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Abstract

In medical and epidemiological studies, the odds ratio is a commonly applied measure
to approximate the relative risk or risk ratio in cohort studies. It is well known such
an approximation is poor and can generate misleading conclusions, if the incidence rate
of a study outcome is not rare. However, there are times when the incidence rate is
not directly available in the published work. Motivated by real applications, this paper
presents methods to convert the odds ratio to the relative risk when published data offers
limited information. Specifically, the proposed new methods can convert the odds ratio to
the relative risk, if an odds ratio and/or a confidence interval as well as the sample sizes
for the treatment and control group are available. In addition, the developed methods
can be utilized to approximate the relative risk based on the adjusted odds ratio from
logistic regression or other multiple regression models. In this regard, this paper extends
a popular method by Zhang and Yu (1998) for converting odds ratios to risk ratios. The
objective is novelly mapped into a constrained nonlinear optimization problem, which is
solved with both a grid search and nonlinear optimization algorithm. The methods are
implemented in R package orsk (Wang 2013) which contains R functions and a Fortran
subroutine for efficiency. The proposed methods and software are illustrated with real
data applications.
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1. Introduction
Investigators of medical and epidemiological studies are often interested in comparing a risk of
a binary outcome between a treatment and control group, or between exposed and unexposed.
Such an outcome can be an onset of a disease or condition. In this context, the study results
may be summarized in Table 1 and the odds ratio and relative risk are the important measures
in cohort studies. In a case-control study, the odds ratio is often used as a surrogate for the
relative risk. The odds ratio is the ratio of the odds of outcome occurring in the treatment
group to the odds of it occurring in the control group. The odds of outcome in the treatment

Table 1: Compute the odds ratio and the relative risk.
Group Number of outcome Number of outcome free Total
Treatment n11 n10 ntrt
Control n01 n00 nctr
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group is n11
n10

and the odds of outcome in the control group is n01
n00

. The odds ratio thus becomes

θ(n01, n11) = n11n00
n10n01

. (1)

The odds ratio evaluates whether the probability of a study outcome is the same for two
groups. An odds ratio is a positive number which can be 1 (the outcome of interest is similarly
likely to occur in both groups), or greater than 1 (the outcome is more likely to occur in the
treatment group), or less than 1 (the outcome is less likely to occur in the treatment group).
The odds ratio can approximate the relative risk or risk ratio, which is a more direct measure
than the odds ratio. In fact, the most direct way to determine if an exposure to a treatment is
associated with an outcome is to prospectively follow two groups, and observe the frequency
with which each group develops the outcome. The relative risk compares the frequency of
an outcome between groups. The risk of the outcome occurring in the treatment group is

n11
n11+n10

and the risk in the control group is n01
n01+n00

. The relative risk is the ratio of the
probability of the outcome occurring in the treatment group versus a control group, and is
naturally estimated by n11

n11+n10
/ n01

n01+n00
. It can be easily shown that the odds ratio is a good

approximation to the relative risk when the incidence or risk rate is low, for instance, in
rare diseases, and can largely overestimate the relative risk when the outcome is common in
the study population (Zhang and Yu 1998; Robbins et al. 2002). Although it is well-known
that the two measures evaluate different quantities in general, the odds ratio has been mis-
interpreted as the relative risk in some studies, and thus contributed to incorrect conclusions
(Schulman et al. 1999; Schwartz et al. 1999; Holcomb et al. 2001). For this reason, many
methods have been proposed to approximate the risk ratio, particularly in logistic or other
multiple regression models. For instance, see a popular method in Zhang and Yu (1998). The
formula in Zhang and Yu (1998) requires the proportion of control subjects who experience
the outcome. Specifically, derived from the definition of the odds ratio and the relative risk,
the approximated risk ratio is

R̂R = odds ratio
1 − risk0 + risk0 × odds ratio , (2)

where risk0 is the risk of having a positive outcome in the control or unexposed group (i.e.,
risk0 = n01

