Package 'oreo'

Title: Large Amplitude Oscillatory Shear (LAOS)
Description: The Sequence of Physical Processes (SPP) framework is a way of interpreting the transient data derived from oscillatory rheological tests. It is designed to allow both the linear and non-linear deformation regimes to be understood within a single unified framework. This code provides a convenient way to determine the SPP framework metrics for a given sample of oscillatory data. It will produce a text file containing the SPP metrics, which the user can then plot using their software of choice. It can also produce a second text file with additional derived data (components of tangent, normal, and binormal vectors), as well as pre-plotted figures if so desired. It is the R version of the Package SPP by Simon Rogers Group for Soft Matter (Simon A. Rogers, Brian M. Erwin, Dimitris Vlassopoulos, Michel Cloitre (2011) <doi:10.1122/1.3544591>).
Authors: Serena Berretta [aut, cre], Giorgio Luciano [aut], Kristian Hovde Liland [ctb], Simon Rogers [ctb]
Maintainer: Serena Berretta <[email protected]>
License: GPL-2
Version: 1.0
Built: 2024-12-19 06:49:22 UTC
Source: CRAN

Help Index


Data from the Giesikus model

Description

The data is arranged into four columns: Time (s), Strain (-), Rate (1/s) and Stress (Pa). reflecting the applied strain- control

Usage

data(mydata)

Format

A data frame with 1024 rows and 4 columns

V1

Time

V2

Strain

V3

Rate

V4

Stress

References

ppp


Cole-Cole plot

Description

create Cole-Cole plot

create Cole-Cole plot

Usage

plotColeCole(Gp_t, Gpp_t, ...)

plotColeCole(Gp_t, Gpp_t, ...)

Arguments

Gp_t

from the output matrix from fft analysis or numerical differentiation analysis

Gpp_t

from the output matrix from fft analysis or numerical differentiation analysis

...

parameters of plot()

Value

No return value

No return value

Author(s)

Giorgio Luciano and Serena Beretta, based on the Plotting functions created by Simon Rogers Group for Soft Matter

Giorgio Luciano and Serena Beretta, based on the Plotting functions created by Simon Rogers Group for Soft Matter

References

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

Examples

data(mydata)
df <- rpp_read2(mydata , selected=c(2, 3, 4, 0, 0, 1, 0, 0))
time_wave <- df$raw_time
resp_wave <- data.frame(df$strain,df$strain_rate,df$stress) 
out <- Rpp_num(time_wave, resp_wave , L=1024, k=8, num_mode=1)
Gp_t= out$spp_data_out$Gp_t
Gpp_t= out$spp_data_out$Gpp_t
plotColeCole(Gp_t,Gpp_t)

Strain Delta Plot

Description

create Strain Delta Plot

create Strain Delta Plot

Usage

plotDeltaStrain(strain, delta_t, ...)

plotDeltaStrain(strain, delta_t, ...)

Arguments

strain

from the output matrix from fft analysis or numerical differentiation analysis

delta_t

from the output matrix from fft analysis or numerical differentiation analysis

...

parameters of plot()

Value

No return value

No return value

Author(s)

Giorgio Luciano and Serena Beretta, based on the Plotting functions created by Simon Rogers Group for Soft Matter

Giorgio Luciano and Serena Beretta, based on the Plotting functions created by Simon Rogers Group for Soft Matter

References

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

Examples

data(mydata)
df <- rpp_read2(mydata , selected=c(2, 3, 4, 0, 0, 1, 0, 0))
time_wave <- df$raw_time
resp_wave <- data.frame(df$strain,df$strain_rate,df$stress) 
out <- Rpp_num(time_wave, resp_wave , L=1024, k=8, num_mode=1)
strain= out$spp_data_out$strain
delta_t= out$spp_data_out$delta_t
plotDeltaStrain(strain,delta_t)

Strain Displacement Stress

Description

Strain Displacement Stress

Strain Displacement Stress

Usage

plotDisp(strain, disp_stress, ...)

plotDisp(strain, disp_stress, ...)

