The RAM-OP Workflow

The RAM-OP Workflow is summarised in the diagram below.

RAM-OP workflow

The oldr package provides functions to use for all steps after data collection. These functions were developed specifically for the data structure created by the EpiData or the Open Data Kit collection tools. The data structure produced by these collection tools is shown by the dataset testSVY included in the oldr package.

testSVY
#> # A tibble: 192 × 90
#>      ad2   psu    hh    id    d1    d2    d3    d4    d5    f1   f2a   f2b   f2c
#>    <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int>
#>  1     1   201     1     1     1    67     2     5     2     3     2     1     1
#>  2     1   201     2     1     1    74     1     2     2     3     2     1     1
#>  3     1   201     3     1     1    60     1     2     2     2     2     2     2
#>  4     1   201     3     2     1    60     2     2     2     3     2     2     1
#>  5     1   201     4     1     1    85     2     5     2     3     2     1     1
#>  6     1   201     5     1     2    86     1     5     1     4     2     1     1
#>  7     1   201     6     1     1    80     1     5     2     3     2     1     1
#>  8     1   201     6     2     1    60     2     5     2     3     2     2     1
#>  9     1   201     7     1     1    62     1     2     2     2     2     1     1
#> 10     1   201     8     1     1    72     2     5     2     2     2     1     1
#> # ℹ 182 more rows
#> # ℹ 77 more variables: f2d <int>, f2e <int>, f2f <int>, f2g <int>, f2h <int>,
#> #   f2i <int>, f2j <int>, f2k <int>, f2l <int>, f2m <int>, f2n <int>,
#> #   f2o <int>, f2p <int>, f2q <int>, f2r <int>, f2s <int>, f3 <int>, f4 <int>,
#> #   f5 <int>, f6 <int>, f7 <int>, a1 <int>, a2 <int>, a3 <int>, a4 <int>,
#> #   a5 <int>, a6 <int>, a7 <int>, a8 <int>, k6a <int>, k6b <int>, k6c <int>,
#> #   k6d <int>, k6e <int>, k6f <int>, ds1 <int>, ds2 <int>, ds3 <int>, …

Processing and recoding data

Once RAM-OP data is collected, it will need to be processed and recoded based on the definitions of the various indicators included in RAM-OP. The oldr package provides a suite functions to perform this processing and recoding. These functions and their syntax can be easily remembered as the create_op_ functions as their function names start with the create_ verb followed by the op_ label and then followed by an indicator or indicator set specific identifier or short name. Finally, an additional tag for male or female can be added to the main function to provide gender-specific outputs.

Currently, a standard RAM-OP can provide results for the 13 indicators or indicator sets for older people. The following table shows these indicators/indicator sets alongside the functions related to them:

Indicator / Indicator Set Related Functions
Demography and situation create_op_demo; create_op_demo_males; create_op_demo_females
Food intake create_op_food; create_op_food_males; create_op_food_females
Severe food insecurity create_op_hunger; create_op_hunger_males; create_op_hunger_females
Disability create_op_disability; create_op_disability_males; create_op_disability_females
Activities of daily living create_op_adl; create_op_adl_males; create_op_adl_females
Mental health and well-being create_op_mental; create_op_mental_males; create_op_mental_females
Dementia create_op_dementia; create_op_dementia_males; create_op_dementia_females
Health and health-seeking behaviour create_op_health; create_op_health_males; create_op_health_females
Sources of income create_op_income; create_op_income_males; create_op_income_females
Water, sanitation, and hygiene create_op_wash; create_op_wash_males; create_op_wash_females
Anthropometry and anthropometric screening coverage create_op_anthro; create_op_anthro_males; create_op_anthro_females
Visual impairment create_op_visual; create_op_visual_males; create_op_visual_females
Miscellaneous create_op_misc; create_op_misc_males; create_op_misc_females

A final function in the processing and recoding set - create_op - is provided to perform the processing and recoding of all indicators or indicator sets. This function allows for the specification of which indicators or indicator sets to process and recode which is useful for cases where not all the indicators or indicator sets have been collected or if only specific indicators or indicator sets need to be analysed or reported. This function also specifies whether a specific gender subset of the data is needed.

For a standard RAM-OP implementation, this step is performed in R as follows:

## Process and recode all standard RAM-OP indicators in the testSVY dataset
create_op(svy = testSVY)

which results in the following output:

#> # A tibble: 192 × 138
#>      psu  sex1  sex2 resp1 resp2 resp3 resp4   age ageGrp1 ageGrp2 ageGrp3
#>    <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <int>   <dbl>   <dbl>   <dbl>
#>  1   201     0     1     1     0     0     0    67       0       1       0
#>  2   201     1     0     1     0     0     0    74       0       0       1
#>  3   201     1     0     1     0     0     0    60       0       1       0
#>  4   201     0     1     1     0     0     0    60       0       1       0
#>  5   201     0     1     1     0     0     0    85       0       0       0
#>  6   201     1     0     0     1     0     0    86       0       0       0
#>  7   201     1     0     1     0     0     0    80       0       0       0
#>  8   201     0     1     1     0     0     0    60       0       1       0
#>  9   201     1     0     1     0     0     0    62       0       1       0
#> 10   201     0     1     1     0     0     0    72       0       0       1
#> # ℹ 182 more rows
#> # ℹ 127 more variables: ageGrp4 <dbl>, ageGrp5 <dbl>, marital1 <dbl>,
#> #   marital2 <dbl>, marital3 <dbl>, marital4 <dbl>, marital5 <dbl>,
#> #   marital6 <dbl>, alone <dbl>, MF <dbl>, DDS <dbl>, FG01 <dbl>, FG02 <dbl>,
#> #   FG03 <dbl>, FG04 <dbl>, FG05 <dbl>, FG06 <dbl>, FG07 <dbl>, FG08 <dbl>,
#> #   FG09 <dbl>, FG10 <dbl>, FG11 <dbl>, proteinRich <dbl>, pProtein <dbl>,
#> #   aProtein <dbl>, pVitA <dbl>, aVitA <dbl>, xVitA <dbl>, ironRich <dbl>, …

Estimating indicators

Once data has been processed and appropriate recoding for indicators has been performed, indicator estimates can now be calculated.

It is important to note that estimation procedures need to account for the sample design. All major statistical analysis software can do this (details vary). There are two things to note:

  • The RAM-OP sample is a two-stage sample. Subjects are sampled from a small number of primary sampling units (PSUs).

  • The RAM-OP sample is not prior weighted. This means that per-PSU sampling weights are needed. These are usually the populations of the PSU.

This sample design will need to be specified to statistical analysis software being used. If no weights are provided, then the analysis may produce estimates that place undue weight to observations from smaller communities with confidence intervals with lower than nominal coverage (i.e. they will be too narrow).

Blocked weighted bootstrap

The oldr package uses blocked weighted bootstrap estimation approach:

  • Blocked : The block corresponds to the PSU or cluster.

  • Weighted : The RAM-OP sampling procedure does not use population proportional sampling to weight the sample prior to data collection as is done with SMART type surveys. This means that a posterior weighting procedure is required. The standard RAM-OP software uses a “roulette wheel” algorithm to weight (i.e. by population) the selection probability of PSUs in bootstrap replicates.

A total of m PSUs are sampled with-replacement from the survey dataset where m is the number of PSUs in the survey sample. Individual records within each PSU are then sampled with-replacement. A total of n records are sampled with-replacement from each of the selected PSUs where n is the number of individual records in a selected PSU. The resulting collection of records replicates the original survey in terms of both sample design and sample size. A large number of replicate surveys are taken (the standard RAM-OP software uses r = 399 replicate surveys but this can be changed). The required statistic (e.g. the mean of an indicator value) is applied to each replicate survey. The reported estimate consists of the 50th (point estimate), 2.5th (lower 95% confidence limit), and the 97.5th (upper 95% confidence limit) percentiles of the distribution of the statistic observed across all replicate surveys. The blocked weighted bootstrap procedure is outlined in the figure below.

Blocked weighted bootstrap

The principal advantages of using a bootstrap estimator are:

  • Bootstrap estimators work well with small sample sizes.