nctr ). Formula (2) can be utilized for both the unadjusted and adjusted odds ratio.
The formula can also be employed to approximate the lower and upper limits of the confidence
interval. For an interested reader, thus, the formula provides a conversion between the relative
risk and odds ratio from the published data. However, it may not be possible to convert the
estimate when risk0 is unknown or cannot be estimated from the data.
To convert the adjusted odds ratio, this paper extends the work in Zhang and Yu (1998) to
the scenario when risk0 cannot be trivially estimated using the published data. In addition,
the proposed methods can be applied to the unadjusted odds ratio. The problem under inves-
tigation will be described using a concrete example. A retrospective cohort study collected
data on 4237 primiparous women (Szal et al. 1999). Of interest is the association between
the use of epidural anesthesia and prolonged first stage of labor (> 12 hours). Often the pub-
lished results include both unadjusted and adjusted estimates, as in Table 2 and 3, so that
readers “can compare unadjusted measures of association with those adjusted for potential
confounders and judge by how much, and in what direction, they changed” (Vandenbroucke
et al. 2007, item 16(a)). Sometimes the results are mis-interpreted in that women who used
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epidural anesthesia had 2.61 times (or 2.25 times, adjusting for other factors) the risk of the
first stage of labor lasting > 12 hours than those who did not use epidural anesthesia. How-
ever, Szal et al. (1999) did not describe how many epidural anesthesia users and non-users
had the first stage of labor lasting > 12 hours. Thus risk0 is not conveniently available to ap-
proximate the relative risk. If we can reconstruct Table 1 based on Table 2, then it is possible
to estimate the risk of the study outcome in the control and treatment groups. Completely or
at least partially reconstructing Table 1 is also relevant to other applications. For instance,
when Holcomb et al. assessed 112 clinical research articles in obstetrics and gynecology to
determine how often the odds ratio differs substantially from the relative risk estimates, they
had to exclude five articles due to lack of information on risk of study outcome in the control
group, using formula (2). More importantly, it remains unclear how accurate the odds ratios
approximate the relative risks in the omitted studies. To the author’s knowledge, method-
ologies have not been proposed to estimate risk0 when not all data information is directly
available. The proposed methods can reconstruct Table 1, and consequently estimate risk0.
In this sense, we extended the work in Zhang and Yu (1998) in the event where risk0 is not
directly available. Table 2 will be utilized in this paper to demonstrate the approximation of
the risk ratio based on partial data information. Furthermore, with the estimated risk0 and
the adjusted odds ratio from the multiple logistic regression in Table 3, we can approximate
the risk ratio.

Table 2: Unadjusted odds ratio for the first stage of labor lasting > 12 hours and and the
95% confidence interval (CI) (Szal et al. 1999).

Unadjusted odds ratio 95% CI
Use of epidural anesthesia (n=2601) 2.61 2.25-3.03
Non-use of epidural anesthesia (n=1636) Reference Reference

Table 3: Adjusted odds ratio from multiple logistic regression for the first stage of labor
lasting > 12 hours and the 95% confidence interval (CI)(Szal et al. 1999).

Adjusted Odds ratio 95% CI
Use of epidural anesthesia (n=2601) 2.25 1.92-2.63
Non-use of epidural anesthesia (n=1636) Reference Reference

The method developed in this paper is implemented in R (R Development Core Team 2013)
package orsk (odds ratio to relative risk). The paper is organized as follows. Section 2
proposes a nonlinear objective function which measures the similarity between the calculated
odds ratio and the reported odds ratio. Two methods are proposed to optimize the nonlinear
objective function. Section 3 outlines the implementations in the package orsk. Section 4
illustrates the capabilities of orsk with real data provided in Table 2 and 3. Finally, Section
5 concludes the paper.

2. Methods
We briefly review some additional results of the odds ratio, which form the basis for the
methodology introduced in this section. The orsk procedure relies on the fact that odds
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ratios have been reported based on the normal approximation, which is the most common
practice in many statistical software programs. An asymptotic (1 − α) confidence interval
(CI) for the log odds ratio is log(θ(n01, n11)) ± zα/2SE, where zα/2 is the α/2 upper critical
value of the standard normal distribution and the standard error SE can be estimated by√

1
n11

+ 1
n10

+ 1
n01

+ 1
n00

. The lower bound of the confidence interval of the odds ratio can be
calculated by θL(n01, n11) = exp(log(θ(n01, n11)) − zα/2SE). Therefore,

θL(n01, n11) = θ(n01, n11) exp
{

−zα/2

√
1

n11
+ 1

n10
+ 1

n01
+ 1

n00

}
. (3)

Similarly, the upper bound of the confidence interval of the odds ratio is

θU (n01, n11) = θ(n01, n11) exp
{

zα/2

√
1

n11
+ 1

n10
+ 1

n01
+ 1

n00

}
. (4)

Now, the problem to be solved can be stated as follows. In the context of Table 1, suppose
θ(0), θ