Arguments

strain

from the output matrix from fft analysis or numerical differentiation analysis

disp_stress

from the output matrix from fft analysis or numerical differentiation analysis

...

parameters of plot()

Value

No return value

No return value

References

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

Examples

data(mydata)
df <- rpp_read2(mydata , selected=c(2, 3, 4, 0, 0, 1, 0, 0))
time_wave <- df$raw_time
resp_wave <- data.frame(df$strain,df$strain_rate,df$stress) 
out <- Rpp_num(time_wave, resp_wave , L=1024, k=8, num_mode=1)
strain= out$spp_data_out$strain
disp_stress= out$spp_data_out$disp_stress
plotDisp(strain,disp_stress)

Fourier Harmonic Magnitudes plot

Description

create Fourier Harmonic Magnitudes plot

create Fourier Harmonic Magnitudes plot

Usage

plotFft(ft_amp, fft_resp, spp_params, ...)

plotFft(ft_amp, fft_resp, spp_params, ...)

Arguments

ft_amp

from the output matrix from fft analysis or numerical differentiation analysis

fft_resp

from the output matrix from fft analysis or numerical differentiation analysis

spp_params

input parameters used for the fft analysis or numerical differentiation analysis

...

parameters of plot()

Value

No return value

No return value

Author(s)

Giorgio Luciano and Serena Beretta, based on the Plotting functions created by Simon Rogers Group for Soft Matter

Giorgio Luciano and Serena Beretta, based on the Plotting functions created by Simon Rogers Group for Soft Matter

Examples

data(mydata)
df <- rpp_read2(mydata , selected=c(2, 3, 4, 0, 0, 1, 0, 0))
time_wave <- df$raw_time
resp_wave <- data.frame(df$strain,df$strain_rate,df$stress) 
out <- rpp_fft(time_wave,resp_wave,L=1024,omega=3.16 , M=15,p=1)
ft_amp= out$ft_out$ft_amp
fft_resp= out$ft_out$fft_resp
spp_params= out$spp_params
plotFft(ft_amp,fft_resp,spp_params)

Gp_t_dot vs Gpp_t_dot

Description

create Gp_t_dot vs Gpp_t_dot

create Gp_t_dot vs Gpp_t_dot

Usage

plotGpdot(Gp_t_dot, Gpp_t_dot, ...)

plotGpdot(Gp_t_dot, Gpp_t_dot, ...)

Arguments

Gp_t_dot

from the output matrix from fft analysis or numerical differentiation analysis

Gpp_t_dot

from the output matrix from fft analysis or numerical differentiation analysis

...

parameters of plot()

Value

No return value

No return value

Author(s)

Giorgio Luciano and Serena Beretta, based on the Plotting functions created by Simon Rogers Group for Soft Matter

Giorgio Luciano and Serena Beretta, based on the Plotting functions created by Simon Rogers Group for Soft Matter

References

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

Examples

data(mydata)
df <- rpp_read2(mydata , selected=c(2, 3, 4, 0, 0, 1, 0, 0))
time_wave <- df$raw_time
resp_wave <- data.frame(df$strain,df$strain_rate,df$stress) 
out <- Rpp_num(time_wave, resp_wave , L=1024, k=8, num_mode=1)
Gp_t_dot= out$spp_data_out$Gp_t_dot
Gpp_t_dot= out$spp_data_out$Gpp_t_dot
plotGpdot(Gp_t_dot,Gpp_t_dot)

Strain Delta Plot

Description

create Strain Delta Plot

create Strain Delta Plot

Usage

plotPAV(strain, delta_t_dot, ...)

plotPAV(strain, delta_t_dot, ...)

Arguments

strain

from the output matrix from fft analysis or numerical differentiation analysis

delta_t_dot

from the output matrix from fft analysis or numerical differentiation analysis

...

parameters of plot()

Value

No return value

No return value

References

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

Examples

data(mydata)
df <- rpp_read2(mydata , selected=c(2, 3, 4, 0, 0, 1, 0, 0))
time_wave <- df$raw_time
resp_wave <- data.frame(df$strain,df$strain_rate,df$stress) 
out <- Rpp_num(time_wave, resp_wave , L=1024, k=8, num_mode=1)
strain= out$spp_data_out$strain
delta_t_dot= out$spp_data_out$delta_t_dot
plotPAV(strain,delta_t_dot)

Speed-G'_t plot

Description

create Speed-G'_t plot

create Speed-G'_t plot

Usage

plotSpeedGp(Gp_t, G_speed, ...)

plotSpeedGp(Gp_t, G_speed, ...)