  • The method is non-parametric and uses empirical rather than theoretical distributions. There are no assumptions of things like normality to worry about.

  • The method allows estimation of the sampling distribution of almost any statistic using only simple computational methods.

PROBIT estimator

The prevalence of GAM, MAM, and SAM are estimated using a PROBIT estimator. This type of estimator provides better precision than a classic estimator at small sample sizes as discussed in the following literature:

World Health Organisation, Physical Status: The use and interpretation of anthropometry. Report of a WHO expert committee, WHO Technical Report Series 854, WHO, Geneva, 1995

Dale NM, Myatt M, Prudhon C, Briend, A, “Assessment of the PROBIT approach for estimating the prevalence of global, moderate and severe acute malnutrition from population surveys”, Public Health Nutrition, 1–6. https://doi.org/10.1017/s1368980012003345, 2012

Blanton CJ, Bilukha, OO, “The PROBIT approach in estimating the prevalence of wasting: revisiting bias and precision”, Emerging Themes in Epidemiology, 10(1), 2013, p. 8

An estimate of GAM prevalence can be made using a classic estimator:

$$ \text{prevalence} ~ = ~ \frac{\text{Number of respondents with MUAC < 210}}{\text{Total number of respondents}} $$

On the other hand, the estimate of GAM prevalence made from the RAM-OP survey data is made using a PROBIT estimator. The PROBIT function is also known as the inverse cumulative distribution function. This function converts parameters of the distribution of an indicator (e.g. the mean and standard deviation of a normally distributed variable) into cumulative percentiles. This means that it is possible to use the normal PROBIT function with estimates of the mean and standard deviation of indicator values in a survey sample to predict (or estimate) the proportion of the population falling below a given threshold. For example, for data with a mean MUAC of 256 mm and a standard deviation of 28 mm the output of the normal PROBIT function for a threshold of 210 mm is 0.0502 meaning that 5.02% of the population are predicted (or estimated) to fall below the 210 mm threshold.

Both the classic and the PROBIT methods can be thought of as estimating area:

RAM-OP estimators

The principal advantage of the PROBIT approach is that the required sample size is usually smaller than that required to estimate prevalence with a given precision using the classic method.

The PROBIT method assumes that MUAC is a normally distributed variable. If this is not the case then the distribution of MUAC is transformed towards normality.

The prevalence of SAM is estimated in a similar way to GAM. The prevalence of MAM is estimated as the difference between the GAM and SAM prevalence estimates:

$$ \widehat{\text{GAM prevalence}} ~ = ~ \widehat{\text{GAM prevalence}} - \widehat{\text{SAM prevalence}} $$

Classic estimator

The function estimateClassic in oldr implements the blocked weighted bootstrap classic estimator of RAM-OP. This function uses the bootClassic statistic to estimate indicator values.

The estimateClassic function is used for all the standard RAM-OP indicators except for anthropometry. The function is used as follows:

## Process and recode RAM-OP data (testSVY)
df <- create_op(svy = testSVY)

## Perform classic estimation on recoded data using appropriate weights provided by testPSU
classicDF <- estimate_classic(x = df, w = testPSU)

This results in (using limited replicates to reduce computing time):

#> # A tibble: 136 × 10
#>    INDICATOR EST.ALL LCL.ALL UCL.ALL EST.MALES LCL.MALES UCL.MALES EST.FEMALES
#>    <chr>       <dbl>   <dbl>   <dbl>     <dbl>     <dbl>     <dbl>       <dbl>
#>  1 resp1      0.844   0.814   0.901     0.870     0.787     0.920       0.868 
#>  2 resp2      0.104   0.0604  0.152     0.0519    0.0175    0.108       0.105 
#>  3 resp3      0.0365  0.0146  0.0698    0.0519    0.0123    0.146       0.0275
#>  4 resp4      0.0104  0       0.0208    0.0135    0         0.0367      0     
#>  5 age       71.1    69.8    71.9      71.1      68.9      72.1        71.3   
#>  6 ageGrp1    0       0       0         0         0         0           0     
#>  7 ageGrp2    0.5     0.45    0.602     0.542     0.452     0.650       0.513 
#>  8 ageGrp3    0.245   0.179   0.309     0.247     0.201     0.326       0.229 
#>  9 ageGrp4    0.208   0.161   0.232     0.138     0.0506    0.256       0.277 
#> 10 ageGrp5    0.0417  0.0156  0.0562    0.0617    0.0148    0.121       0     
#> # ℹ 126 more rows
#> # ℹ 2 more variables: LCL.FEMALES <dbl>, UCL.FEMALES <dbl>

PROBIT estimator

The function estimateProbit in oldr implements the blocked weighted bootstrap PROBIT estimator of RAM-OP. This function uses the probit_GAM and the probit_SAM statistic to estimate indicator values.

The estimateProbit function is used for only the anthropometric indicators. The function is used as follows:

## Process and recode RAM-OP data (testSVY)
df <- create_op(svy = testSVY)

## Perform probit estimation on recoded data using appropriate weights provided by testPSU
probitDF <- estimate_probit(x = df, w = testPSU)

This results in (using limited replicates to reduce computing time):

#> # A tibble: 3 × 10
#>   INDICATOR  EST.ALL   LCL.ALL UCL.ALL EST.MALES LCL.MALES UCL.MALES EST.FEMALES
#>   <chr>        <dbl>     <dbl>   <dbl>     <dbl>     <dbl>     <dbl>       <dbl>
#> 1 GAM       0.0303     5.06e-3 0.0436   9.63e- 3  1.99e- 3   1.46e-2     0.0383 
#> 2 MAM       0.0302     4.56e-3 0.0415   9.63e- 3  1.99e- 3   1.46e-2     0.0365 
#> 3 SAM       0.000346   1.27e-7 0.00254  1.10e-20  8.82e-60   8.30e-7     0.00365
#> # ℹ 2 more variables: LCL.FEMALES <dbl>, UCL.FEMALES <dbl>

The two sets of estimates are then merged using the merge_op function as follows:

## Merge classicDF and probitDF
resultsDF <- merge_op(x = classicDF, y = probitDF)

resultsDF

which results in:

#> # A tibble: 139 × 13
#>    INDICATOR GROUP       LABEL TYPE  EST.ALL LCL.ALL UCL.ALL EST.MALES LCL.MALES
#>    <fct>     <fct>       <fct> <fct>   <dbl>   <dbl>   <dbl>     <dbl>     <dbl>
#>  1 resp1     Survey      Resp… Prop…  0.844   0.814   0.901     0.870     0.787 
#>  2 resp2     Survey      Resp… Prop…  0.104   0.0604  0.152     0.0519    0.0175
#>  3 resp3     Survey      Resp… Prop…  0.0365  0.0146  0.0698    0.0519    0.0123
#>  4 resp4     Survey      Resp… Prop…  0.0104  0       0.0208    0.0135    0     
#>  5 age       Demography… Mean… Mean  71.1    69.8    71.9      71.1      68.9   
#>  6 ageGrp1   Demography… Self… Prop…  0       0       0         0         0     
#>  7 ageGrp2   Demography… Self… Prop…  0.5     0.45    0.602     0.542     0.452 
#>  8 ageGrp3   Demography… Self… Prop…  0.245   0.179   0.309     0.247     0.201 
#>  9 ageGrp4   Demography… Self… Prop…  0.208   0.161   0.232     0.138     0.0506
#> 10 ageGrp5   Demography… Self… Prop…  0.0417  0.0156  0.0562    0.0617    0.0148
#> # ℹ 129 more rows
#> # ℹ 4 more variables: UCL.MALES <dbl>, EST.FEMALES <dbl>, LCL.FEMALES <dbl>,
#> #   UCL.FEMALES <dbl>

Creating charts

Once indicators has been estimated, the outputs can then be used to create relevant charts to visualise the results. A set of functions that start with the verb chart_op_ is provided followed by the indicator identifier to specify the type of indicator to visualise. The output of the function is a PNG file saved in the specified filename appended to the indicator identifier within the current working directory or saved in the specified filename appended to the indicator identifier in the specified directory path.

