Package 'onlineBcp'

Title: Online Bayesian Methods for Change Point Analysis
Description: It implements the online Bayesian methods for change point analysis. It can also perform missing data imputation with methods from 'VIM'. The reference is Yigiter A, Chen J, An L, Danacioglu N (2015) <doi:10.1080/02664763.2014.1001330>. The link to the package is <https://CRAN.R-project.org/package=onlineBcp>.
Authors: Hongyan Xu [cre, aut], Ayten Yigiter [aut], Jie Chen [aut]
Maintainer: Hongyan Xu <[email protected]>
License: GPL
Version: 0.1.8
Built: 2024-11-23 06:46:10 UTC
Source: CRAN

Help Index


Transformed aCGH data

Description

A dataset containing the tranformed aCGH data from the genome of the fibroblast cell line GM02948

Usage

aCGH

Format

A data frame with 2046 rows and 1 variable:

transNorm

normalized aCGH intensity


Add one data point

Description

Add one data point

Usage

addDatapoint(bcp, d)

Arguments

bcp

current BayesCP object

d

additional data point to be added to the existing data

Value

a vector with new data point appended


GC-corrected data for copy number variation

Description

A dataset containing the raw data and GC-corrected/normalized data

Usage

cnv_H2347

Format

A data frame with 14189 rows and 2 variables:

raw.count

raw read counts

normalized.count

normalized read counts


Combine two BayesCP objects

Description

Combine two BayesCP objects

Usage

combine(bcp1, bcp2)

Arguments

bcp1

the first BayesCP object to be combined

bcp2

the second BayesCP opbject to be combined

Value

The combined BayesCP object. Notice that if bcp1 has n1 change points (n1 + 1 segments), and bcp2 has n2 change points (n2 + 1 segments), the combined bcp will have n1+n2 change points and n1+n2+2 segments.


US COVID-19 data

Description

A dataset containing new daily cases in the United States downloaded from the World Health Organization on August 25, 2020

Usage

covid

Format

A data frame with 219 rows and 8 variables

Date_reported

The report date

Country_code

The code for country

Country

Country in full name

WHO_region

Geographic region defined by WHO

New_cases

New COVID-19 cases

Cumulative_cases

Cumulative COVID-19 cases

New_deaths

New COVID-19 deaths

Cumulative_deaths

Cumulative COVID-19 deaths


Impute missing data

Description

Impute missing data

Usage

imputation(x, method = c("Median", "kNN"))

Arguments

x

the normalized data with missing

method

the imputation method

Value

The vector of imputed data with no missing values


Online change point detection algorithm for normally distributed data.

Description

Online change point detection algorithm for normally distributed data.

Usage

online_cp(x, theta = 0.9, alpha = 1, beta = 1, th_cp = 0.5, debug = FALSE)

Arguments

x

the normalized data

theta

the probability of occurrence of a change point, default 0.9

alpha

the hyperparameter of posterior distribution, default 1.0

beta

the hyperparameter of posterior distribution, default 1.0

th_cp

threshold level for the posterior distribution of change point, default 0.5

debug

a logical value, when TRUE, will print more information

Value

An object of the BayesCP class


Plot BayesCP object

Description

Plot BayesCP object

Usage

## S3 method for class 'BayesCP'
plot(x, xlab = "Index", ylab = "x", ...)

Arguments

x

the BayesCP class object to be plotted

xlab

the default x-axis label, default "Index"

ylab

the default y-axis label, default "x"

...

the plotting parameters passed to plot()

Value

No return value, called for side effects


Summarize BayesCP object

Description

Summarize BayesCP object

Usage

## S3 method for class 'BayesCP'
summary(object, norm.test = FALSE, ...)

Arguments

object

the BayesCP class object to be summarized

norm.test

logical value for normality test, default is false

...

parameters passed to summary()

Value

An object of BayesCP class with updated summary result

Examples

x <- c(rnorm(10, 0, 1), rnorm(10, 5, 1))
bcp <- online_cp(x)
summary(bcp)