Arguments

Gp_t

from the output matrix from fft analysis or numerical differentiation analysis

G_speed

from the output matrix from fft analysis or numerical differentiation analysis

...

parameters of plot()

Value

No return value

No return value

Author(s)

Giorgio Luciano and Serena Beretta, based on the Plotting functions created by Simon Rogers Group for Soft Matter

Giorgio Luciano and Serena Beretta, based on the Plotting functions created by Simon Rogers Group for Soft Matter

References

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

Examples

data(mydata)
df <- rpp_read2(mydata , selected=c(2, 3, 4, 0, 0, 1, 0, 0))
time_wave <- df$raw_time
resp_wave <- data.frame(df$strain,df$strain_rate,df$stress) 
out <- Rpp_num(time_wave, resp_wave , L=1024, k=8, num_mode=1)
Gp_t= out$spp_data_out$Gp_t
G_speed= out$spp_data_out$G_speed
plotSpeedGp(Gp_t,G_speed)

Speed-G”_t plot

Description

create Speed-G”_t plot

create Speed-G”_t plot

Usage

plotSpeedGpp(G_speed, Gpp_t, ...)

plotSpeedGpp(G_speed, Gpp_t, ...)

Arguments

G_speed

from the output matrix from fft analysis or numerical differentiation analysis

Gpp_t

from the output matrix from fft analysis or numerical differentiation analysis

...

parameters of plot()

Value

No return value

No return value

Author(s)

Giorgio Luciano and Serena Beretta, based on the Plotting functions created by Simon Rogers Group for Soft Matter

Giorgio Luciano and Serena Beretta, based on the Plotting functions created by Simon Rogers Group for Soft Matter

References

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

Examples

data(mydata)
df <- rpp_read2(mydata , selected=c(2, 3, 4, 0, 0, 1, 0, 0))
time_wave <- df$raw_time
resp_wave <- data.frame(df$strain,df$strain_rate,df$stress) 
out <- Rpp_num(time_wave, resp_wave , L=1024, k=8, num_mode=1)
G_speed= out$spp_data_out$G_speed
Gpp_t= out$spp_data_out$Gpp_t
plotSpeedGpp(G_speed,Gpp_t)

Strain Gp_t,eq_strain_est

Description

Strain Gp_t,eq_strain_est

Strain Gp_t,eq_strain_est

Usage

plotStrain(Gp_t, eq_strain_est, ...)

plotStrain(Gp_t, eq_strain_est, ...)

Arguments

Gp_t

from the output matrix from fft analysis or numerical differentiation analysis

eq_strain_est

from the output matrix from fft analysis or numerical differentiation analysis

...

parameters of plot()

Value

No return value

No return value

References

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

Examples

data(mydata)
df <- rpp_read2(mydata , selected=c(2, 3, 4, 0, 0, 1, 0, 0))
time_wave <- df$raw_time
resp_wave <- data.frame(df$strain,df$strain_rate,df$stress) 
out <- Rpp_num(time_wave, resp_wave , L=1024, k=8, num_mode=1)
Gp_t= out$spp_data_out$Gp_t
eq_strain_est= out$spp_data_out$eq_strain_est
plotStrain(Gp_t,eq_strain_est)

Stress-Rate plot

Description

create Stress Rate Plot

create Stress Rate Plot

Usage

plotStressRate(stress, rate, ...)

plotStressRate(stress, rate, ...)

Arguments

stress

data the output matrix from fft analysis or numerical differentiation analysis

rate

data the output matrix from fft analysis or numerical differentiation analysis

...

parameters of plot()

Value

No return value

No return value

Author(s)

Giorgio Luciano and Serena Beretta, based on the Plotting functions created by Simon Rogers Group for Soft Matter

Giorgio Luciano and Serena Beretta, based on the Plotting functions created by Simon Rogers Group for Soft Matter

References

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

Examples

data(mydata)
df <- rpp_read2(mydata , selected=c(2, 3, 4, 0, 0, 1, 0, 0))
time_wave <- df$raw_time
resp_wave <- data.frame(df$strain,df$strain_rate,df$stress) 
out <- Rpp_num(time_wave, resp_wave , L=1024, k=8, num_mode=1)
rate= out$spp_data_out$rate
stress= out$spp_data_out$stress
plotStressRate(stress, rate)

Stress-Strain plot

Description

create Stress Strain Plot

create Stress Strain Plot

Usage

plotStressStrain(stress, strain, strain_in, stress_in, ...)

plotStressStrain(stress, strain, strain_in, stress_in, ...)