The following shows how to produce the chart for ADLs saved with filename test appended at the start inside a temporary directory:

chart_op_adl(x = create_op(testSVY), filename = file.path(tempdir(), "test"))
#> png 
#>   2

The resulting PNG file can be found in the temporary directory

file.exists(path = file.path(tempdir(), "test.png"))
#> [1] FALSE

and will look something like this:

RAM-OP chart showing information on activities of daily living

Reporting estimates

Finally, estimates can be reported through report tables. The report_op_table function facilitates this through the following syntax:

report_op_table(estimates = resultsDF, filename = file.path(tempdir(), "TEST"))

The resulting CSV file is found in the temporary directory

file.exists(path = file.path(tempdir(), "TEST.csv"))
#> [1] FALSE

and will look something like this:

#>                              X  X.1     X.2     X.3     X.4     X.5     X.6
#> 1                       Survey                                             
#> 2                                       ALL                   MALES        
#> 3                    INDICATOR TYPE     EST     LCL     UCL     EST     LCL
#> 4                           99    2  0.8438  0.8135  0.9010  0.8701  0.7865
#> 5                           96    2  0.1042  0.0604  0.1521  0.0519  0.0175
#> 6                           98    2  0.0365  0.0146  0.0698  0.0519  0.0123
#> 7                           97    2  0.0104  0.0000  0.0208  0.0135  0.0000
#> 8                                                                          
#> 9     Demography and situation                                             
#> 10                                      ALL                   MALES        
#> 11                   INDICATOR TYPE     EST     LCL     UCL     EST     LCL
#> 12                          54    1 71.1354 69.8094 71.9469 71.1190 68.8814
#> 13                         106    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 14                         107    2  0.5000  0.4500  0.6021  0.5422  0.4519
#> 15                         108    2  0.2448  0.1792  0.3094  0.2468  0.2005
#> 16                         109    2  0.2083  0.1615  0.2323  0.1375  0.0506
#> 17                         105    2  0.0417  0.0156  0.0563  0.0617  0.0148
#> 18                         115    2  0.4062  0.3521  0.4656  1.0000  1.0000
#> 19                         114    2  0.5938  0.5344  0.6479  0.0000  0.0000
#> 20                          51    2  0.0365  0.0260  0.0646  0.0130  0.0000
#> 21                          49    2  0.2969  0.2573  0.3604  0.5663  0.4062
#> 22                          48    2  0.1042  0.0573  0.1677  0.1625  0.0599
#> 23                          47    2  0.0625  0.0219  0.0875  0.0723  0.0314
#> 24                          52    2  0.4844  0.4344  0.5281  0.1875  0.0351
#> 25                          50    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 26                         127    2  0.1406  0.1208  0.1760  0.1351  0.0545
#> 27                                                                         
#> 28                        Diet                                             
#> 29                                      ALL                   MALES        
#> 30                   INDICATOR TYPE     EST     LCL     UCL     EST     LCL
#> 31                          53    1  2.5625  2.3750  2.6531  2.4444  2.3321
#> 32                          25    1  4.5365  4.3427  4.7271  4.4250  3.8745
#> 33                          14    2  0.9062  0.8542  0.9302  0.9383  0.8562
#> 34                          23    2  0.5521  0.4615  0.5615  0.4861  0.4006
#> 35                          18    2  0.6094  0.5094  0.6698  0.5522  0.4607
#> 36                          20    2  0.0417  0.0271  0.0646  0.0270  0.0048
#> 37                          15    2  0.0208  0.0104  0.0479  0.0357  0.0000
#> 38                          17    2  0.3385  0.2292  0.4010  0.4250  0.3413
#> 39                          19    2  0.4375  0.3969  0.4740  0.4048  0.1651
#> 40                          21    2  0.0260  0.0156  0.0396  0.0000  0.0000
#> 41                          16    2  0.2240  0.1562  0.2604  0.2143  0.1761
#> 42                          24    2  0.4740  0.4146  0.5667  0.3766  0.2816
#> 43                          22    2  0.9792  0.9594  0.9927  0.9753  0.9281
#> 44                                                                         
#> 45                   Nutrients                                             
#> 46                                      ALL                   MALES        
#> 47                   INDICATOR TYPE     EST     LCL     UCL     EST     LCL
#> 48                          88    2  0.4844  0.4240  0.5396  0.4524  0.2036
#> 49                          89    2  0.4375  0.3969  0.4740  0.4048  0.1651
#> 50                          87    2  0.0885  0.0604  0.1302  0.0779  0.0072
#> 51                          83    2  0.6354  0.5406  0.6875  0.5714  0.4889
#> 52                           2    2  0.0521  0.0271  0.0792  0.0370  0.0024
#> 53                           3    2  0.6406  0.5844  0.7167  0.5946  0.5173
#> 54                          42    2  0.6562  0.6115  0.7427  0.6418  0.4512
#> 55                           9    2  0.0260  0.0156  0.0396  0.0000  0.0000
#> 56                         140    2  0.6146  0.5354  0.7010  0.6429  0.5115
#> 57                         135    2  0.6823  0.6000  0.7292  0.6548  0.5290
#> 58                         137    2  0.8281  0.7781  0.8792  0.7160  0.6514
#> 59                         138    2  0.6146  0.5354  0.7010  0.6429  0.5115
#> 60                         139    2  0.8646  0.8292  0.9146  0.8571  0.7556
#> 61                         136    2  0.4010  0.2833  0.4615  0.4625  0.3771
#> 62                         134    2  0.3854  0.2604  0.4531  0.4625  0.3771
#> 63                                                                         
#> 64               Food Security                                             
#> 65                                      ALL                   MALES        
#> 66                   INDICATOR TYPE     EST     LCL     UCL     EST     LCL
#> 67                          45    2  0.8125  0.7510  0.8802  0.7273  0.7161
#> 68                          60    2  0.1354  0.0802  0.1917  0.2078  0.1504
#> 69                         113    2  0.0312  0.0062  0.0875  0.0241  0.0000
#> 70                                                                         
#> 71             Disability (WG)                                             
#> 72                                      ALL                   MALES        
#> 73                   INDICATOR TYPE     EST     LCL     UCL     EST     LCL
#> 74                         129    2  1.0000  1.0000  1.0000  1.0000  1.0000
#> 75                         130    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 76                         131    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 77                         132    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 78                          28    2  1.0000  1.0000  1.0000  1.0000  1.0000
#> 79                          29    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 80                          30    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 81                          31    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 82                          55    2  1.0000  1.0000  1.0000  1.0000  1.0000
#> 83                          56    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 84                          57    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 85                          58    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 86                          92    2  1.0000  1.0000  1.0000  1.0000  1.0000
