncov) {
  X <- matrix(runif(size * ncov, -1, 1), ncol = ncov)
  A <- runif(size, 0, 2)

  Edr <- as.matrix(c(0.5, -0.5))

  D_opt <- X %*% Edr + 1

  mu <- 2 + 0.5 * (X %*% Edr) - 7 * abs(D_opt - A)

  R <- rnorm(length(mu), mu, 1)

  R <- R - min(R)

  datainfo <- list(X = X, A = A, R = R, D_opt = D_opt, mu = mu)
  return(datainfo)
}

# generate data

set.seed(123)
n <- 150
p <- 2
ndr <- 1
train <- exampleset(n, p)
test <- exampleset(500, p)

# the direct learning method
orthofit <- orthoDr_pdose(train$X, train$A, train$R,
  ndr = ndr, lambda = 0.1,
  method = "direct", K = sqrt(n), keep.data = TRUE,
  maxitr = 150, verbose = FALSE, ncore = 2
)

dose <- predict(orthofit, test$X)

# ` # compare with the optimal dose
dosedistance <- mean((test$D_opt - dose$pred)^2)
print(dosedistance)

# the pseudo direct learning method
orthofit <- orthoDr_pdose(train$X, train$A, train$R,
  ndr = ndr, lambda = seq(0.1, 0.2, 0.01),
  method = "pseudo_direct", K = as.integer(sqrt(n)), keep.data = TRUE,
  maxitr = 150, verbose = FALSE, ncore = 2
)

dose <- predict(orthofit, test$X)

# compare with the optimal dose

dosedistance <- mean((test$D_opt - dose$pred)^2)
print(dosedistance)

Semiparametric dimension reduction method from Ma & Zhu (2012).

Description

Performs the semiparametric dimension reduction method associated with Ma & Zhu (2012).

Usage

orthoDr_reg(
  x,
  y,
  method = "sir",
  ndr = 2,
  B.initial = NULL,
  bw = NULL,
  keep.data = FALSE,
  control = list(),
  maxitr = 500,
  verbose = FALSE,
  ncore = 0
)

Arguments

x

A matrix or data.frame for features (continous only). The algorithm will not scale the columns to unit variance

y

A vector of continuous outcome

method

Dimension reduction methods (semi-): "sir", "save", "phd", "local" or "seff". Currently only "sir" and "phd" are available.

ndr

The number of directions

B.initial

Initial B values. If specified, must be a matrix with ncol(x) rows and ndr columns. Will be processed by Gram-Schmidt if not orthogonal. If the initial value is not given, three initial values ("sir", "save" and "phd") using the traditional method will be tested. The one with smallest l2 norm of the estimating equation will be used.

bw

A Kernel bandwidth, assuming each variables have unit variance

keep.data

Should the original data be kept for prediction. Default is FALSE.

control

A list of tuning variables for optimization. epsilon is the size for numerically approximating the gradient. For others, see Wen and Yin (2013).

maxitr

Maximum number of iterations

verbose

Should information be displayed

ncore

Number of cores for parallel computing. The default is the maximum number of threads.

Value

A orthoDr object consisting of list with named elements:

B

The optimal B value

fn

The final functional value

itr

The number of iterations

converge

convergence code

References

Ma, Y., & Zhu, L. (2012). A semiparametric approach to dimension reduction. Journal of the American Statistical Association, 107(497), 168-179. DOI: doi:10.1080/01621459.2011.646925

Ma, Y., & Zhu, L. (2013). Efficient estimation in sufficient dimension reduction. Annals of statistics, 41(1), 250. DOI: doi:10.1214/12-AOS1072

Examples

# generate some regression data
set.seed(1)
N <- 100
P <- 4
dataX <- matrix(rnorm(N * P), N, P)
Y <- -1 + dataX[, 1] + rnorm(N)

# fit the semi-sir model
orthoDr_reg(dataX, Y, ndr = 1, method = "sir")

# fit the semi-phd model
Y <- -1 + dataX[, 1]^2 + rnorm(N)
orthoDr_reg(dataX, Y, ndr = 1, method = "phd")

Counting Process based semiparametric dimension reduction (IR-CP) model

Description

Models the data according to the counting process based semiparametric dimension reduction (IR-CP) model for right censored survival outcome.