(0)
L , θ

(0)
U are calculated by Equations (1), (3) and (4), respectively, and nctr, ntrt, and α

are fixed. The aim is to estimate (n01, n11) and subsequently estimate the relative risk and
its corresponding confidence interval. In the layout of Table 2, we have nctr = 1636, ntrt =
2601, θ(0) = 2.61, θ

(0)
L = 2.25, θ

(0)
U = 3.03, α = 0.05. The task is to solve different sets of

nonlinear equations for two unknowns (n01, n11) given that n01 + n00 = nctr and n11 +
n10 = ntrt: (i) Equations (1) and (3); (ii) Equations (1) and (4); (iii) Equations (3) and
(4); (iv) Equations (1) to (4). The proposal is to select (n01, n11) through minimizing the
sum of squared logarithmic deviations between the reported estimates θ(0), θ

(0)
L , θ

(0)
U and the

corresponding would-be-estimates based on assumed n01 and n11. For instance, in scenario
(iv), consider a sum of squares SS defined below:

SS(n01, n11) =
{

log(θ(n01, n11)) − log(θ(0))
}2

+
{

log(θL(n01, n11)) − log(θ(0)
L )

}2

+
{

log(θU (n01, n11)) − log(θ(0)
U )

}2
.

(5)

Similar sums of squares can be considered with point estimate and lower or upper confidence
interval bounds, or with confidence interval bounds only. The goal now is to solve the following
optimization problem:

min
n01,n11

SS(n01, n11) for integer n01, n11, 1 ≤ n01 ≤ nctr − 1, 1 ≤ n11 ≤ ntrt − 1. (6)

Apparently SS will be very close to 0 for the true value of (n01, n11), and a smaller SS implies
a better solution. Thus SS plays a role similar to the residual sum of squares in the linear
regression. Implementing different objective functions in a variety of scenarios provides a
means of cross-checking results. Ideally, the solutions should be insensitive to the choice of
the objective function.
To solve the constrained optimization problem, we consider two approaches: the exhaustive
grid search and a numerical optimization algorithm. In the first algorithm, the minimization
can be performed as a two-way grid search over the choice of (n01, n11). In other words, one
can evaluate all the values SS(n01, n11), for n01 ∈ {1, 2, ..., nctr − 1}, n11 ∈ {1, 2, ..., ntrt − 1}.
This will result in a total number of (nctr − 1)(ntrt − 1) of SS to be sorted from the smallest
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to the largest; of note, the computational demand can be high when (nctr − 1)(ntrt − 1) is
large. To make the algorithm more efficient, we adopt a filtering procedure. Specifically, we
filter out SS if SS > δ for a prespecified small threshold value δ, with a default value 10−4.
As a result, a smaller threshold value δ can lead to sparser solutions; however, the algorithm
may fail to obtain a solution if δ is too close to 0. The optimization problem (6) can also
be solved by applying numerical techniques. Here we consider a spectral projected gradient
method implemented in R package BB (Varadhan and Gilbert 2009). This package can solve
large scale optimization with simple constraints. It takes a nonlinear objective function as
an argument as well as basic constraints. In particular, the package can find multiple roots
if available, with user specified multiple starting values. To this end, starting values for n01
are randomly generated from 1 to nctr − 1. Similarly, starting values for n11 are randomly
generated from 1 to ntrt − 1. We then form min(nctr − 1, ntrt − 1) pairs of random numbers
and select 10% as the starting values to find multiple roots. Once the solutions (n01, n11)
are determined, the odds ratio and the relative risk can be computed, and the results are
arranged in the order of the magnitude of SS.

3. Implementation
The proposed methods in Section 2 have been implemented in R package orsk(Wang 2013).
The main function orsk returns an object of class orsk, for which print and summary
method are available to extract useful statistics, such as the reported odds ratio, estimated
odds ratio and relative risk, with corresponding confidence intervals. Function orsk has
an argument type which specifies the optimization objective function. With the default
value type="two-sided", function SS (5) is minimized. Other objective functions based
on Equations (1) and (3), (1) and (4), (3) and (4) have been implemented with argument
type="lower", type="upper" and type="ci-only", respectively. The optimization algo-
rithm can be called with argument method. If method="grid", the grid search algorithm
in Fortran is called. Otherwise, the constrained nonlinear optimization algorithm in R pack-
age BB is employed. The estimating results from function orsk can be illustrated using
the summary function in which argument nlist controls the maximum number of solutions
displayed (the default value is 5). The source version of the orsk package is freely available
from the Comprehensive R Archive Network (http://CRAN.R-project.org). The reader can
install the package directly from the R prompt via