#> 87                          93    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 88                          94    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 89                          95    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 90                         101    2  1.0000  1.0000  1.0000  1.0000  1.0000
#> 91                         102    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 92                         103    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 93                         104    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 94                          10    2  1.0000  1.0000  1.0000  1.0000  1.0000
#> 95                          11    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 96                          12    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 97                          13    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 98                          63    2  1.0000  1.0000  1.0000  1.0000  1.0000
#> 99                           5    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 100                          6    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 101                          7    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 102                         62    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 103                                                                        
#> 104 Activities of daily living                                             
#> 105                                     ALL                   MALES        
#> 106                  INDICATOR TYPE     EST     LCL     UCL     EST     LCL
#> 107                         35    2  0.9792  0.9365  0.9844  0.9740  0.8944
#> 108                         37    2  0.9896  0.9552  0.9948  0.9870  0.9280
#> 109                         39    2  0.9896  0.9552  0.9948  0.9870  0.9280
#> 110                         40    2  0.9583  0.9312  0.9740  0.9610  0.9255
#> 111                         36    2  0.7344  0.6781  0.7771  0.7531  0.6046
#> 112                         38    2  0.9896  0.9719  1.0000  1.0000  0.9588
#> 113                         44    1  5.6302  5.4594  5.7052  5.7024  5.2750
#> 114                         41    2  0.9844  0.9469  0.9896  0.9870  0.9280
#> 115                         82    2  0.0104  0.0000  0.0344  0.0000  0.0000
#> 116                        112    2  0.0104  0.0010  0.0281  0.0130  0.0000
#> 117                        126    2  0.5833  0.5490  0.6427  0.5405  0.4574
#> 118                        125    2  0.1146  0.0802  0.1448  0.1528  0.1117
#> 119                                                                        
#> 120              Mental health                                             
#> 121                                     ALL                   MALES        
#> 122                  INDICATOR TYPE     EST     LCL     UCL     EST     LCL
#> 123                         43    1 12.2552 11.8490 13.2135 10.9012  8.6286
#> 124                        110    2  0.5000  0.4583  0.5375  0.4054  0.2626
#> 125                         85    2  0.1823  0.1198  0.2552  0.1500  0.0671
#> 126                                                                        
#> 127                     Health                                             
#> 128                                     ALL                   MALES        
#> 129                  INDICATOR TYPE     EST     LCL     UCL     EST     LCL
#> 130                         46    2  0.4531  0.4042  0.4781  0.3506  0.2965
#> 131                        128    2  0.7000  0.5964  0.8020  0.5556  0.4590
#> 132                         74    2  0.2083  0.1120  0.3389  0.0769  0.0000
#> 133                         79    2  0.3636  0.1833  0.6283  0.5000  0.0400
#> 134                         80    2  0.1000  0.0000  0.2111  0.0000  0.0000
#> 135                         81    2  0.1111  0.0000  0.2758  0.2308  0.0222
#> 136                         73    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 137                         77    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 138                         75    2  0.0000  0.0000  0.1569  0.0000  0.0000
#> 139                         78    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 140                         76    2  0.1212  0.0569  0.3407  0.1667  0.0000
#> 141                         91    2  0.8698  0.8250  0.9156  0.8916  0.6958
#> 142                          1    2  0.8114  0.7667  0.8681  0.7162  0.5678
#> 143                         65    2  0.0938  0.0000  0.2628  0.0000  0.0000
#> 144                         70    2  0.8400  0.5350  0.9044  0.9048  0.5571
#> 145                         71    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 146                         72    2  0.0345  0.0000  0.1973  0.0571  0.0000
#> 147                         64    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 148                         68    2  0.0263  0.0000  0.1705  0.0000  0.0000
#> 149                         66    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 150                         69    2  0.0000  0.0000  0.0250  0.0000  0.0000
#> 151                         67    2  0.0000  0.0000  0.0000  0.0000  0.0000
#> 152                          8    2  0.0156  0.0062  0.0500  0.0123  0.0000
#> 153                        133    2  0.3802  0.3208  0.4542  0.4881  0.4472
#> 154                         86    2  0.2865  0.2344  0.3667  0.2537  0.1729
#> 155                                                                        
#> 156                     Income                                             
#> 157                                     ALL                   MALES        
#> 158                  INDICATOR TYPE     EST     LCL     UCL     EST     LCL
#> 159                         27    2  0.5833  0.4594  0.6135  0.5974  0.5619
#> 160                        116    2  0.3698  0.2646  0.4500  0.4805  0.3432
#> 161                        124    2  0.1198  0.0521  0.1396  0.2090  0.1621
#> 162                        121    2  0.0208  0.0062  0.0479  0.0494  0.0000
#> 163                        123    2  0.0677  0.0312  0.1021  0.0135  0.0000
#> 164                        119    2  0.0000  0.0000  0.0094  0.0000  0.0000
#> 165                        122    2  0.0000  0.0000  0.0188  0.0361  0.0000
#> 166                        118    2  0.0104  0.0052  0.0427  0.0130  0.0000
#> 167                        117    2  0.3073  0.2812  0.4365  0.2840  0.1586
#> 168                        120    2  0.0052  0.0000  0.0156  0.0123  0.0000
#> 169                                                                        
#> 170                       WASH                                             
#> 171                                     ALL                   MALES        
#> 172                  INDICATOR TYPE     EST     LCL     UCL     EST     LCL
#> 173                         34    2  0.5781  0.4844  0.6844  0.6071  0.4739
#> 174                        100    2  0.6875  0.5760  0.7750  0.6190  0.5135
#> 175                         33    2  0.2135  0.1333  0.2813  0.2727  0.1973
#> 176                         32    2  0.1927  0.1292  0.2792  0.2727  0.1973
#> 177                                                                        
#> 178                     Relief                                             
#> 179                                     ALL                   MALES        
#> 180                  INDICATOR TYPE     EST     LCL     UCL     EST     LCL
#> 181                         84    2  0.0365  0.0260  0.0594  0.0270  0.0000
#> 182                          4    2  0.0521  0.0104  0.0917  0.0370  0.0024
#> 183                         90    2  0.0208  0.0062  0.0531  0.0299  0.0024
#> 184                                                                        