Usage

orthoDr_surv(
  x,
  y,
  censor,
  method = "dm",
  ndr = ifelse(method == "forward", 1, 2),
  B.initial = NULL,
  bw = NULL,
  keep.data = FALSE,
  control = list(),
  maxitr = 500,
  verbose = FALSE,
  ncore = 0
)

Arguments

x

A matrix or data.frame for features. The algorithm will not scale the columns to unit variance

y

A vector of observed time

censor

A vector of censoring indicator

method

Estimation equation to use. Either: "forward" (1-d model), "dn" (counting process), or "dm" (martingale).

ndr

The number of directions

B.initial

Initial B values. Will use the counting process based SIR model CP_SIR as the initial if leaving as NULL. If specified, must be a matrix with ncol(x) rows and ndr columns. Will be processed by Gram-Schmidt if not orthogonal.

bw

A Kernel bandwidth, assuming each variables have unit variance.

keep.data

Should the original data be kept for prediction. Default is FALSE

control

A list of tuning variables for optimization. epsilon is the size for numerically approximating the gradient. For others, see Wen and Yin (2013).

maxitr

Maximum number of iterations

verbose

Should information be displayed

ncore

Number of cores for parallel computing. The default is the maximum number of threads.

Value

A orthoDr object consisting of list with named elements:

B

The optimal B value

fn

The final functional value

itr

The number of iterations

converge

convergence code

References

Sun, Q., Zhu, R., Wang, T., & Zeng, D. (2019). Counting process-based dimension reduction methods for censored outcomes. Biometrika, 106(1), 181-196. DOI: doi:10.1093/biomet/asy064

Examples

# This is setting 1 in Sun et. al. (2017) with reduced sample size
library(MASS)
set.seed(1)
N <- 200
P <- 6
V <- 0.5^abs(outer(1:P, 1:P, "-"))
dataX <- as.matrix(mvrnorm(N, mu = rep(0, P), Sigma = V))
failEDR <- as.matrix(c(1, 0.5, 0, 0, 0, rep(0, P - 5)))
censorEDR <- as.matrix(c(0, 0, 0, 1, 1, rep(0, P - 5)))
T <- rexp(N, exp(dataX %*% failEDR))
C <- rexp(N, exp(dataX %*% censorEDR - 1))
ndr <- 1
Y <- pmin(T, C)
Censor <- (T < C)

# fit the model
forward.fit <- orthoDr_surv(dataX, Y, Censor, method = "forward")
distance(failEDR, forward.fit$B, "dist")

dn.fit <- orthoDr_surv(dataX, Y, Censor, method = "dn", ndr = ndr)
distance(failEDR, dn.fit$B, "dist")

dm.fit <- orthoDr_surv(dataX, Y, Censor, method = "dm", ndr = ndr)
distance(failEDR, dm.fit$B, "dist")

Predictions under orthoDr models

Description

The prediction function for orthoDr fitted models

Usage

## S3 method for class 'orthoDr'
predict(object, testx, ...)

Arguments

object

A fitted orthoDr object

testx

Testing data

...

Additional parameters, not used.

Value

The predicted object

Examples

# generate some survival data
N <- 100
P <- 4
dataX <- matrix(rnorm(N * P), N, P)
Y <- exp(-1 + dataX[, 1] + rnorm(N))
Censor <- rbinom(N, 1, 0.8)

# fit the model with keep.data = TRUE
orthoDr.fit <- orthoDr_surv(dataX, Y, Censor,
  ndr = 1,
  method = "dm", keep.data = TRUE
)

# predict 10 new observations
predict(orthoDr.fit, matrix(rnorm(10 * P), 10, P))

# generate some personalized dose scenario

exampleset <- function(size, ncov) {
  X <- matrix(runif(size * ncov, -1, 1), ncol = ncov)
  A <- runif(size, 0, 2)

  Edr <- as.matrix(c(0.5, -0.5))

  D_opt <- X %*% Edr + 1

  mu <- 2 + 0.5 * (X %*% Edr) - 7 * abs(D_opt - A)

  R <- rnorm(length(mu), mu, 1)

  R <- R - min(R)

  datainfo <- list(X = X, A = A, R = R, D_opt = D_opt, mu = mu)
  return(datainfo)
}

# generate data

set.seed(123)
n <- 150
p <- 2
ndr <- 1
train <- exampleset(n, p)
test <- exampleset(500, p)

# the direct learning method
orthofit <- orthoDr_pdose(train$X, train$A, train$R,
  ndr = ndr, lambda = 0.1,
  method = "direct", K = as.integer(sqrt(n)), keep.data = TRUE,
  maxitr = 150, verbose = FALSE, ncore = 2
)

predict(orthofit, test$X)

# the pseudo direct learning method
orthofit <- orthoDr_pdose(train$X, train$A, train$R,
  ndr = ndr, lambda = seq(0.1, 0.2, 0.01),
  method = "pseudo_direct", K = as.integer(sqrt(n)), keep.data = TRUE,
  maxitr = 150, verbose = FALSE, ncore = 2
)

predict(orthofit, test$X)

Print a orthoDr object

Description

Provides a custom print wrapper for displaying orthoDr fitted models.

Usage

## S3 method for class 'orthoDr'
print(x, ...)

Arguments

x

A fitted orthoDr object

...

Additional parameters, not used.

Value

Sliently returns the orthoDr object supplied into the function to allow for use with pipes.