Arguments

stress

data the output matrix from fft analysis or numerical differentiation analysis

strain

data the output matrix from fft analysis or numerical differentiation analysis

strain_in

data the input matrix from fft analysis or numerical differentiation analysis

stress_in

data the input matrix from fft analysis or numerical differentiation analysis

...

parameters of plot()

Value

No return value

No return value

Author(s)

Giorgio Luciano and Serena Beretta, based on the Plotting functions created by Simon Rogers Group for Soft Matter

Giorgio Luciano and Serena Beretta, based on the Plotting functions created by Simon Rogers Group for Soft Matter

References

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

Examples

data(mydata)
df <- rpp_read2(mydata , selected=c(2, 3, 4, 0, 0, 1, 0, 0))
time_wave <- df$raw_time
resp_wave <- data.frame(df$strain,df$strain_rate,df$stress) 
out <- Rpp_num(time_wave, resp_wave , L=1024, k=8, num_mode=1)
strain= out$spp_data_out$strain
stress= out$spp_data_out$stress
strain_in= out$spp_data_in$strain
stress_in= out$spp_data_in$stress
plotStressStrain(stress, strain,strain_in,stress_in)

Stress-Time plot

Description

create Stress-Time plot

create Stress-Time plot

Usage

plotStressTime(time_wave_in, stress_in, time_wave, stress)

plotStressTime(time_wave_in, stress_in, time_wave, stress)

Arguments

time_wave_in

raw time from input data

stress_in

stress from input data

time_wave

from the output matrix from fft analysis or numerical differentiation analysis

stress

from the output matrix from fft analysis or numerical differentiation analysis

Value

No return value

No return value

Author(s)

Giorgio Luciano and Serena Beretta, based on the Plotting functions created by Simon Rogers Group for Soft Matter

Giorgio Luciano and Serena Beretta, based on the Plotting functions created by Simon Rogers Group for Soft Matter

Examples

data(mydata)
df <- rpp_read2(mydata , selected=c(2, 3, 4, 0, 0, 1, 0, 0))
time_wave <- df$raw_time
resp_wave <- data.frame(df$strain,df$strain_rate,df$stress) 
out <- Rpp_num(time_wave, resp_wave , L=1024, k=8, num_mode=1)
time_wave_in= out$spp_data_in$time_wave
stress_in= out$spp_data_in$stress
time_wave= out$spp_data_out$time_wave
stress= out$spp_data_out$stress
plotStressTime(time_wave_in,stress_in,time_wave,stress)

Rate, time_wave plot

Description

create Rate, time_wave plot

create Rate, time_wave plot

Usage

plotTimeRate(time_wave, rate, time_wave_in, strain_rate, ...)

plotTimeRate(time_wave, rate, time_wave_in, strain_rate, ...)

Arguments

time_wave

from the output matrix from fft analysis or numerical differentiation analysis

rate

from the output matrix from fft analysis or numerical differentiation analysis

time_wave_in

raw time from input data

strain_rate

strain rate from input data

...

parameters of plot()

Value

No return value

No return value

Author(s)

Giorgio Luciano and Serena Beretta, based on the Plotting functions created by Simon Rogers Group for Soft Matter

Giorgio Luciano and Serena Beretta, based on the Plotting functions created by Simon Rogers Group for Soft Matter

References

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

Examples

data(mydata)
df <- rpp_read2(mydata , selected=c(2, 3, 4, 0, 0, 1, 0, 0))
time_wave <- df$raw_time
resp_wave <- data.frame(df$strain,df$strain_rate,df$stress) 
out <- Rpp_num(time_wave, resp_wave , L=1024, k=8, num_mode=1)
time_wave= out$spp_data_out$time_wave
rate= out$spp_data_out$rate
time_wave_in= out$spp_data_in$time_wave
strain_rate= out$spp_data_in$strain_rate
plotTimeRate(time_wave,rate,time_wave_in,strain_rate)

Strain time_wave,strain

Description

Strain time_wave, strain

Strain time_wave, strain

Usage

plotTimeStrain(time_wave, strain, time_wave_in, strain_in, ...)

plotTimeStrain(time_wave, strain, time_wave_in, strain_in, ...)

Arguments

time_wave

time from output data

strain

from the output matrix from fft analysis or numerical differentiation analysis

time_wave_in

time from input data

strain_in

from the input matrix from fft analysis or numerical differentiation analysis

...

parameters of plot()

Value

No return value

No return value

References

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

Examples

data(mydata)
df <- rpp_read2(mydata , selected=c(2, 3, 4, 0, 0, 1, 0, 0))
time_wave <- df$raw_time
resp_wave <- data.frame(df$strain,df$strain_rate,df$stress) 
out <- Rpp_num(time_wave, resp_wave , L=1024, k=8, num_mode=1)
time_wave= out$spp_data_out$time_wave
strain= out$spp_data_out$strain
time_wave_in= out$spp_data_in$time_wave
strain_in= out$spp_data_in$strain
plotTimeStrain(time_wave,strain,time_wave_in,strain_in)

Stress-Time plot

Description

create Stress-Time plot

create Stress-Time plot

Usage

plotTimeStress(time_wave, stress, time_wave_in, strain_rate, ...)

plotTimeStress(time_wave, stress, time_wave_in, strain_rate, ...)