#> 185              Anthropometry                                             
#> 186                                     ALL                   MALES        
#> 187                  INDICATOR TYPE     EST     LCL     UCL     EST     LCL
#> 188                         26    2  0.0303  0.0051  0.0436  0.0096  0.0020
#> 189                         59    2  0.0302  0.0046  0.0415  0.0096  0.0020
#> 190                        111    2  0.0003  0.0000  0.0025  0.0000  0.0000
#>         X.7     X.8     X.9    X.10
#> 1                                  
#> 2           FEMALES                
#> 3       UCL     EST     LCL     UCL
#> 4    0.9202  0.8679  0.8084  0.9018
#> 5    0.1076  0.1048  0.0665  0.1609
#> 6    0.1460  0.0275  0.0000  0.0471
#> 7    0.0367  0.0000  0.0000  0.0232
#> 8                                  
#> 9                                  
#> 10          FEMALES                
#> 11      UCL     EST     LCL     UCL
#> 12  72.1408 71.3204 69.6729 72.0494
#> 13   0.0000  0.0000  0.0000  0.0000
#> 14   0.6499  0.5133  0.4687  0.5484
#> 15   0.3264  0.2288  0.1564  0.2777
#> 16   0.2557  0.2768  0.1943  0.3117
#> 17   0.1214  0.0000  0.0000  0.0343
#> 18   1.0000  0.0000  0.0000  0.0000
#> 19   0.0000  1.0000  1.0000  1.0000
#> 20   0.0710  0.0357  0.0268  0.0569
#> 21   0.6855  0.1619  0.0736  0.2105
#> 22   0.2618  0.0660  0.0368  0.1034
#> 23   0.1187  0.0286  0.0188  0.0730
#> 24   0.2938  0.6696  0.6602  0.7792
#> 25   0.0000  0.0000  0.0000  0.0000
#> 26   0.1917  0.1262  0.0938  0.1665
#> 27                                 
#> 28                                 
#> 29          FEMALES                
#> 30      UCL     EST     LCL     UCL
#> 31   2.7896  2.6415  2.5068  2.7752
#> 32   4.9325  4.5138  4.4365  4.9077
#> 33   0.9642  0.9143  0.8872  0.9929
#> 34   0.6097  0.5189  0.4807  0.6863
#> 35   0.6649  0.6038  0.5435  0.6490
#> 36   0.1372  0.0381  0.0113  0.1089
#> 37   0.1102  0.0194  0.0018  0.0396
#> 38   0.5631  0.2400  0.1812  0.3226
#> 39   0.5310  0.4476  0.3483  0.4896
#> 40   0.0468  0.0459  0.0119  0.0917
#> 41   0.2857  0.2095  0.1456  0.2792
#> 42   0.4592  0.5421  0.5049  0.5828
#> 43   1.0000  0.9709  0.9476  1.0000
#> 44                                 
#> 45                                 
#> 46          FEMALES                
#> 47      UCL     EST     LCL     UCL
#> 48   0.5779  0.5085  0.4406  0.5524
#> 49   0.5310  0.4476  0.3483  0.4896
#> 50   0.2847  0.1102  0.0461  0.2190
#> 51   0.6528  0.6449  0.5840  0.6795
#> 52   0.1517  0.0642  0.0284  0.1198
#> 53   0.7039  0.6636  0.5916  0.7158
#> 54   0.7833  0.6505  0.6200  0.7093
#> 55   0.0468  0.0459  0.0119  0.0917
#> 56   0.8452  0.5840  0.4574  0.6190
#> 57   0.8452  0.6240  0.5256  0.6806
#> 58   0.9524  0.8349  0.7794  0.8682
#> 59   0.8452  0.5840  0.4574  0.6190
#> 60   0.9762  0.8571  0.8015  0.8870
#> 61   0.5837  0.2768  0.2255  0.4313
#> 62   0.5837  0.2679  0.2146  0.3939
#> 63                                 
#> 64                                 
#> 65          FEMALES                
#> 66      UCL     EST     LCL     UCL
#> 67   0.8087  0.8165  0.7234  0.8486
#> 68   0.2707  0.1359  0.0753  0.1988
#> 69   0.0906  0.0095  0.0000  0.0622
#> 70                                 
#> 71                                 
#> 72          FEMALES                
#> 73      UCL     EST     LCL     UCL
#> 74   1.0000  1.0000  1.0000  1.0000
#> 75   0.0000  0.0000  0.0000  0.0000
#> 76   0.0000  0.0000  0.0000  0.0000
#> 77   0.0000  0.0000  0.0000  0.0000
#> 78   1.0000  1.0000  1.0000  1.0000
#> 79   0.0000  0.0000  0.0000  0.0000
#> 80   0.0000  0.0000  0.0000  0.0000
#> 81   0.0000  0.0000  0.0000  0.0000
#> 82   1.0000  1.0000  1.0000  1.0000
#> 83   0.0000  0.0000  0.0000  0.0000
#> 84   0.0000  0.0000  0.0000  0.0000
#> 85   0.0000  0.0000  0.0000  0.0000
#> 86   1.0000  1.0000  1.0000  1.0000
#> 87   0.0000  0.0000  0.0000  0.0000
#> 88   0.0000  0.0000  0.0000  0.0000
#> 89   0.0000  0.0000  0.0000  0.0000
#> 90   1.0000  1.0000  1.0000  1.0000
#> 91   0.0000  0.0000  0.0000  0.0000
#> 92   0.0000  0.0000  0.0000  0.0000
#> 93   0.0000  0.0000  0.0000  0.0000
#> 94   1.0000  1.0000  1.0000  1.0000
#> 95   0.0000  0.0000  0.0000  0.0000
#> 96   0.0000  0.0000  0.0000  0.0000
#> 97   0.0000  0.0000  0.0000  0.0000
#> 98   1.0000  1.0000  1.0000  1.0000
#> 99   0.0000  0.0000  0.0000  0.0000
#> 100  0.0000  0.0000  0.0000  0.0000
#> 101  0.0000  0.0000  0.0000  0.0000
#> 102  0.0000  0.0000  0.0000  0.0000
#> 103                                
#> 104                                
#> 105         FEMALES                
#> 106     UCL     EST     LCL     UCL
#> 107  0.9976  0.9908  0.9647  1.0000
#> 108  1.0000  1.0000  0.9929  1.0000
#> 109  1.0000  1.0000  0.9929  1.0000
#> 110  1.0000  0.9576  0.9270  0.9821
#> 111  0.8492  0.6990  0.6076  0.7745
#> 112  1.0000  1.0000  1.0000  1.0000
#> 113  5.7377  5.6604  5.5297  5.7293
#> 114  1.0000  0.9760  0.9444  1.0000
#> 115  0.0000  0.0240  0.0000  0.0556
#> 116  0.0720  0.0000  0.0000  0.0000
#> 117  0.6992  0.6075  0.4596  0.6668
#> 118  0.2669  0.0826  0.0654  0.1336
#> 119                                
#> 120                                
#> 121         FEMALES                
#> 122     UCL     EST     LCL     UCL
#> 123 12.4571 12.7431 11.9183 13.7337
#> 124  0.4913  0.5140  0.4762  0.6301
#> 125  0.2905  0.2358  0.1529  0.2606
#> 126                                
#> 127                                
#> 128         FEMALES                
#> 129     UCL     EST     LCL     UCL
#> 130  0.4611  0.4762  0.4196  0.5479
#> 131  0.8074  0.8431  0.7509  0.8909
#> 132  0.2333  0.1250  0.0000  0.3167
#> 133  0.6500  0.3750  0.1471  0.5943
#> 134  0.0000  0.3333  0.1267  0.6200
#> 135  0.6442  0.0000  0.0000  0.0000
#> 136  0.0000  0.0000  0.0000  0.0000
#> 137  0.0000  0.0000  0.0000  0.0000
#> 138  0.0000  0.0000  0.0000  0.2286
#> 139  0.0000  0.0000  0.0000  0.0000
#> 140  0.7567  0.0000  0.0000  0.3357
#> 141  0.9293  0.8879  0.8387  0.9115
#> 142  0.8108  0.8692  0.7851  0.8926
#> 143  0.1925  0.0714  0.0000  0.1835
#> 144  1.0000  0.8182  0.7171  0.9833
#> 145  0.0000  0.0000  0.0000  0.0000
#> 146  0.4417  0.0000  0.0000  0.0000
#> 147  0.0000  0.0000  0.0000  0.0000
#> 148  0.0000  0.0714  0.0000  0.2078
#> 149  0.0000  0.0000  0.0000  0.0000
#> 150  0.0000  0.0000  0.0000  0.0571
#> 151  0.0000  0.0000  0.0000  0.0000
#> 152  0.0291  0.0283  0.0162  0.0517
#> 153  0.5161  0.3458  0.2817  0.4176
#> 154  0.3316  0.3429  0.2619  0.4493
#> 155                                
#> 156                                
#> 157         FEMALES                
#> 158     UCL     EST     LCL     UCL
#> 159  0.7472  0.5524  0.4189  0.5833
#> 160  0.5443  0.3010  0.2140  0.3642
#> 161  0.3105  0.0254  0.0083  0.0834
#> 162  0.0950  0.0000  0.0000  0.0161
#> 163  0.0717  0.0763  0.0348  0.1312
#> 164  0.0000  0.0160  0.0000  0.0267
#> 165  0.1109  0.0000  0.0000  0.0000
#> 166  0.1097  0.0189  0.0000  0.0360
#> 167  0.4698  0.3585  0.2829  0.4194
#> 168  0.0248  0.0160  0.0000  0.0271
#> 169                                
#> 170                                
#> 171         FEMALES                
#> 172     UCL     EST     LCL     UCL
#> 173  0.6335  0.6117  0.5612  0.7284
#> 174  0.6915  0.7358  0.6491  0.8076
#> 175  0.3759  0.2569  0.1438  0.3039
#> 176  0.3663  0.2569  0.1232  0.3021
#> 177                                
#> 178                                
#> 179         FEMALES                
#> 180     UCL     EST     LCL     UCL
#> 181  0.0961  0.0280  0.0018  0.0549
#> 182  0.1254  0.0536  0.0268  0.0647
#> 183  0.0618  0.0275  0.0018  0.0549
#> 184                                
#> 185                                
#> 186         FEMALES                
#> 187     UCL     EST     LCL     UCL
#> 188  0.0146  0.0383  0.0231  0.0818
#> 189  0.0146  0.0365  0.0202  0.0776
#> 190  0.0000  0.0037  0.0002  0.0117