Examples

# generate some survival data
N <- 100
P <- 4
dataX <- matrix(rnorm(N * P), N, P)
Y <- exp(-1 + dataX[, 1] + rnorm(N))
Censor <- rbinom(N, 1, 0.8)

# fit the model
orthoDr_surv(dataX, Y, Censor, ndr = 1, method = "dm")

Partial Sliced Averaged Variance Estimation

Description

The partial-SAVE model. This model is correct only under very strong assumptions, the solution is used as the initial value in the orthoDr optimization.

Usage

pSAVE(x, a, r, ndr = 2, nslices0 = 2)

Arguments

x

A matrix for features (continuous only).

a

A vector of observed dose levels (continuous only).

r

A vector of reward (outcome).

ndr

The dimension structure

nslices0

Number of slides used for save

Value

A list consisting of:

vectors

The basis of central subspace, ordered by eigenvalues

References

Feng, Z., Wen, X. M., Yu, Z., & Zhu, L. (2013). On partial sufficient dimension reduction with applications to partially linear multi-index models. Journal of the American Statistical Association, 108(501), 237-246. DOI: doi:10.1080/01621459.2012.746065


Silverman's rule of thumb

Description

A simple Silverman's rule of thumb bandwidth calculation.

Usage

silverman(d, n)

Arguments

d

Number of dimension

n

Number of observation

Value

A simple bandwidth choice

Examples

silverman(1, 300)

Skin Cutaneous Melanoma Data set

Description

The clinical variables of the SKCM dataset. The original data was obtained from The Cancer Genome Atlas (TCGA).

Usage

skcm.clinical

Format

Contains 469 subjects with 156 failures. Each row contains one subject, subject ID is indicated by row name. Variables include:

  • Time

  • Censor

  • Gender

  • Age

Note: Age has 8 missing values.

References

https://www.cancer.gov/ccg/research/genome-sequencing/tcga


Genes associated with Melanoma given by the MelGene Database

Description

The expression of top 20 genes of cutaneous melanoma literature based on the MelGene Database.

Usage

skcm.melgene

Format

Each row contains one subject, subject ID is indicated by row name. Gene names in the columns. The columns are scaled.

References

Chatzinasiou, Foteini, Christina M. Lill, Katerina Kypreou, Irene Stefanaki, Vasiliki Nicolaou, George Spyrou, Evangelos Evangelou et al. "Comprehensive field synopsis and systematic meta-analyses of genetic association studies in cutaneous melanoma." Journal of the National Cancer Institute 103, no. 16 (2011): 1227-1235. Emmanouil I. Athanasiadis, Kyriaki Antonopoulou, Foteini Chatzinasiou, Christina M. Lill, Marilena M. Bourdakou, Argiris Sakellariou, Katerina Kypreou, Irene Stefanaki, Evangelos Evangelou, John P.A. Ioannidis, Lars Bertram, Alexander J. Stratigos, George M. Spyrou, A Web-based database of genetic association studies in cutaneous melanoma enhanced with network-driven data exploration tools, Database, Volume 2014, 2014, bau101, https://doi.org/10.1093/database/bau101 https://www.cancer.gov/ccg/research/genome-sequencing/tcga


2D or 2D view of survival data on reduced dimension

Description

Produce 2D or 3D plots of right censored survival data based on a given dimension reduction space

Usage

view_dr_surv(
  x,
  y,
  censor,
  B = NULL,
  bw = NULL,
  FUN = "log",
  type = "2D",
  legend.add = TRUE,
  xlab = "Reduced Direction",
  ylab = "Time",
  zlab = "Survival"
)

Arguments

x

A matrix or data.frame for features (continuous only). The algorithm will not scale the columns to unit variance

y

A vector of observed time

censor

A vector of censoring indicator

B

The dimension reduction subspace, can only be 1 dimensional

bw

A Kernel bandwidth (3D plot only) for approximating the survival function, default is the Silverman's formula

FUN

A scaling function applied to the time points y. Default is "log".

type

⁠2D⁠ or ⁠3D⁠ plot

legend.add

Should legend be added (2D plot only)

xlab

x axis label

ylab

y axis label

zlab

z axis label

Value

An rgl object that is rendered.

References

Sun, Q., Zhu, R., Wang, T., & Zeng, D. (2019). Counting process-based dimension reduction methods for censored outcomes. Biometrika, 106(1), 181-196. DOI: doi:10.1093/biomet/asy064

Examples

# generate some survival data
N <- 100
P <- 4
dataX <- matrix(rnorm(N * P), N, P)
Y <- exp(-1 + dataX[, 1] + rnorm(N))
Censor <- rbinom(N, 1, 0.8)

orthoDr.fit <- orthoDr_surv(dataX, Y, Censor, ndr = 1, method = "dm")
view_dr_surv(dataX, Y, Censor, orthoDr.fit$B)