Arguments

time_wave

from the output matrix from fft analysis or numerical differentiation analysis

stress

from the output matrix from fft analysis or numerical differentiation analysis

time_wave_in

raw time from input data

strain_rate

strain rate from input data

...

parameters of plot()

Value

No return value

No return value

Author(s)

Giorgio Luciano and Serena Beretta, based on the Plotting functions created by Simon Rogers Group for Soft Matter

Giorgio Luciano and Serena Beretta, based on the Plotting functions created by Simon Rogers Group for Soft Matter

Examples

data(mydata)
df <- rpp_read2(mydata , selected=c(2, 3, 4, 0, 0, 1, 0, 0))
time_wave <- df$raw_time
resp_wave <- data.frame(df$strain,df$strain_rate,df$stress) 
out <- Rpp_num(time_wave, resp_wave , L=1024, k=8, num_mode=1)
time_wave= out$spp_data_out$time_wave
stress= out$spp_data_out$stress
time_wave_in= out$spp_data_in$time_wave
strain_rate= out$spp_data_in$strain_rate
plotTimeStress(time_wave,stress,time_wave_in,strain_rate)

VGP plot

Description

create VGP plot

create VGP plot

Usage

plotVGP(G_star_t, delta_t, ...)

plotVGP(G_star_t, delta_t, ...)

Arguments

G_star_t

from the output matrix from fft analysis or numerical differentiation analysis

delta_t

from the output matrix from fft analysis or numerical differentiation analysis

...

parameters of plot()

Value

No return value

No return value

Author(s)

Giorgio Luciano and Serena Beretta, based on the Plotting functions created by Simon Rogers Group for Soft Matter

Giorgio Luciano and Serena Beretta, based on the Plotting functions created by Simon Rogers Group for Soft Matter

References

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

Examples

data(mydata)
df <- rpp_read2(mydata , selected=c(2, 3, 4, 0, 0, 1, 0, 0))
time_wave <- df$raw_time
resp_wave <- data.frame(df$strain,df$strain_rate,df$stress) 
out <- Rpp_num(time_wave, resp_wave , L=1024, k=8, num_mode=1)
G_star_t= out$spp_data_out$G_star_t
delta_t= out$spp_data_out$delta_t
plotVGP(G_star_t,delta_t)

SPP Analysis via fourier

Description

applies the SPP Analysis by means of a fourier series.

Usage

rpp_fft(time_wave, resp_wave, L, omega, M, p)

Arguments

time_wave

Lx1 vector of time at each measurement point

resp_wave

Lx3 matrix of the strain, rate and stress data,with each row representing a measuring point

L

number of measurement points in the extracted data

omega

frequency of oscilation (rad/s)

M

number of harmonics for stress

p

number of cycles

Value

a list with the following data frame spp_data_in= the data frame with the data spp_params=spp_params, spp_data_out= Length,frequency,harmonics,cycles,max_harmonics,step_size fsf_data_out= Tx,Ty,Tz,Nx,Ny,Nz,Bx,By,Bz coordinates of the trajectory (T=tangent,N=principal Normal,B=Binormal Vectors) ft_out=data frame with that includes time_wave,strain,rate,stress,Gp_t,Gpp_t,G_star_t,tan_delta_t,delta_t,disp_stress,eq_strain_est,Gp_t_dot,Gpp_t_dot,G_speed,delta_t_dot)

Author(s)

Simon Rogers Group for Soft Matter (matlab version), Giorgio Luciano and Serena Berretta (R version)

References

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

Examples

data(mydata)
df <- rpp_read2(mydata , selected=c(2, 3, 4, 0, 0, 1, 0, 0))
time_wave <- df$raw_time
resp_wave <- data.frame(df$strain,df$strain_rate,df$stress) 
out <- rpp_fft(time_wave,resp_wave,L=1024,omega=3.16 , M=15,p=1)

SPP Analysis via numerical differentiation

Description

applies the SPP Analysis by means of a numerical differentiation.