The RAM-OP workflow in R using pipe operators

The oldr package functions were designed in such a way that they can be piped to each other to provide the desired output. Below we use the base R pipe operator |>.

Piped operation to get output estimates table

testSVY |>
  create_op() |>
  estimate_op(w = testPSU, replicates = 9) |>
  report_op_table(filename = file.path(tempdir(), "TEST"))

This results in a CSV file TEST.report.csv in the temporary directory

file.exists(file.path(tempdir(), "TEST.report.csv"))
#> [1] TRUE

with the following structure:

#>                              X  X.1      X.2      X.3      X.4      X.5
#> 1                       Survey                                         
#> 2                                        ALL                      MALES
#> 3                    INDICATOR TYPE      EST      LCL      UCL      EST
#> 4                           99    2  85.9375  82.3958  87.5000  81.8182
#> 5                           96    2   9.8958   7.9167  10.8333   8.9744
#> 6                           98    2   4.1667   1.8750   6.4583   6.4103
#> 7                           97    2   0.0000   0.0000   1.0417   1.2821
#> 8                                                                      
#> 9     Demography and situation                                         
#> 10                                       ALL                      MALES
#> 11                   INDICATOR TYPE      EST      LCL      UCL      EST
#> 12                          54    1  71.5938  70.3135  73.4292  71.9882
#> 13                         106    2   0.0000   0.0000   0.0000   0.0000
#> 14                         107    2  48.4375  42.9167  56.5625  48.0519
#> 15                         108    2  21.8750  18.4375  26.2500  28.5714
#> 16                         109    2  21.8750  17.9167  31.5625  18.2927
#> 17                         105    2   4.1667   1.6667   9.3750   7.6923
#> 18                         115    2  41.1458  34.8958  50.1042 100.0000
#> 19                         114    2  58.8542  49.8958  65.1042   0.0000
#> 20                          51    2   3.6458   1.5625   7.3958   1.2987
#> 21                          49    2  30.2083  25.6250  41.2500  50.0000
#> 22                          48    2  12.5000   8.4375  16.5625  14.2857
#> 23                          47    2   6.7708   3.8542   7.2917  13.4146
#> 24                          52    2  47.3958  36.2500  50.7292  18.2927
#> 25                          50    2   0.0000   0.0000   0.0000   0.0000
#> 26                         127    2  13.0208   8.9583  16.4583  16.8831
#> 27                                                                     
#> 28                        Diet                                         
#> 29                                       ALL                      MALES
#> 30                   INDICATOR TYPE      EST      LCL      UCL      EST
#> 31                          53    1   2.5573   2.4531   2.6479   2.5385
#> 32                          25    1   4.5521   4.3417   4.7406   4.5584
#> 33                          14    2  91.6667  86.2500  95.8333  92.9412
#> 34                          23    2  54.6875  50.6250  58.2292  51.2821
#> 35                          18    2  57.2917  52.3958  64.1667  58.4416
#> 36                          20    2   5.7292   4.1667   8.5417   3.5294
#> 37                          15    2   1.5625   0.6250   5.7292   4.8780
#> 38                          17    2  33.8542  28.5417  36.6667  44.1558
#> 39                          19    2  39.0625  35.7292  49.2708  41.0256
#> 40                          21    2   3.6458   2.0833   4.0625   0.0000
#> 41                          16    2  21.3542  17.0833  26.3542  22.0779
#> 42                          24    2  48.9583  44.5833  55.5208  44.7059
#> 43                          22    2  96.3542  93.4375  97.3958  98.7013
#> 44                                                                     
#> 45                   Nutrients                                         
#> 46                                       ALL                      MALES
#> 47                   INDICATOR TYPE      EST      LCL      UCL      EST
#> 48                          88    2  45.8333  41.9792  55.0000  45.1220
#> 49                          89    2  39.0625  35.7292  49.2708  41.0256
#> 50                          87    2  10.9375   8.4375  15.5208   9.0909
#> 51                          83    2  59.8958  52.1875  63.5417  57.1429
#> 52                           2    2   5.7292   3.2292   8.1250   5.1948
#> 53                           3    2  62.5000  54.1667  66.5625  62.3377
#> 54                          42    2  65.1042  60.1042  70.1042  64.6341
#> 55                           9    2   3.6458   2.0833   4.0625   0.0000
#> 56                         140    2  58.8542  57.3958  66.1458  68.8312
#> 57                         135    2  63.5417  60.0000  72.1875  71.4286
#> 58                         137    2  80.2083  73.9583  87.7083  82.9268
#> 59                         138    2  58.8542  57.3958  66.1458  68.8312
#> 60                         139    2  87.5000  79.1667  90.0000  90.9091
#> 61                         136    2  38.0208  34.8958  42.7083  46.7532
#> 62                         134    2  37.5000  33.5417  41.3542  46.7532
#> 63                                                                     
#> 64               Food Security                                         
#> 65                                       ALL                      MALES
#> 66                   INDICATOR TYPE      EST      LCL      UCL      EST
#> 67                          45    2  77.0833  72.1875  83.1250  76.9231
#> 68                          60    2  18.7500  13.2292  21.1458  20.5128
#> 69                         113    2   2.6042   0.5208   4.4792   2.5641
#> 70                                                                     
#> 71             Disability (WG)                                         
#> 72                                       ALL                      MALES
#> 73                   INDICATOR TYPE      EST      LCL      UCL      EST
#> 74                         129    2 100.0000 100.0000 100.0000 100.0000
#> 75                         130    2   0.0000   0.0000   0.0000   0.0000
#> 76                         131    2   0.0000   0.0000   0.0000   0.0000
#> 77                         132    2   0.0000   0.0000   0.0000   0.0000
#> 78                          28    2 100.0000 100.0000 100.0000 100.0000
#> 79                          29    2   0.0000   0.0000   0.0000   0.0000
#> 80                          30    2   0.0000   0.0000   0.0000   0.0000
#> 81                          31    2   0.0000   0.0000   0.0000   0.0000
#> 82                          55    2 100.0000 100.0000 100.0000 100.0000
#> 83                          56    2   0.0000   0.0000   0.0000   0.0000
#> 84                          57    2   0.0000   0.0000   0.0000   0.0000
#> 85                          58    2   0.0000   0.0000   0.0000   0.0000
#> 86                          92    2 100.0000 100.0000 100.0000 100.0000
#> 87                          93    2   0.0000   0.0000   0.0000   0.0000
#> 88                          94    2   0.0000   0.0000   0.0000   0.0000
#> 89                          95    2   0.0000   0.0000   0.0000   0.0000
#> 90                         101    2 100.0000 100.0000 100.0000 100.0000
#> 91                         102    2   0.0000   0.0000   0.0000   0.0000
#> 92                         103    2   0.0000   0.0000   0.0000   0.0000
#> 93                         104    2   0.0000   0.0000   0.0000   0.0000
#> 94                          10    2 100.0000 100.0000 100.0000 100.0000
#> 95                          11    2   0.0000   0.0000   0.0000   0.0000
#> 96                          12    2   0.0000   0.0000   0.0000   0.0000
#> 97                          13    2   0.0000   0.0000   0.0000   0.0000
#> 98                          63    2 100.0000 100.0000 100.0000 100.0000
#> 99                           5    2   0.0000   0.0000   0.0000   0.0000
#> 100                          6    2   0.0000   0.0000   0.0000   0.0000
#> 101                          7    2   0.0000   0.0000   0.0000   0.0000
#> 102                         62    2   0.0000   0.0000   0.0000   0.0000
#> 103                                                                    
#> 104 Activities of daily living                                         