R> install.packages("orsk")

All analyses presented below are contained in a package vignette. The rendered output of
the analyses is available by the R-command

R> library("orsk")
R> vignette("orsk_demo", package = "orsk")

To reproduce the analyses, one can invoke the R code

R> edit(vignette("orsk_demo", package = "orsk"))

http://CRAN.R-project.org
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4. Example
The data in Table 2 and 3 are used to illustrate the capabilities of orsk. These analyses were
conducted using R version 3.0.0 (2013-04-03). We applied both grid search and optimization
algorithms for minimizing objective function (5) and the solutions are similar for other ob-
jective functions discussed in Section 2. Table 2 was first evaluated with the orsk function.
As seen below, the output includes two parts: the configurations of the optimization problem
and the estimated results. The results include the solution n01 and n11, named as ctr_yes
and trt_yes, respectively. The risk rates in the control group and the treatment group are
labeled as ctr_risk and trt_risk, respectively. In the ascending order of SS, the output
also includes the estimated odds ratio with confidence interval derived from the estimate
(n01, n11). The estimated odds ratios and confidence intervals in the output are very close
to the reported values in Table 2. However, the derived relative risks and confidence inter-
vals are quite different from the corresponding counterpart of the odds ratios. The results
indicate that the estimated relative risks are 2.02 or 1.24 and the confidence intervals can be
divided into two groups as well. These two groups correspond to different assumptions on the
incidence rates:

• If 18% non-users of epidural anesthesia had the first stage of labor lasting > 12 hours
(i.e., risk0=0.18), and about 37% users had the first stage of labor lasting > 12 hours,
then the relative risk is 2.02 (95% confidence interval 1.8-2.27).

• Alternatively, if the corresponding risks are increased to 68% and 85%, respectively,
then the relative risk is 1.24 (95% confidence interval 1.2-1.29).

R> library("orsk")

R> res1 <- orsk(nctr = 1636, ntrt = 2601, a = 2.61, al = 2.25,
+ au = 3.03, method = "grid")
R> summary(res1)

Converting odds ratio to relative risk

Call:
orsk(nctr = 1636, ntrt = 2601, a = 2.61, al = 2.25, au = 3.03,

method = "grid")

type: two-sided method: grid
threshold value: 1e-04
The odds ratio utilized: 2.61, confidence interval utilized: 2.25-3.03

The following odds ratios and relative risks are for the scenarios created
with different numbers of events in control and treatment group that lead
to comparable results for the above odds ratio and confidence interval

ctr_yes ctr_no ctr_risk trt_yes trt_no trt_risk OR OR_lower
1 297 1339 0.182 954 1647 0.367 2.61 2.25
2 295 1341 0.180 949 1652 0.365 2.61 2.25
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3 299 1337 0.183 959 1642 0.369 2.61 2.25
4 298 1338 0.182 956 1645 0.368 2.61 2.25
5 1116 520 0.682 2207 394 0.849 2.61 2.25

OR_upper RR RR_lower RR_upper SS
1 3.03 2.02 1.8 2.27 3.54e-07
2 3.03 2.02 1.8 2.27 5.79e-07
3 3.03 2.02 1.8 2.26 6.10e-07
4 3.03 2.02 1.8 2.26 9.20e-07
5 3.03 1.24 1.2 1.29 9.76e-07

R> plot(res1, type = "OR")
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Figure 1: Distribution of risk of the outcome among scenarios for which the calculated odds
ratio and confidence interval coincide with the published values.

In either case, the odds ratio in Table 2 overestimates the relative risk, and the displayed
incidence rates are high (> 18%). Since only the five best solutions are shown, one important
question remains: are there any less accurate but still acceptable solutions? To answer this
question, we obtain the rounded odds ratio and confidence interval if they coincide with
the published values, then plot the corresponding risk of the study outcome in the control
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R> plot(res1, type = "RR")