Usage

Rpp_num(time_wave, resp_wave, L, k, num_mode)

Arguments

time_wave

Lx1 vector of time at each measurement point

resp_wave

Lx3 matrix of the strain, rate and stress data,with each row representing a measuring point

L

number of measurement points in the extracted data

k

step size for numerical differentiation

num_mode

numerical method

Value

a list with the following data frame spp_data_in= the data frame with the data spp_params=spp_params, spp_data_out= Length,frequency,harmonics,cycles,max_harmonics,step_size fsf_data_out= Tx,Ty,Tz,Nx,Ny,Nz,Bx,By,Bz coordinates of the trajectory (T=tangent,N=principal Normal,B=Binormal Vectors) ft_out=data frame with that includes time_wave,strain,rate,stress,Gp_t,Gpp_t,G_star_t,tan_delta_t,delta_t,disp_stress,eq_strain_est,Gp_t_dot,Gpp_t_dot,G_speed,delta_t_dot)

Author(s)

Simon Rogers Group for Soft Matter (matlab version), Giorgio Luciano and Serena Berretta (R version)

References

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

Examples

data(mydata)
df <- rpp_read2(mydata , selected=c(2, 3, 4, 0, 0, 1, 0, 0))
time_wave <- df$raw_time
resp_wave <- data.frame(df$strain,df$strain_rate,df$stress) 
out <- Rpp_num(time_wave, resp_wave , L=1024, k=8, num_mode=1)

Export results of the performed SPP analysis in csv format

Description

# This function export the output the SPP analysis (performed via FFT or Numeric Analysis) and export it to csv files

Usage

rpp_out_csv(out, myfilename = "my_models.xlsx")

Arguments

out

output of the SPP analysis (performed via FFT or Numeric Analysis)

myfilename

name of the file where to save results (csv)

Value

No return value

Author(s)

Simon Rogers Group for Soft Matter (matlab version), Giorgio Luciano and Serena Berretta (R version)


Export results of the performed SPP analysis in xls format

Description

# This function export the output the SPP analysis (performed via FFT or Numeric Analysis) and export it to xls files

Usage

rpp_out_excel(out, myfilename = "my_models.xlsx")

Arguments

out

output of the SPP analysis (performed via FFT or Numeric Analysis)

myfilename

name of the file where to save results in xls format

Value

No return value

Author(s)

Simon Rogers Group for Soft Matter (matlab version), Giorgio Luciano and Serena Berretta (R version)


Read function

Description

This function reads data from the selected file, and assign it to a dataframe

Usage

rpp_read(filename, header = TRUE, selected = c(2, 3, 4, 0, 0, 1, 0, 0), ...)

Arguments

filename

the name of the file to read

header

TRUE if colnames are present FALSE if colnames are not present

selected

the user should input the number of the columns that represent strain-smoothed (gamma), strain rate-smoothed (gamma dot), stress smoothed (tau recon), Elast-Stress (FTtau_e), Visco-Stress (FTtau_v), raw time (time), raw stress (tau), raw strain (gamma) i.e. selected=c(2, 3, 4, 0, 0, 1, 0, 0) means that the second column of your data is the strain rate smoothed, the third column is the stress smoothed, the stress smoothed is the fourth column in the original data, and finally that we do not have data for the raw stress and raw strain

...

parameters of read.csv

Value

a dataframe with all the columns assigned

Author(s)

Giorgio Luciano and Serena Berretta, Simon Rogers Group for Soft Matter (matlab version)


Read function

Description

This function reads data from a dataframe

Usage

rpp_read2(dat, selected = c(2, 3, 4, 0, 0, 1, 0, 0), ...)

Arguments

dat

dataframe of input

selected

the user should input the number of the columns that represent strain-smoothed (gamma), strain rate-smoothed (gamma dot), stress smoothed (tau recon), Elast-Stress (FTtau_e), Visco-Stress (FTtau_v), raw time (time), raw stress (tau), raw strain (gamma) i.e. selected=c(2, 3, 4, 0, 0, 1, 0, 0) means that the second column of your data is the strain rate smoothed, the third column is the stress smoothed, the stress smoothed is the fourth column in the original data, and finally that we do not have data for the raw stress and raw strain

...

parameters of read.csv

Value

a dataframe with all the columns assigned

Author(s)

Giorgio Luciano and Serena Berretta, Simon Rogers Group for Soft Matter (matlab version)

Examples

data(mydata)
df <- rpp_read2(mydata , selected=c(2, 3, 4, 0, 0, 1, 0, 0))