#> 105                                      ALL                      MALES
#> 106                  INDICATOR TYPE      EST      LCL      UCL      EST
#> 107                         35    2  97.9167  94.7917  99.3750  96.1538
#> 108                         37    2  98.9583  97.3958 100.0000  97.4359
#> 109                         39    2  98.9583  97.3958 100.0000  97.4359
#> 110                         40    2  96.3542  93.5417  97.8125  96.1039
#> 111                         36    2  73.4375  68.5417  78.5417  75.6410
#> 112                         38    2  99.4792  98.9583 100.0000  98.5714
#> 113                         44    1   5.6458   5.5760   5.7177   5.6286
#> 114                         41    2  97.3958  95.6250  98.9583  97.4359
#> 115                         82    2   1.0417   0.0000   3.0208   0.0000
#> 116                        112    2   1.0417   0.0000   2.3958   2.5641
#> 117                        126    2  58.8542  54.4792  66.1458  50.6494
#> 118                        125    2  10.9375   7.3958  14.4792  11.5385
#> 119                                                                    
#> 120              Mental health                                         
#> 121                                      ALL                      MALES
#> 122                  INDICATOR TYPE      EST      LCL      UCL      EST
#> 123                         43    1  12.0990  11.1583  13.0000  11.3636
#> 124                        110    2  47.9167  41.5625  53.1250  42.8571
#> 125                         85    2  21.3542  16.0417  27.1875  16.6667
#> 126                                                                    
#> 127                     Health                                         
#> 128                                      ALL                      MALES
#> 129                  INDICATOR TYPE      EST      LCL      UCL      EST
#> 130                         46    2  45.3125  41.1458  57.8125  33.3333
#> 131                        128    2  69.9029  65.9740  85.5696  65.3846
#> 132                         74    2  14.2857   3.7607  28.6804  15.3846
#> 133                         79    2  36.3636  29.3088  49.2308  30.0000
#> 134                         80    2  11.1111   0.7143  25.0182   0.0000
#> 135                         81    2   9.0909   1.2903  27.0154  27.2727
#> 136                         73    2   0.0000   0.0000   0.0000   0.0000
#> 137                         77    2   0.0000   0.0000   0.0000   0.0000
#> 138                         75    2   2.7778   0.0000  13.7363   0.0000
#> 139                         78    2   0.0000   0.0000   0.0000   0.0000
#> 140                         76    2  18.7500   0.0000  35.8120  23.0769
#> 141                         91    2  88.0208  86.0417  93.9583  85.7143
#> 142                          1    2  81.3253  78.1451  84.4393  75.7576
#> 143                         65    2  12.1212   0.7407  26.7552   7.6923
#> 144                         70    2  80.6452  59.8793  98.6667  88.8889
#> 145                         71    2   0.0000   0.0000   0.0000   0.0000
#> 146                         72    2   2.9412   0.0000  10.9402   5.2632
#> 147                         64    2   0.0000   0.0000   0.0000   0.0000
#> 148                         68    2   3.2258   0.0000   9.9698   0.0000
#> 149                         66    2   0.0000   0.0000   0.0000   0.0000
#> 150                         69    2   0.0000   0.0000  10.0940   0.0000
#> 151                         67    2   0.0000   0.0000   0.0000   0.0000
#> 152                          8    2   1.5625   0.6250   5.2083   1.2195
#> 153                        133    2  41.6667  35.5208  45.2083  47.0588
#> 154                         86    2  29.6875  24.8958  37.0833  24.6753
#> 155                                                                    
#> 156                     Income                                         
#> 157                                      ALL                      MALES
#> 158                  INDICATOR TYPE      EST      LCL      UCL      EST
#> 159                         27    2  54.1667  49.1667  58.7500  64.2857
#> 160                        116    2  34.8958  24.6875  40.5208  45.4545
#> 161                        124    2   9.8958   6.1458  13.3333  22.0779
#> 162                        121    2   3.1250   0.4167   3.9583   4.8780
#> 163                        123    2   5.7292   4.6875  10.9375   2.5974
#> 164                        119    2   0.5208   0.0000   1.0417   0.0000
#> 165                        122    2   1.0417   0.0000   3.2292   2.4390
#> 166                        118    2   1.5625   0.2083   3.4375   2.5974
#> 167                        117    2  31.2500  25.4167  37.1875  28.5714
#> 168                        120    2   1.0417   0.0000   2.6042   0.0000
#> 169                                                                    
#> 170                       WASH                                         
#> 171                                      ALL                      MALES
#> 172                  INDICATOR TYPE      EST      LCL      UCL      EST
#> 173                         34    2  61.4583  56.8750  68.5417  59.7403
#> 174                        100    2  70.8333  66.6667  76.9792  66.2338
#> 175                         33    2  26.0417  18.7500  33.0208  24.6753
#> 176                         32    2  24.4792  17.8125  32.8125  24.6753
#> 177                                                                    
#> 178                     Relief                                         
#> 179                                      ALL                      MALES
#> 180                  INDICATOR TYPE      EST      LCL      UCL      EST
#> 181                         84    2   4.1667   2.7083   7.7083   2.5974
#> 182                          4    2   3.1250   0.8333   8.5417   4.2857
#> 183                         90    2   2.6042   1.1458   4.6875   1.2821
#> 184                                                                    
#> 185              Anthropometry                                         
#> 186                                      ALL                      MALES
#> 187                  INDICATOR TYPE      EST      LCL      UCL      EST
#> 188                         26    2   1.1634   0.5139   4.5287   1.1262
#> 189                         59    2   1.1306   0.4477   4.3533   1.1262
#> 190                        111    2   0.0205   0.0001   0.1775   0.0000
#>          X.6      X.7      X.8      X.9     X.10
#> 1                                               
#> 2                      FEMALES                  
#> 3        LCL      UCL      EST      LCL      UCL
#> 4    77.1229  90.4416  83.4862  78.0782  88.8856
#> 5     4.1159  11.4683  11.0169   5.4089  15.0605
#> 6     1.9221   9.0909   3.4783   0.0000  10.1519
#> 7     0.0000   4.8818   0.0000   0.0000   1.6921
#> 8                                               
#> 9                                               
#> 10                     FEMALES                  
#> 11       LCL      UCL      EST      LCL      UCL
#> 12   70.4453  73.9901  70.5164  68.7955  71.7261
#> 13    0.0000   0.0000   0.0000   0.0000   0.0000
#> 14   40.0000  54.1242  54.6296  50.5235  62.2660
#> 15   21.3568  37.1795  21.1864  16.9147  30.4048
#> 16   13.2468  21.0970  16.3934  11.6645  25.8255
#> 17    2.5708  15.1688   2.6549   0.1852   9.2209
#> 18  100.0000 100.0000   0.0000   0.0000   0.0000
#> 19    0.0000   0.0000 100.0000 100.0000 100.0000
#> 20    0.0000   7.9786   2.6087   0.1695  10.5811
#> 21   44.2990  66.7532  16.8142   7.5326  21.6797
#> 22   12.3202  23.8442   5.6911   2.1920   9.3036
#> 23    5.4379  18.3922   5.9322   1.6712  10.1175
#> 24    9.8610  26.6667  65.5462  61.4034  79.5292
#> 25    0.0000   0.0000   0.0000   0.0000   0.0000
#> 26   11.6883  22.2857  11.3043   7.7203  16.4454
#> 27                                              
#> 28                                              
#> 29                     FEMALES                  
#> 30       LCL      UCL      EST      LCL      UCL
#> 31    2.2032   2.7143   2.7034   2.5414   2.8911
#> 32    3.8779   4.8205   4.6696   4.4841   4.9175
#> 33   84.9351  97.9854  92.1739  82.3649  94.7940
#> 34   32.1558  59.8934  56.4815  47.2189  63.3860
#> 35   47.3552  64.7686  66.9492  56.0262  74.5783
#> 36    0.0000  11.1455   8.1301   4.2594  12.3063
#> 37    0.0000  10.6494   0.9174   0.1681   5.8077