Relative risk

1.4 1.6 1.8 2.0

Figure 2: Distribution of relative risk among scenarios for which the calculated odds ratio
and confidence interval coincide with the published values.
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and treatment groups, respectively. Figure 1 suggests that, although the incidence rate is
unknown from the published data, there is a clear evidence that the incidence is high (>18%)
in both the control and treatment groups. Consequently, the reported odds ratio in Table 2
can potentially overestimate the true risk ratio. Figure 2 displays the distribution of relative
risk among scenarios for which the calculated odds ratio and confidence interval coincide with
the published values. Clearly, the relative risk can be quite different for the same published
odds ratio.
Next, utilizing the estimation of risk0 and formula (2), we approximate the risk ratio based on
the adjusted odds ratio in Table 3. The results can be summarized briefly. Among non-users
of epidural anesthesia, if 18% women had the first stage of labor lasting > 12 hours, then
the approximated risk ratio is 1.84 (95% confidence interval 1.65-2.03). If risk0 was increased
to 68% instead, then the approximated risk ratio is 1.22 (95% confidence interval 1.18-1.25).
Taking into account the incidence rate, we obtained quite different risk ratios compared with
Table 3.
In the situations under consideration it can be expected that there is often no unique so-
lution. As such, the user should carefully review the results. It may be unclear which of
the computational results can be taken for further analysis, but this is not unusual for an
exploratory study. Alternatively, one may reasonably hope that a subject matter expert can
provide valuable insights to the situation and may help make a decision.
When applying the numerical optimization algorithm, the estimated results typically have
larger SS than the grid search algorithm. Note the solutions may not be replicated if the
starting values are generated from different random numbers. It was found that the estimated
relative risks range from 1.40 to 2.19, which doesn’t contain value 1.24 as in the grid search
algorithm. Additionally, the displayed SS values in the BB algorithm are larger than those in
the grid search algorithm. This example suggests that the grid search algorithm outperforms
the numerical optimization algorithm as one might expect. (The result is made exactly
reproducible by setting the random seed via setRNGGilbert (2012).)

R> require("setRNG")
R> old.seed <- setRNG(list(kind = "Mersenne-Twister", normal.kind = "Inversion",
+ seed = 579))

R> res2 <- orsk(nctr = 1636, ntrt = 2601, a = 2.61, al = 2.25,
+ au = 3.03, method = "optim")

R> summary(res2)

Converting odds ratio to relative risk

Call:
orsk(nctr = 1636, ntrt = 2601, a = 2.61, al = 2.25, au = 3.03,

method = "optim")

type: two-sided method: optim
threshold value: NA
The odds ratio utilized: 2.61, confidence interval utilized: 2.25-3.03
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The following odds ratios and relative risks are for the scenarios created
with different numbers of events in control and treatment group that lead
to comparable results for the above odds ratio and confidence interval

ctr_yes ctr_no ctr_risk trt_yes trt_no trt_risk OR OR_lower
1 298 1338 0.182 956 1645 0.368 2.61 2.25
2 292 1344 0.178 942 1659 0.362 2.61 2.25
3 302 1334 0.185 967 1634 0.372 2.61 2.25
4 309 1327 0.189 984 1617 0.378 2.61 2.26
5 313 1323 0.191 994 1607 0.382 2.61 2.26

OR_upper RR RR_lower RR_upper SS
1 3.03 2.02 1.80 2.26 9.20e-07
2 3.04 2.03 1.81 2.28 5.09e-06
3 3.03 2.01 1.80 2.26 6.37e-06
4 3.03 2.00 1.79 2.24 9.88e-06
5 3.03 2.00 1.79 2.23 1.82e-05

R> summary(res2$res$RR)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.412 1.708 1.917 1.872 2.063 2.181

We now compare the computing speed between the two methods of estimation. With the
grid search and optimization algorithm in the above example, it took 0.2 and 1.6 seconds,
respectively, on an ordinary desktop PC (Intel Core 2 CPU, 1.86 GHz). Although the op-
timization method has some computational advantage, the grid search method can generate
more accurate results with smaller SS and can detect multiple (local) minima. In the light
of the computing time difference, there is no real benefit of using the optimization based
method.

5. Conclusion
In this article we outlined the methods and algorithms for converting the odds ratio to the rel-
ative risk when only partial data information is available. As an exploratory tool, R package
orsk can be utilized for this purpose. In addition, the methods may be used in the formula
in Zhang and Yu (1998) to approximate the risk ratio obtained from logistic regression or
other multiple regression models, when the risk of having a positive outcome in the control
or unexposed group is not directly available. Specifically, once the cells in Table 1 are recon-
structed with the aid of the orsk function, risk0 can then be estimated. The validity of results
depends on whether the published confidence intervals have or have not been calculated with
formulae (3) and (4). One restriction is that the Zhang and Yu method can only be supported
in case unadjusted estimates have been published in parallel to logistic regression estimates.
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