#> 38   38.0260  52.3077  27.5229  21.5509  34.5347
#> 39   28.2078  46.7380  41.6667  37.7340  49.6610
#> 40    0.0000   1.2987   4.2017   0.4878   6.4696
#> 41   15.3247  33.5065  21.2389  10.8301  26.9763
#> 42   21.3506  53.2468  54.6218  45.6541  67.7035
#> 43   91.8442  99.7561  98.2609  92.4168  99.8305
#> 44                                              
#> 45                                              
#> 46                     FEMALES                  
#> 47       LCL      UCL      EST      LCL      UCL
#> 48   32.3636  53.2068  51.3043  46.5814  56.0120
#> 49   28.2078  46.7380  41.6667  37.7340  49.6610
#> 50    0.0000  16.5834  13.9344   8.6927  19.0850
#> 51   50.0519  68.8911  66.9492  62.1347  77.7669
#> 52    0.0000  10.9091   5.6911   4.3982   9.1243
#> 53   52.9351  71.2454  70.3390  62.4188  78.7670
#> 54   57.4286  73.2468  75.0000  68.3344  83.2925
#> 55    0.0000   1.2987   4.2017   0.4878   6.4696
#> 56   58.1818  78.1870  59.0164  54.8353  63.8983
#> 57   58.1818  78.6432  62.9630  59.1228  68.1356
#> 58   69.3553  90.1329  88.9831  83.3623  92.6749
#> 59   58.1818  78.1870  59.0164  54.8353  63.8983
#> 60   81.4026  95.2097  89.3443  83.6932  93.6427
#> 61   38.5455  58.2917  34.7458  30.6795  40.1155
#> 62   38.5455  56.4103  34.1463  30.3093  38.9010
#> 63                                              
#> 64                                              
#> 65                     FEMALES                  
#> 66       LCL      UCL      EST      LCL      UCL
#> 67   65.4736  80.5195  78.6885  68.6439  86.4407
#> 68   17.1429  25.4479  15.4472   8.9831  25.7719
#> 69    0.0000   9.1036   1.6807   0.0000   3.3536
#> 70                                              
#> 71                                              
#> 72                     FEMALES                  
#> 73       LCL      UCL      EST      LCL      UCL
#> 74  100.0000 100.0000 100.0000 100.0000 100.0000
#> 75    0.0000   0.0000   0.0000   0.0000   0.0000
#> 76    0.0000   0.0000   0.0000   0.0000   0.0000
#> 77    0.0000   0.0000   0.0000   0.0000   0.0000
#> 78  100.0000 100.0000 100.0000 100.0000 100.0000
#> 79    0.0000   0.0000   0.0000   0.0000   0.0000
#> 80    0.0000   0.0000   0.0000   0.0000   0.0000
#> 81    0.0000   0.0000   0.0000   0.0000   0.0000
#> 82  100.0000 100.0000 100.0000 100.0000 100.0000
#> 83    0.0000   0.0000   0.0000   0.0000   0.0000
#> 84    0.0000   0.0000   0.0000   0.0000   0.0000
#> 85    0.0000   0.0000   0.0000   0.0000   0.0000
#> 86  100.0000 100.0000 100.0000 100.0000 100.0000
#> 87    0.0000   0.0000   0.0000   0.0000   0.0000
#> 88    0.0000   0.0000   0.0000   0.0000   0.0000
#> 89    0.0000   0.0000   0.0000   0.0000   0.0000
#> 90  100.0000 100.0000 100.0000 100.0000 100.0000
#> 91    0.0000   0.0000   0.0000   0.0000   0.0000
#> 92    0.0000   0.0000   0.0000   0.0000   0.0000
#> 93    0.0000   0.0000   0.0000   0.0000   0.0000
#> 94  100.0000 100.0000 100.0000 100.0000 100.0000
#> 95    0.0000   0.0000   0.0000   0.0000   0.0000
#> 96    0.0000   0.0000   0.0000   0.0000   0.0000
#> 97    0.0000   0.0000   0.0000   0.0000   0.0000
#> 98  100.0000 100.0000 100.0000 100.0000 100.0000
#> 99    0.0000   0.0000   0.0000   0.0000   0.0000
#> 100   0.0000   0.0000   0.0000   0.0000   0.0000
#> 101   0.0000   0.0000   0.0000   0.0000   0.0000
#> 102   0.0000   0.0000   0.0000   0.0000   0.0000
#> 103                                             
#> 104                                             
#> 105                    FEMALES                  
#> 106      LCL      UCL      EST      LCL      UCL
#> 107  93.5231  99.7403  98.1651  95.1915  98.9859
#> 108  94.8685 100.0000 100.0000  98.5205 100.0000
#> 109  94.8685 100.0000 100.0000  98.5205 100.0000
#> 110  91.6440 100.0000  95.7627  91.4896  97.4615
#> 111  69.3506  87.9457  68.8525  61.8217  78.7205
#> 112  94.8685 100.0000 100.0000 100.0000 100.0000
#> 113   5.4300   5.7844   5.6174   5.4989   5.7325
#> 114  94.8685 100.0000  97.3913  93.4381  98.3165
#> 115   0.0000   0.0000   2.6087   1.6835   6.5619
#> 116   0.0000   5.1315   0.0000   0.0000   0.0000
#> 117  39.5844  67.1029  60.1770  58.3036  73.7893
#> 118   6.7753  25.9645   6.7227   4.1532  14.5887
#> 119                                             
#> 120                                             
#> 121                    FEMALES                  
#> 122      LCL      UCL      EST      LCL      UCL
#> 123  10.0320  12.8529  12.0325  10.1200  13.0577
#> 124  33.2040  54.4935  46.6102  34.0873  57.2405
#> 125  10.3896  25.9540  20.1835  16.6600  25.2198
#> 126                                             
#> 127                                             
#> 128                    FEMALES                  
#> 129      LCL      UCL      EST      LCL      UCL
#> 130  29.9397  42.5714  46.3415  38.8828  56.4550
#> 131  48.8000  76.7050  82.3529  71.2594  87.6468
#> 132   2.0000  33.5354  20.0000   0.0000  43.6364
#> 133   0.0000  60.8974  45.4545  28.4848  86.6667
#> 134   0.0000   0.0000   0.0000   0.0000  38.6667
#> 135   3.3333  60.0000   0.0000   0.0000   0.0000
#> 136   0.0000   0.0000   0.0000   0.0000   0.0000
#> 137   0.0000   0.0000   0.0000   0.0000   0.0000
#> 138   0.0000   0.0000   0.0000   0.0000  20.2778
#> 139   0.0000   0.0000   0.0000   0.0000   0.0000
#> 140   1.6667  60.0000  11.1111   0.0000  26.8182
#> 141  82.9648  91.4805  87.3950  83.3482  94.4878
#> 142  67.8125  80.5882  87.2727  79.2674  94.0856
#> 143   0.9524  26.3866  12.5000   0.0000  55.7143
#> 144  66.0504  95.2381  85.7143  16.5714  98.0000
#> 145   0.0000   0.0000   0.0000   0.0000   0.0000
#> 146   0.0000  20.0000   0.0000   0.0000   0.0000
#> 147   0.0000   0.0000   0.0000   0.0000   0.0000
#> 148   0.0000   0.0000   0.0000   0.0000  38.6667
#> 149   0.0000   0.0000   0.0000   0.0000   0.0000
#> 150   0.0000   0.0000   0.0000   0.0000   0.0000
#> 151   0.0000   0.0000   0.0000   0.0000   0.0000
#> 152   0.0000   2.5907   1.7391   0.0000   3.1785
#> 153  41.8182  57.6923  32.1101  28.2081  44.3879
#> 154  19.6098  31.5385  27.8261  19.4722  36.8905
#> 155                                             
#> 156                                             
#> 157                    FEMALES                  
#> 158      LCL      UCL      EST      LCL      UCL
#> 159  59.1275  72.7473  49.1525  41.7961  58.6254
#> 160  34.8052  59.3440  32.4074  25.1420  40.9016
#> 161  11.6364  27.0130   3.6697   1.0660   8.6052
#> 162   0.5128   8.5714   0.8475   0.0000   3.2336
#> 163   0.0000   8.7379   8.4746   5.7890  10.2901
#> 164   0.0000   0.0000   0.8475   0.0000   3.7602
#> 165   0.2353   6.2204   0.0000   0.0000   0.0000
#> 166   0.2597   6.1672   0.9259   0.0000   6.5220
#> 167  13.1897  41.0115  32.1101  27.3351  36.4443
#> 168   0.0000   3.5897   0.0000   0.0000   2.3420
#> 169                                             
#> 170                                             
#> 171                    FEMALES                  
#> 172      LCL      UCL      EST      LCL      UCL
#> 173  55.3782  67.1029  62.8319  47.9975  68.0713
#> 174  61.0665  75.0583  74.3363  63.1597  85.9587
#> 175  15.4500  37.1107  25.6637  17.8958  32.3063
#> 176  15.4500  37.1107  24.5763  16.9064  30.2194
#> 177                                             
#> 178                                             
#> 179                    FEMALES                  
#> 180      LCL      UCL      EST      LCL      UCL
#> 181   0.0000   9.5312   2.6549   1.0169  10.0403
#> 182   0.0000  10.9091   3.6697   2.4757   7.5832
#> 183   0.0000   7.6673   1.6949   0.1695   4.1287
#> 184                                             
#> 185                                             
#> 186                    FEMALES                  
#> 187      LCL      UCL      EST      LCL      UCL
#> 188   0.1332   1.7095   5.9846   2.5175   7.3639
#> 189   0.1332   1.7095   5.7387   2.0151   7.3552
#> 190   0.0000   0.0330   0.0562   0.0010   0.5495

Piped operation to get output an HTML report

If the preferred output is a report with combined charts and tables of results, the following piped operations can be performed:

testSVY |>
  create_op() |>
  estimate_op(w = testPSU, replicates = 9) |>
  report_op_html(
    svy = testSVY, filename = file.path(tempdir(), "ramOPreport")
  )

which results in an HTML file saved in the specified output directory that looks something like this:

Example of a RAM-OP HTML report